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Summary. We study the problem of relating the long time behavior of finite and
infinite systems of locally interacting components. We consider in detail a class of
linearly interacting diffusions x(r) = {x;(t),i € Z?}, in the regime where there is
a one-parameter family of nontrivial invariant measures. For these systems there
are naturally defined corresponding finite systems, x™ (2) = {x (z),i € Ay}, with
Ay =(=N,N1¥ N Z4. Our main result gives a comparison between the laws of
x(ty) and x" (ty) for times ty — 0o as N — oo. The comparison involves certain
mixtures of the invariant measures for the infinite system.
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1 Introduction

The purpose of this paper is to study the approximation of large finite systems
of interacting components by corresponding infinite systems, and vice versa, as
considered in [CG1] and extended in [CG2] and [DG1]. We give a new class of
examples of the phenomena found in these papers, which includes some models
of interest in mathematical biology. The models considered in the cited papers all
had rather special properties which made them mathematically tractable: duality,
“family” independence, or “mean field” independence. This is not the case with
the class of models treated here. Consequently, we show that the “finite systems
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scheme” put forth in these earlier papers is not merely an artifact of such special
properties, but describes a type of behavior which, in our opinion, holds more
broadly. We carry this point further in [CG4] by proving an abstract theorem
relating the behavior of finite and infinite systems of interacting components.
See [CG1] for a list of references on the study of finite versus infinite systems.
We start by defining infinite systems of interacting diffusions.

Infinite systems of interacting diffusions

Let I C R be an interval. The infinite system x(t) = {x;(t),i € Z°} € I ¥ s a
Markov process defined through the following system of stochastic differential
equations:

dxi(t) =[ 3 g G0 (0) — x:(0)]dr + gm@) dwi(e), i€ Z¢,

L1a)  oer.

The ingredients in the above system are as follows:

(1.1b) A matrix a(i,j) which is irreducible and satisfies

a(i,j) >0, a,j)=a©j—i) Vi,jeZ Y a@j)=1
jeZd

(1.1c) A function g : I — R* which vanishes at finite endpoints of 7, is locally
Lipschitz, and satisfies

lim sup @ < 0.

|8} — o0 62

(1.1d) A collection {w;(z),i € Z%} of independent one-dimensional Brownian
motions.

(1.1e) The state space & C I Zd, which is defined via a suitable norm. Let
{~i,i € Z*} be a strictly positive, summable sequence such that for some finite
constant I,

Y waG)<Ty, jert

ierd

For x € I let ||x||; = 3, cga ¥ %], and define E = {x € 1% x|l < 0o}. We
endow [E with the topology of component-wise convergence.

Remark. Since a(i,j) is irreducible and translation invariant, if x € [ then
o;x € E for all i € Z¢, where o; is the shift by i, (0ix); = x;4j. Thus one can
consider shift invariant probability measures on [E. We note that if y is a shift
invariant probability measure on [ 2 with E Flxp| < oo, then u is automatically
supported in [E, and hence is a shift invariant measure on . Of course, E=1 z
if I is bounded.
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Although Theorem 3.2 of [SS] is more restrictive than the present situtation, a
modification of its proof, with truncation by stopping times, yields the following.
For every x(0) € I there exists a unique strong solution x(¢) of (1.1) such that

P(x(¢) is an F~valued continuous function of t > 0) = 1.

The solution defines a Markov process (P*,x(t)) taking values in E, and a
Markov semigroup S (¢) acting on Cp(IE), the collection of all bounded continuous
functions on E, such that

S@f —f = /0 S()UAfds, feCEE).

Here CX(F) is the set of all C? functions on E which depend on only finitely
many coordinates, and have the property that 2lf is bounded, where

1 & 2
2 F(x) = S E g(x)g]; + Z[Z(a(i,j) - 6(iaj))xj]'5£;7

iegd P ojepd jepd

with 6(i,j) = 1 if i =j, and O otherwise. If we define ||x||3 = 3 vix2, then the
set B’ = {x € E: ||x||2 < 0o} has the property that for x(0) € F/,

P(x(t) is an ~valued | - ||, -continuous function of ¢ > 0) = 1,

and the induced semigroup is Feller. The following special cases of (1.1) have
been studied in the literature.

Example 1. I = [0,1]: g(6) = c(1 — ) (Wright-Fisher stepping stone model
[S1]), and g(6) = c6*(1 — §)® (Ohta-Kimura model [NS]).

Example 2. I = [0, 00): g(6) = c6 (branching diffusion or “super random walk”
[D2).

Example 3. I = (—00, 00): g{(f) = ¢ (critical Ornstein-Uhlenbeck process {D1]).

Example 4. I = [0,00): g(8) = c6* (scalar field in a non-stationary random
potential [S4]).

We refer the reader to the indicated papers for more information on these exam-
ples.
As shown in [CG3] and [SS], the symmetrized kernel

i = 200 20.0)

plays a fundamental role in describing the ergodic behavior of the inter-
acting diffusion x(z). Let &,(i,j) be the continuous time kernel g;(i,j) =
ety " a™(i,j)/n!, and let Z(i,j) = f0°° aos(i,j)ds. In order to use sec-
ond moment techniques we assume from now on the condition
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(1.2) lim sup @ < !

Bl—c0 161>~ A(0,0)
We need some additional notation to review the basic ergodic theory of the
infinite systems. Let 7 () denote the collection of probability measures on E
which are shift invariant, and let 7,(E) be all ;1 € T(IE) such that (g, |xP) < oo,

where in general (u,f) = [fdu. £ denotes law, and &g denotes the unit point

. - fdd
mass at the element x; = 6. Let —, denote convergence in probability, let =

denote convergence of finite dimensional distributions, and let = denote weak
convergence. In particular, for continuous processes Z,(-) and Z(-), Z,(-) = Z ()
means that the probability laws induced by Z,(-) on the continuous path space
converges weakly to that induced by Z(-) as n — oo. For any probability measure
¢ on E we will write uS(¢) for £L(x(t)) when L£(x(0)) = u. Z denotes the set
of invariant measures for x(z), i.e., all probability measures ¢ on E such that
uS@)y=p forall t > 0.

The behavior of x(¢) depends on whether or not a(i,j) is recurrent or tran-
sient. In the transient case we have the following, taken from [CG3] and [S4].

Theorem 0. Assume a(i,j) is transient.

(a) For 0 € I and L(x(0)) = bg, the weak limit vy = lim,_, o, L(x(1)) exists, is
an element of To(E), is associated and mixing, and satisfies (vg, xp) = 0.

(b) For 8 € I, if L(x(0)) € T1(E) is shift-ergodic, with Exo(0) = 8, then
Lx@®)=>vgast — oc.

(c) The set of extreme points of T N T;(E) is exactly {vg,6 € I}.

Remark. When necessary we will write v§ for vy to indicate the dependence of
Vg On g.

The picture for recurrent a(i, j) is not nearly as complete, except for some special
cases and the general compact I case, in which the phenomenon of clustering
occurs. We refer the reader to the papers [S1], [S2], [NS] and [CG3] for more
details on this.

Finite systems of interacting diffusions

ForN =1,2,...let Ay = (=N,N1¥NZ be viewed as a forus, and let By = 14,
We define an Ey-valued Markov process xV(r) = {xV(r),i € Ay} via the
system

d' ()= | Y @@ ) @) = xN @) | dt + /g ) dwi(), i€ Ay,

JEAN
(1.3)
xN(0) € Ey,

where aV(i,j) = 3 cga ali,j +2Nk), i,j € Ay. We let S¥(r) denote the corre-
sponding transition semigroup operators.
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We view the processes x"(¢) as finite versions of the infinite system x(t),
since it is easily seen that given x(0) € E, if x,N (0) = x;(0) for all i € Ay and
all N, then for fixed r > 0,

L&V @) = L(x(1)) as N — oo.

To be precise about the meaning of this convergence, we introduce the periodic
extension operators Ty : By — E, (myx"); =x where i € Ay, i =jmod (2N).
We also let my denote the induced operator mapping probability measures on Ey
to probability measures on [E. If /"' is a probability measure on Ey, N = 1,2,. ..,
and y is a probability measure on [, we write ¥ = p as N — oo to mean
vy = pas N — oo.

If d(i,j) is transient, the long-term behavior of the finite systems differs
drastically from the long-term behavior of the corresponding infinite system (as
given in Theorem 0a). For instance, if I C R* and x,-N (0) = 6, then for fixed
N, %, €Ay x,-N (t) is a nonnegative martingale, and must converge a.s. as t — 00.
From this fact it is easy to see that as t — oo,

LEN () = (1 — )6y + 66, (Example 1),
L&Y () = 6 (Example 2).

Using Gaussian techniques it can be shown that (suitably interpreted) as t — oo,
1 1
LxY (ty)) = 55_00 + Eéﬂ,o (Example 3).

To obtain a more precise picture of the asymptotic behavior of the finite
systems we will compare the behavior of x(¢) and x"(¢) as both N and ¢t tend
to infinity, using the framework of the finite systems scheme of [CG1].

Ingredients of the finite systems scheme

In order to state our results we define the following objects.

(1.4a) The time scale By = (2N)?.

(1.4b) The empirical densities OV (£) = [Ay |~ 3, 4. X (©).

(1.4c) The rescaled process of empirical densities Zy(t) = OV (t By).
(1.4d) The diffusion Z(z) on I, defined for the case a(i,j) transient, by

dz(t) = \/g*(Z(s))dw(s), ZO0)=p,

where w(t) is a Brownian motion on IR and ¢* is the function g*(§) = E v g(xp).
(The fact that this stochastic differential equation has a unique weak solution will
follow from Lemma 2.12 of Sect.2 below.) The probability transition function
of Z(t) will be denoted Q,(p, d6).

(1.4e) The empirical measures of the finite systems
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UN([) = IAN|_1 Z 60?’){”([)’
€Ay

where oV is the shift by i on Aw, (o) x); = xi, k = (i +j)mod (2N).

Main results

We treat only the case a(i,j) is transient in this paper, the recurrent case will be
contained in [CGS]. Theorem 1 analyzes the behavior of the finite systems from
a global point of view with the empirical densities Uy (¢). Theorem 2 takes a
more local viewpoint, and is the direct analogue of results proved for branching
random walk, the voter model and the contact process in [CG1]. Our proofs
require certain random walk estimates (see Proposition 2.1 below) which hold
for all genuinely d-dimensional random walk kernels, d > 3. The estimates hold
also for transient random walk kernels in d < 2 which possess certain regularity
properties. For simplicity we will consider only the d > 3 case.

Theorem 1. Assume d > 3. Suppose that supy E(Uy(0), |x|P) < oo for some
p > 2, and for some random variable Zy, L(Oy(0)) = L(Zy) as N — oo, Then
as N — oo,

(1.5) ING) = Z(), Z(0)=1,
and
(1.6) {UnBy )it > 0} 28 {uz00:t > 0.

Theorem 2. Assume d > 3. Suppose that for some p > 2, L(x"(0)) € T,(En),
supy ExY ()P < oo, and for some p € I, OV (0) —, pas N — oo. Let ty 1 00
and ty /By — s € [0,00), and in the case ty [N?> /> oo, assume also that
L(xN (0)) = some ergodic element of T>(F). Then

(17 LOY (1) = LZG6), ZO)=p,
and
(1.8) £oM o) = /1 0. (p, dB)vs.

Remark. Another way to look at the phenomena described in Theorems 1 and 2
is to consider time averages. Let ¢ : E — R* be a continuous function depending
on finitely many coordinates. Under the assumptions of Theorem 2, if [y — oo,
Iy = 0(0Bn), then one can prove

1Oy +in
- /ﬂ o s0ds > [ 0.(p,d)n. ).
10N I

This shows that the phenomena described in the theorems are observable in the
statistical sense.
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Remark. It is possible to take p = 2 in Theorems 1 and 2 above at the cost of
strengthening (1.2) to

, 9(6)
(1.2 lim sup == =0.
10l —> 0 |0|2

In [CGS] we will study properties of the mapping ¢ — g*, and discuss the
special role of g(x) = ex(1 — x), g(x) = ¢x, and g(x) = ¢ in this context. The
remainder of this paper is devoted to the proofs of Theorems 1 and 2. Section 2

is a lengthy section containing numerous technical preliminaries. Theorem 1 is
proved in Sect. 3, Theorem 2 is proved in Sect.4.

2 Technical preparations

We collect here various technical results that we will need. These include random
walk estimates, moment formulae, and a formulation of the basic coupling, which
is our most important tool. We apply the coupling to derive some regularity
properties of the invariant measures vj.

Random walk estimates

We first state a proposition containing some results on the asymptotic behavior
of the random walk kernels a” (i,j) and a{V (i,7). The results were proved in [C]
and [CG1] for simple symmetric random walk.

Lemma 2.1.
@ If w/N> — o0 as N — oo, then sup,s, sup;;ca. @N)|a¥(i,j) —
@N)™ = 0.
) Ifd >3, and A > 0, then limy_.co fy7 e/ @Y (G, jydt = A7 +
A, J)

©Ifd>3,and TIN)/By — s € (0,00) as N — oo, then

T(N)

lim al(i,j)dt =AG,j) +s.
N-oox 0
Proof. The fact that
Q.1 sup sup (2N 1a¥(0,j) ~ @N)Y ™| =0

t>ty jEAN

holds if a(i,j) is the transition kernel of simple symmetric random walk in Z¢,
d > 2, was established in [C] (see the Proposition on page 1341 there). The proof
used a refined local limit expansion, and is easily modified to show that (2.1)
holds for d > 1 for any irreducible random walk kernel a(i, j) of finite range (i.e.,
for some K < oo, a(i,j)=0if |i —j| > K). Assuming now that a(i,j) is not of
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finite range, we choose K < oo large enough so that with v = ZlklﬁK a(0,k),
0 < v < 1, the kernel

p(lvj) = ’7_1a(iaj)1{[i—j|SK}
is irreducible. Letting
qG.j)= A —n""al, )Hli—j>k)

we have a(i,j) = yp(i,j)+ (1 — v)g(i,j), and on the torus Ay, aV(i,j) =
¥p (i) + (1 = )g" i, j). Tt follows that

2.2) @i, 1) = Pt Qu—pp )= Y pouli, Gy k, ).
kezd

and

(2.3) a¥ () =pY gl _ @)=Y PN, gl _ k. j).
k€EAN

Now put ey = SUp; 5., SUD;c 4, 2N |pY(0,j)—(@2N)™4|. By (2.1), ey — 0
as N — oo, and therefore, uniformly in ¢t > ty, i,j € Ay,

@NY! |a'(,j) — @NY™) = @NY | D pG kgl k.5) — @N) ™|

keAy
< @NY > NG, k) — @NY gl k)
kEAy
< evgllpk D =ex,
kEAN

which proves part (a).
For (b), we apply a result of [MW], which says that if ¢(u) = Zj czd @(0,7)
xe! @D y e RY, where i> = —1, then for A >0

P NN iy < N4 S SREERTT - K)/2N)
/Oe @' (0,j)dt = 2N) kEZAN PN e

By separating out the k = 0 term we obtain

% _AJ@NY AN 0./)dt = A~'+(@N) eXP(—i(ZWf'fi)/ZN)
/0 ¢ G Opd +EN) EZAN 1+ A/@N) — ¢(nk /N)
k0
ol / exp(i2n(u-J))
—11 1 — @(m2mu)

as N — oo. It is here that the assumption d > 3 has been used to simplify
passage to the limit. Since  is real, P7.5 of [Sp] implies that for some positive
constant C, 1 —¢(u) > C|u|* on (-7, 7)¢. For d > 3, this is enough to apply the
dominated convergence theorem. (For transient a(i,j) in d < 2 some additional
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assumption on the regulari/t\y of ¢ near zero is needed for this step.) Finally, the
last integral above equals A(0,j).
For (¢), let ty /N2 — 00, Iy /Nd —0 asN — o00. By the estimate of part (a),

[e ] oQ
“Xt/@NY AN _ 1+0(1) —At/NY
e a5, (0,)) dt —/ —l dt
/t; 2t , (2N)d

N

1+0Q1
= A( ) exp(—Aty /(2N)?),
which tends to A™! as N — co. Therefore by (b), it must be the case that
In ~
(2.4) / e~ N/CNY N (0 iy dr — A(0, 7).
0

Now for 0 < t < ty, 1 > exp(=At/(2N)Y) > exp(=Xity /2N)) — 1 as
N — oo. This observation and (2.4) prove

In -
/ a@h(0,5) — A(0, ).
0
Furthermore, if T(N)/(2N ) — 5 € (0, 00), the estimates of part (a) easily give

TN)
/ ay0,jydt — s

N

and we are done. 0O

Moments

Explicit expressions for the first and second moments of the coordinates x;(¢) can
be readily obtained from (1.1) and the It6 calculus (see {NS],[CG3], and [S4]).
If sup, E |x;(0)| < oo, respectively sup; E |x;(0)|*> < oo, then

Ex()= Y a(i,k)Ex(0),

kerd

Ex(x() = Y al,ka(, DEx(0)x(0)

23) klezd

# [ 3 aumali G OB gl 5.
0

kezd
If £L(x(0)) € T,(IE), respectively 7(FE), then
Ex;(t) = Exo(0)
2.6)
t
Exi(t)x; (1) = Z a;(i, k)a,(j, 1)Ex (0)x,(0) +/ s —5)(i,7)E g(xo(s))ds .
0

klezd
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Of course, similar formulae hold for x" (¢). The following provides us with some
needed uniformity.

Lemma 2.2, Let a(i,j) be transient.

(a) If u is a probability measure on & such that C = sup,;{u,x?) < oo,
then there is a finite constant M which depends on u only through C such that
SUP, > SUP;ege E# i ()]* <M.

(b) There is a p > 2 such that if p € T,(E), then sup,~q E*|xo(t)lP < oo.

(c) Assume d > 3. If pV € To(Ey), and C = supy (uV,xZ) < oo, then for
any T < oo there is a finite constant M which depends on the u¥ only through
C such that

sup  sup E* 2 <M.
N 0<t<TBy

(d) Assume d > 3. There is a p > 2 such that if u¥ € T,(En), and

supy (1Y, |x7|P) < oo, then for any T < oo,

sup sup X X () < 0.

N 0<r<Tpy
Proof of Lemma 2.2. For p € T,(IE), (a) is Lemma 2.1 of [S4]. More generally,
by (1.2) there are finite constants b, ¢, with 0 < b < K(O, 0)~!, such that g(d) <
c+b6? for all § € I. Letting f;(¢) = E#x*(t) and f(t) = sup{fi(s) : 0 < s < t,i €
74 }. it is routine to see that f(t) < oo for t > 0. For u < t, (2.5) implies that

fiwy =Y auli k)aul, DE*xx + / S K0, OB g(5)) ds
k

k,lezd 0

< C+/ >y s(i k)aus(i, ke + bEx(s)] ds
0 %

< C +cA(0,0) + A, O)f (¢).
Taking the supremeum over u < ¢ and rearranging gives

C + cA(0,0)

.y 40,01
F = 1 — bA(0,0)

which proves (a).
For (b) define

K = E*xlP, f@t)=E @), F@) =sup{[f(s);0<s <t}

It follows from (1.1) that

x(6) =Y ai,j)x0)+ / D a0 Ndwy(s), i€z

jen 0 jem

This fact is easily established by applying It6’s formula to the stochastic process
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> as(i,j)x(s), 0<s<t, (t fixed)
jend

and then integrating both sides. Next, it follows from (4.1) of [B] that for a
continuous L,-martingale M;, if p > 2, forall 0 <u <1¢,

EM,P < (p - 1¥ EqM1,YP/2

Now for fixed ¢, letting M, = f(;‘ EjEZd a;—s(i,7)/9(x;(s))dw;(s), {M,, 0 <
u <t} is a martingale, and hence

p/2
t
EMF <(p-1VE / D as(i,§) glx(s))ds
0 jemd

- Using these observations we have

Ela) = Y a. s OF = £| [ 3 ai)y/aGehuo)F
jezd 0 jem
. p/2
<(p-1PE / S 4, gx (s))ds

0 jeze

If weleta=2—4/p,and 2/p +1/q =1, then ag =2 = (2 — a)p /2. Thus the
right-hand side above equals

p/2
0= 1E | [ 3 @i aums,d g0 6
0 jend
o , ria
<@p-1y / Y @G,y ds / D a5, Elgs (s) P/ *ds
0 jepe 0 jem

4
L1

=@-ty [ / a0, O)dS] / ax (0, 00E [glxo(t — s)IP/* ds
0 0

where we have used Holder’s inequality. By assumption (1.2) there are finite
constants b, ¢ 0 < b < A(0,0)~" such that for p € (2,31, |g(O)]P/2 < bP/2|)F +¢
for all @ € I. Finally, we need the elementary inequality: for p > 2 there exists
C, < oo such that

(a+B8F <(p—1Daf +Cp, 3 for o, 5 > 0.

By combining the previous results we obtain, for u < 1,
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_
Elxo@)lP < KC, +(p — 1P*! [/0 ak(0,0)dsjlz l
/0 ' G5 (0, 0)[bP/2E |xo(u — s)IP + ¢)ds
< KC, +(p — 1P*A(0,0) "' [5P/2A(0, 0)f () + cA(0, 0)].
Taking the supremum over u <t gives
F(t) < KC, + (p — 1P*A0,0) 1 [b/2A(0, 0)f (1) + cA(0, 0)].
Now if p > 2 is sufficiently close to 2, then for all ¢,

)< KC, + c(p — 1)P*1A(0,0)
T 1—(p — PHIA(0, 0)3~1bP/24(0, 0)

We turn to the proof of (d), which is somewhat more involved. With
K =sup(u, o), YO =EX (@), @ =sup{lf¥ o)) 0<s <1},
N

we proceed as before to obtain

)4
21

EPxy®F < KCy+(p — 1! [/Ot ay (o, O)ds}
/Ot @ (0,0)[bP2E XN (t — s)PP +clds.
Letting J¥ () = f, @}.(0,0)ds, we have for u <1,
Ny <KC, +(p — 1y IV )i ! /0 a0, 02N (u — ) + clds.
Taking the supremum over u < ¢ gives
¥ <KC, +(p — 1IN (55! /0 a0, 0Nt — 5)+c)ds.
For r > 0, define
) 2T By
N(r)= /O e "aN(0,0)dt and F¥(r)= /0 e N (t)dt.

By integrating the previous inequality we find that
FN(r) <KC,/r+(p — WP INQT A IV (P 2FN (r) + ¢ /).
A little rearrangement yields

Iy < KG - LN QT By) s~ eIV (r / By)
By By’ T 1—bP/2p — 1IN QT B ITUN (r /By




Finite and infinite systemsof interacting diffusions 177

provided the denominator is positive. To see that this is possible for appropriate
choices of p and r, we note that by Lemma 2.1, JY (2T 8y) — A(0,0) + 2T,
IY(r/By) — r~' + A(0,0), and also

2T By
IY(r/By) > / e~ /B gl (0,0)ds > e T INQTr By).
0

Therefore,

lim sup bP/2(p — 1P 1IN 2T By) "1V (r / By )

N—oc

< P Hp — 1P (T (A0, 0) + r )1 AW©,0) + r 7).

Recalling that bX(O, 0) < 1, we can first choose r < oo and then p > 2 such
that the right-hand side above is strictly less than one. Thus for some M < oo,
supy F¥(r/Bv)/Bv < M. Consequently,

o7
/ e "N (tBy)dt <M.
0

Using the monotonicity of fV, we get supy fV(TBy) < ¢*"M /T, and we are
done.
The proof of (c) is similar, but shorter, so we omit it. O

Coupling

Our primary tool is the coupling of [CG3] and [S4], and we will need several
forms of it. The first is a coupling of two versions of the infinite system, x{¢} and
y(t). Given the E x E—valued pair (x(0), y(0)), the bivariate process (x(t),y(?))
is defined by

(1) = [Tjeqe alio () — xi(0)] d + VG dwir), i € 77,
2.7

dyi®) = [jens 4G, 150 = yi0)] dt + VG dwi(), i € 7,

where one set of Brownian motions is used for both coordinates. We note that
the existence and uniqueness results of [SS] hold for (2.7). For 8 € I, let 'Tzo(IE)
be the set of all u € 7(IE) such that

> a(0,5)x; — 8 in Lo(u) as t — co.
ierd

We will show in the subsection on L,-theory that Tf(lE) contains all u € T(IE)
which are shift-ergodic and have (i, xp) = 8. The following was proved in [CG3]
and [S4].
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Proposition 2.3. Let (x(t),y(t)) be the bivariate process defined by (2.7).
(@) If L(x(0),y(0)) € Ti(E x E), then E\x;(t) — y;(¢)| is nonincreasing in t.
(b) If in addition, L(x(0}), Ly(0)) € Tf(]E) for some 6 € I, and a(i,j) is
transient, then E |x;(t) — y;(#)| — 0 as t — oo.
(¢) If a(i,j) is transient, the measures vg of Theorem 0 belong to ’Tf(E),
(d) Ifa(i,j) is transient, and p € T(E), then uS(t) = v ast — co.

Versions of the finite systems may be coupled in a like manner. Given the
Ey x Ey-valued pair (x" (0),y" (0)), the bivariate process (x¥ (¢),y¥ (¢)) is de-
fined by

ax(©) = [Syen, a¥G.005" @) - xF 0] de + /oG @) dwi@), i € Aw,
2.8)
dyN (@) = [ZjeAN ) A ORS (t)] di + /907 (1)) dwi(t), i € Ay.

As in Proposition 2.3(a), if L(x™ (0), " (0)) € T1(Ex xEx), then E |x¥ (1)—y¥ ()|
is nonincreasing in t.

We also need to couple finite and infinite systems. Given (x(0),x"(0)) €
IE x Ey, construct the bivariate process (x(t), x™ (¢)) via

i) = [Dieg a0 - xi(0)] di + VEEEMw@), i€z,
(2.9)
i (1) = [Sjen a” i) © =5 )] di + JoOT O)dwi(), i € Ay.

Comparison estimates

We now use this coupling to show that at fixed times ¢, uniformly over a certain
class of initial states, the laws of x(¢) and x" (¢) are close for large N.

Proposition 2.4. Let (x(t),x" (t)) be the bivariate process defined by (2.9). For
C < 0o let VX be the collection of all probability measures i on E x Ey such
that fi(x; = x,i € Ay) =1 and sup, (i, x?) < C.
(a) For fixed i € Z¢ and t > 0, SUP ey EPx;i(t) —xN(1)] > 0as N — .
In particular, there exists a sequence {{y} depending only on C, y T oo, such
that
sup E*|x;(y) —xN(y)| = 0as N — 0.
AEVY
(b) For fixed t > 0, supcyy AN Y ien, P —xN @) — 0as N —
oo. In particular, there exists a sequence {{y} depending only on C, £y T oo,
such that

sup |Ax|™! Z EPx;(4y) — x¥ (y)| — 0as N — oo.
AeEVE i€y
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Proof. Let AY(t) = x{¥(r) — x;(t) for i € Ay. As in [CG3], It6’s lemma can be
applied to |x/ — x;|, and we obtain (with sgn the signum function)

d ..
B;E{A‘iv(t)l =F {sgn(Aﬁ"(t))( Za”(i,j)xj”’(t) -Z a(i,j)x; (z))]— E|AY (1)),

JEAN jend
< Y dGHENAY @ - AV O + Y e () — al, DIE @)
JEAN j€Ay
+ ) ali, )HE%()).
J¢AN

By Lemma 2.2(a) there exists M < oo depending only on C such that E|x; ()| <

M for all t. Letting € = 3¢ ay a(i,J), we have

d . .
EE{A’}’(t){ <YV EHENAY 0 - 1AV Ol +2M e i€ Ay
JEAN
From this it follows that
t
@210)  ElAY ()] < ) o (,)EIAY ©) +2M /0 > a G,5)e ds.
JEAN J€EAN

By assumption, AY(0) =0 for all i € Ay. Furthermore, writing Ay /2 for Apy /2,
where [N /2] is the greatest integer < N /2, j + Ay, C Ay for j € Ay
Therefore,

6= 3 a0k= Y ai,> Y ai,k)=¢.
k¢AN/2 k¢j+AN/z k& AN
Thus,
H
E|AY @) < 2M/ > al G,5)e ds
0

J€EAN

IA

t
ZM/ Z aY(i,jyds +2Mi sup €'
O jgAvp J€M /2
t
M | N a,j)ds +2Mrey
0 J¢4AN 2

IA

and this last expression tends to 0 as N — oo for fixed ¢, proving (a).
For (b), fix r > 0 and § > 0 and choose K < oo such that eX < §/2Mt.
Observe that if i € Ay, and { + Ay C Ay, then translation invariance of the

kernel a(i,j) gives
&< > al,j=d.
Ji+Ax
Using (2.10) and the above,
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AN 7D ElAY ()] < 2mt|Ay| T S €

i€ Ay €Ay

5+ 2Mt| A1 D H{G + Ag) N A # 0}
€Ay

< §+2MtdK /N .

IN

Let N — oo and § — O to obtain (b). O

Lz-Th€07y
Forx ¢ Eand n=1,2,..., define
Dy(x) = A, 7" D xi
i€ A,

The L, ergodic theorem asserts that if y € 7(IE), then the spatial density D(x) =
lim, —, o Dy, (x) exists as an Lp(y) limit. Furthermore, for each u € 75(F) there is
a unique finite measure X on I = (—m, 7]¢ such that

(1, x5 — Nxx — 0) = /H exp(iu - (j — k) Mdu),

where 8 = (p,x0). A is called the spectral measure of p. If p € T(F) and
{1, x0) = 0, and X is the corresponding spectral measure, then u € T2(E) if and
only if A({0}) = 0. This is easily seen as follows. Let ¢ be the Fourier transform
B() =3 ez a0, k)expli(u - k)), u € R?, so that

> a(0,k)e’ ™D = exp(~£(1 — p(u))).

kerd
Then we have

(.Y @0, m ~ 67 = (A, Y a(0,k)ar0, yexpliu - (k — 1))

kezd klerd
= (A exp(~2R(1 — §(w))))
— A{0}H)
as t — oo by the dominated convergence theorem, since the irreducibility of
a(i,j) implies that ¢(u) # 1 on IT \ {0}.
Now consider the trigonometric polynomials p,(u) = |A,|™! Zj ea, EXPGu -
7). These polynomials satisfy

(1) limy o0 pn(u) = 110y(u), and
(ii) for 6 > O there exists e(m, §) such that if J5 = (~8,6)¢ \ {0}, then

(Pm(u) — Lioy ()] < 1y,(u) + €(m, 6),

and e(m, ) — 0 as m — co.
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If p € To(E) is ergodic, with spectral measure A and (u,x) = 6, then using (i)
it follows from the bounded convergence theorem that

(1, (Du(x) — 02) = (A, [P ) *) — A{O})

as n — 00. Since this limit must be zero, p € 7—29(]]5).

The next result gives us a condition under which the weak convergence
i, = p implies the spatial densities D(x) under y, converge in distribution to
the spatial density under p.

Lemma 2.5. Let p, piy, fa, - .. € To(IE), with respective spectral measures \, \i,
A2y oo If i =, {pny XiX5) — (W, xix;) for all i, j, and A, ({0}) — A({0}), then

lim sup E**|D,(x) — Dp(x)| =0.

k—00 4 n>k
Furthermore, if H,(-) = p,(D(x) € ) and H(-) = w(D(x) € -), then H, = H.

Remark. The condition A\,({0}) — A({0}) is certainly implied by the condition
A{0hH =0.
Proof. We first note that A, = A. So for ¢ > 0 we may choose § > 0 such

that A(J5) < € and A,((=6,6)?) — A(—6,6)?). This and the assumptions imply
Ax(J5) — A(Js) < e. Thus, letting C = sup, A, (1),

sup. IPn (@) — @)y < Su>Pk(HPn(M)—1{0}(M)||14(An)
|pm () — 1103 ()] L0\n))

< sup @A (U5)'% + Ce(n, §) + Ce(m, 6))
mn>k

+

— 2AUs)V? < 2672

as k — oo. This proves the first assertion, which we may write in the form: for
any € > 0 there exists k < oo such that

1Dn(x) — Dy ()| Ly < € for m,n > k.

Letting m — oo above gives ||D,(x) — D(x)||1,(u,) < € for all n > k, while
setting m =k gives ||D,(x) — Di(x)||1,(u,) < € for all n > k. Putting these facts
together gives

HDk(x) - D(x)”l,z(#”) S 2¢ form > k.
By the L,—ergodic theorem, by taking k larger, we may also assume that
ID(x) = Dp(X)|| Ly < € form > k.

Since p, = pasn — oo, for any fixed m, £,,, (D, (x)) = L,(Dp(x)) asn — co.
Combining these statements we see that £, (D(x)) = L,(D(x)), ot H, = H.
0
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Convergence properties of the coupled process

We prove now a convergence result for the bivariate process (x(f),y(¢)) as t — o0
which will have several important applications.

Proposition 2.6. Assume a(i,j) is transient. Let {ji,} C T(E x E) satisfy
sup,, {fin, X +Y2) < oo, and every weak limit point fi of {1, } satisfies p{D(x) =
D(y)} = 1. Let (x(t),y(t)) be the bivariate process defined in (2.7). Then for any
ty — 00, EP|x;i(ty) — yi(ta)] — 0 as n — oo.

Proof. The proof is by contradiction. If the conclusion of the proposition is false,
there is a § > 0 and a subsequence {n'} such that

ER |xi(ta) — yi{tw)] — 6 asn’ — co.

The uniform second moment condition implies tightness of L(x(t,),y(t,)), so we
may assume as well that fi,» converges weakly to some fi. Since i € To(E x ),
and g{D(x) = D(y)} = 1, there is a probability measure A on I such that
i = [, EpdA(p), where each fi, € To(E x E) and i,{D(x) = D(y) = p} = 1
(except for p in a A—null set). This is possible since [E x [ is Polish, and we can
let i, be a version of i(- | D(x) = D(y) = p). By Proposition 2.3(b), for such p,
EFe|x;(t) — yi(t)] — 0 as t — oo. Consequently, lim,_,o, E#|x;(t) — y;(t)| = 0.
Proposition 2.3(a) implies that E#|x;(t) — y;(t)| is nonincreasing in ¢ for fixed
n, while for fixed t, the Feller property, together with the uniform bound on
second moments, imply that Ef |x;(¢t) — yi(£)] — EP|x;(¢) — y:i(t)| as n’ — oo.
It therefore follows that for all ¢ < oo,

limsup E®' |x;(t,) — y;(t)] < limsup EP |x;(2) — yi(1)] = EP|x; () — y:(2)].
n’—o0 n’—oo
Since the right-hand side above tends to 0 as t — oo, this is a contradiction, and
the proposition is proved. O

Corollary 2.7. Assume d(i,j) is transient, and p, {un,} satisfy the assumptions
of Lemma 2.5. If t, — oo and uS(t,) = v, then p,S(t,) = v.

Proof. We will define measures fi, which satisfy the assumptions of Proposi-
tion 2.6, such that fi, has first marginal y, and second marginal u. Given this,
Proposition 2.6 implies E## |x;(t,) — y;(t,)| — 0. Since uS(t,) = v, this implies

pnS () = v.
To define [i, we introduce
Ha() = (- | DR) = 6),
Ky = (- | D) =10),
H,(-) = p(D(x) € -),
H() = p(Dx) € -).

By Lemma 2.5, H, = H as n — oo. By using Skorohod’s theorem we can
construct measures H, and H on R? such that H, has first marginal H,, second
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marginal H, and H, = H as n — oo, where H is concentrated on the diagonal,
H({(a,b):a=0b})=1. Finally, define

o= [ (0 x %) By(a0, a0
mz

The [i, have the correct marginals, so it remains to prove that if g is a weak
limit point of {f,}, then i(D(x) = D(y)) = 1. First, by Lemma 2.5, one can
easily see that

lim lim E*|D,(x) — D(x)| =0.

m-—0oC B—>00

Therefore

E*|D(x)~D®)| = lim lim E™|D,(x) — Du(y)|

m—00 n—0o0

< lim lim [E™|Dy(x) — D(x)| + E*"|D,,(y) — D)|]

+E™|D(x) — D(y)|
lim lim [E*|D,(x) — D(x)| +E*|Dn(y) - DG)]

m—0oQ h—00

+ lim / / 60 — ¢'|H,(d8,do")

IA

n—o0
which is zero, showing p(D(x)=D@y))=1. O

Corollary 2.8. Assumeda(i,j) is transient. Let {i" } € T,(En X Ey), supy (&, x2
+y2) < oo, and suppose that every weak limit point [i of the i has the property
g{D(x) =D(y)} = 1. Let (x" (t),y" (t)) be the bivariate process defined in (2.8)
with initial distribution iV. Then E |xY (ty) — y (ty)| — 0 for any ty — oc.

Proof. Let ty — oo, let (xV (0),y" (0)) have law ", and let (8" (0), 7" (0)) be the
periodic extension of (x" (0), y¥ (0)) to Z?. We can now construct a coupled pro-
cess (XN (£), 7 (1), xN (£),y™ (1)) with initial state (¥V (0), 7 (0), xV (0), y¥ (0),) €
E x E x Ey x Ey in the obvious way. By Proposition 2.4 there exists ly — oo,
Iy < ty such that for fixed i,

Elx(y) = 5Nl — 0 and  E[yY(y) =3 (w)| — 0.
By the monotonicity remark after (2.8),
Elx (w) =y )] < ElxY (Iv) = yN ()|

The family iV = L£(xV,5"V) satisfies the assumptions of Proposition 2.6, so
E|x¥(y) — 7V (Iy)] — 0. By combining these results we obtain the desired
conclusion. 0O

The next lemma is a crucial ingredient in the proofs of Theorems 1 and 2.

Lemma 2.9. Assume d > 3. Suppose that L(x"(0)) € To(En), supy E |x' (O)|P
< oo for some p > 2, and for some random variable Zy, L(O (0)) = L(Z;) as
N — co. Let ty — o0, ty < TBy, and L(xN (ty)) = pas N — . In the case
tv = O(N?) assume also that for some 6 € I, L(x¥ (0)) = some v € T (E). Let
un =N LN (). Then w, iy, pia, - . . satisfy the assumptions of Lemma 2.5
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Proof. Since p, = p, and sup{u,, |xl?) < oo, it follows that (u,,xx;) —
{, x:%;) for all i,j. Now let p, u', 42, ... have spectral measures A, Ar, Ay, . . ..
It is enough to prove that

2.11) E|e" @)|* — E*ID(x)|,

since this implies Ay ({0}) — A({0}), and hence the assumptions of Lemma 2.5
are fulfilled. Since L(x" (ty)) € To(Ey), (2.11) is equivalent to

(2.12) Ex} ()0 (tw) — E*xoD(x).

Before proceeding further we note that by Lemma 2.2(d), E|©" (0)|? is bounded.
Since OV (0) = Zy, it follows that E|©" (0)|* — E|Zo|?. Similarly,

(2.13) Exg (tn)x" () — E*xox;
for all j. Furthermore,

Ex)/(tv)x) (tn)= Y a0, k)al G, DEx) (0)xf' (0)
k,J€AN
(2.14)

7%
+ / @ (0,j)Eg(x) (ty — u))du.
0

The case ty /[N* — co: By Lemma 2.1(a), uniformly in j as N — oo,

1+0(1)

WEX;V ©0)x" (0)

D a0k a)G,DE O 0= Y

(2.15) k,JEAN kleAy
= E|0Y (0)* + o(1) — EZ}.

Let sy satisfy sy < ty, sy/N? — oo and sy /N? — 0. By (1.2) and Lemma

2.2(c), C = sup Eg(xév(s)) is finite. So again by Lemma 2.1
s<TBy

SN SN A
/ ay (0, Eg(xd (ty —u))du < C / ay(0,j)du — CA(0,j)
0 0
and

1+o(1) [™
|An]

N
/ @3,(0,/)E g(xy (ty — u)) du = Eg(xY u))du < CT.

SN

Now let {Ny} be any sequence such that the limit
tNk _
(2.16) |ANk|‘1/ Eg(x}*(w)du — G
0

ex/i\sts. In view of (2.13) — (2.15), this implies that for every j, for some H(0,j) <
CA(0,j),
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SNk
/ e (0, /)E g(xd* (t, — w))du — H (0, ).
0
Using (2.13) again, we have
E'xox; = lim Exg* ()% (tn) = EZ§ + H(0,) + G-

By (2.14) and (2.15),

INk
Exg ()0 () = A |7 D (EZE +o(1) + | Ay, | / Eg(x)s(u)) du
j€AwN, o

— EZ}+G.
On the other hand,

E*xD(x)= lim EFxoD,(x) = EZ3 + G + lim |A,|™" Y H(0,j)=EZ} + G,
Bn—00 n—00 jeAﬂ

since H(0,j) < CZ(O,j) — 0 as j — oo. This is enough to prove (2.12).

The case ty = ON?): We use here the additional assumption that for
some § € I and v € ’Tf(IE), L(xN(0)) = v. Let yy be the spectral measure
of myL(x"(0)), and let v be the spectral measure of v, so that vy = v as
N — oo, and y({0}) = 0. Let ¢(u) = >y cza a0, k) exp(i(u - k)) and ¢ (u) =
ZkeAN a¥(0,k)exp(i(u-k)), u € R. It is easy to see that if ky = ZkgAN a(0,k),
then |¢V (1) — ¢(u)| < ey for all u. If ¢y(u) =", cpa (0, k) exp(i(u - k)) and
oY () =Y e, ar (0,k)exp(i(u - k)), then

¢r(u) = exp(—t(1 — ¢(u)), ¢ () = exp(—t(1 — ¢" (w)).

To prove (2.12) we must compute the two terms in the right-hand side of
(2.14). Let Oy = Ex}'(0), 6y — 0 as N — oco. Then

> an©,kayG, ) EM0) = 0x)(x(0) — Oy)
k,ic€An

= > al©,k)al G, D, expiu - (k — 1))
k€AY

= (v, |} (w)|%e @)

= { / + / } o ) f2e™ Dy (du).
(=6,6)4 II\(-$,6)

Since vy = 7, and ({0}) = 0, we have that y5({0}) — O, and for € > 0 we
can choose § > 0 such that lim sup vy ((—6, §)¥) < €. Thus

limsup/ lé‘x (u)]z'yN(du) < €.
(=8,6y

N—oo

On the other hand,
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il

/ |fy )]y (due) / exp(—2ty R(1 — ¢ (u)))yw (du)
II\(- 6,6 I\(-6,6¢

IA

/ exp(—2txR(1 — () — ) 7w (due)
II\(—6,6)

< sup  exp(=2tyR(1 — ¢(u) — kn))yw )
uEM\(-§,6y
which tends to 0 as N — oo, since ky — 0, and the irreducibility of a(i,j)
implies ¢(u) is bounded away from 1 on II \ (=6, 6).
This shows that the first term in (2.14) converges to 62, and hence by (2.13),
the second term must also be convergent, say fON ay 2 (0,)E g()c(’,v (ty —8)ds —
H(0,j). We have therefore established

Etxox; = Nlim Exy (tw)x) (tw) = EZ3 + H(0,j).
—00

As in the first part of the proof, it is now easy to see that (2.12) must hold. O

Regularity properties of vy and g*(6)

We will use without proof the following elementary lemma.

Lemma 2.10. Let X be a Polish space, and suppose that {y., } is a weakly con-
vergent sequence of probability measures on X, p, = pas n — oc.

(a) If there is a continuous function ¢ > 0 on X such that {u,, ) — {u, @),
then {iin, ) — {1, @) for every continous function ¢ on X such that |§| < ¢.

(b) If there is a continuous function ¢ > 0 on X such that (ji., ¢) is bounded
in n, then (un, @) — (u,d) for every continous function ¢ on X such that
q~5(x)/¢(x) — 0 as x — oo.

By combining coupling and moment results we can obtain information about
the mapping 0 — vg.

Lemma 2.11. Assume a(i,j) is transient.

(@) (v, x0) = 6, (vg,xix;) = 02+ AGi, ) {vs, g(x0))-

(b) If g(B0) = 0, and 6 > 6y, then vg(x; > 0o, i € Z%) = 1. If g(fo) = g(61) = 0
for some 8y < 0y, then ve(Bp < x; < 01, i € Z% =1 for 8 € [6,,6,].

(c) For 6,8 ¢ I, 8 < 0, B~valued random variables x,y can be defined on
a common probability space such that L{x) = vg, L(y) = vy, and x; < y; for all
i € Z% with probability one. Consequently, E|y; — x;| = 8' — 6.

Remark. A consequence of (b) is that vy, = b, if g(6y) = 0. Since the Lipschitz
functions form a determining class for weak convergence, a consequence of (c)
is that 19 = vy whenever ' — 6

Proof By (2.5), with £(x(0)) = vg,

t
Ex;(t)x;(t) = E[ Z a (i, k)a:(j, Dxe(0)x,(0)] + / ay—s5)(1,J)E g(xo(s)) ds.

k,leze
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Since vy is invariant for x(¢),

Ex;(0)0) = (v, Y @i,k Y ay(j, 1) + Eg(xo(0)) / (i, j) ds
0

kezd lezd

for every t. By Lemma 2 of [CG3] and Lemma 2.2 of [S$4], vp € 7;2(1E). Thus,
as t — oo, the right-hand side above tends to §> +X(i, 7){ve, 9(xo)), proving (a).

For (b), let & > & and let L(x(0)) = &. It can be seen from (1.1) that
P(xi(t) > 6o, t > 0,i € Z% = 1. But L(x(1)) = vp, s0 valx; > by, i € Z9) = 1.
The second part of (b) now follows.

For (c), use (2.7) to construct the bivariate process (x(¢), y(z)) with x;(0) = 8
and y;(0) = ¢'. Then Proposition 2.3(c) implies that L(x(¢)) = vy and L(y(¢)) =
Vg as t — oo. Furthermore, a standard approximation argument and Itd’s lemma
with the function k(p) = max{0, p} in (2.7) leads to

Eh(x;(t) — yi(1)) < Z a,(i,/)h(x;(0) — y;(0)),

jEzd

which is zero here, consequently P(x;(t) < y;(t), i € Z%) =1 for all r > 0. The
family L(x(r),y(z)) is tight, and letting i be any weak limit point as t — oo,
it follows that 7 has first marginal vy, second marginal vy, and i(x; < y;, i €
Z¢) = 1. The proof is completed by choosing a realization (x,y) of pg. o

Lemma 2.12. Assume a(i,j) is transient.

(a) g* is continuous on 1.

(b) For § €1, g*(0) =0 if and only if g(6) = 0.

©) If 6y < 61, 00,61 € I, and g(6p) = g(61) = O, then g* is Lipschitz on
{66, 61]. ,

@) If b = limsupg_,, g(0)/6% then limsupg ., g*(0)/6* < b/(1 —
bA(D, 0)).

(e) If g(60) = O, then there is a finite constant C such that g*(0) < C|6 — 6|
Jor 9 sufficiently close to 8.

Proof. Recall g*(0) = (vg, g(x0)) = E¥® g(xp). For (a), in view of Lemma 2.11(a),
it suffices to show that (vp,x2) is continuous in 6. By (1.2) there are constants
b <1 /Z(O, 0) and c finite such that g(xo) < ¢ +bxZ. Some rearrangement of this
inequality yields
2 _ cA(0,0) +x2 — A(0,0)g(x0)
Xy < = .
1 —-DA(0,0)
Letting ¢(x) denote the right-hand side above, it follows from Lemma 2.11(a)
that (v, p(x)) = (cA(0,0) + 6%)/(1 — bA(0,0)), i.e. {(vg, P(x)) is a continuous
function of §. Now Lemma 2.10(a) implies (v, xZ) is continuous in 6.
For (b), we use Lemma 2.11(a) again to write (vg, (x; — 6)*) = Z(O, 0g*(6).
If g*(69) = O, then clearly vy, is concentrated on {x; = 6y }. On the other hand,
if g(0p) = 0, vy, = bg,, and hence ¢*(6y) = 0.
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For (c) it suffices by Lemma 2.11(a) to show that (ug,xg) is Lipschitz in
8 € [6o,6:1]. To see this we compute

Elx(t,6) — x3(1,6")|
2 max{|6ol, |61 |}E |x0(, 6) — xo(t, 8]
2max{|6p|, 61]}}6 — €'|.

[{vo,x5) — (vor, x3))|

<
<

For (d), let b < by < 1/2(0, 0), and choose ¢ large enough so that g(xp) <
c+ boxg. Using this in Lemma 2.11(a) it is easy to derive

- cA(0,0) + 62

2
Vg, xy) < = .
o) = T 20,0
Using Lemma 2.10(a) again we obtain
2
7O < — rhob”
1 — byA(0,0)

Thus lim SUP} 9| 00 g*(0)/6% < bo/(1 — bOK(O, 0)). Let by — b to complete the
proof.

For (e), suppose g(6p) = 0, and hence g*(6p) = 0. It suffices to prove that
there are constants C;, C» such that

(2.17) g*(8) < C110 — 6o|* + C16 — 6y
First, by (1.2) there constants b < 1 /Z(0,0) and ¢ finite such that
g(x0) < blxo — 0o)* + clxo — o).
Next, for 8 € I, a little rearrangement gives
g(x0) < bl(xo — 6)* +2(x0 — B)(6 — o) + (6 — 60)*1 + c|xo — 6.
By integrating with respect to vy we obtain

g*(9) < bEY® 'XO - 0!2 +b|(9 — 90|2 + cE"? |x0 — 00'
b(EV*xZ — 6%) + b|0 — 6o|* + cE¥® |xg — 65
bA(0,0)g*(8) + b|0 — 6> + cE*°|xq — |-

By Lemma 2.11(c), E*?|xp — 6 < |6 — 6|, and thus we have

b|0 — 90|2+C‘9 - 0()!
1 — bA(0,0)

g ® <

proving (2.17). O
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For the final result of this section we define CO‘ (E) to be the collection of
all bounded continuous functions ¢ on [ which have the property that for some
Cy < oo and finite set Ay C Z9,

6(x) — ¢ < Cs > I —yil, x,y €L

i€Ay
We write (", ¢) for (myu", @) for probability measures V¥ on Ey. For ¢ €
CL(E) let
Dy(¢,%) = 4|7 D bloix)

i€ Ay
and let D(¢,x) be the L, limit, D{(¢,x) = lim,_,oo D,(¢,x) whenever it ex-
ists. Since each vy is mixing, the L,-ergodic theorem implies that for ¢ € C4(E),
lim, o0 E¥?|Dy, (¢, x)—(vg, ¢)| = 0. By Proposition 2.3(d), lim, .o, E% D, (¢, x(t))
= EY*D,(¢,x). The next result provides some uniformity we need in interchang-
ing these two limits.

Lemma 2.13. Fix M < 0o and ¢ € C4(E). If t, — 0o as n — oo, then

sup E%|D,(¢,x(t)) — (vs, $)| — O.
lo1<M

Proof. We prove the lemma by applying the dominated convergence theorem.
The first step is to show pointwise convergence by coupling with the stationary
process. Fix 6, and let (x(¢), y(1)) be the bivariate process defined by (2.7) with
initial distribution 69 x vg. Since vy is invariant,
E® |Dn(d(x(tn))) — (ve, ¢>l < E|Dn(¢,x(tn)) — Dy (, y(tn))]
+E‘Dn(¢7}’(0)) e <V97¢>| .

By translation invariance, the right-hand side above is no larger than

E|§(x(1,)) = 90 (t))| + (o, |Da(d,y) = (v, 8)|)
< Cp Y Elxi(tn) = yiltn)| + (v, 1Da(9,¥) — (vo, $)1)

i€Ay

which tends to zero as n — oo by Proposition 2.3(b) and the L, ergodic theorem.
This establishes

(2.18) E|D,(¢,x(t,)) — {(vg,$)} — 0 as n — co.

The next step is to show that there is a constant C depending only on ¢ such
that if 8,6 € I, and (x(z), y(¢)) has initial distribution 8¢ X 8-, then for for all
t >0,

(2.19) E|Dy(¢,x(1)) — Du(9,y(t)] < Cl6 - &'

This follows easily from translation invariance and the monotonicity property of
Proposition 2.3(a), since
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E|Dy(¢,x(t)) — Du(9,y(O)| < E|p(x(1)) — dy(1)] < Cy Z E|xi(1) = y: ()|

i€Ay

< Cp Y EX(0)—yi(0)=Clo— 6.
i€Ay

Finally, there is a constant C < oo depending only on ¢ such thatif 6,6’ € I,
then

(2.20) |<V97¢> —_<V9’7¢>|f; CWH —'elL

This is an easy consequence of Lemma 2.10(c). The lemma follows now by
combining (2.18), (2.19), and (2.20). O

3 Proof of Theorem 1

We first note that we may assume without loss of generality that L(xV (0)) €
T,(Ey). Otherwise, we may replace L(xY (0)) with its symmetrization, and let
Uy (t) denote the counterpart of Uy(¢). It is routine to see that Uy(:) and Uy (-)
are equivalent processes.

Our strategy is to establish the following key facts (where [-] denotes
quadratic variation).

(3.1 {Zn(),N > 1} is a tight sequence of continuous L, martingales,

(3.2)
E | (Uy(tBx), ®) — (Vzu(r), @) | 0 as N — oo for £ > 0 and ¢ € C}(E),

t
3.3) E | [Zy)(1) —/ 9" (Zn(s))ds |—> 0as N — oo for t > 0.
0

For given these points, we see from (3.1) and (3.3) that if Z(-) is any limit point
of the Zy(-), then Z(-) is a continuous L, martingale with increasing process
[Z1(t) = J, g*(Z(s))ds. Hence Z(-) must solve

t
Zn)-20) = / Vg Z(s) duwis),
0

where w(s) is a Brownian motion. By Lemma 2.12(e), this equation has a unique
solution in the probability law sense. Therefore Zy = Z, and thus (3.2) implies
Un(tBy) = vz, since Col (IE) is a determining class for weak convergence.

Proof of (3.1). It is easy to see from (1.3), since a(i,j) is doubly stochastic, that

deN(t) = |Ay|7" Y /gGN ) dwi(t),

i€AN
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and hence that ©¥ (¢) is a martingale, with [V (1) = |Ay|~? fot Sien, 9 () ds.
By (1.2) and Lemma 2.2(c), for T < oo there exists Cy < oo such that for all
N and all s,u € [0,T8y],

(3.4) E|OY(s) — O w)* < CrlAn| s — ul.

Turning to Zy(t) = O (tBy), it is now clear that Zy is a martingale with
increasing process

20 = [ 1™ Y st s s,
i€EAN

and for N > 1 and s,u € [0,T), E{Zy(s) — Zy(u)|* < Cr|s — ul. Furthermore,
by Lemma 2.2(d) there is a p’ > 2 such that

Crpr= sup E(g(xév(t)))”,/2 < 0.
t€[0,T v}

With this p’, and 1/q +2/p’ = 1, proceeding as in the proof of Lemma 2.2(b),
for 0 <5 <t <T, we have

ElZy@) - ZyG)P < @' — 1P E|IZy](0) — [Zv1(s))P /2

. p'/2
@ —-1¥E [|AN1" z / g(x,-N(uﬁN))du}

ieAy V'S

IA

RS IAERLVMEDS / E (gl (ufn )Y *du

Y Y
< @ 1P Crpl - s
Since p’/2 > 1, this establishes tightness in continuous path space by Kolo-
mogorov’s theorem (see [EK], Prop. 3.6.3). O

Proof of (3.2). Fix t > O and ¢ € C(,'(]E). By Lemma 2.2(c), C = SUPo<< gy
E (x{,V (5))* < oo. Let £y be a sequence chosen as in Proposition 2.4(b) for this
C, with £y = o(8y) as N — oo. In view of (2.20), with ¢y =8y — ln,

(3.5) E|(Ven gy ©) — (Vor ) 9} < CE|OY (t8y) — 6" (ty)].

Since the right-hand side above tends to 0 as N — oo by (3.4), in order to prove
(3.2) it suffices to prove :

(3.6) E|(Un(tBn), d) — (Yor ) ¢} — 0.

To do this, let (¥ (¢),7" (£)) be the bivariate process defined by (2.8) with
initial state

O =x)w), O =AY ), i€y
J€AN
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Note that Dy (¥¥(0)) = Dy (Y (0)) = ON(ty). For the bivariate process (¥ (),
V(1)) define the empirical measures

Uisl/(t) = |AN]-1 Z 505"2”(;)a 01\2/(f) = |AN|_1 Z 50{“5»”(:)~

i€Ay i€EAN

By the Markov property,

BT E[{Ux(Bn),d) — (Veriy, 8} = E[(UxEn), 8) — (Upysv oy D)-

To prove (3.6) it thus suffices to show

(3.8) E[{Uy(tn), ¢) — (Ug(n), 8)| — 0,
and
(3.9 E(Ug(n), 8) — (vpyen oy, @) — 0.

We begin with the proof of (3.8). By translation invariance,

E[(Uy(tn),¢) — (TFEn), o) < 1A Y Elg(o) 2V (ew)) — dol 5% ()]

i€y
= Elp@E" (tw) — oGV U )] < Cp > EIEN ) — 5 (b))
i€Ay
= CylA|E|x) (bn) — 78 (ew)).
So it suffices to show
(3.10) E|xy (In) — 38 )] — 0,

which we will do by appealing to Lemmas 2.9 and 2.5, and Corollary 2.8.

Let us write & for L&Y (0), 7V (0)), and note that ¥ € To(Ey x Ey), and
that supy, (i, x2 + yZ) < oo by Lemma 2.2(c). If we can show that z{D(x) =
D(y)} = 1 for every subsequential limit /i of the &, then Corollary 2.8 will imply
(3.10). For notational simplicity assume " = fi, and let i¥ € T(E x E) be the
periodic extension of . Then i¥ = 7 and by Fatou’s lemma /i € T,(E x E).
Furthermore, Dy (x) — D(x) and Dy (y) — D(y) in L(i) as M — oo. Thus,
given € > 0 there exists My < co such that for M > M,

E*D(x) — D) < e+ E*|Dy(x) — Du(y)l.
By weak convergence and uniform boundedness of second moments,

EP|Dy(x) = Dy )| = lim EF"|Dyy(x) ~ Dy 3)].

We observe now that with respect to the measure i, Dy (y) = Dy(x) by con-
struction. Thus

Jlim E¥ Dy (x) = Dy ()| = lim E*" Dy (x) = Dy(x)].
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Now the law of x under @V is £(x"(ty)), so by Lemmas 2.9 and 2.5, the the
right-hand side above tends to zero, proving E#|D(x) — D(y)| = 0. This justifies
the use of Corollary 2.8.

Turning to the proof of (3.9), the basic idea is to extend to the infinite system
and apply Lemma 2.13. To do this, let y{V(O) = y{;’ 0), i € Z4, and let (5(1), ¥(2))
be the bivariate process defined by (2.9). The sequence £y was previously chosen
to ensure

(3.11) a1 S EFY (on) - 55 ()] — 0.
i€EAy

Since Ay is finite, we can choose K < co such that i +j € Ay forall i € Ay _g
and j € Ag4. Thus, for some finite C’

E|(TU5(tn),¢) — D (8,5 Un )] < [An] 7 D Elgal 3" (en)) — d(oid™ (en))]

i€Ay
<ANTE DT DT CEI0F 5V )y — (o ()|
iEANjEAd,
< ColAgllA|™ > EI5Y (bw) = 57 ()| + CylAy|C'K N
iGAN
In view of (3.11), this implies
(3.12) E{UZWn), ¢) — Dn($, 5w — 0 as N — oo,

so the proof of (3.9) will be completed by proving

(3.13) E|Dn (3,5 (In)) — (Upyi0y 8} — O.

To do this we first observe that
K= s;pElDNw,yNwN» — (Upygvop 8))° < o0

by Lemma 2.2(c). Next, by a simple decomposition and the Cauchy-Schwarz
inequality,

E|Dy (o, 7" (bn)) — Uy o D) <

(KP(Dn G (0) > M))'/* + i E®|Dy (¢, 5(8n)) — (ve, 9)] -
<M

By Lemma 2.13, the second term in the right-hand side above tends to zero as
N — oo. Since the sequence Dy (F (0)) = OV (ty) is tight, the first term in the
right-hand side above can be made arbitrarily small by choosing M sufficiently
large, and we are done with the proof of (3.2). O
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Proof of (3.3). We begin with
E|[Zy](2) - /0’ 9" Zn(s))ds| = E| /Ot(lANf—l i;:,v 9N (s By ))
—(Vz(s0, 9(x0))) ds| < /0 t E[{Un(s8x), g(x0)) — (vzy(s), 9(X0)) | ds.

We will see that the right-hand side above tends to 0 as N — oo by (3.2)
and our basic L, estimates. We first note that if X is any random variable with
E|X|P = K7, it follows from Holder’s inequality and Markov's inequality that if
1/ +2/p =1, then

EX?1{|X| > M} < (E|XPY/P(P|X| > M)/7 < KXE|X|P /MPY/,
and thus
(3.14) EX*1{|X| >M} < KP/MP2,

By (1.2), given € > 0 we can write g = g1 + g» where g; is a bounded,
Lipschitz function on I and 0 < g,(9) < A(0O, 0)-1921{|0|Z€*‘}’ 8 el.By (3.2)
and the bounded convergence theorem,

/0 ENUn(58v), 9100)) — (Va1 ko)) ds — 0,

so it suffices to show that

1

/0E<UN(SﬁN)792(x0)> d5+/(; E (vz,(s), 92(x0)) ds

is small, uniformly in N, if € is small. The first term above is straightforward,
since by Lemma 2.2(d) and (3.14), there is a finite constant X such that for all
N,

IA

t 2
/ E(Un(sB), g2(x0)) ds < A(0,0)" / Exg O L yzey ds
0 0

A(0,0)"tKP P 2.

IA

Next, as observed in the proof the proof of Lemma 2.12(d), there are constants
co, ¢ such that (vg,x2) < co +c16* for all § € I. So again, there is a finite K
such that for M > 1 and all N,

IA

t
A(0,00'E / (co+c1Zy (Nzy)>my ds
0

A0,0) t(co + c1)KP JMP2,

H
E/ (Va1 920000 L {zy (sy>m} A5
0

IA

Finally, for fixed M,

t
E/ (Vzu sy 2V L {1z y1<m} d5 < tA0,0)™1 sup (vg, x5 1 (x> e-13) — 0
0 01<M
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as € — 0. This is because by Lemma 2.11(c) and dominated convergence,

SUp (V6,50 Lz} S (010 Luatze13) *+ (Vobt 1 35 Ljngze-13) = O.
oel—-M M]

o

Remark. It is the proof of (3.3) that relies most strongly on the assumption
supy E(Uy(0), |xo|P) < oco. Given (3.3), a proof of the tightness requirement in
(3.1) can be made using only second moments, (3.3), and a theorem of Aldous
(see [A]). We note that (3.3) can be proved using only second moments provided
(1.2) is replaced by limg_, g(6)/6* = 0.

4 Proof of Theorem 2

We first note that the assumptions of Theorem 1 hold with Z(0) = p. Next, by
(3.4), since ty /By — s,

E|0"(ty) - Zy(s)|* = E|0" (ty) — O (sBv)I* < Cls — ty /By| — 0 .

Since Zy(-) = Z(-), (1.7) must hold. Next, supposing that ¢ € C4(E) and s > 0,
the method of proof (3.2) yields

(41) E|<UN(tN)’¢> _<V9N(IN)7¢'>[ —0.
Therefore
42) E(Un(tn), 8) — /, 0,(p, d9) (v, )

But since L£(x"(0)) € T(F), the left-hand side above equals Eg(x" (ty)), and
(1.8) is proved.

Theorem 1 does not apply in the case s = 0, so we must prove directly that
for ¢ € CJ(F),

4.3) E¢(xN(ty)) — (v,,¢) as N — oo.

Suppose first that ty /N2 /> co. This means that we are assuming that £(x" (0))
€ To(En), supy E|xV (0)fP < C for some finite constant C, ON(0) —, p, and
L(x"(0)) = some shift-ergodic element v of T2(F). The assumptions imply that
(v,x0) = p, and hence v € T,f.

Put C = supy sup, .5, Ex} (1), and let {€x} be as in Proposition 2.4(a) for
this C, with £y < ty /2, and let ’1(1 = ty — £y . The moment condition and Lemma
2.2(d) imply the sequence L(x" (¢})) is tight, so consider any subsequence (which
for ease of notation we still denote #;) such that L(x¥(15)) => p as N — oo for
some pu € ().

By (1.7), ©¥ (1) —, p. Thus by Lemmas 2.9 and 2.5, u({D(x) = ph =1,
which implies that the associated spectral measure of x4 must assign mass 0 to
{0}, and hence p € T,°(E). By Proposition 2.3(d),
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4.4) (uSUN), @) — (vp, B)-
If we let iV = my LN (25)), then Corollary 2.7 and (4.4) imply
4.5) (B S Uy), ¢) — (vp, b)-

To go from (4.5) to (4.3) we define the bivariate process (z(¢),z"(t)) on
7¢ x Ay constructed as in (2.9) such that

2N 0) =xN(ty), i € Ay
70 =z"(0), j=imod(@N), i € Z%,j € Ay.

Let iV denote the law of (z(0),z" (0)). By Proposition 2.4(a), for every i,

EF |zity) — 2 ()] — 0,

and hence
(4.6) EF" |9z (bw)) — o2 (Ew))] — 0.
But

Ep(xN () = EP " (n)),
and

(1S (En), B) = EF" ¢z (bw)),

so (4.3) follows from (4.5) and (4.6).

To finish we must consider the case ty /Oy — 0,y /N 2 s 00. Here we do not
assume the existence of the weak limit £(x" (0)) = v. But in the just completed
argument, the existence of this limit was used only to justify the application of
Lemma 2.9. This is not needed if ty /N? — oc.
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