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Summary. We study the problem of relating the long time behavior of finite and 
infinite systems of locally interacting components. We consider in detail a class of 
linearly interacting diffusions x(t) = { x i ( l ) ,  i E zd},  in the regime where there is 
a one-parameter family of nontrivial invariant measures. For these systems there 
are naturally defined corresponding finite systems, xN(t) = {x]V(t), i E As} ,  with 
AN = ( - N , N ]  d n Z d. Our main result gives a comparison between the laws of 
x(ts) and xS(tu) for times tN ~ C~ as N -+ oc. The comparison involves certain 
mixtures of the invariant measures for the infinite system. 
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1 Introduction 

The purpose of this paper is to study the approximation of large finite systems 
of interacting components by corresponding infinite systems, and vice versa, as 
considered in [CG1] and extended in [CG2] and [DG1]. We give a new class of 
examples of the phenomena found in these papers, which includes some models 
of interest in mathematical biology. The models considered in the cited papers all 
had rather special properties which made them mathematically tractable: duality, 
"family" independence, or "mean field" independence. This is not the case with 
the class of models treated here. Consequently, we show that the "finite systems 
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scheme" put forth in these earlier papers is not merely an artifact of  such special 
properties, but describes a type of behavior which, in our opinion, holds more 
broadly. We carry this point further in [CG4] by proving an abstract theorem 
relating the behavior of  finite and infinite systems of interacting components. 
See [CG1] for a list of references on the study of finite versus infinite systems. 
We start by defining infinite systems of interacting diffusions. 

Infinite systems of  interacting diffusions 

Let I C I~ be an interval. The infinite system x( t )  = {xi(t), i E Z d } E I ~e is a 
Markov process defined through the following system of stochastic differential 
equations: 

d x i ( t ) = [ ~ j c ~ a a ( i , j ) x j ( t ) -  xi(t)]dt + ~ d w i ( t ) ,  i C Z d , 
(1.1a) 

x(O) ~ E .  

The ingredients in the above system are as follows: 

(1.1b) A matrix a( i , j )  which is irreducible and satisfies 

a ( i , j )  >_ O, a ( i , j )  = a (0 , j  - i) V i , j  E Z d, Z a(O,j)  1. 
j E ~  d 

(1.1c) A function g : I --+ I~ § which vanishes at finite endpoints o f / ,  is locally 
Lipschitz, and satisfies 

9(0) 
lim sup ~ < ~ .  
IOl---,oc 

(1.1d) A collection {wi(t), i C Z d} of independent one-dimensional Brownian 
motions. 

(1.1e) The state space E C I za, which is defined via a suitable norm. Let 
{'Yi, i E J } be a strictly positive, summable sequence such that for some finite 
constant F ,  

~f'~ ~/i a ( i , j )  <_ F ~i, j E Z d. 
i E ~  d 

F o r x  C I ~ let Ilxll, = ~ ; ~ , ~ ' ~ e l x e l ,  and define E = {x E I zd : Ilxlll < c~}. We 
endow E with the topology of component-wise convergence. 

Remark. Since a( i , j )  is irreducible and translation invariant, if x c It~ then 
c~ix E Ig for all i c Z d, where o- i is the shift by i, (~rix)j = xi+j. Thus one can 
consider shift invariant probability measures on lg. We note that if # is a shift 

�9 ~d . 
invariant probabihty measure on I with E~[xo[ < oe, then # is automatically 

supported in lg, and hence is a shift invariant measure on E. Of  course, lg = I ~ 
if I is bounded. 
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Although Theorem 3.2 of [SS] is more restrictive than the present situtation, a 
modification of its proof, with truncation by stopping times, yields the following. 
For every x(0) E E there exists a unique strong solution x( t )  of (1.1) such that 

P(x( t )  is an E-valued continuous function of t > 0) = 1. 

The solution defines a Markov process (pX,x(t))  taking values in E, and a 
Markov semigroup S (t) acting on Cb (s the collection of all bounded continuous 
functions on s such that 

fO 
f 

S( t ) f  - f  = S(s)gAf ds, f E C2(s 

Here C2(s is the set of all C 2 functions on E which depend on only finitely 
many coordinates, and have the property that 92f is bounded, where 

1 ~ , ,OZf 
9.1f(x) = ~ ~.., 9(x )--~xi2 + Z[ Z (a(i,j) - 6(i,j))xj] ff-~fxi , 

iE~, d i E ~  d j E ~  d 

with 6( i , j )  = 1 if i = j ,  and 0 otherwise. If we define Ilxl12 2 = ~-r,x 2, then the 
set E ' =  {x E E : Ilxl12 < 0o} has the property that for x(0) E E', 

P(x( t )  is an s  I1" 112 -continuous function of t _> 0) = 1, 

and the induced semigroup is Feller. The following special cases of (1.1) have 
been studied in the literature. 

Example 1. I = [0, 1]: 9(0) = cO(1 - O) (Wright-Fisher stepping stone model 
[S1]), and 9(0) = c02(1 - 0) 2 (Ohta-Kimura model [NS]). 

Example 2. I = [0,  cx~): 9 ( 0 )  = cO (branching diffusion or "super random walk" 
[D2]). 

Example 3. I = ( - ~ ,  c~): 9(0) = c (critical Ornstein-Uhlenbeck process [D1]). 

Example 4. I = [0, c~): 9(0) = cO 2 (scalar field in a non-stationary random 
potential [$4]). 

We refer the reader to the indicated papers for more information on these exam- 
pies. 

As shown in [CG3] and [SS], the symmetrized kernel 

~( i , j )  = a ( i , j )  + a(j ,  i) 
2 

plays a fundamental role in describing the ergodic behavior of  the inter- 
acting diffusion x(t).  Let ~t( i , j )  be the continuous time kernel ~t( i , j )  = 
e-t~-]~n~=otn~(n)(i,j)/n!, and let A( i , j )  = f ~ 2 ~ ( i , j ) d s .  In order to use sec- 
ond moment techniques we assume from now on the condition 
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g(O) 1 
(1.2) l imsup 5ZqT < A 

1 0 1 ~  101 A(0, 0) 

We need some additional notation to review the basic ergodic theory of the 
infinite systems. Let T ( E )  denote the collection of probability measures on E 
which are shift invariant, and let Tp(E) be all # c T (E)  such that (#, IxolP) < ~ ,  
where in general ( # , f )  = f f d # .  f_. denotes law, and (~o denotes the unit point 

fdd 
mass at the element xi - O. Let --~p denote convergence in probability, let 
denote convergence of finite dimensional distributions, and let ~ denote weak 
convergence. In particular, for continuous processes Zn(.) and Z(.),  Zn(.) ~ Z(.)  
means that the probability laws induced by Z,( . )  on the continuous path space 
converges weakly to that induced by Z(.)  as n --~ oc. For any probability measure 
# on E we will write #S( t )  for s  when s = #. Z denotes the set 
of  invariant measures for x(t) ,  i.e., all probability measures # on E such that 
#S( t )  = # for all t _> 0. 

The behavior of x(t)  depends on whether or not 3 ( i , j )  is recurrent or tran- 
sient. In the transient case we have the following, taken from [CG3] and [$4]. 

T heo rem 0. Assume a(i j )  is transient. 
(a) For 0 E I and s  = 50, the weak limit uo = l i m t ~  s  exists, is 

an element of  Tz(E), is associated and mixing, and satisfies (uo,xo} = O. 
(b) For 0 C I, / f s  E ~ ( E )  is shifl-ergodic, with Exo(O) = O, then 

s  ~ uo as t --+ cx~. 
(c) The set of  extreme points o f Z  N TI(E) is exactly {uo, 0 E I} .  

Remark. When necessary we will write u~ for uo to indicate the dependence of 
uo on9 .  

The picture for recurrent ~ ( i , j )  is not nearly as complete, except for some special 
cases and the general compact I case, in which the phenomenon of clustering 
occurs. We refer the reader to the papers [S1], [$2], [NS] and [CG3] for more 
details on this. 

Finite systems of  interacting diffusions 

F o r N  = 1, 2 , . . .  let AN = ( - N , N ] d N Z  d be viewed as a torus, and let EN = I AN. 
We define an ~N-Valued Markov process xN(t)  = {xN(t) , i  E AN} via the 
system 

(1.3) 

xN (o) E ]~N, 

where aN ( i , j )  = ~-]k~,a a ( i , j  + 2Nk ), i , j  E AN. We let SN (t) denote the corre- 
sponding transition semigroup operators. 
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We view the processes xN(t) as finite versions of the infinite system x(t), 
since it is easily seen that given x(0) E E, if xU(0) = xi(O) for all i E AN and 
all N,  then for fixed t > 0, 

12(xU(t)) ~ f.(x(t)) as N ~ oc. 

To be precise about the meaning of this convergence, we introduce the periodic 
extension operators 7rs : EN -+ E, (T'NxN)j = X N where i E AN, i = j m o d ( 2 N ) .  
We also let 7rN denote the induced operator mapping probability measures on EN 
to probability measures on E. If  #N is a probability measure on EN, N = 1,2, . . . .  
and # is a probability measure on E, we write #U ~ # as N -+ co to mean 
7rN ]2 N ===> # as N --+co. 

If  "3(i,j) is transient, the long-term behavior of  the finite systems differs 
drastically from the long-term behavior of  the corresponding infinite system (as 
given in Theorem 0a). For instance, if I C ~+ and xU(0) -- 0, then for fixed 
N, ~'~icau xN( t )  is a nonnegative martingale, and must converge a.s. as t ~ ~ .  
From this fact it is easy to see that as t ~ co, 

s ~ (1 -- 0)6O + 061 (Example 1), 

~(xN (t)) =:~ 60 (Example 2). 

Using Gaussian techniques it can be shown that (suitably interpreted) as t --+ oo, 

16  1 6 /~(xN(tN)) ~ 2 -oo + ~ +~ (Example 3). 

To obtain a more precise picture of  the asymptotic behavior of  the finite 
systems we will compare the behavior of  x(t) and xN(t) as both N and t tend 
to infinity, using the framework of  the finite systems scheme of  [CG1]. 

Ingredients of the finite systems scheme 

In order to state our results we define the following objects. 

(1.4a) The time scale/3N = (2N) d. 

(1.4b) The empirical densities 69N(t) = [AN1-1 ~iEAN xN(t)" 
(1.4c) The rescaled process of empirical densities Zs( t )  = tON(t/3s). 

(1.4d) The diffusion Z(t)  on I ,  defined for the case ~( i , j )  transient, by 

dZ(t) = V/9*(Z(s))dw(s) ,  Z(O) = p, 

V 9 where w(t) is a Brownian motion on I~ and 9* is the function 9*(0) = E og(xo ). 
(The fact that this stochastic differential equation has a unique weak solution will 
follow from Lemma 2.12 of  Sect. 2 below.) The probability transition function 
of  Z(t)  will be denoted Qt(p, dO). 

(1.4e) The empirical measures of  the finite systems 
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ON(t) = [Au1-1 ~ ~yx~<o, 
iGAu 

where ~r N is the shift by i on AN, (aNx)j = xk, k = (i + j ) m o d ( 2 N ) .  

Main results 

We treat only the case ff( i , j )  is transient in this paper, the recurrent case will be 
contained in [CGS]. Theorem 1 analyzes the behavior of  the finite systems from 
a global point of view with the empirical densities Uu(t). Theorem 2 takes a 
more local viewpoint, and is the direct analogue of results proved for branching 
random walk, the voter model and the contact process in [CG1]. Our proofs 
require certain random walk estimates (see Proposition 2.1 below) which hold 
for all genuinely d-dimensional random walk kernels, d _> 3. The estimates hold 
also for transient random walk kernels in d _< 2 which possess certain regularity 
properties. For simplicity we will consider only the d > 3 case. 

T h e o r e m  1. Assume d >_ 3. Suppose that SUpN E(UN(O), Ix0l p) < oo for  some 
p > 2, and for  some random variable Zo, s  ~ E(Zo) as N --* oo. Then 
as N ~ co, 

(1.5) ZN(. ) ::~ Z(.), Z(O) = Zo, 

and 

(1.6) {UN(U3N);t > O} fdd �9 =::~lvz~t~; t > 0}. 

T h e o r e m  2. Assume d >_ 3. Suppose that for  some p > 2, E(xU(O)) E Tp(EN), 
supN EIxN (O)] p < oo, and for  some p C I, ON(o) ---~p p as N --+ oo. Let tu T co 
and tu/fllV ~ s E [0, co), and in the case tN /N  2 7 4 oo, assume also that 
s  (O)) ~ some ergodic element of  T2(E). Then 

(1.7) s ~ s  Z(0)  = p ,  

and 

f 
(1.8) •(xN (tN)) ::~ Jl Qs(p, dO)vo. 

Remark. Another way to look at the phenomena described in Theorems 1 and 2 
is to consider time averages. Let ~b : E ~ I~ + be a continuous function depending 
on finitely many coordinates. Under the assumptions of  Theorem 2, if 1u ---+ oo, 
lu = o(/3N), then one can prove 

ft/3N+lN f r (s))ds ~ Jl Qt(p, dO)(uo, ~). IN1 .It~u 

This shows that the phenomena described in the theorems are observable in the 
statistical sense. 
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Remark. It is possible to take p = 2 in Theorems 1 and 2 above at the cost of 
strengthening (1.2) to 

(1.2') lim sup g(O) 
101~  1-~12 = 0. 

In [CGS] we will study properties of the mapping g --~ g*, and discuss the 
special role of g(x)  = cx(1 - x) ,  g(x)  = cx, and g(x)  = c in this context. The 
remainder of this paper is devoted to the proofs of Theorems 1 and 2. Section 2 
is a lengthy section containing numerous technical preliminaries. Theorem 1 is 
proved in Sect. 3, Theorem 2 is proved in Sect. 4. 

2 Technical preparations 

We collect here various technical results that we will need. These include random 
walk estimates, moment formulae, and a formulation of the basic coupling, which 
is our most important tool. We apply the coupling to derive some regularity 
properties of the invariant measures ~g. 

Random walk estimates 

We first state a proposition containing some results on the asymptotic behavior 
of the random walk kernels atN(i , j )  and ~ ( i , j ) .  The results were proved in [C] 
and [CG1] for simple symmetric random walk. 

Lemma 2.1. 
(a) I f  t N / N  2 ~ O0 as N --* co, then suPt>t N suPijEAN (2N) a latlV(i,j) - 
(2N)-dl ~ 0. 

( b ) / f d  _> 3, and  A > O, then l i m u ~  f ~  e-;~t/(2N)~ ~ N ( i , j ) d t  = A -1 + 

~(i,j). 
( c ) / f d  > 3, and  T(N) / j3N --~ s E (0, co) as N ~ co, then 

fO T(N) lim ~N ( i , j )  dt = A ( i , j )  + s. 
N----~oo 

Proof. The fact that 

(2.1) sup sup (2N) a la :  (O, j )  - ( 2 N ) - a l  ~ 0 
t>_tN jEAN 

holds if a ( i , j )  is the transition kernel of simple symmetric random walk in E d, 
d > 2, was established in [C] (see the Proposition on page 1341 there). The proof 
used a refined local limit expansion, and is easily modified to show that (2.1) 
holds for d >_ 1 for any irreducible random walk kernel a ( i , j )  of finite range (i.e., 
for some K < co, a ( i , j )  = 0 if ti - J t  > K). Assuming now that a ( i , j )  is not of 
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finite range, we choose K < oo large enough so that with 3' = ~lk lSg  a(0, k), 
0 < 7 < 1, the kernel 

is irreducible. Letting 

p( i , j )  = 7-1a(i,j)l{li_jl<_X} 

q( i , j )  = (1 - 7)- la( i , j ) l{ l i_ j l>K},  

we have a( i , j )  = 7 p ( i , j ) +  (1 - 7 ) q ( i , j ) ,  and on the torus AN, aN(i , j )  = 
.ypN (i , j)  + (1 -- .y)qN (i , j) .  It follows that 

(2.2) at( i , j )  = P.vt q(1-.v)t(i , j )  = Z p-rt(i, k )qo-../)t(k,j). 
k E ~  d 

and 

(2.3) U U "i ") atU ( i ' j )  = P~t qo-'~) A 'J = Z N " N �9 P-~t (t, k)q(a -,y)t (k ,j ). 
k C A N  

Now put eN = suPt>.rt u supjEAu (2N) d tpN(O, j ) -  (2N)-dl. By (2.1), eN ~ 0 
as N --+ oo, and therefore, uniformly in t > tN, i , j  E AN, 

(2N)d laN(i'J) -- (2N)-dl = (2N)d [ Z P'v N(i' k)q~-'v)t(k'J) - (2N)-d[ 
k E A N  

< (2N) d ~ IP~t(i, k) - (2N)-dlq~l .r) t (k , j )  
k E A N  

eN q(l--~)t (k , j )  = eN, 
k C A , v  

which proves part (a). 
For (b), we apply a result of [MW], which says that if q~(u) = ~ j c z a  "d(O,j) 

• i(u'j), u E ~d, where i 2 = - 1 ,  then for A > 0 

fo ~ exp(-i(27rj �9 k ) /2N)  e-;~t'dN (o ' j )d t  = (2U)-Ct Z -1+-s " 
k E A N  

By separating out the k = 0 term we obtain 

fo ~ exp( - i  (27rj - k ) /2N)  e-)'t/(2N)e'dN(o'j)dt = A-1 +(2U)-a  ~ 1 + ~  - - ~ ( ~ )  
k E A  N 

f(_ exp(i 27r(u . j))  __+ A - 1  + 

1,1~' 1 - ~(Tr27ru) du 

as N --+ oo. It is here that the assumption d >_ 3 has been used to simplify 
passage to the limit. Since ~ is real, P7.5 of [Sp] implies that for some positive 
constant C, 1 - ~ ( u )  _> ClulZ on (-Tr, 7r) a. For d > 3, this is enough to apply the 
dominated convergence theorem. (For transient "ff(i,j) in d < 2 some additional 



Finite and infinite systemsof interacting diffusions 173 

assumption on the regularity of  ~ near zero is needed for this step.) Finally, the 
last integral above equals .4(0,j). 

For (c), let tN/N 2 --+ ~z, tN/N d ~ 0  asN ~ oo. By the estimate of part (a), 

e_;W(2N)a.dN(o,j)d t = 1 + O(1)e_;W(~v)a dt 
(2N) d 

_ 1 + o(1_____) exp(_AtN/(2N)d), 
A 

which tends to A -1 as N ~ c~. Therefore by (b), it must be the case that 

f0  t" , -  ;~t/~2N) d ~N m ~ ~ .~, __+ A(0, (2.4) J ). 

Now for 0 < t < tN, 1 >_ exp(-At / (2N)  d) >_ exp(-AtN/(2N) ~) --~ 1 as 
N ~ oo. This observation and (2.4) prove 

0 tN ~N(o , j )  A(O,j). 

Furthermore, i f  T(N)/(2N) d --* s E (0 ,  oo), the estimates of  part (a) easily give 

t f  (N) "d~ ( O,j ) dt --~ s 

and we are done. [] 

Moments 

Explicit expressions for the first and second moments of  the coordinates x i ( t  ) can 
be readily obtained from (1.I)  and the It6 calculus (see [NS],[CG3], and [$4]). 
If  supi Elxi(0)l  < ~ ,  respectively supi Elxi(0)[  2 < ~ ,  then 

Z at(i, k)Exk(O), Exi(t) 
k E ~  d 

Exi(t)Xy(t) = Z at(i, k )at(j, l)Exk(O)xl(O) 
(2.5) 

k , l E ~  d 

fo'Z + at-s(i, k)at-s(j, k)Eg(xk(s))ds. 
k E ~  d 

I f  s  E T1(E), respectively T2(E), then 

Exi(t) = Exo(O) 

(2.6) 

I' Exi(t)xj(t) = Z at(i,k)at(j,I)Exk(O)xt(O)+ ~2(t_s)(i,j)E9(xo(s))ds. 
k,lE~, d 
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Of course, similar formulae hold for xN(t). The following provides us with some 
needed uniformity. 

L e m m a  2.2. Let "d(i,j) be transient. 
(a) I f  # is a probability measure on E such that C = sup/(#, x/a) < oo, 

then there is a finite constant M which depends on # only through C such that 

suPt>0 sup/Er A EUlxi(t)[ 2 <_ M. 
(b) There is a p > 2 such that i f #  E Tp(E), then supt>oE"[xo(t)lP < oo. 

(c) Assume d > 3. I f #  N c T2(EN), and C = sups(#U,xg) < oo, then for 
any T < c~ there is a finite constant M which depends on the #s  only through 
C such that 

sup sup E~N(xN (t)) 2 < M.  
N O<t<T~N 

(d) Assume d >_ 3. There is a p > 2 such that if pN E Tp(]EN), and 
supN(~ N, Ix~l~) < oo, thenforany T < oo, 

sup sup EUNIx6"(t)l p '  " ' "  < o o .  
N 0<t < Tj3A, 

Proof of Lemma 2.2. For # c T2(E), (a) is Lemma 2.1 of  [$4]. More generally, 
by (1.2) there are finite constants b, c, with 0 < b < J~(0, 0) -1,  such that 9(0) < 
c+bO 2 for all 0 E I .  Letting fi (t) =E~'x~(t) a n d f ( t )  = sup{fi(s) : 0  < s < t , i  E 
Xa}, it is routine to see t h a t f ( t )  < oo for t > 0. For u < t, (2.5) implies that 

f0  u 
fi(u) = Z au(i,k)au(i,l)EVxkxt + Z a u - s ( i , k ) a u - s ( i , k ) E 9 ( x k ( s ) ) d s  

k , l E g  a k 

/o" <_ C + Z a , _ , ( i , k ) a u - s ( i , k ) [ c  +bEx2(s)]ds 
k 

<_ c + c~(O, o) + b~(O, O)](t). 

Taking the supremeum over u < t and rearranging gives 

c + c~,(O, o) 
f ( t )  < 

1 - b~,(O, 0) '  

which proves (a). 
For (b) define 

K = U'lxol p, f ( t )  = EVJxo(t)lP, f ( t )  = sup{[f(s)l;  0 < s < t}. 

It follows from (1.1) that 

~0 t xi(t) = Z at(i,j)xj(O) + Z a t _ s ( i , j ) ~ d w j ( s ) ,  i E za. 
j E ~  a j E ~  a 

This fact is easily established by applying It6 's  formula to the stochastic process 
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Z at-s(i,j)xj(s), 0 < s < t, (t fixed) 

jEg a 

and then integrating both sides. Next, it follows from (4.1) of  [B] that for a 
continuous Lp-martingale Mt, if p > 2, for all 0 < u < t, 

EIMul p <_ (p - 1)P E([Mlt) p/2. 

Now for fixed t, letting Mu = Jo ~j6~a a t _ s ( i , j ) ~ d w j ( s ) ,  {Mu, 0 <_ 
u < t} is a martingale, and hence 

[:o' ] EIMtl p < (p - 1)P E Z at_,(i,j)29(xj(s))ds 
j EE a 

p/2 

Using these observations we have 

Elxi(t ) - ~ at(i,j)xj(O)l p 
j E~ a 

f0 t = E I Y~ a t - s ( i , j ) ~ d w j ( s ) l  p 
jE~ a 

<_ (p - 1) p E Z at-s(i'j)29(xj (s))ds I 

jE~ a 

If  we let a = 2 - 4/p, and 2/p + 1/q = 1, then a q  = 2 = (2 - a)p/2. Thus the 
right-hand side above equals 

fot  ] p /2 (P - 1)PE JZ6Z~a at-s(i'j)aat-s(i 'J)2-ag(xj(s))ds J 

<- (P - 1)P ~ at-s(i'j)2 ds Z at-s(i'j)2E[9(x] (s))lp/2ds 
j Eg a j EZ a 

= ( p - 1 ) P I ~ o t ' d 2 s ( O , O ) d s ] ~ - l f o t ~ d 2 s ( O , O ) E [ g ( X o ( , - s ) ) ] p / 2 d s  

where we have used H61der's inequality. By assumption (1.2) there are finite 
constants b, c 0 < b < A(0, 0) - I  such that f o r p  E (2, 3], [9(0)1P/2 <_ bp/2lO[P +c 
for all 0 E I .  Finally, we need the elementary inequality: for p > 2 there exists 
Cp < oo such that 

(a  + t3) p _< (p - 1)a p + Cp/3 p for a, /3 > 0. 

By combining the previous results we obtain, for u < t, 
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E[xo(u)l p <_ KCp + (p -1)P+l [foU "dzs(O, O)ds] ~-~ 

0 u a2s(0, O)[bP/2E Ixo(u - s)] p + c] ds 

<_ KCp + (p - 1)P+1.3,(0, O)P-I[bP/2A(O, O)f(t) + cA(O: 0)]. 

Taking the supremum over u _< t gives 

f (t ) <_ KCp + (p - 1)P+~.4(0, 0)~-1 [bp /2~(O, O)f (t ) + crY(O, 0)]. 

Now if p > 2 is sufficiently close to 2, then for all t, 

f ( t )  < KCp + c(p - 1)p+IA(0, 0) < oo. 
1 - (p - 1)P+L4(0, 0) e- lbp/2A(0,  O) 

We turn to the proof of  (d), which is somewhat more involved. With 

K = sup(# N, Ixof), fN( t )  = ES(IXoN(t)l p, fN ( t )  = sup{~cN(s)[; 0 < S < t}, 
N 

we proceed as before to obtain 

ElxU(t)[ p <_ KCp + (p - 1) "~ "dU(o,O)ds 

f ' - s ) l  p + c] O)[bP/2EIx~(t ds. 

Letting JN(t)  t A N = fo a2s (0, O)ds, we have for u _< t, 

/o fN(u) < KCp +(p -- 1)P+IjN(u) ~-1 "aN(O,O)[bP/2fN(u -- s)+clds. 

Taking the supremum over u _< t gives 

/o fU( t )  <_ KCp + (p - 1)P+lJU(t)~ -1 "d~s(O, O)(bP/2fu(t -- s) + c)ds. 

For r > O, define 

fo cxz 12T~N IN(r )= e-rt'aN(O,O)dt and FN(r )= e-rt fU(t)dt .  
dO 

By integrating the previous inequality we find that 

FN(r) < KCp/r  + (p - 1)P+IJN(2T/~N) p-1 {IN(r)(bP/2FN(r) + c /r)} .  

A little rearrangement yields 

r U r KCp + (p - 1)P+tJN(2T/3N)~-%IN(r//3N) , 
F (-~U) < ;--_-bp/2-~-- 1)p+ljU(ZT~u)~_lZU(r//3N~ ) 
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provided the denominator is positive. To see that this is possible for appropriate 
choices of p and r, we note that by Lemma 2.1, JN(2T3~) ---+ A(0,0)+ 2T, 
IN(r/fiN) ---+ r -1 +A(0,0), and also 

Therefore, 

2T[3N 
IV(r/fiN) > e-rS/~u'd~s(O,O)ds > e-ZrrjN(2TrflN). 

JO 

lim sup bP/Z(p - 1)P+IjN (2T~N)e--II N (r /3N) 
N -* oo 

< bP/Z(p - 1)P+l(e2rr(A(0, 0) + r- l ) )~- l (A(0,  0) + r - l ) .  

Recalling that bA(0, 0) < 1, we can first choose r < oc and then p > 2 such 
that the right-hand side above is strictly less than one. Thus for some M < oc, 
SUpN FN (r /fiU)/fiU <_ M. Consequently, 

fo T _< M. e-rt fN  (t flN )dt 

Using the monotonicity o f f  N, we get SUpNfN(T3N) <_ e2rrM/T, and we are 
done. 

The proof of (c) is similar, but shorter, so we omit it. [] 

Coupling 

Our primary tool is the coupling of [CG3] and [$4], and we will need several 
forms of it. The first is a coupling of two versions of the infinite system, x(t) and 
y(t). Given the • • E-valued pair (x(0),y(0)), the bivariate process (x(t),y(t)) 
is defined by 

(2.7) 

] dxi(t) = ~f, ea( i , j )x j ( t ) -x i ( t )  dt+~/g(xi(t))dwi(t) ,  i c Z d , 

= [~jc~," a ( i , j ) y j ( t ) -  yi(t)] dt + V / - ~ i ( t ) ) d w i ( t ) ,  i E ~ d  dyi(t) 

where one set of Brownian motions is used for both coordinates. We note that 
the existence and uniqueness results of [SS] hold for (2.7). For 0 E I ,  let T2~ 
be the set of all # E T2(E) such that 

Z at(O,j)xj --* 0 in L2(#) as t -+ oc. 
iCE d 

We will show in the subsection on L2-theory that T2o(E) contains all # E T2(1E) 
which are shifl-ergodic and have (#, Xo) = 0. The following was proved in [CG3] 
and [$4]. 
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Proposition 2.3. Let (x ( t ), y ( t ) ) be the bivariate process defined by (2.7). 
(a) I f  s c TI(]E • E), then Elxi( t)  - y i ( t ) [  is nonincreasing in t. 
(b) I f  in addition, s C T2~ for  some 0 E I, and ~(i , j )  is 

transient, then Elxi(t)  - yi(t)[ --~ 0 as t ~ oo. 
(c) If~d(i,j) is transient, the measures uo of  Theorem 0 belong to T2~ 
(d) I f 'd ( i , j )  is transient, and # C T2~ then #S( t )  ~ uo as t --+ co. 

Versions of the finite systems may be coupled in a like manner. Given the 
EN x EN-Valued pair (xN(O),yN(O)), the bivariate process (xN(t),yN(t)) is de- 
fined by 

dxU(t) = [ ~ j E A u a N ( i j ) V ( t )  - xN(t)] dt + ~ d w i ( t ) ~  i E AN, 

(2.8) 

dyN(t) = [2 jeAuaN( i , j )y fC( t )  - y~(t)] dt + V/-~i iu( t ) )dwi( t ) ,  i E AN. 

As in Proposition 2.3(a), if/2(x N (0), yN (0)) E TI(EN x EN), then E Ix N (t)--yN (t)l 
is nonincreasing in t. 

We also need to couple finite and infinite systems. Given (x(O),xN(O)) E 
E x 7,N, construct the bivariate process (x(t), x N (t)) via 

- ~  [EjE~d a ( i , j ) x j ( t ) -  xi(t)] dt + ~/9(xi( t))dwi(t) ,  i E ~d, dxi(t) 

(2.9) 

dxN( t )  = [ ~ j E A N a N ( i , j ) x N ( t ) -  xN(t)] dt + V / ~ i i N ( t ) ) d w i ( t ) ,  i E AN. 

Comparison estimates 

We now use this coupling to show that at fixed times t, uniformly over a certain 
class of initial states, the laws of x( t )  and xN(t)  are close for large N. 

Proposition 2.4. Let (x(t), xN (t)) be the bivariate process defined by (2.9). For 
C < oo let 12~ be the collection of  all probability measures fz on E • EN such 
that ~ (x  i = x N , i E A N ) =  1 and sup/(/2,x 2) < C. 

(a) For fixed i C Z d and t > 0, sup~cv ~, E#lxi( t )  - x/U(t)l --~ 0 as N ~ cxz . 

In particular, there exists a sequence {s } depending only on C, gUY ~ ,  such 
that 

sup E#IXi(~.N) -- xN(gu)[ --+ 0 as N --+ c~z. 
~ v g  

(b) Forf ixed t > 0, supper ~, IAN1-1 ~i~Au E~lxi(t)  - xU(t)l ~ 0 as N --+ 
~ .  In particular, there exists a sequence {gU } depending only on C, s T cx~, 
such that 

sup lAw 1-1 Z E # l x i ( g N ) -  xN(gN)[ ~ 0 as U ~ ~ .  
fzE V~ i EA~r 
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Proof Let A~(t) = x:(t) - xi(t) for i E AN. As in [CG3], It6's lemma can be 
applied to Ix/v -x i [ ,  and we obtain (with sgn the signum function) 

d e dt IA~(t)[ =E[sgn(AWi (t))( ZaN(i'j)x:(t)--~--~a(i'j)xj(t))] -E]ANi (t)I' 
jcAN ]E~ d 

<- ~ aN(i'j)E[IAY (t)l -IA?(t)[] + Z [aN(i'J)- a(i'j)lElxj (t)l 
jcAN jEAN 

+ ~ a(i,j)Elxj(t)l. 
j q~ AN 

By Lemma 2.2(a) there exists M < 00 depending only on C such that Elxi(t)l ~ 
M for all t. Letting e~ = ~jq~aN a(i,j), we have 

d N -~ EIAi (t)l <- Z aN(i'j)E[IA~ (t)l -- Iza~(t)l] + 2Me N i E AN. 
jEAN 

From this it follows that 

2 (2.10) EIAN(t)I _< ~ at~ (i,j)ElA~, (O)l + 2M ~ aff_s(i,j)~j ds. 
jEAN jEAN 

By assumption, A/~(0) = 0 for all i C AN. Furthermore, writing Am/z for AtN/2 ], 
where IN/2] is the greatest integer _< N/2, j + Am~2 C AN for j E AN~2. 
Therefore, 

:/2 
o = Z a(O,k)= Z a(j,k)> Z a ( j ' k )=e}  q" 

kq~Au /2 kgj+AN/2 kq~-AN 

Thus, 

fO 
t 

EIA/U(t)I _< 2M ~ a~_,(i,j)~ ds 
jEAN 

f0  t < 2M Z a~(i,j)ds+2Mt sup e~ 
j q~A:: /2 jEAN~2 

/o' < 2M Z as(i,j)ds +2Mte~/z 
) ~AN/2 

and this last expression tends to 0 as N ~ cxD for fixed t, proving (a). 
For (b), fix t > 0 and 6 > 0 and choose K < cxD such that e0 K < 6/2Mt. 

Observe that if i E AN, and i + AK C Am, then translation invariance of the 
kernel a (i, j )  gives 

e~ < Z a(i,j)= eft. 
jq~i+Ar 

Using (2.10) and the above, 
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IA I  lA (t)l 
iEAN 

<_ 2MtIAN]-'  ~7_. ' e~i 
iEAN 

<_ 6 + 2Mt IAN 1-1 Z 1 {(i + Ate) N A~v r 0} 
iEAN 

< 6 + 2 M t d K / N .  

Let N -+ oo and 6 --+ 0 to obtain (b). [] 

L2-Theory 

For x E IE and n = 1 ,2 , . . . ,  define 

Dn(x) = 1Anl -~ ~ xi. 
lEAn 

The L2 ergodic theorem asserts that if r E T2(1E), then the spatial density D(x)  = 
l im,~c~ Dn(x) exists as an L2(#) limit. Furthermore, for each # E T2(E) there is 
a unique finite measure ), on H = (-Tr,Tr] d such that 

(#, (xj - O)(xk -- 0)) = / n  exp(iu - (j -- k)) A(du), 

where 0 = (#,xo). A is called the spectral measure of #. I f  # E T2(I~) and 
(#, xo) = 0, and A is the corresponding spectral measure, then # E T2~ if and 
only if A({0}) = 0. This is easily seen as follows. Let r be the Fourier transform 
r  = ~ k ~  a(O, k)exp( i (u  . k)), u E I~ d, so that 

at(O, k)e i("k) = e x p ( - t ( 1  - r 
k E,~ d 

Then we have 

a,(o, k)x  - O) 2) 
k E ~  d 

= (A, Z at(O,k)at(O,l)exp(i  u .  (k - l))) 
k, IEN d 

= (A, e x p ( - 2 t N ( l  - r 

as t --+ oo by the dominated convergence theorem, since the irreducibility of 
a(i , j )  implies that qS(u) ~ 1 o n / 7  \ {0}. 

Now consider the trigonometric polynomials p , (u )  = IA, 1-1 ~ ) e a ,  exp(i(u �9 
j )) .  These polynomials satisfy 

(i) limn~oopn(U)= l{o}(U), and 
(ii) for 6 > 0 there exists e(m, 6) such that if J6 = ( - 6 ,  6) u \ {0}, then 

Ipm(U) -- I{0}(U)I <_ 1J~(U) + e(m, 6), 

and e(m, 6) --* 0 as m ~ ec. 
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If  # E T2(E) is ergodic, with spectral measure A and (#,x0) = 0, then using (i) 
it follows from the bounded convergence theorem that 

(#, (Dn(x) - 0) 2) = (h, Ipn(u)l z) ~ h({0}) 

as n ~ cx~. Since this limit must be zero, # c T2~ 
The next result gives us a condition under which the weak convergence 

#n ~ # implies the spatial densities D(x) under #a converge in distribution to 
the spatial density under #. 

L e m m a  2.5. Let #, #l ,  ]A2, - �9 �9 E ~T2(]~), with respective spectral measures h, hi,  
h2, . . . .  I f  lgn ~ Iz, (]Zn,XiXj) -'-> (#,xixj) for all i , j ,  and /~n((O}) ~ h({0)), then 

lim sup Eun IDa(x) - Dm(X)! = O. 
k--*OO m,n>_k 

Furthermore, if  Hn(') = #n(D(x) C ") and H(.) = #(D(x)  C "), then Hn ~ H. 

Remark. The condition ha({0}) ~ h({0}) is certainly implied by the condition 
h({o)) = 0. 

Proof. We first note that ha ~ A. So for e > 0 we may choose 6 > 0 such 
that h(J~) < e and ha( ( -6 ,  6) d) ~ h ( ( - &  6)d). This and the assumptions imply 
ha(J6) ~ h(J~) < c. Thus, letting C = supn ha(H),  

sup IIp,(u)-pm(u)IIz~(A,) <_ sup ( l i en (u ) -  l ( 0 ) ( u ) l l ~ , )  
n ,n  >k n ,n >k 

+l ien(u) -  l{0)(u)ll~(~,.)) 
< sup (2hn (J~)1/2 + Ce(n, 6) + C e(m, 6)) 

m,n>_k 

2h(J~) U2 < 2e 1/2 

as k ~ c~. This proves the first assertion, which we may write in the form: for 
any e > 0 there exists k < c~ such that 

l iOn(x) -  Dn(x) l l~(~)< e for m,n  > k. 

Letting m --~ cxD above gives l i O n ( x )  - O ( x ) l l z ~ ( ~ )  _< ~ for all n > k, while 
setting m = k gives i l D a ( x )  - D k ( x ) l l ~ ( z o )  < e for all n > k. Putting these facts 
together gives 

[[Dk(x) -- O(x)llz~o) < 2e for n > k. 

By the Le--ergodic theorem, by taking k larger, we may also assume that 

liD(x) - Dm(x)l[~(~, ) < e for m > k. 

Since #~ ~ # as n ~ oo, for any fixed m, s ~ L#(Dm(x)) as n ~ Cx~. 
Combining these statements we see that f~zo(D(x)) ~ s  or Ha ~ H.  

[] 
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Convergence properties o f  the coupled process 

We prove now a convergence result for the bivariate process (x (t), y (t)) as t ---+ 
which will have several important applications. 

Proposi t ion 2.6. Assume "d(i,j) is transient. Let {/2.} C- T2(E x E) satisfy 

sup. (/2., x0 2 + yg} < cx~, and every weak limit point/2 o f  {/2. } satisf ies/2{D(x) = 
D(y)} = 1. Let (x ( t ) ,y ( t ) )  be the bivariate process defined in (2.7). Then for  any 

tn --+ cxD, E #" Ixi(t.) - Yi(& )l ~ 0 as n --+ oo. 

Proof The proof is by contradiction. If  the conclusion of the proposition is false, 
there is a ~ > 0 and a subsequence {n'} such that 

E &' [xi(tn') - yi(tn')[ ---+ t5 as n '  ~ oo. 

The uniform second moment  condition implies tightness of s y( t , )) ,  so we 
may assume as well that/2,,  converges weakly to some/2. Since/2 6 T2(E • E), 
and /2{D(x) = D(y)} = 1, there is a probability measure A on I such that 
/2 = f l /2pdA(p) ,  where each /2p E T2(E x 7,) and /2p{O(x) = D(y )  = p} = 1 
(except for p in a A-null set). This is possible since E x E is Polish, and we can 
let/2 0 be a version of/2(- ] D(x)  = D(y)  = p). By Proposition 2.3(b), for such p, 
E~Plxi(t) - y i ( t ) ]  ~ 0 as t --~ exp. Consequently, l imt~o~E~lx i ( t )  - y i ( t )  I = O. 
Proposition 2.3(a) implies that E #" I x i ( t ) -  yi(t)l is nonincreasing in t for fixed 
n, while for fixed t, the Feller property, together with the uniform bound on 
second moments, imply that E & '  [xi(t) - yi(t) I ~ EUlxi(t) - yi(t)  I as n '  ~ ~ .  
It therefore follows that for all t < oo, 

l i m s u p E  ~.' Ixi(tn,) - yi(t.,)l <_ lim sup E &' fxi(t) - yi(t)l = E~lxi( t )  - yi(t)l. 
n ' ---* c ~  n ' ---+ cx~ 

Since the right-hand side above tends to 0 as t ~ oo, this is a contradiction, and 
the proposition is proved. [] 

Coro l la ry  2.7. Assume ~ ( i , j )  is transient, and I z, {# ,}  satisfy the assumptions 
of  Lemma 2.5. I f  tn ~ oo and #S(tn) ~ u, then # . S ( t . )  ~ u. 

Proof  We will define measures /2. which satisfy the assumptions of  Proposi- 
tion 2.6, such that/2n has first marginal #n and second marginal #. Given this, 
Proposition 2.6 implies E ~" Ixi(&) -Y i (&) l  -+ O. Since #S ( t . )  ~ u, this implies 
#nS( t . )  ~ u. 

To define/2, we introduce 

#~ = #n(" I D ( x ) = O ) ,  

# o ( . )  = # ( . [ D ( x ) = O ) ,  

H , ( . )  = # , ( D ( x )  E . ) ,  

H ( . )  = #(D(x)  6 . ) .  

By Lemma 2.5, H,  ~ H as n --+ oo. By using Skorohod's  theorem we can 
construct measures/4n a n d / 4  on I~ 2 such that /q ,  has first marginal H , ,  second 
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marginal H,  and/4n = ~ / t  as n ---* ~ ,  where/~ is concentrated on the diagonal, 
/4({(a,  b) : a = b}) = 1. Finally, define 

= f (~o x ~~ dO'). #. 
d~ 2 

The /Zn have the correct marginals, so it remains to prove that i f /5 is a weak 
limit point of {/2n}, then fz(D(x) = D(y))  = 1. First, by Lemma 2.5, one can 
easily see that 

lim lim E u" IDm(x) - D(x)I = 0. 
m ---~ oo n ---~oo 

Therefore 

E~lO(x)-O(Y)l = lim lim E#"lOm(x) - -Om(y) l  
m---+ oo n ----roo 

_< l i r n  linao~ [E ~" [Dm(x ) - -  D(x)] + E #" [Din(y) - D(y)[] 

+E #" [D(x) - D(y) I 
< l i r n  l i m  [E u" [Dm(x) - m(x) I + E~lDm(y) - D(y)I] 

J f  IO - O'[f-l,(dO , dO') +nl im 

which is zero, showing #(D(x )  = D(y))  = 1. [] 

Corol lary  2.8. Assume ~(i , j )  is transient. Let {/2 N } E T2(EN x EN), sup N (/2 N, x 2 
+y2o) < oo, and suppose that every weak limit point f~ o f  the fz N has the property 
/2{D(x) = D(y)} = 1. Let (xN (t), yN (t)) be the bivariate process defined in (2.8) 
with initial distribution fz N. Then EIxN(tN) -- y~(tN)l --+ O for  any tN ~ oo. 

Proof  Let tN ---+ 00, let (xN(O),yN(O)) have law/2 N, and let 07N(0),yN(0)) be the 
periodic extension of (x N (0), yN (0)) to Za. We can now construct a coupled pro- 
cess (:7 N (t), yN (t), X u (t), yN (t)) with initial state (~N (0), yN (0), X u (0), yN (0),) E 
E x ]2 x EN X EN in the obvious way. By Proposition 2.4 there exists lN ~ oo, 
IN < tN such that for fixed i, 

EIxN(IN) -- xN(IN)[ ~ 0 and EIyN(IN) --Yi-N(IN)I --~ 0.  

By the monotonicity remark after (2.8), 

EIx~ (tN) - yN (tN)I --< EIxN (IN) -- YiN (IN)I. 

The family /5 N = s N, yN) satisfies the assumptions of Proposition 2.6, so 
E I ~ N ( I N ) -  ~( IN) ]  ---+ 0. By combining these results we obtain the desired 
conclusion. [] 

The next lemma is a crucial ingredient in the proofs of Theorems 1 and 2. 

L e m m a  2.9. Assume d >>_ 3. Suppose that s C T2(EN), sup N EIxoN (O)f  
< o o f o r  some p > 2, and for  some random variable Zo, s  ~ s as 
N --~ oo. Let tN --~ 00, tN <_ T/3N, and s ~ # as N --+ oo. In the case 
tN = O(N 2) assume also that for  some 0 E I, s ~ some u C T2~ Let 
#~ = 7rN s  (tN )). Then #, #1, # 2 , . . .  satisfy the assumptions o f  Lemma 2.5 
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Proof Since /z, ~ #, and sup(#,, Ix01P> < c~, it follows that <~Zn,XiXj) ---+ 

(#,xixj)  for all i , j .  Now let #, #1, #2 , . . .  have spectral measures A, A~, A2,.... 
It is enough to prove that 

(2.11) EIoN(tN)I 2 ~ E~ID(x)I 2, 

since this implies AN ({0}) ~ A({0}), and hence the assumptions of Lemma 2.5 
are fulfilled. Since s E T2(EN), (2.11) is equivalent to 

(2.12) Ex g (tN ) 0  u (tu ) ~ EUxoD (x ). 

Before proceeding further we note that by Lemma 2.2(d), E 119 u (0)[ p is bounded. 
Since oN(o)  ~ Zo, it follows that E[oN(o)[ 2 ~ E[Z0[ 2. Similarly, 

(2.13) ExN (tN)xN (tN) --+ EVXoXj 

for all j .  Furthermore, 

ExoN (tN )xN (tN ) = 

(2.14) 

E aN(O'k)aN(j ' l )Exff(O)xfl(O) 
k,ICAN 

+ f t N  ~dNu(o,j)Eg(xN (tY _ u))du.  
JO 

The case t u / N  2 --+ oo: By Lemma 2.1(a), uniformly i n j  as N ~ oc, 

Z 
(2.15) k,tEAN k,t~AN 

= EIoN(o)[ 2 + o(1) ---+ EZ 2. 

Let SN satisfy SN <_ tN, SN/N 2 --+ oo and s u / N  d --+ O. By (1.2) and Lemma 
2.2(c), C = sup Eg(xN(s))  is finite. So again by Lemma 2.1 

s<_TlS~ 

and 

s /o ~u(O, j )Eg(x~( tN -- u) )du  - 1 +o(1) • E g ( x ~ ( u ) ) d u  < CT. 
IANI 

Now let {Nk } be any sequence such that the limit 

IANk1-1 ]0 Eg(xoN (u))du O (2.16) 

exists. In view of (2.13) - (2.15), this implies that for every j ,  for some H(O, j )  <_ 
CA(O,j),  
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fO suk wNk Nk a2u (O,j)E9(xo (tNk -- u))du --+ H(0 , j ) .  

Using (2.13) again, we have 

E~'xoxj = lim ExN~(tIv~)xN~(tN~) = EZ~ + H ( 0 , j )  + G. 
k----roe; 

By (2.14) and (2.15), 

Ex~ ~ (tN~ )O ut` (iN k ) = IA. I-' (gZ2o +o(1))+IAN~[-'  '  Eg(xNo (u))du 
j c A ~  

Ezg + O. 

On the other hand, 

E;~xoD(x) : lim EUxoD~(x)=EZo2+G + lim IA.I -~ ~ H(O, j )  = E Z 2 + O ,  
~ ----~ O O  n - '--~OO 

jCAn 

since H(O, j )  <_ C.4(O,j) --+ 0 a s j  - -  oc. This is enough to prove (2.12). 
The case tN = O(N2): We use here the additional assumption that for 

some 0 C I and v E T2~ /2(xN(0)) ~ v. Let 7u be the spectral measure 
of  7rNs and let 7 be the spectral measure of  v, so that 7u ~ 7 as 
N --~ o~, and 7({0}) = 0. Let 0(u) = ~kC~d a(O,k)exp( i (u  �9 k)) and 0N(u) = 

~k~AN aN( 0, k)exp(i(u .k)), u E ~d. It is easy to see that if ~N = ~-']~k r AN a(0, k), 

then [0N(u) - q~(u)[ _< ~U for all u. If 0t(u) = ~-]~k~a at(O,k)exp(i(u  . k))  and 
ON(u) = ~-~kCa?r aN(o,  k )exp(i(u . k )), then 

Or(u) = exp( - t (1  - 0(u)), 0zU(u) = exp( - t (1  - cpN(u)). 

To prove (2.12) we must compute the two terms in the right-hand side of 
(2.14). Let ON = ExoU(O), ON ~ 0 as N ~ oo. Then 

Z a~(O'k)at~ (j' l) 
k,l E A,v 

E(x~  (O) - Ou )(xtU (O) - ON) 

= Z aN(O'k)aN( l ' l ) (TN'exp( i  U. (k - l))) 
k,lEAtr 

= (TN, 10~ (u)12e -i(u'j~) 

Since "IN ~ 7, and 7({0}) = 0, we have that 7N({0}) ---' 0, and for e > 0 we 
can choose 6 > 0 such that lim sUp TN((--6, 6)d) < e. Thus 

l imsup f l~(u)lZTu(du) < e. 
N----~ oo J (_ ~,~')a 

On the other hand, 
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l\(_6,a)a ICN (u)127N(dU) = fHN(_6,6)a exp(--2tN~(1 -- CN (U)))TN(dU ) 

[ exp(--2ty~(1 - -  qS(U) - -  I~N))'yN(dU ) < 
Jr /  \(-6,6)~ 

_< sup exp(,2tu{R(1 - -  r  - -  t~N))'TN(H ) 
uEr/\(-6,6) a 

which tends to 0 as N ---+ oo, since t~N --+ 0, and the irreducibility of  a ( i , j )  
implies q~(u) is bounded away from 1 on H \ ( - 6 ,  6). 

This shows that the first term in (2.14) converges to 0 2, and hence by (2.13), 
the second term must also be convergent, say fo N "aN(o,j)E9(xN(tN -- s ) )ds  --+ 
H (0,j) .  We have therefore established 

Et*xoxj = lim Exg(tN)xN (tN) = EZ 2 + H(O, j ) .  
N --+ oo 

As in the first part of the proof, it is now easy to  see that (2.12) must hold. [] 

Regularity properties of  uo and 9"(0) 

We will use without proof the following elementary lemma. 

L e m m a  2.10. Let X be a Polish space, and suppose that {#n } is a weakly con- 
vergent sequence of  probability measures on X,  IZn ~ # as n ---+ oo. 

(a) I f  there is a continuous function r >_ 0 on X such that (/z,, r ---+ (#, r 
then (Pn, O) -+ (#, (9) for  every continous function r on X such that ]r <_ r 

(b) I f  there is a continuous function r >_ 0 on X such that (yn, r is bounded 
in n, then (IZn, O) ~ (#, O) f o r  every continous function r on X such that 
O(x ) / r  ) --+ 0 as x --+ oo. 

By combining coupling and moment  results we can obtain information about 
the mapping 0 ~ vo. 

L e m m a  2.11. Assume ~ ( i , j )  is transient. 
( a )  (/.tO, x 0 )  = 0, (/-'0, x ix j )  = 02 -b A( i , j ) ( l . ' o ,  g(xo) ). 

(b) If9(Oo) = O, and 0 >_ 0o, then uo(xi _> 0o, i E ~d) = 1. /f9(00) = 9(01) = 0 
for  some Oo < 01, then uo(Oo <_xi _< 01, i E ~ d ) =  l f o rO  E [0o,0~]. 

(c) For O, O' E I, 0 < 0', E-valued random variables x,  y can be defined on 
a common probability space such that E(x)  = uo, s = vo,, and xi <_ Yi for  all 
i E Z a with probability one. Consequently, E [Yi - xil = O' - O. 

Remark. A consequence of (b) is that voo = ~5oo if 9(0o) = 0. Since the Lipschitz 
functions form a determining class for weak convergence, a consequence of (c) 
is that u0, ~ uo whenever 0 r --+ 0 

Proof  By (2.5), with E(x(O)) = vo, 

/o' Exi(t)x](t) = E[ Z at(i, k)at(], l)xk(O)xt(O)] + ~d2(t_,)(i,j)E9(xo(s)) ds. 
k,lE,g d 
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Since vo is invariant for x(t),  

/o' Exi(O)x;(O) = (~,o, ~ a,(i,k)xk ~ a,q,l)xl) +~9(Xo(0)) ~2,(i,j)ds 
kE~ d lEE d 

for every t. By Lemma 2 of [CG3] and Lemma 2.2 of [$41, Uo c To2(E). Thus, 

as t --* e~, the right-hand side above tends to 02 +A(i , j ) (uo,  9(Xo)), proving (a). 
For (b), let 0 > 00 and let s = 6o. It can be seen from (1.1) that 

P(xi( t)  > 0o, t >_ 0, i E Z d) = 1. But s  ~ uo, so uo(xi > 0o, i C ~d) = 1. 
The second part of (b) now follows. 

For (c), use (2.7) to construct the bivariate process (x(t), y(t))  with xi(O) - 0 
and yi(O) -- 0'. Then Proposition 2.3(c) implies that s ~ uo and s  
vo, as t --+ c<~. Furthermore, a standard approximation argument and It6's lemma 
with the function h(p) = max{0, p} in (2.7) leads to 

Eh(xi(t)  - yi(t)) <_ Z at(i , j)h(xj(O) - yj(O)), 
j c z  d 

which is zero here, consequently P(xi( t)  ~ yi(t), i E Z d) = 1 for all t _> 0. The 
family s is tight, and letting/2 be any weak limit point as t --~ c~, 
it follows that/2 has first marginal u0, second marginal uo,, and/2(xi <_ Yi, i E 
Z d) = 1. The proof is completed by choosing a realization (x, y)  of/2. [] 

L e m m a  2.12. Assume "~( i , j  ) is transient. 
(a) 9* is continuous on I. 
(b) For 0 c I, 9*(0) = 0 if  and only if  g(O ) = O. 
(c) I f  Oo < 01, 0o, 01 E I, and 9(00) = 9(01) = O, then 9* is Lipschitz on 

[0o, 01]. 
(d) I f  b = l i m s u P l 0 1 ~  9(0)/02,  then limsuPl01~o o 9 * ( 0 ) / 0 2  ~ b/(1 - 

b~(0, 0)). 
(e) I f  9(Oo) = O, then there is a finite constant C such that 9"(0) <_ C[O - 00[ 

for  0 sufficiently close to 0o. 

Proof Recall 9"(0) = (uo, 9(xo)) = E~~ For (a), in view of  Lemma 2.1 l(a), 
it suffices to show that (uo,x~) is continuous in 0. By (1.2) there are constants 

b < 1/,4(0, 0) and c finite such that 9(xo) <_ c +bx~. Some rearrangement of this 
inequality yields 

x~ <_ c7,(o, o) + x~ - ~,(o, O)g(xo) 
1 - b,4(0,  0)  

Letting ~(x) denote the right-hand side above, it follows from Lemma 2.1 l(a) 
that (uo, q~(x)) = (cA(0, 0) + 02 ) /0  - hA(0, 0)), i.e. (~o, q~(x)) is a continuous 
function of 0. Now Lemma 2.10(a) implies (uo, x 2) is continuous in 0. 

For (b), we use Lemma 2.1 l(a) again to write (uo, (xi - 0) 2) = A(O, 0)9"(0). 
If 9*(0o) = 0, then clearly voo is concentrated on {xi - 0o}. On the other hand, 
if g(0o) = 0, ~ao = ~oo, and hence g*(Oo) = O. 
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For (c) it suffices by Lemma 2.11(a) to show that ( u o , x  g)  is Lipschitz in 
0 C [00, 01]. To see this we compute 

] (uo ,x  2)  - (uo,,xg)l = E l x 2 ( t ,  O) - x ~ ( t ,  0') I 

_< 2 max{10o[, [011}Elxo(t, O) - xo(t, 0') I 

< 2max{10ol, 1011)I0 - 0 ' l  

For (d), let b < bo < 1/A(0, 0), and choose c large enough so that 9(Xo) <_ 
c + box 2. Using this in Lemma 2.11(a) it is easy to derive 

s + 02 

- 1 - bo (O,O) 

Using Lemma 2.10(a) again we obtain 

c + boo 2 
9"(0)  < 

1 - boA(O, 0)" 

Thus l imsuPlo l_~  9 * ( 0 ) / 0  2 <_ b0/(1 - boA(O, 0)). Let bo -~ b to complete the 
proof. 

For (e), suppose 9(0o) = O, and hence 9"(0o)  = O. It suffices to prove that 
there are constants C1, C2 such that 

(2.17) 9"(0)  _~ C110 - 0ol 2 -I- C210 - Ool. 

First, by (1.2) there constants b < 1/.3.(0, 0) and c finite such that 

9(xo)  < blxo - 0ol 2 + c[xo - Oo I. 

Next, for 0 E I ,  a little rearrangement gives 

9(xo)  <_ b[(xo - 0) 2 -I- 2(x 0 - 0)(0 - 0o) + (0 - 0o) 2] -I- c t x  0 - 0o1. 

By integrating with respect to uo we obtain 

9*(0)  <_ bE~'~ - 0f 2 +blO - 0ol 2 +cE~~ - 0o1 
= b(E~'~ - 02) d- b]O - 00[ 2 + c E  u~ Ixo - Ool 

= b~(0, 0)9*(0) + blO - 0ol 2 + c E  "~ Ixo - 0ol. 

By Lemma 2.11(c), E " ~  - 0o[ < l0 - 0ol, and thus we have 

9*(0)  < blO - O~ + ctO - Oot 

1 - b A ( O ,  O )  ' 

proving (2.17). [] 
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For the final result of this section we define Co l(E) to be the collection of 
all bounded continuous functions q5 on E which have the property that for some 
C 6 < oe and finite set A~ C Z a, 

[~b(x)-~b(y)[ < C~ Z [xi - Y i l ,  x , y  E E. 
i EA 4, 

We write (/z N, qS) for (7r~r N, qS) for probability measures #N on EN. For q5 C 
Col (E) let 

On(qb, x )  = 15.[ -1 ~ ~(O'iX ) 
iEAn 

and let D(q~,x) be the L2 limit, D(q~,x) = l i m , ~ D n ( q b ,  x )  whenever it ex- 
ists. Since each uo is mixing, the L2-ergodic theorem implies that for q~ E Co 1 (E), 
lim,_,o~ g ~~ IV,  (qS, x ) - ( u o ,  q~)] = 0. By Proposition 2.3(d), limt~oo E6~ (r x ( t ) )  
= E ~ ~ 1 6 2  The next result provides some uniformity we need in interchang- 
ing these two limits. 

Lemma 2.13. Fix M < oo and (~ C C~ (E). I f  t~ -+ cxD as n --+ ee, then 

sup E 6 ~ 1 6 2  - (uo, ~)1 ~ 0 
IOI<M 

Proof. We prove the 1emma by applying the dominated convergence theorem. 
The first step is to show pointwise convergence by coupling with the stationary 
process. Fix 0, and let (x(t) ,  y ( t ) )  be the bivariate process defined by (2.7) with 
initial distribution ~o x u0. S ince  u0 is invariant, 

E6~ - (uo,6)[ < E l D . ( 6 , x ( t . ) )  - D.(4~,y(t .))[ 

+E ID, (q~, y(0)) - (uo, q~)l �9 

By translation invariance, the right-hand side above is no larger than 

Elc~(x(t.)) - ~b(y(tn))l + (u0, [Dn(r  - (uo, ~b)l ) 

<_ Ce; Z Elxi( tn)  -- yi(tn) + (UO, IOn(r  -- (u0,~b)l) 
i EA 

which tends to zero as n --+ oo by Proposition 2.3(b) and the L2 ergodic theorem. 
This establishes 

(2.18) E]D. (O,x ( t~) )  - (uo, cp)l ~ 0 as n ---+ eo. 

The next step is to show that there is a constant C depending only on ~b such 
that if 0, 0' C I,  and ( x ( t ) , y ( t ) )  has initial distribution ~o • ~o', then for for all 
t>_0, 

(2.19) EIDn(qb, x ( t ) )  - Vn(dp, y(t))[ <_ C[O - 0~1. 

This follows easily from translation invariance and the monotonicity property of 
Proposition 2.3(a), since 
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ElD,(r - D,(r I <_ ElO(x(t)) - r  I < Cr ~ Elxi(t) - yi(t)l 
i EA 4, 

<_ Cr Z Elxi(O)-  ye(0)l = ClO - 0'1. 
i EA4, 

Finally, there is a constant C < oe depending only on r such that if 0, 0' E I ,  
then 

(2.20) I(uo,O) - (uo,,O)[ < CIO - O'l. 

This is an easy consequence of Lemma 2.10(c). The lemma follows now by 
combining (2.18), (2.19), and (2.20). [] 

3 Proof of Theorem 1 

We first note that we may assume without loss of generality that s E 
7__p(EN). Otherwise, we may replace s with its symmetrization, and let 
UN(t) denote the counterpart of UN(t). It is routine to see that UN(.) and ON(.) 
are equivalent processes. 

Our strategy is to establish the following key facts (where [. ] denotes 
quadratic variation). 

(3.1) {ZN(') ,N >_ 1} is a tight sequence of continuous L2 martingales, 

(3.2) 
E [ (UN(t/3N),r -- (UZN(t),r 1---* 0 as N ~ oc for t > 0 and r �9 C~(E),  

f0  t (3.3) E I [ZNI(t) -- 9*(ZN(s))ds I--~ 0 as N --~ c~ for t > 0. 

For given these points, we see from (3.1) and (3.3) that if 2(-)  is any limit point 
of the ZN(-), then 2(-)  is a continuous L2 martingale with increasing process 
[21(0 = fo 9*(Z(s)) ds. Hence 2( . )  must solve 

J0' ,/ 2 ( 0  - 2(0)  = v g * ( 2 ( s ) )  dw(s),  

where w(s) is a Brownian motion. By Lemma 2.12(e), this equation has a unique 
solution in the probability law sense. Therefore ZN ~ Z, and thus (3.2) implies 
UN(t/3N) ~ UZ(t), since CI(E)  is a determining class for weak convergence. 

Proof of(3.1). It is easy to see from (1.3), since a(i , j )  is doubly stochastic, that 

IA 1-1 
iEA~r 
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and hence that 69 s (t) is a martingale, with [O N ](t) = I AN I-z fo ~icAN g(xN (S)) ds. 
By (1.2) and Lemma 2.2(c), for T < c~ there exists C7 < oo such that for all 
N and all s, u E [0, T/3N ], 

(3.4) EION(s)  -- ~gN (u)l z <-- CTIAN I- '  ]s -- uJ. 

Turning to ZN(t) = oN(t/3N), it is now clear that ZN is a martingale with 
increasing process 

/o' [ZN](t) = [AN[-I E g(xN(s/3N))ds'  
iEAN 

and for N > 1 and s, u E [0, T], EIZN(S) - ZN(U)t 2 <_ Cr[s - u l. Furthermore, 
by Lemma 2.2(d) there is a p~ > 2 such that 

CT-p, = sup E(g(x~( t ) ) )  p'/2 < co. 
tE[0,T/~N] 

With this p/ ,  and 1/q + 2 /p '  = 1, proceeding as in the proof of Lemma 2.2(b), 
f o r 0 < s < t < T ,  w e h a v e  

E[Zu(t)  -- ZN(s)IP' < (p' -- 1)P'EI[ZN](t) - [Zu](s)l p'/z 

"X N ] p' / 2 

~ ~ f t  N ~ < (p' - 1)p It - sI%-IIAN[ - '  ~ E(ff(xi (U/~N))) p /2du 
J ,  iEAN 

< ( p ' -  1)P'CT,p,[t --S[P'/2. 

Since p~/2 > 1, this establishes tightness in continuous path space by Kolo- 
mogorov ' s  theorem (see [EK], Prop. 3.6.3). [] 

Proof  of(3.2).  Fix t > 0 and 4) E C01(E). By Lemma 2.2(c), C = sup0_<s<3: ~ 

E(xN(s))  2 < co. Let gN be a sequence chosen as in Proposition 2.4(b) for this 
C, with gN = O(/3N) as N --+ oo. In view of (2.20), with tN = t/3N -- gN, 

(3.5) El(ve~(,~:),  ~) - (vet(t :) ,  q~)[ < C E I O N ( t 3 N ) -  6)N(tu)[. 

Since the right-hand side above tends to 0 as N --+ oo by (3.4), in order to prove 
(3.2) it suffices to prove 

(3.6) E[<UN(t3N), ~) -- (vO-(,:), q~>l -- '  0. 

To do this, let (Y~N(t),yN(t)) be the bivariate process defined by (2.8) with 
initial state 

:zN(0) =x~(tN), yN(0)= IANI-' ~ xN(tN), i E AN. 
j cAN 



192 J.T. Cox et al. 

Note that DN(xN (O)) ---- DN(yN (O)) = (~N (tN). For the bivariate process (xN( t ) ,  

yN(t)) define the empirical measures 

0~( t )=  IAN}-' ~ 6,4'~N(, ), 0N2(t) = IANI -x ] ~  6,,yy~(,). 
iEAN iEAN 

By the Markov property, 

(3.7) E I ( U N ( t l I N ) , r  - -  (UON(,), r [ = EI(0"~(gN), r > -- (t-'D~@N(0>), r 

To prove (3.6) it thus suffices to show 

EI<0N' (6,), r - (~J2(eN), 4,>1 -~ o, (3.8) 

and 

(3.9) E I(O2(eN), q~) -- (~N~N(0~, 0) 1 ~ 0. 

We begin with the proof of (3.8). By translation invariance, 

EI<0N~(eN), r -- <0N2(eN), r --< IAN-1] ~ EI~(~rNxN(gN)) -- r 
i6A~s 

= EIr -- r I < Cr ~ EIX~(eN) -- Y•(eN)I 
iEAr 

= C~IA| -- yN(eN) I. 

So it suffices to show 

(3.1 O) E I~ u (lN) -- yU (Iu)l ~ 0, 

which we will do by appealing to Lemmas 2.9 and 2.5, and Corollary 2.8. 
Let us write/2 u for s and note that/2N E ~U2(]~ N X EN) , and 

t h a t  SUpN(/2N,x 2 + yg) < OO by Lemma 2.2(c). If we can show that /2{D(x) = 
D (y)} = 1 for every subsequential limit/2 of the/2 N, then Corollary 2.8 will imply 
(3.10). For notational simplicity assume/2 N ~ / 2 ,  and let/2N E Tz(E x Ig) be the 
periodic extension of/2N. T h e n / 2 N  ::~ /2 and by Fatou's lemma/2 E T2(E x E). 
Furthermore, DM(x) --* D(x) and DM(y) ~ D(y) in L2(/2) as M ~ ec. Thus, 
given e > 0 there exists Mo < ec such that for M _> 114o 

E ~ l D ( x )  - D(y)[  _< e + EaIDM(x) - D M O ' ) I .  

By weak convergence and uniform boundedness of second moments, 

E~IDM(x) - DM(y)[ = lim E ~  IDM(x) - DM(y)[. 
N "--'~ cx3 

We observe now that with respect to the measure/2 N, DM(y) = DN(X) by con- 
struction. Thus 

l i m  E~N[DM(x)-DM(y)[  = lim E~NID~t(x)--DN(x)I . 
N-'-~ oo N--~oo 
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Now the law of x under/~u is s SO by Lemmas 2.9 and 2.5, the the 
right-hand side above tends to zero, proving E~ID(x ) -D(y)[ = 0. This justifies 
the use of Corollary 2.8. 

Turning to the proof of (3.9), the  basic idea is to extend to the infinite system 
and apply Lemma 2.13. To do this, let yN(0) = yN(0), i E Z d, and let (y( t ) ,y( t ) )  
be the bivariate process defined by (2.9). The sequence gN was previously chosen 
to ensure 

(3.11) [AN I-~ Z E ly~N(gN) -- ~iN (gN )[ --+ O. 
iEAN 

Since A 4, is finite, we can choose K < oc such that i + j  E AM for all i E AN-K 
and j E A(~. Thus, for some finite C ~ 

E]((]2(EN),r - DN(O, yN (gN))I < IANI -* ~ EIO(~rNYN(gN))- r 
iEAN 

<-IANI-' Z Z Cr --(~riyN(gN))J I 
iEANjEA4~ 

<- CoIAr I - '  Z EIyN(eN) -- Y/n(s + Cr 
iEAN 

In view of (3.11), this implies 

(3.t2) EI(D2(gN),O)--DN(r as N ---~ oo, 

so the proof of (3.9) will be completed by proving 

(3.13) E [DN (r ~N (s )) -- (I"DN (y(0)), r ---+ 0. 

To do this we first observe that 

K = supE]DN(r <b~Djv(~N(0)), ~)]2 < OO 
N 

by Lemma 2.2(c). Next, by a simple decomposition and the Cauchy-Schwarz 
inequality, 

E IDN (r ~N (gN)) -- (l/D g (~u (0)), ~))] 

(KP(DN(~N(o)) > M)) '/2 + sup E ~~ IVY(r163 -- <UO, r 
]O]<M 

By Lemma 2.13, the second term in the right-hand side above tends to zero as 
N ---+ oo. Since the sequence DN(~N(o)) = og(tN) is tight, the first term in the 
right-hand side above can be made arbitrarily small by choosing M sufficiently 
large, and we are done with the proof of (3.2). [] 
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Proof of(3.3). We begin with 

f0 t f0 t EI[ZN](t)- 9*(ZN(s))dsl =El ( IANI- '  Z 9(X~(S/3N)) 
iEAu 

/o --(vZN(s),f(xo)))ds I <_ E[(UN(S/3N),9(Xo)) -- Q/zu(s),g(xo))Ids. 

We will see that the right-hand side above tends to 0 as N ~ oe by (3.2) 
and our basic Lp estimates. We first note that if X is any random variable with 
E IX I p = K p, it follows from H61der's inequality and Markov 's  inequality that if 
1/q + 2/p = 1, then 

EXZl{IXl  >_ M} < (EIXIP)2/P(PIX[ >_ M) 1/q ~ Ke(EIXIP/MP) l/q, 

and thus 

(3.14) EX21{IXI >_ M} <_ KP/M p-2. 

By (1.2), given e > 0 we can writeA9 = 91 + 92 where 91 is a bounded, 
Lipschitz function on I and 0 _< 92(8) _< A(O,O)-1021{iOl>e ~}, 0 E I. By (3.2) 
and the bounded convergence theorem, 

fo t El (UN(s/3N), 9a(Xo)) -- (UZ,,(s), 91(Xo))l ~ O, ds 

so it suffices to show that 

/o' /o' E(Uu(s3N),92(xo))ds + E(.z~(.),92(xo))~s 

is small, uniformly in N,  if e is small. The first term above is straightforward, 
since by Lemma 2.2(d) and (3.14), there is a finite constant K such that for all 
N, 

fo t e ( UN(s3u ), 92(xo)) as ~0 t _< ,4(0, 0) -1 E N 2 IXo (s3N)l l{xg(s~)>_,-li ds 

< A(O, o)-ltKPe p-2. 

Next, as observed in the proof the proof of Lemma 2.12(d), there are constants 
co, cl such that (uo,x g) < Co +ClO 2 for all 0 c I .  So again, there is a finite K 
such that for M > 1 and all N,  

/o' /o' E (UZN(s),g2(Xo))l{z~(s)>M}dS < A ( 0 , 0 ) - I E  (Co+ClZ~l(s))l{zu(s)>M}dS 

A(0, 0) - l t (co  + Cl)KP/M p-2. 

Finally, for fixed M,  

Jo E (UZu(s),gZ(Xo))I{IZN(s)I<_M) ds <_ tA(0,0) - t  sup (uo,xol{ixol>c,}) ---+ 0 
IOI<_M 
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as e ~ 0. This is because by Lemma 2.1 l(c) and dominated convergence, 

sup (uo,x~l{ixol>_e-,}) <_ (UM,X~l{ixol>e-,}) + (U_M,x~l(ixol>e_t)) --+ O. 
OE[-M ,M] 

[3 

Remark. It is the proof of  (3.3) that relies most strongly on the assumption 
sUPN E(UN(O), ]Xol p) < oo. Given (3.3), a proof of  the tightness requirement in 
(3.1) can be made using only second moments, (3.3), and a theorem of  Aldous 
(see [A]). We note that (3.3) can be proved using only second moments  provided 
(1.2) is replaced by l i m [ 0 1 ~  9(0)/0 2 = O. 

4 Proof of Theorem 2 

We first note that the assumptions of Theorem 1 hold with Z(0)  = p. Next, by 
(3.4), since tN//3N --~ s, 

EIoN (tN) -- ZN(S)I 2 = E]oN (tN) - -  ~ ) N ( s t ~ N ) I 2  ~ C I S - -  tN / I~N[ --+ O . 

Since ZN(') ~ Z(.), (1.7) must hold. Next, supposing that ~b C Col(E) and s > 0, 
the method of proof  (3.2) yields 

(4.1) 

Therefore 

(4.2) 

E, l(Vu(tN), ~) -- (uoN(t,,~, ~)l -~  O.  

t 
E (UN(tN), ~b> --~ Jl Q,(p, dO)(uo, ~) p 

But since s E T2(E), the left-hand side above equals Eqb(xN(tN)), and 
(1.8) is proved. 

Theorem 1 does not apply in the case s = 0, so we must prove directly that 
for q~ ~ Co~(E), 

(4.3) E(b(xN(tN)) ~ (up, q~> as N ~ oo. 

Suppose first that tN/N 2 74 oo. This means that we are assuming that s  
C TZ(EN), sup N E[xN(O)] p <_ C for some finite constant C,  ON(0) ~ p  p, and 
s =~ some shift-ergodic element u of Tz(E). The assumptions imply that 
(u, xo) = p, and hence u C T2C 

Put C = supN supt<~ N ExN(t) 2, and let {gN} be as in Proposition 2.4(a) for 
this C, with gN _< tN/2, and let tlc = tN - g o .  The moment  condition and Lemma  
2.2(d) imply the sequence s  N (t~)) is tight, so consider any subsequence (which 
for ease of notation we still denote t~) such that s =~ # as N -*  oo for 
some # E T2(E). 

By (1.7), oN(t~v) -+p p. ThUS by Lemmas 2.9 and 2.5, # ({D(x)  = p}) = 1, 
which implies that the associated spectral measure of  # must assign mass 0 to 
{0}, and hence # E T2P(E). By Proposition 2.3(d), 
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(4.4) (#S(gN),  ~) --+ (up, q b). 

If  we let ]Z u = 7I" N ff~(xN(tfv)), then Corollary 2.7 and (4.4) imply 

(4 .5)  (~N S(eN),  ~) --+ (l.Jp, ~)). 

To go from (4.5) to (4.3) we define the bivariate process ( z ( t ) , zN( t ) )  on 
Z d • AN constructed as in (2.9) such that 

Z u (0) = x u (tfq), i E AN 

zi(O) = zN(0 ) ,  j = i m o d ( 2 N ) ,  i C ~ d , j  E AN. 

L e t  ~N denote the law of (z(0), zN(o)).  By Proposition 2.4(a), for every i, 

- N  

E • [Zi(gN) -- zN(gN)]  ---+ 0, 

and hence 

(4.6) 

But 

and 

E ~N I~(Z(~N)) - r  ---+ O. 

Eqb(xN (tN)) = E#N(9(zN (gN)), 

- N  

(#S(gN),  cp) = E ~' ~(Z(gN)), 

so (4.3) follows from (4.5) and (4.6). 
To finish we must consider the case tN//3N --+ O, t N / N  2 --+ ~ .  Here we do not 

assume the existence of the weak limit s ~ u. But in the just completed 
argument, the existence of this limit was used only to justify the application of 
Lemma 2.9. This is not needed if t N / N  2 ~ ~ .  
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