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(pt)~>~o are based on some new purely functional analytic results implying, in 
particular, that any strongly continuous semigroup on a Hilbert space H can 
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strong solutions to stochastic differential equations o f  type dXt = CdWt + 
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with corresponding Markov process M, the associated (non-symmetric) Dirich- 
let forms ( r  are explicitly calculated and a necessary and sufficient con- 
dition for path regularity o f  M in terms of  ( r  is proved. Then, using 
Dirichlet form methods it is shown that M weakly solves the above stochastic 
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discuss the differences between these two methods yielding strong resp. weak 
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0 Introduction 

The two main objectives of  this paper are the study and construction of  9en- 
eralized Mehler  semigroups (Pt)t>=o, and the solution of  stochastic differential 
equations of  type 

dXt = AXt dt + C d W t  , (0,1) 

on infinite dimensional spaces. Here A and C are (in general) unbounded linear 
operators on a separable Hilbert space H, Wt is a cylindrical Wiener process in 
H ,  and we always assume that A generates a strongly continuous semigroup on 
H.  As will be seen, and is essentially known, solutions of  (0.1) are connected 
with a special class o f  generalized Mehler semigroups, namely Gaussian ones. 

Generalized Mehler  semieroups (Pt)t>=o on a separable Banach space E are 
defined for bounded, Borel measurable functions f : E -+ IR, by the formula 

p J ( x )  : f f ( T t x  - y )# t (dy)  = (#t * f ) ( T t x ) ,  t > O. (0.2) 

Here (Tt)t>=o is a strongly continuous semigroup on E and #t, t > 0, are 
probability measures such that 

#t+s = ( # t o T Z 1 ) * # s  for all s, t > 0 .  (0.3) 

Then (Pt)t__>0 is always a Feller semigroup (i.e., p t ( C b ( E ) ) C  Cb(E) for all 
t > 0). In Sect. 2 below they are treated in detail. In particular, construction 
methods are described (cf. Lemma 2.6) and a class of  non-Gaussian examples 
is given (cf. Example 2.7). 

The construction methods for (Pt)t__>0 are based on some purely functional 
analytic results on extensions of  strongly continuous semigroups presented in 
Sect. 1. More precisely, we show that for a strongly continuous semigroup 
(Tt)t__>0 on a Hilbert space H there exists a larger separable Hilbert space 
E such that the embedding H C E is Hilbert-Schmidt,  and (Tt)t>=o extends 
(uniquely) to a strongly continuous semigroup on E (see Corollary 1.4). Vari- 
ous extensions of  this result (e.g. that E can be chosen in common for finitely 
many commuting semigroups), which are particularly important in connection 
with constructing solutions for (0.1), are also discussed (cf. Theorems 1.6, 1.8). 
These functional analytic results are of  their own interest. 

In Sect. 3 we consider the Markov processes on E whose transition func- 
tions are given by generalized Mehler semigroups. They always exist by the 
classical Kolmogorov theorem, but might (even in the Gaussian case) have no 
sample path regularity whatsoever (cf. Remark 3.1 below). However, general- 
izing a result in [BR 95], we show that if  the Markov process started with one 
probability measure on E has continuous (resp. cadlag resp. right continuous) 
sample paths, then it has the same sample path regularity when started with 
any other probability measure on E (cf. Theorem 3.2). In Sect. 4 we study the 
most general type of  Gaussian Mehler semigroup on a Hilbert space E. It turns 
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out that in the Gaussian case, (0.3) implies that (t,x) --+ p J ( x )  is continuous 
on (0, co) x E for all f E Ca(E), in particular, 

lim p t f ( x )  = f ( x )  for all x �9 E .  
t---+0 

A way to obtain examples for (Pt)t>o is described in Remark 4.5(ii). We also 
consider invariant measures for (pt)t__>0 in this case. However, the correspond- 
ing results are more or less well-known (cf. [DPZ 92]), but they read a little 
differently in our framework. 

We emphasize that throughout this paper our viewpoint with respect to both 
the construction of (Pt)t>0 and the solution of (0.1) is the following: we think 
of the quantities involved, i.e., operators, processes, and measures, as being 
given on a separable Hilbert space H as operators, cylindrical processes, and 
cylindrical measures. Our task is to construct a larger state space E such that 
all quantities have natural extensions to E so that (0.2) makes sense and (in 
the strongest possible sense) also (0.1). 

Equations (0.1) and their non-linear perturbations have been studied exten- 
sively (see [Ro 90, DPZ 92], and the references therein; for the linear case 
see also [MS 92]). It turns out that because the linear operators in our infinite 
dimensional setting are unbounded and are only defined on subdomains of  the 
Hilbert space, a substantial part of  the work is "to give the best possible sense" 
to the linear equation (0.1). Then a variety of  well-understood (but neverthe- 
less sophisticated) methods lead to solutions for the non-linear ones. However, 
in most of  the literature the authors try to find solutions in an a priori chosen 
state space E, which if this space is too small, might require restrictive con- 
ditions on the operators A, C. Our approach is to first construct an appropriate 
sufficiently big state space E on which (0.1) can be solved (uniquely) in the 
strongest possible sense, then try to solve the perturbed non-linear equation and 
(simultaneously) try to determine a smaller natural sub-manifold of  E which 
carries the process. 

Step 1 of this programme is carried out in Sect. 5 of this paper (cf. Theo- 
rem 5.1) on the basis of the analytic extension results in Sect. 1. We emphasize 
that we do not assume the diffusion operator C to be bounded on H,  but only 
need that it can be represented as the composition of a bounded operator and 
the generator of  a strongly continuous semigroup on H,  that commutes with 
the semigroup generated by A. As is well-known (and in this case particularly 
easy to see), the transition probabilities of the stron 9 solutions of (0.1) on the 
enlarged state space E are then given by Gaussian Mehler semigroups: They 
are determined explicitly in Proposition 5.3. 

Sections 6 and 7 are devoted to a different approach to (0.1), namely to 
construct weak solutions via Dirichlet forms using the method developed in 
JAR 91]. In contrast to JAR 91] we treat here only linear cases, but these are 
much more general, in particular non-symmetric. Moreover, the solutions are 
constructed on a state space E, so that their transition probabilities are given 
by Gaussian Mehler semigroups. In particular, they are Feller. 

The starting point in Sect. 6 is a general Gaussian Mehler semigroup (Pt)t>=o 
which has an invariant measure # on one of the enlarged spaces E con- 
structed in Sect. 1. We first calculate the L2(E;#)-generator L of (Pt)t_>_0 and 
the corresponding positive definite bilinear form ~. Assuming that the sector 
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condition is fulfilled (cf. Condition 6.2) we prove (Theorem 6.3) that its clo- 
sure (&D(d~)) is a local (non-symmetric) Dirichlet form on L2(E;/t) (cf. [MR 
92]). We characterize when ( g , D ( g ) )  is symmetric (cf. Remark 6.4). We 
point out that the symmetry of (C ,D(g) )  depends on symmetry properties of  
the involved operators on H and not of their extensions to the state space E. 

In Sect. 7 we prove that (E ,D(g) )  is quasi-regular if and only if the 
Markov process M associated with (pt)t_>_0 (constructed in Sect. 3) has cad- 
lag resp. continuous sample paths. We also prove a sufficient condition for 
(g,D(g)) to be quasi-regular and identify an enlarging space E constructed 
in Sect. 1 for which this is always the case. Subsequently, we prove that M 
weakly solves (0.1) on this particular state space E. We emphasize that the 
diffusion coefficient C may not be an operator of the type as in Sect. 5 and 
that this solution of (0.1) may not be a strong one (see the final discussion in 
Remark 7.11 about the connection with the results in Sect. 5). 

The idea of extending equations to larger spaces E is quite standard. In 
many concrete situations, say where A is a differential operator on L 2, an 
extension may be obvious with some Sobolev space of negative order for E. 
Also i f E  is not required to be a Banach or Hilbert space; or i fA is self-adjoint 
on H with discrete spectrum the extension results in Sect. 1 are entirely trivial. 
However, in more general situations, even for self-adjoint A, the existence of 
suitable extensions on Banach or even Hilbert spaces as above is not trivial. 
To the best of our knowledge [R 88a, b] seem to be the first papers in this 
direction. In [BR 95] a complete solution to the case with an arbitrary self- 
adjoint A was presented. In fact [BR 95] together with [S 93] were the starting 
point of this work. A substantial part of  the results of  this paper are extensions 
of results in [BR 95, S 93]. 

Finally, we would like to note one technical point which might appear odd 
to the reader. Since we mostly work with two different I-Iilbert spaces H and 
E with H C E, to avoid confusion we identify neither H nor E with its dual. 

1 Functional-analytic preliminaries: extensions of semigroups 

For a Banach space E, let ~ ( E )  denote the set of  all bounded linear operators 
on E with the corresponding norm ]l " II~(e). Also, we let .~(E) denote the 
a-algebra of Borel sets in E. 

Let H be a separable Hilbert space. A set Q c H is called a (nondegen- 
erate) Hilbert-Schmidt ellipsoid, if there exists a Hilbert-Schmidt operator T 
on H with dense range such that Q = T(UH), where UH is the unit ball in H,  
i.e., UH = {h E H I  [Ihll~r =< 1}. 

Remark. 1.1. (i) We note that the operator T above can be assumed to be 
injective, self-adjoint, and nonnegative. Indeed, to get an injective Hilbert- 
Schmidt operator T1 with TI(UH) = T(UH) we define T to be the restriction 
of T to ~r := (ker T) • Clearly, T is an injective Hilbert-Schmidt operator with 
the same range as T. It follows that ~r is infinite dimensional, and since H is 
separable there exists a unitary map A : H ~ H. We then can take T1 := TA. 
Assuming that T is already injective, let T = ToLl be the polar decomposition 
of T, that is, J is a partial isometry, and To is self-adjoint and nonnegative. 
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Since T has dense range, it follows that J is onto and so J(UH) = UH and To 
is injective. Thus To(UH)= To(J(UH))= T(UH) where To is injective, self- 
adjoint, and non-negative. 
(ii) Clearly, Q c H is a Hilbert-Schmidt  ellipsoid if and only if  Q = T(UHI ) 
for some Hilbert space HI and a Hilbert-Schmidt  operator T :/ /1 ~ H with 
dense range. 
(iii) Note that, of  course, every Hilbert-Schmidt ellipsoid is compact in H .  
(iv) I f  T is injective, then the space H0 = T(H)  possesses a natural Hilbert 
space structure given by 

( x ,Y )Ho=(T- l x ,  T - l y )H,  x, y E H o .  (1.1) 

The set Q := T(UH) is the unit ball in (H0,1[ �9 [[H0) and 11 �9 []H < all " [[H0, 
with a = lITIl (. . 
L e m m a  1.2 Let (Tt)t>=o be a strongly continuous semigroup in a separable 
gilbert space H, such that IlTtll~<g) < 1 for some t > 0. Then there exists 
a HiIbert Schmidt ellipsoid Q so that Tt(Q) c_ Q for all t > O. Moreover, i f  
T1 Tm t , . . . ,  t are commutin9 semigroups, satisfyin 9 the condition above, then Q 
can be chosen common for all o f  them. 

Proof  We note that the assumption IITtll~(M> < 1 for some t > 0, 

implies that there exist positive constants b, c so that IITt]J (.> _-< be -ct for all 
t > 0 .  

Let H0 be a Hilbert space in H corresponding to any nondegenerate Hilber t-  
Schmidt ellipsoid, as in Remark 1.1(iv), and a the corresponding constant. Let 
X := L2([0, ec)---+ Ho;ds), be the LZ-space, with respect to Lebesgue mea- 
sure, of  H0-valued functions on [0, o c). Define an operator T ' X  ~ H by 

OO 
Tx :=  fo Tsx(s)ds. This integral is well-defined since s ~ T~x(s) is weakly 
measurable, and hence strongly measurable, and for every x E X 

oo c~ ( ~ ) 1 / 2  
fllTxx(s)llHds < bafllx(s)llgoe-C~ds < ba e-2CSds [Ixllx �9 
0 0 \ 0  

(1.2) 

In particular, the operator T is bounded. 
We claim that T is a Hilbert-Schmidt operator with dense range, and that 

Tt(T(Ux))  C_ T(Ux)  for every t >__ 0. I f  we can prove these statements, then 
the result follows by letting Q = T(Ux).  

First we prove that T is a Hilbert-Schmidt operator. Let ( e k ) k ~  be an 
orthonormal basis in H0. For m of  the form m = 2q consider the orthonormal 
system in X defined by 

m { v / ~ e k  i f i / m < _ s < _ ( i + l ) / m ,  i, k c N .  (1.3) 
ei'k(s) = 0 otherwise, 

Denote by Xm the closed subspace generated by (ei,mk)i, kcN. 
This is an increasing sequence of  subspaces with union dense in X. So for 

any vector x E X,  the sequence PmX of  the projections of  x onto Xm converges 
to x; in particular, TPmx ---+ Tx. Hence by Fatou's  lemma it suffices to prove 
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that the operators TPm have uniformly bounded Hilbert-Schmidt norms. We 
may now estimate the Hilbert-Schmidt norm of  TPm directly: 

TP m 2 T i m  2 II ~e;,~Jl~, = ~ II ei,~ll~ 
i, k E N  i, k c N  

(i+l)/mxfmTsek ds 2 = 2  f 
i, k c N  i/m H 

C Vm 
=< Z mlle~ll~ IlTxll~(g)ds 

i, k E N  \ i/m 

<= ~'~ mllekll2(b/m) ((i~)/m 

OO 

< c~2bf II Ts II ~(H~ ds, 
0 

(1.4) 

where e is the Hilbert-Schmidt norm of  the natural embedding H0 ~ H. The 
left hand side of  this estimate is precisely the Hilbert-Schmidt norm of  TPm, 
as TPm is zero on the orthogonal complement of  Xm and the Hilbert-Schmidt 
norm does not depend upon the choice of  an orthogonal basis. This proves that 
T is Hilbert-Schmidt. 

For any h E H0, the sequence T(nl[o,1/nlh) = nf~/nTsh ds converges to h in 
H-norm as n ---+ oo. This shows that the range of  T is dense in H0, and hence 
also in H.  

Finally, we see that Tt(Tx) = T(xt) where 

x(s - t )  if s >= t ,  (1.5 
Xt(S  ) ) 

1 0 otherwise. 

I f x  E Ux, then xt E Ux and so it follows that Tt(T(Ux)) C_ T(Ux). 
The case with finitely many commuting semigroups is handled similarly, 

with X being a space of  H0-valued functions on [0, oc) m and the operator T 
given by 

OO OO 

I x =  f ... f T~ 1, . . .  T~mX(Sl,...,sm)dSl . . .dsm . [] (1.6) 
0 0 

Theorem 1.3 Let (Tt)t>_o be a continuous semigroup on a separable Hilbert 
space H. Assume that llTtll:e(g> < 1,for some t > o. Then H can be linearly 
and continuously embedded into a Hilbert space E such that H is dense in E, 
the embedding is Hilbert-Schmidt, and so that (Tt)t>=o admits an extension 
to a strongly continuous contraction semigroup (Tte)t>o on E. 

Moreover, finitely many commuting semigroups satisfying the condition 
above can be extended simultaneously on such a space. 

Remark. In the symmetric case, Bogachev and R6ckner [BR 95] have proved 
this extension result where (Tt)t>=o was only assumed to be a strongly contin- 
uous contraction semigroup without the exponential decay of  ][ Tt [[~e(H). 
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Proof Since IIT?II. (H* =IIT, II (H  we can consider the Hi lber t -Schmidt  
ellipsoid Q obtained by applying Lemma 1.2 to the dual semigroup (Tt)t>=o. 
For x E H ,  define p(x)  := SUpqeQZ4. (q,x)H. Since Q is absolutely convex with 
dense linear span, it follows that p is a norm on H.  Let E be the completion of  
H with respect to the norm p. I f  T* is a self-adjoint Hi lber t -Schmidt  operator 
on H* that maps the unit ball UH* onto Q, then for all x E H ,  

p ( x ) = s u p h ~ * ( q , x ) H =  sup h,*(T*u,x)H= sup H*<u, TX)H=IITXIIH. 
qEQ UEUH* UEUH* 

(1.7) 

It follows that E is a Hilbert space and that the natural embedding H C E is 
Hi lber t -  Schmidt. 

For each t >= 0 we have Tt*Q c Q, so for all x E H 

p(Ttx) = supH*(q, Ttx}14 = supH*(Ttq, x)H <= supH*(q,x)H = p ( x ) ,  (1.8) 
qEQ qcQ qcQ 

from which it follows that Tt can be extended to a linear operator T F on E with 
[[Tff[[.~(E) _--< 1. The strong continuity of  (T~)t>=o on E follows from the strong 
continuity of  (Tt)t>=o on H ,  the density of  H in E, and the fact that E liT/II <   
1 for all t __> 0. In the case of  finitely many commuting semigroups, (1.8) holds 
for all of  them by Lemma 1.2. [] 

Corol lary 1.4 Let (Tt)t>=o be a strongly continuous semigroup on a separable 
Hilbert space H. Then H can be linearly and continuously embedded into 
a HiIbert space E such that H is dense in E, the embedding is Hilbert- 
Schmidt, and so that (Tt)t>o admits an extension to a strongly continuous 
semigroup (TtE)t>=o on E. I f  Tt I . . . . .  T~ are strongly continuous commuting 
semigroups on 1t, then the space E as above can be chosen common for all o f  
them. 

Proof  Since Tt is strongly continuous on H, []Tt[ILP(H ) ~ be ct for some c > 0. 

We can apply Theorem 1.3 to the semigroup Tt = e-2CtTt. Now we can take 
its extension and multiply it by e 2ct. In the case of  finitely many semigroups 
the proof  is the same. [] 

Remark. 1.5. In Corollary 1.4, we have H C E, and the semigroup (Tt)t>_o 
extends to a strongly continuous semigroup (TF)t>=o on E. Letting ( A , D ( ~ )  
resp. (AE,D(AE)) be the generator of  (Tt)t>=o resp. (TtE)t>=o on E, it is not hard 
to show that 

D(A) C D ( A  e) and A E = A  o n D ( A ) ,  (1.9) 

since [[ �9 lie < constant I/ " [[H on H.  On the dual spaces, everything is re- 
versed. That is, E* C H* and if (TT)t>=o and ((TtE)*)t>0 are the dual semi- 
groups on H* and E* respectively, then (TF)* is just the restriction of  the 
operator Tt* to the subspace E*. In addition, the generators satisfy D((AE) *) C 
D(A*) and (AE) * = A *  on D((AE)*). 

In Sects. 5 and 7 (cf. Theorems 5.1, 5.2, and Proposition 7.5 below) we 
shall need the following stronger version of  Corollary 1.4. 
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Theorem 1.6 Let (Tt)z>_o be a strongly continuous semigroup with generator 
(A,D(A)) on a separable Hilbert space H. Then H can be linearly and con- 
tinuously embedded into a Hilbert space E such that H is dense in E, (Tt)t>=o 
admits an extension to a strongly continuous semigroup (Tff )t>=o on E, and so 
that H embeds into D(A E) (equipped with the graph norm) with a Hilbert- 
Schmidt map. 

Proof  For any fixed t E (0,oo),  there exists c E (0 ,oo)  so that for i?t :=  e-aTt, 
we have IILII~<-~ --: ~ < 1. Then also ]llr~'ll~o(H.~ = 7 < 1. 

Consider the Hilbert space D(A*) equipped with the graph norm I[hllD(A*> = 
(llhll~. + llA*hlf~.) ~/2. One can easily check that (77)t_>_0 is a strongly conti- 
nuous semigroup on D(A*). In addition, for the same value of  t as above, 

�9 2 * 2 I I T [ A . h t l 2 .  = r t h l l H . +  = IIr, hllD(A*) II IIA*VhlI~* IIT?hll~* + 

<= e2~t72[lhl12. + e2~ty211A*hll~. = e2Cty211hll~(A. ) . (1.10) 

~* D(A*) and let Q be a Therefore we can apply Lemma 1.2 to (T t )t->0 on 
nondegenerate Hi lber t -Schmidt  ellipsoid in D(A*) such that TT(Q) c Q for 
every t > 0. Since A* :D(A*) ---+ H* is continuous it follows that A*(Q) is a 
(possibly degenerate) Hi lber t -Schmidt  ellipsoid in H*.  

Since Q is also a Hi lber t -Schmidt  ellipsoid in H*,  as in the proof  o f  
Theorem 1.3, we can now define E to be the completion of  H with respect to 
the following Hilbertian norm, 

Ilxll~ :=sup H*<q,x>,, x ~ H .  (1.11) 
qcQ 

As in Corollary 1.4, the semigroup (Tt)t>=o extends to a strongly continuous 
semigroup (Tff)t>=o on E. Let (Ae,D(A~)) be the generator of  (Tff)t>0 on E. 
Using (1.9), we can evaluate the graph norm o f  A e for x c D(A), 

2 = IIAExlI~ + Ilxtl~ 

= sup H* (q, Ax}ZH + sup H* (q,x)ZH 
qCQ q~Q 

= sup f / , (p ,x )2H + sup H*(q,x)2H.  
pcA*(Q) qEQ 

(1.12) 

Let ( ek )~N be an orthonormal basis for H sitting in D(A). Since both Q 
and A*(Q) are Hi lber t -Sehmidt  ellipsoids in H*,  from (1.12) and (1.7) we 
see that ~ = 1  2 [le~llDcAe) < ec. This shows that the injection (D(A), 11. llg) --+ 

(D(Ae), [I " [[D(Ae)) is Hi lber t -Schmidt  and hence extends to a unique Hi lber t -  

Schmidt map from H into D(AE). Using (1.12) and the fact that Q is non- 
degenerate shows that this extension is one-to-one, i.e., it is an embedding. 

[] 

In Sect. 5 below we need the following stronger results, involving a second 
strongly continuous semigroup. 
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Theorem 1.7 Let (Zt )t>=O and (St)t>_o be two commuting strongly continuous 
semigroups on a separable Hilbert space H with generators (A,D(A)) and 
(G,D(G)). Then 

(i) Tt(D(G)) C D(G) and Tt commutes with G on D(G) for all t >= O. 
(ii) The domain 

D A , ~ = { h c D ( A ) ~ D ( G ) I A h C D ( G  ), GhED(A)}  (1.13) 

is dense in H and A G = GA on DA,G. In addition, DA,G is complete with the 
norm I[hllA,a :=  ([Ihll~ + IIAh[l~/+ IlGhl[ 2 + I[AGh[12H + []GAh[[2H) U2. 

Proof (i) Let h E D(G) and t > O. Then the map T ~ &h is differentiable 
and so is the map ~ ~ TtS~h = &Tth. Hence Tth E D(G) and TtGh = GTth. 
(ii) I f  h E DA,~, then AGh = GAh. Indeed, for t > O, 

G Tth t t 
- h  _ 1 G f TsAhds = _1 f T, GAhds , (1.14) 

t t o t o  

which converges to GAh as t goes to zero. On the other hand, the derivative 
o f  t ~ TtGh at zero equals AGh. Furthermore, note that vectors o f  the' form 

t s 

z =  f f Tr&hdrdv, h ~ H ,  (1.15) 
0 0 

belong to Da,G. Indeed, they are clearly in D(A)ND(G)  and (see [P 83; The- 
orem 2.4]) 

(i ) '  =r,  &hdr -f&hg~ 
0 

t t 

= f S ,  r, hd~ - f & h d ~ ,  (1.16) 
0 0 

which belongs to the domain o f  G. Similarly, Gz ~ D(A). The collection o f  
vectors given by (1.15) span a dense subspace in H,  since if some h0 is 
orthogonal to all of  them, then differentiating the scalar product o f  h0 with 
such a vector in s and in t at zero we get (ho, h)H = 0 for all h E H. This 
implies that h0 = 0. 

Finally, to prove that DA,C is complete, assume that (hn)n~N is a Cauchy 
sequence in the norm above. Then the sequences (hn),c~,  (Ahn)ncN, (Ghn)~c~, 
(GAh,)n~,  (AGhn)~cN are fundamental in H.  Since both A and G are closed 
operators, this implies that there exists h = lim,,__+oo hn such that h E D(A) N 
D(G) and Ah = lim,~--+oo Ah~, Gh = lim~--,oo Gh~. For the same reason, Gh E 
D(A), AGh = limn--+oo AGhn, and Ah C D(G), GAh = limn-~o~ GAhn and the 
proof  is complete. [] 
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Theorem 1.8 Let (T~)t>=0 and (St)t>__o be two commutin 9 strongly continuous 
semigroups on a separable Hilbert space H with generators (A,D(A)) and 
(G,D(G)), Then H can be linearly and continuously embedded into a Hilbert 
space E such that H is dense in E, (Tt)t>__o and (St)t>__o admit extensions to 
strongly continuous commuting semigroups ( TtE )t >=o and ( SF )t >_o on E, and so 
that H embeds into DAE Ce (equipped with I[ I],~E,ce) with a Hilbert-Sehmidt 
map. 

Proof Using the last part of Lemma 1.2 and Lemma 1.7, the proof is done in 
exactly the same way as that of Theorem 1.6 replacing the role of D(A) and 
D(A*) (with the graph norm) by DA,G resp. DA*,G* (with [] [[A,c resp. [I [[X*,G* )- 
We leave the details to the reader. [] 

Remark. 1.9. (i) Let (Tt)t>=o on H be as in Corollary 1.4 and let E0 be a Hilbert 
space into which H is densely embedded by a Hilbert= Schmidt operator. Then 
the space E described in Corollary 1.4 can be chosen in such a way that Eo 
is continuously embedded into E. Indeed, it suffices to take the initial ellipsoid 
Q0 in the proof of  Lemma 1.2 so that it is a Hilbert-Schmidt ellipsoid in the 
Hilbert space for which the polar of  Ueo is the unit ball. 

(ii) Note that both Theorems 1.3 and 1.6 admit iterating (e.g., one can 
choose E in such a way that the initial space H is embedded into E with a 
nuclear operator). 

2 Generalized Mehler semigroups 

Let E be a separable Banach space and (~)t_>0 a strongly continuot~s semigroup 
on E. Given a family (#t)t_>_0 of probability measures on ~ ( E )  we define 
for f E ~b(E)  (:= the set of  all bounded ~(E)-measurable functions on E), 
t>_O 

p t f ( x ) : =  f f ( T t x -  y ) # t ( d y ) = ( # t *  f)(Ttx) ,  x E E .  (2.1) 

Note that for each t > 0, Pt is Feller (i.e., Pt maps Cb(E) into itself, where 
Ca(E) is the space of bounded, continuous functions on E). 

Lemma 2.1 Assume that the map t ~ l~t on [0, oc) is continuous in the weak 
topology. Then (t,x) ~-+ p t f ( x )  is continuous on [0,oc) x E for all f c Cb(E). 

Proof Fix ~ > 0, and suppose that (tn,x~) --~ (t,x) in [0,oo) x E .  By the Pro- 
horov theorem, there is a compact K with 

~s(E\K) < e foralls  E {t, t l , . . . , tn , . . . } .  (2.2) 

By the strong continuity of the semigroup (Tt)t>=o, the set S = {Ttx} U 
{Tt, x~ I n C N} is compact. Hence S - K is compact, and since f is uniformly 
continuous on compacts, there exists N E IN such that for any n > N and any 
y E K  

If(Ttnxn - y) - f (T tx  - Y)I < e. (2.3) 
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Set C = ][f[[oo, and note that by increasing this N if necessary, we also have 
that for any n > N 

f f ( T t x  - y )p t (dy)  - f f ( T t x  - y)#t=(dy) < (2C + 1)e, (2.4) 
K K 

since by the weak continuity f E f ( T t x -  y ) # t , ( d y ) ~  f e f ( T t x -  y )# t (dy)  as 
n ---+ oc. Finally we get for all n > N 

f f ( T t x -  y ) p t ( d y ) -  f f(Tt=x,, - y)pt=(dy) 

< f f ( T t x  -- y )# t (dy )  -- f f(Tt=xn - y)#t=(dy) + 2Ce 

< f f ( T t x  - y )p t (dy )  - f f ( T t x  - y)#t=(dy) 
K K 

q- f [ f (T tnxn  --  y )  -- f ( T t x  - y)[#t=(dy) + 2Ca 
K 

< ( 2 C +  1 ) e + ~ + 2 C e  = (4C + 2)~. (2.5) 

Since e is arbitrary, this proves the result. [] 

Now we mm to the question when (Pt)t>=o in (2.1) defines a semigroup. To 
this end, for a probability measure v on ~ ( E )  (or just a cylindrical probability 
measure on E), we denote its Fourier transform by ~, i.e., 

~(l) := f e il dv ,  l E E* , (2.6) 
E 

where E* denotes the topological dual of  E. 
The following gives a characterization of the semigroup property of  (pt) t  >=o. 

Proposition 2.2 (Pt ) t>O,  as  in (2.1), is a semigrou p on ~ b ( E )  i f  and only i f  
f o r  all t, s > 0 

#t+= = (#,  o : r s  # s ,  (2 .7)  

where #t o T~ -1 is the image measure o f  #t under Ts. Equation (2.7) is equi- 
valent to 

~t+s(l) = Fts(l)fit(Tfl) f o r a l l  l E E* . (2.8) 

Proo f  Let f C ~b(E)  and t, s >= O. Then for all x E E: 

p t ( p s f ) ( x )  = (#t * p s f ) ( T t x )  

= (#t * (#s * f ) ( T s  �9 ))(Ttx) 

= (((#t o T] -I ) ,  #=) ,  f ) (Tt+=x) ,  (2.9) 

while 
pt+=f(x) = (#t+= * f)(Tt+sX) . (2.10) 

Comparing these two expressions the assertion follows (where for the converse 
one applies both to functions f = eiZ, l E E*). [] 
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Remark. 2.3. Note that the validity o f  (2.8) for t = s = 0 implies that/~0 =/702, 
hence by continuity, and since fi0 is equal to 1 at 0, we conclude that/70 -- 1. 

Definition 2.4 l f  (Tt)t>=o, (#t)t>_O satisfy (2.7), we call (Pt)t>O defined in (2.1) 
a generalized Mehler semigroup. 

In Sect. 4 we shall see that the classical Gaussian Mehler semigroups (cf. 
e.g. [BR 95]) are special cases. Now we want to present a general method to 
construct examples of  generalized Mehler semigroups. 

Let E be a Banach space and H a separable Hilbert space such that H C E 
is a continuous linear embedding. We say that a cylindrical measure v on H 
admits a countably additive extension to E, i f  the cylindrical measure v E on 
E defined by the formula re(C) = v(C n H),  where C is a cylindrical subset 
of  E, is countably additive. Note that for the Fourier transforms the following 
fomaula holds: 

~ ( l )  = q(l) forall  l E E* C H * .  (2.11) 

Note also that (2.7) and (2.8) make sense if/~t, t > 0, are merely cylindrical 
probability measures. We call a cylindrical measure on H strong or strongly 
cylindrical if  its Fourier transform is continuous on H*. 

Theorem 2.5 Let (Tt)t>=o be a strongly continuous semigroup on a separable 
Hilbert space H and let (#t)t>=o be a family of  strongly cylindrical probability 
measures on H satisfying (2.7). Let E be a Hilbert space so the properties 
o f  Corollary 1.4 are satisfied Then 

(i) #,#t admit countably additive extensions to E (denoted by #E, get)" 
(ii) (Pt)t>=o, defined as in (2.1) with (Tff)t>_o and (Fz~)t>>_o, is a generalized 
Mehler semigroup on E. 
(iii) If, in addition ( t , l ) ~  fit(l) is continuous on [0, g o ) x  H*, then (#et )t>=o 
is weakly continuous and Lemma 2.1 applies. 

Proof Since H C E is Hilbert-Schmidt ,  we obtain (i). From (2.11) and the 
fact that (Tf )*  = Ts* on E* C H*,  we see that if  (2.8) holds for (fit)t__>0 and 
(Tt*)t>=o on H*,  then (2.8) also holds for (fi~)t_>_0 and ((Tte)*)t_>_0 on E*. 
Therefore, by Proposition 2.2, (ii) also holds. Finally, assume that (t, l) ~ fit(l) 
is continuous on [0, go) x H*,  and let to > 0 and tn -+ to as n ~ ec. Suppose 
that we can prove that (#~)ncN is relatively compact in the weak topology, 
then by the assumption, it is easy to see that #te ~ #re0 weakly as n --+ ec. 
To show relative compactness, by [VTC 87, p. 365] it suffices to check that 
( f i ~ ) n ~  is equicontinuous at zero with respect to the Sazonov topology on 
E* (of. [VTC 87, p. 363]). Let e > 0. Since ( t , l ) ~  fit(l) is continuous on 
[0, go) • H*,  there exists 6 > 0 such that for all l E 6UH*, 

Ifitn(l) - 11 ~ e forall  n E N .  (2.12) 

Let Q := (6U14.) o E*. Then for all l C Q, 

~E I # t ~ ( l ) -  11 < e forall  n C N .  (2,13) 
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It remains to show that Q is a neighborhood o f  zero in the Sazonov topology 
on E*. Note that 1 E Q if  and only if l E E* and Ill]kr, < 3. Since U~ is a 
Hilbert-Schmidt  ellipsoid in E, by Remark 1. l(i), (ii) there exists an injective, 
self-adjoint, non-negative Hi lber t -Schmidt  operator T on E such that Uar = 
T(Ue). Hence for l E E*, 

nnlulH. = s u p  = s u p  = s u p  E.(T*l,h)e = IIT*IlI * �9 
hEUH hCUE hEUe 

(2.14) 

Since T* is a Hilbert-Schmidt  operator on E*, Q is a neighborhood of  zero 
in the Sazonov topology on E*. [] 

The following lemma provides both structural information and a construction 
method for (#t)t__>0 satisfying (2.7). 

Lemma 2.6 Let H be a separable real Hilbert space and (Tt)t>__o a strongly 
continuous semigroup on H. 

(i) Let (#t)t__>0 be a family of  cylindrical probability measures on H. As- 
sume that for all 1 E H*, t ~ fit(1) is differentiable at t = 0 and set ,~( l) := 
-(d/dt)fit(1)l,=o. Assume also that t H fit(l) is locally absolutely continuous 
on [0, co) and s ~ 2(T*l)  is locally Lebesgue integrable. Then the following 
are equivalent: 

fit+,(l) = fi~(l)fit(T*l ) for all l E H*, t, s > O. (2.15) 

f i t ( l ) = e x p ( - f  2(Ts*l)ds] f o r a l l  l E H * ,  t >__ O. (2.16) 
\ o / 

In this case, 2 is a negative definite function (c f  [BeF 75]). 
(ii) Suppose that 2 :H*  ~ 112 is a continuous, negative-definite function with 
2(0) = 0. Then there exist (#t)t>__o as in (i), satisfyin 9 (2.16) and hence (2.15). 

Proof (i) Suppose that (2.15) holds. Then by Remark 2.3, fi0 ~ 1 and for all 
I C H * ,  s , t  > 0 we have 

fi,+t(l) - fis(l) fit(T~l) - 1 
t t 

fi~(l),  (2.17) 

hence (d /ds ) f i s ( l )=-2(T~l ) f i~( l )  and (2.16) follows. Conversely, if (2.16) 
holds, then for all 1 C H*, s, t => 0 we have 

/ s+t \ 

f i t + s ( l ) = e x p ( - f o 2 ( T * l ) d u ) e x p ~ - f  2(T*l )du  ) 

= f i , ( l ) s  (2.18) 

If  (2.16) holds, then 2 is negative definite since it is a limit of  (fi0 - f i t )~  t as 
t --+ 0, as/7o - fit = 1 - fit = fit(0) - fit, as seen above, and [BeF 75; Chap. II, 
Corollary 7.7] applies. 
(ii) By [BeF 75; Chap. II, Theorem 7.8] and the assumption, the function on the 
fight hand side of  (2.16) is positive definite. Its restrictions to finite dimensional 
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subspaces of  H* are continuous, hence e.g. by [VTC 87; Chap. VI, Proposition 
3.2(c)], the family (#~)t>__0 as in (i), satisfying (2.16) exists_ [] 

Example 2.7. Let H : :  L 2 ( T , ~ , # )  where ( T , ~ , # )  is a finite measure space. 
Let a : ]R ---+ r be a negative-definite function with a(0)  = 0. Define 

~(l) := f ~((RHl)(t))#(dt),  I c H* , (2.19) 
T 

where RH : H* --+ H denotes the Riesz identification. Then, since by [BeF 75; 
Chap. II, Corollary 7.16], there exists c E (0 ,oc)  such that [a(s)l < c(1 + Isl 2) 
for all s E IR, 2 is well-defined, continuous on H*,  and negative-definite. Hence 
Lemma 2.6(ii) applies. I f  we replace H by some Sobolev space of  arbitrary 
order r ff N in L2(T; dx) with T an open subset o f  IR d, and assume a : IR n ---+ 
(12 to be continuous and negative-definite, where n is the number of  multi- 
indices of  length r, then Lemma 2.6(ii) also applies for 

2(l)  :=  f a((U(RHl))l~l<_r)dx, l E H*.  (2.20) 
T 

Remark. 2.8. (i) In the situation of  Lemma 2.6(i) we can calculate the gen- 
erator of  the associated generalized Mehler semigroup (p~)t>__o. It is given by 
the pseudo-differential operator which can be written as the sum of  the pseudo- 
differential operator with symbol 2 and the linear drift given by the generator 
o f  (TT)t__>0 (cf. [BLR 95, FuhR 95]). 
(ii) It is well-known that if  # is a Gaussian measure on a Hilbert space E0 with 
Cameron-Mart in  space H ,  then every operator T C 5r  admits a unique ex- 
tension to a/~-measurable linear map ~E0 on E0. In particular, any continuous 
semigroup (Tt) on H extends uniquely to a semigroup (~E0) of  measurable 
linear mappings on E0. However,  in contrast to our Theorem 1.6, one cannot 
always take such extensions to be continunus on E0. What is even more impor- 
tant, the domain of  the generator o f  (T~)  on our space E has full #-measure. 
By the Hilbert-Schmidt character of  the embedding H--~ D(A e) this is true 
for the countably additive extension v e on E of  any strong cylindrical measure 
v on H.  This observation leads to new existence results both for deterministic 
and stochastic evolution equations. Note that if  E is chosen as mentioned in 
Remark 1.9 for given E0, then TF 0 = T~ /~-a.e. 

3 Corresponding Markov processes 

In this section we extend the results from [BR 95; Sect. 4] to generalized 
Mehler semigroups. Let E be a separable Banach space, (Tt)t__>0 a strongly 
continuous semigroup on E, and (#t)t=>0 a family of  probability measures 
on -~(E). Let (Pt)t>_0 be as specified in (2.1); where we assume that (2.7) 
holds, and that t ~-+ #t is continuous on [0, o c)  in the weak topology. By 
the usual Kolmogorov scheme one can construct a normal Markov process 
M = (f~, Y ,  (Xt)t>o, (Pz)zcE) with transition semigroup (Pt)t_>-0. This process, 
however, is only of  interest i f  one can prove certain regularity properties of  its 
sample paths. Unfortunately, M is in general not a right process (i.e., is strong 
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Markov and has right continuous sample paths) as will be seen in Sect. 7 be- 
low. We intend now to give conditions which imply that the sample paths of  
M are even continuous (Pz-a.s. for all z E E).  In particular, M is then strong 
Markov (since (Pt)t>=o is Feller), hence a diffusion. 

Let # be a fixed probability measure on E. By Kolmogorov ' s  exis- 
tence theorem there exists a unique probability measure / 5  on (E[~  ' )  
(where sr  is the o--algebra generated by the canonical projections 2-t :E [~ 
E)  such that for any n E IN, 0 < tl < --" < tn < oo, and Ao,A1,.. . ,An E 
~ ( E ) ,  

P#[~I~ 0 E A o , Y t  1 E A l , . . . , f ( t ,  E An] 

= f f ... f Pt,-t,_l(Zn-l,dZn)"" Ptl(Zo, dzl)lJ(dzo). 
A 0 A 1 An 

(3.1) 

Let ~2 = C([0, oe) ,E) ,  Xt := )(t on ~2 for t > 0 and let ~ := a(Xt [ t E [0, cx~)). 
Suppose that the following holds: 

There exists a probability measure P in (~2, Y )  having the same 

finite dimensional distributions as Pu, i.e., P satisfies (3.1). (3.2) 

Remark. 3.1. In Sect. 7 below, we shall prove a necessary and sufficient con- 
dition for (3.2) to hold, using the theory of  Dirichlet forms (cf. Theorem 7.3). 
Condition (3.2) is not always true, a counterexample may be found in [BR 95; 
Example 6.6(ii)]. 

Define Y �9 f~ -+ f~ and Y : E ~ f~ (componentwise) by 

Yt : = X t -  TtXo, t > O, (3.3) 

and for z c E, 
(Yz ) t  := Ttz, t >= O. (3.4) 

Clearly, Y is ~ / ~ - m e a s u r a b l e  and ~-- is ~ ( E ) / ~ - m e a s u r a b l e .  Define for z c 
E the probability measure Pz on (f~, Y )  by 

Pz[F] :=  ( P o  Y - 1 ) [ F  - Yz] ,  F E ~ .  (3.5) 

Then we have the following result. 

Theorem 3.2 Assume that (3.2) holds and that (Pz)zEE are as in (3.5). Then 
for  all z E E, and 0 < tl < . . .  < tn < oo, n E N,  and A1,. . . ,An E ~(E) ,  

P z [ Y t  1 C A1 . . . .  ,Xt n C An] 

= f "'" f p t , - t , _ l (Zn-bdzn)""  pq(z, d z l ) .  (3.6) 
A 1 An 

In particular, M = (f~,~-,(Xt)t__>0,(Pz)zcE) is a (conservative) diffusion pro- 
cess (i.e., a conservative, normal, strong Markov process with state space E 
and continuous sample paths) having transition probabilities (Pt)t>=o. More- 
over, (3.2) holds with # replaced by any other probability measure v on E. 



208 V.I. Bogachev et al. 

Proof Equation (3.6) is proved by calculating the Fourier transform of  Pz e 
(Xt~,...,Xt,) -1 (cf. [R 88b]). Indeed, let z C E, 0 < t~ < t2 < .- .  < tn < ~c, 
n E N ,  l b . . . ,  In C E*, and for xb . . . , xn  E E, define 

] f ( x l , . . . , x~ )  :=  exp i E*(lj,xj)E . (3.7) 

Obviously, it suffices to show that 

f f (x~  .... ,x~,) clPz 

= f "" ff(xl,...,Xn)Ptn--t n l ( xn - l ,dxn) ' "  pt2-tl(Xl,dx2)Ptl(Z, dx1). 
(3.8) 

By definition, 

f f (X t l , . . . ,X t , )dPz  = f f(Xtx _ TilX + T ~ z , . . . , X t , -  T~Xo+ T~z)dP 

= exp i E*(lj, z)e �9 D , ,  (3.9) 

where for a probability measure v on N(E)  we set 

Dv := f v(dxo)exp i 2 e*(lj, Tt~xo)e �9 O(xo) , (3.10) 
j=l 

where by induction for k E {1 , . . . ,n} ,  if to :=  0 = :  t - l ,  

D(xo) :=  f . . .  f pq(xo, d x l ) ' "  p~n-t, l(Xn-l,dx~)exp i e*(lj,xj)E 

= f "'" f pt 1 (XO, dxl ) " "  pt(._k)-t(n_(k+l))(X(n--(k+l)), dx(.-k)) 

I k -1  
x exp i 2 E*(l,-j,  Tt~_j t, ~xn-x)E �9 ck (3.11) 

jZ0 

with ck E 112 only depending on t~ . . . . .  t~_k, l . . . . . .  /~-(k+l). Thus for k = n, 

D(xo) = exp i E*(lj, xo)e �9 c, (3.12) 

and hence D~ = Cn, in particular, D ,  = D~ z. But 

exp i ~ E* (lj, Ttfz)E �9 D~ = D(z) (3.13) 
j=l 

which is exactly the right hand side of  (3.6). [] 

Remark. 3.3. (i) A similar study of  the corresponding Martin boundary as in 
[R 88b, 92] can be carried out in the more general situation o f  Theorem 3.2 
above. 



Generalized Mehler semigroups and applications 209 

(ii) Replacing f~ resp. (Xt)te0, in condition (3.2) by the set f~' consisting of 
all cadlag sample paths on [0, oo) resp. X / : =  )?t on fF, Theorem 3.2 (with the 
same proof) obviously remains true in the sense that we obtain a conservative 
normal strong Markov process M ~ with merely cadlag sample paths. In Sect. 7 
below we shall see, however, that in fact also in this case the sample paths 
are continuous Pz-a.s. for all z C E. 

4 The general Gaussian case 

Let H be a separable real Hilbert space and (Tt)t>=o a strongly continuous 
semigroup on H. Let (#t)t>O be a family of  centred Gaussian strong cylindrical 
measures on H,  and let (Bt)t>=o the corresponding covariance operators, i.e., 
Bt E ~f(H*) for all t > 0, such that 

/2,(l) = exp ( - (1 /2 ) l lBd l l2 , ) ,  I E H*,  t => 0 .  (4.1) 

Proposition 4.1 The family (#t)t>=o satisfies (2.7) on H* if  and only if  for all 
I E H * ,  

IIBt+AII~. - I IBs / I I2 .  = IlBtT~ll]~., s, t >= O. (4.2) 

In this case, ( t , l ) ~ l l B d l l ~ .  is continuous on [0,oc) x H * ,  and Theo- 
rem 2.5(i)-(iii)  applies. 

Proof The equivalence is obvious by Proposition 2.2, and the proof of  part 
(ii) is a exercise in real analysis, so is included in the appendix. [] 

Remark. 4.2. (i) Let l E H* such that (4.2) holds. Then t ~ IIBdll2. is a 
distribution function of some measure m l on ~([0,  co)). I f  this holds for all 
l E H*, then (4.2) just says that the image measure of  m t under shift by s, is 
exactly the measure mr2 l. One should note the resemblance with the defining 
property of  additive functionals of  Markov processes. 
(ii) Note that Theorem 4.1 applies also if each #t is even a Gaussian probability 
measure on H.  In this case (#t)t__>0 gives rise to a generalized Mehler semigroup 
(2.1) on H. 

We now want to apply Lemma 2.6(i) to gain some structural information 
about (Bt)t>=O. 

Proposition 4.3 Assume that (4.2) holds and that t ~ IlBtl][2, is differentiable 
at t = 0 for all l E H*. Then there exists C* C &~ such that for all 
l c g* ,  (d/dt)llB, lll~.l,=o = IIC*ll[~. and 

t 

I I B t l [ [ ~ .  f l l  * * 2 = c r ;  IlIH. ds, t __> 0 .  (4.3) 
0 

Proof. Since the mapping that takes l E H* to (d/dt)llB, lll2g. I*=0 = limt__.0 ,[ 
(1/t)l l~,zll~. ,  is non-negative, satisfies the parallelogram law, and is defined 
on all of  H*, there exists C* c ~q~(H*) such that for all l E H*, 

d 
d~l lBt l l l~ / *  P,=o = I IC*I l I~,*  �9 (4.4) 



210 V.I. Bogachev et al. 

It is not hard (cf. Sect. 8) to show that (4.2) combined with differentiability at 
t = 0 implies, in fact, that t ~ IlBtlll~. is absolutely continuous and so (4.3) 
follows by Lemma 2.6(i). [] 

Invariant measures 

Let E be a Hilbert space such that the properties in Corollary 1.4 are satisfied. 
Let (#t)t__>0 be a family o f  centred Gaussian strong cylindrical measures on H,  
and (Bt)t>=o be the corresponding covariance operators as above, and assume 
that (4.2) is satisfied. Let (Pt)t>O be the corresponding generalized Mehler 
semigroup defined as in Theorem 2.5, which exists by Proposition 4.1. For the 
rest of  this section, we make the following crucial assumption 

sup IIBtlll2. < oc for all l E H * .  (4.5) 
t>0 

Condition (4.5) is related to the existence of  an invariant measure for (pt)t>=o. 
The proof of  the corresponding theorem below is an adaptation of  [DPZ 92; 
Theorem 11.7] to our situation. We nevertheless include the proof  for com- 
pleteness. 

Theorem 4.4 (i) Condition (4.5) holds i f  and only i f  there exists a probability 
measure v on N(E) ,  which is a strong cylindrical measure on 1t, and which 
is invariant f o r  (Pt)t>=o, i.e., 

f p t f d v  = f f d v  f o r  all t > 0, f E ~ b ( E ) .  (4.6) 

(ii) I f  (4.5) holds, there exists a self-adjoint operator B E 5~(H*) such that 
sup,_>0 IIB, IlI~. -- t lBlll~, for  all l E H*. Let  # be the centred Gaussian mea- 
sure on N ( E )  with Fourier transform 

Fz(l) = exp(- (1 /2) l [BI l l~ . ) ,  t E E* . (4.7) 

Then a probability v on N ( E )  is invariant f o r  (Pt)t>=o i f  and only i f  there 
exists a probability measure a on N ( E )  such that cr o (T~) -1 = a f o r  all 
t > O, and v = t~ * a. 

Proo f  We first note that for t > 0 and a probability measure v on N(E) ,  by 
an elementary calculation, 

vpt= ve*(vo(Tt ~) 1)*~t=12 
r q((rte)*l)~t(1) = ~7(l) for all l E E* . (4.8) 

(i) Now suppose that (4.5) holds. Since t ~ IIBtlll~., l ~ H* is increasing by 
(4.2), it follows that there exists a self-adjoint B E ~ ( H * )  such that 

IIBZll . = lim IIB, IlI ,. for all l E H * .  (4.9) 
t---+OO 

Letting t ~ oo in (4.2) we obtain 

IIBZIl . - IIBT?IlI * = IIBsltl ,* for all I E H*, s > 0 .  (4.10) 
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Since H C E is Hilbert-Schmidt,  there exists a probability # on ~ ( E )  satisfying 
(4.7). Clearly, # is a strong cylindrical measure on H ,  and by (4.8),(4.10) it 
is an invariant measure for (pt)t>=o. 

Conversely, i f  v is a probability measure on ~ ( E ) ,  which is a strong 
cylindrical measure on H ,  satisfying (4.6), then the equation involving the 
Fourier transforms in (4.8) extends to all o f  H*.  Suppose l c H* such that 
supt>=ol[Btl[]2. = oc. Fix s E IR\{0}. Then l i m t _ ~  fit(sl) = 0. Hence by (4.8), 
since t ~-+ q(s(TF)*l) is bounded, g(s l )= 0. Letting s---+ 0 it follows that 
1 = g(0) = 0. This contradiction proves (4.5). 
(ii) The first part o f  the assertion was already proved above. To show the 
second, let a be as in the assertion. Then if v := # * ~, obviously, since 
8((TtE)*l) = 8( l )  for all l E E* and t > 0, 

9((TT)*l)fit(l ) = ~(1) for all 1 C E * .  (4.11) 

Hence v is an invariant probability measure for (Pt)t>o by (4.8). Conversely, if  
v is an invariant probability measure for (Pt)t>O, then by (4.8) for all l E E*, 

lim g( ( Tte )* l) = ~( l )exp(  (1/2 )llBlll~. ) . 
t--+ 0 0  

(4.12) 

Since the fight hand side of  (4.12) is a function on E* which is continuous in 
the Sazonov topology (cf. [VTC 87; p. 363]), by the Bochner-Sazonov theorem 
(cf. [VTC 87; Chap. VI, Theorem 1.1]) the left hand side of  (4.12) is the 
Fourier transform of  a measure a on ~ ( E ) .  Clearly, a o (T~)  -1 = a for all 
t > 0 and the proof  is complete. [] 

Remark. 4.5. (i) The existence of  an invariant measure (which is strongly 
cylindrical on H )  imposes extra regularity on t ~  IIBt/ll~. via (4.10). For 
l E D(A*), the map t ~-+ IIB,/[I~. is continuously differentiable with 

d 2 ~IIB~I[IH* =-2(BA*T~I ,  BT~I)H,, t > O, (4.13) 

and so 
t 

UBfl[]2~. = 2 f (-BA*T~ I, BT~ I)H, ds . (4.14) 
o 

I f  the quadratic form (-BA*k, B I ) , .  + (Bk,-BA*I)H. extends to all of  H*,  
then the square root of  the corresponding generator would be exactly the C* 
in Proposition 4.3 and we would be in that case. 
(ii) Suppose that (4.5) holds. Since t ~  I[Btll]~. is increasing, the derivative 
in (4.13) must be positive. In particular, at t = 0, we get 

-(BA*l,  Bl)z4, > 0 for all 1 C D(A*).  (4.15) 

Conversely, if  we are given B ~ • ( H * )  satisfying (4.15), then we may define 
Bt by the left-hand side of  (4.10) and obtain a family (Bt)t>__o which satisfies 
(4.2) and (4.5). Thus any such B leads to a Gaussian generalized Mehler 
semigroup with invariant measure # given by (4.7). 
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5 Strong solutions for the associated stochastic differential equations on 
enlargements 

As is well-known, the Gaussian Mehler semigroups studied in the preceding 
section arise as transition probabilities o f  processes solving linear stochastic 
differential equations of  type (0.1). Using Theorem 1.8 we can solve (0.1) in 
a very strong sense on an enlarged state space E. This can be done even if 
the diffusion operators are unbounded. 

Let H be a separable real Hilbert space and (Tt)~>__0, (St)t==_0 strongly contin- 
uous commuting semigroups on H with generators (A,D(A)) resp. (G,D(G)). 

Theorem 5.1 Let C E ~ ( H )  and (CWt)t>=o be the cylindrical centred Gaussian 
process on H having covariance (t As)(C*h1,C*hz)H*, hi ,h2 E H* ,  s , t  >= 0 
(i.e.,(CWt)t>=o is the cylindrical Wiener process on H if  C = identity). Let 
E be a Hilbert space such that the properties of  Theorem 1.8 are satisfied. 
Then 
(i) (CWt)~_>0 is a continuous Gaussian process on DA~,G~. 
(ii) For each x C E, there exists a continuous Gaussian process (X[)t>=o in E 
which solves Eq. (0.1) (with GEC replacing C) in the foIlowin 9 sense: 

X t : x + G ~ C W t + A  e XXds . (5 . t )  

It is given by 

t 

Xt x : TFx + GeCWt + fAET~_~GeCWs ds, t > O . (5.2) 
o 

In particular, i f  x E D(Ae), then (X[)t>=o takes values in D(A E) and A E can 
be interchanged with the integral in (5.1). 

Proof Assertion (i) follows immediately from standard results about Gaus- 
sian processes on Hilbert spaces, since the embedding H C D A E ~  is Hilbert-  
Schmidt. 

Therefore it remains to prove assertion (ii). Let t b-+ Fr be any continuous 
map from [0, ec)  to DAece with F0 = 0. Define for x E E, 

t 

X t := T~x + Ft + fAeT~_~F~ ds.  (5.3) 
o 

Since AETtE_sF~ : T~e_~.AeF~, the integrand is a continuous map with values in 
E. Hence t ~- ,X[  is continuous from [0,c~) to E, and integrating (5.3) from 
0 to t we obtain by a simple computation 

t t t 

f x ;  ds = f f f x  ds + frT_,F, ds. (S4) 
o o o 

t x Hence foXJ~ ds E D(Ae), and we can apply A E to (5.4). Since (AE, D(Ae)) is 
closed on E and s ~ TF_~Fs is continuous as a D(AE)-valued map, A e can 
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be interchanged with the integral on the right hand side of (5.4), and so we 

obtain ( i )  
Xt x = x + F t + A  e XXds . (5.5) 

For each fixed co E ~2, taking Ft := GeCWt(co) for t __> 0 we obtain (5.1). [] 

Remark. 5.2. (i) Note that if 
t 

Xt = x + GEcwt + fAeX~ ds, t > 0 (5.6) 
o 

(where we assume implicitly that X~ E D(A e) for all s > 0 and also x E 
D(Ae)), i.e. (Xt)t>__0 solves (0.1), then it is well-known and easy to see that 
(Xt)t=0 satisfies (5.2). Therefore, at least i f x  E D(Ae), the solution in Theorem 
5.1 is unique. 
(ii) In the situation of Theorem 5.1, the Gaussian strong cylindrical measure 
v0 on H whose Fourier transform is given by 

"~0(l) := exp(--1/2llC*lll2H.), l E H* ,  (5.7) 

extends to a Gaussian probability measure on DAE,C,e. Let v denote the image 
of this measure on E under the map G e. Then by Remark 1.5 

7(l) = exp(-1/2llC*G*lll~. ) for all l E D((GE)*). (5.8) 

Hence by Sazonov's theorem (cf. [VTC 87; p. 363]) there exists a Hilbert- 
Schmidt operator A* on E* such that 

IIC*G*IlI . = IIA*IlI . for all l E D((GE)*).  (5.9) 

(iii) A theorem corresponding to Theorem 5.1 can be found in [FD 95], but 
their operators T~, Sf  were only #-measurable extensions of Tt, St, t > 0 (see 
also [FD 91, 94]) which are not "true" semigroups. 

Proposition 5.3 Consider the situation of  Theorem 5.1 and let A* be as in 
Remark 5.2(ii). Define Hilbert-Schmidt operators Bt, t > O, on E* by 

I1 ,111 . = fllA*(r )*llt , ds, l E E* ,  (5.10) 

and let (#t)t>O be centred Gaussian probability measures on E with Fourier 
transform 

fit(l) = exp(-1/Z[[Btl[]~.), I E E*.  (5.11) 

Let (Pt)t>=O be the generalized Mehler semigroup defined by 

p t f ( x )  := (#t * f)(TtEx), x E E, f E Nb(E).  

Then for all f E Nb(E) 

(5.12) 

Proof First note that (#t)t__>0 satisfies (2.7) by Proposition 4.1, hence (Pt)t>=o 
is indeed a generalized Mehler semigroup. Fix x c E, t > 0, and f E Nb(E). 

p t f ( x )  = E[f(XtX)], x E E, t >= O. (5.13) 
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We may assume that f = e i! for some I C D(AE),,(Ge),. It is well-known that 
by It6's product formula, Eq. (5.1) can be rewritten as 

t 

X[ = r~x + f T~_s d(GeCWD. (5.14) 
o 

Hence 

E[exp{il(XtX)}]=exp{il(T~x)}E [exp {il (iTie_~d(GECWs))}I . (5.15) 

We now replace the stochastic integral by a Riemannian sum and obtain that 

E [exp {il ( k@a Zt~-sk (GECWsk+l - GECWsk)) } 1 

n 
E * E = [ IE[exp{  e* ((~-sk) l, G CW~k+ 1 - GECW, k)E}] 

k=I 

_ ,,,GeC*T* i,,2 = [ Iexp{- (1 /2) (sk+l  sk)l[ t-s k IIH*} 
k=l 

{ 2 n * * l  2 - - S i c ) }  (5.16) = e x p  - ( 1 /  )211A Tt-sk ]]H*(Sk+l 
k=l 

(cf. Remark 5.2(ii)). Consequently, taking the limit over partitions of  [0,t], 
and changing variables we get 

E[exp{il(NX)}l = exp il x ) -  (1/2)fl[A*T*l . ds 
o 

= exp{il(T~x) - (1/2)[IBtlll2., } 
-- pt f(x) .  (5.17) 

Thus (5.7) is shown. [] 

Remark. 5.4. In Theorem 5.1 we solved (0.1) for a diffusion operator which 
can be decomposed into a bounded operator on H* and a possibly unbounded 
one, but which is a generator of  a semigroup that commutes with the one 
generated by the drift. In Sect. 7 below, using the theory of Dirichlet forms, 
we shall construct a solution for (0.1) where the diffusion operator might not 
have such a representation. 

6 Associated generators and Dirichlet forms 

Let H be a separable real Hilbert space and (Tf)t__>0 a strongly continuous 
semigroup on H. Let (/xt)t_>0 be a family of  centred Gaussian strong cylindrical 
measures on H, and let (Bt)t_>_0 the corresponding covariance operators. Let E 
be a Hilbert space satisfying the conditions in Corollary 1.4. We assume that 
(4.2) holds and let (p~)t __>0 be the generalized Mehler semi group as in Theorem 
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2.5(iii). We also assume that (4.5) holds, and let # be the Gaussian invariant 
measure whose Fourier transform is given by (4.7). 

It follows from the #-invariance that (Pt)t>=o gives rise to a contraction 
semigroup (Pt)t>=o on LZ(E; #). We can now calculate the generator (L,D(L)) 
on L2(E; #) corresponding to this semigroup (Pt)t__>0. Although the semigroup 
(Pt)t>__0 acts on real LZ-space, for computational convenience, we will apply it 
to a space cg of complex-valued functions. To this end, define the following 
subspace of complex LZ(E; #), 

{n } 
cg:= u = ~ c g e x p [ i l j ] # _ a . e . ; n C N  ' l jED((AE)*),  c~jEIl; . (6.1) 

j= l  

Let us define cg~ to be the subspace of real L2(E; #) which is the linear span of 
{ sin( l ), cos( l) l l E D((A~)*)}, and note that cg, is a subspace of cg. We also 
recall (cf. Remark 1.5) that A* = (AE) * on D((AE) *) C D(A*). 

Proposition 6.1 cg, is dense in L2(E; #) and the generator (L,D(L)) o f  (Pt)t>o 
is the closure o f  (L, Cg'), where for u = ~=1c9 exp[ilj] C cg,, 

n 

Lu = ~ j  exp[ilj](i((Ae)*lj) + (BA*Ij,Blj)H. ) . (6.2) 
j= l  

Proof From (2.1) and (4.1), for any l in E*, if u = exp[il], then 

Ptu = exp[ i( T~ )* l]exp[-(1/2 )llBdll2. ] . (6.3) 

Hence, if l C D((Ae)*), then t ~-~ Ptu is differentiable in L 2 with (cf. (4.13)) 

d 
-d~Pt(exp[il]) = exp[i(Tt e)* l](i((Ae) * l))exp[-(1/2)llBtlll2. ] 

+ exp[i(Tff)* l] exp[-(1/2)llBt lll~/, ](BA* Tt* l, BT 7 l)H* . 

(6.4) 

Thus, exp[il] E D(L) and, 

L(exp[il]) = exp[il](i((A E)* l) + (BA* l, BI)H. ) .  (6.5) 

By linearity, (6.2) holds for all of  cg, in particular cg~ is contained in D(L), 
and Eq. (6.2) is valid there. Using a monotone class argument, it is not hard 
to show and well-known that cg~ is dense in LZ(E; #). In addition, (TF)* maps 
D((AE) *) back into itself, and so taking real and imaginary parts in (6.3), 
implies that Pt maps cg~ back into itself. Consequently, we can apply the core 
theorem [ReS 75; X. 49], and conclude that L is equal to the closure of (L, cg~), 
i.e., L is uniquely determined by its values on cg~. [] 

We now calculate the corresponding quadratic form d ~ on cg~ x cg~. Let l, k E 
D((AE) *) and u = exp[il] and v = exp[ik]. Then, since # is Gaussian, using 
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integration by parts we obtain 

f ( -Lu)v  d# 

= - i f ( ( A  E)* l)exp[i(l + k)] d# - (BA* l, BI)H. fexp[i(l  + k)] d# 

= -(i2(BA*l,B(l + k))H. + (BA*I, BI)H. )exp{-]lB(l + k)112./2} 

= (BA*l, Bk)H.exp{-IlB(l  + k)112./2}. (6.6) 

On the other hand, u ~ = ilu and v ~ = ikv, where u t, and v ~ are the Frechet 
derivatives of u and v on E. This gives (BA*d,Bv~)H. = -(BA*l,  Bk)H.uv, 
and then by integrating this equation over E we obtain 

C(u, v) := f ( - L u ) v  d# = f ( -BA*u' ,  Bv')it* d# .  (6.7) 

By linearity, this holds for all of cg, in particular for all u, v in the real space 
cg/. [] 

Condition 6.2 There is a constant K so that for k, l C D(A* ) we have 

](-BA*k, BI)H* 12 =< KZ(BA*k, Bk)H*(BA*I, BI)H * . (6.8) 

For the definition of a non-symmetric Dirichlet form we refer to [MR 92; 
Chap. I, Definition 4.5]. 

Theorem 6.3 Under Condition 6.2, the form (C, cg ~) is closable, and its closure 
(g ,D(g))  is a Dirichlet form satisfyin9 the local property, that is, 

i fu,  v C D ( g )  and uv=O #-a.e., then g ( u , v ) = 0 .  (6.9) 

Proof Note first that, since (L,D(L)) generates a contraction semigroup or 
because of (4.15), (N, cg~) is positive definite. Condition 6.2 guarantees that 
(C, cg ~) satisfies the sector condition, and so by [MR 92; Chap. I, Proposi- 
tion 3.3] it is closable. The generator ([ ,D([))  of the closure (g ,D(g ) )  i.e., 
the Friedrichs extension (L, Cg~), generates the La-semigroup corresponding to 
(g,D(d~ On the other hand, we ah'eady know that (L,D(L)), the closure 
of (L, Cgr), generates a strongly continuous L2-semigroup and since (/~,D(L)) 
extends (L,D(L)), these two operators must coincide. It now follows that the 
semigroup corresponding to (g ,D(g))  is, in fact, the semigroup (Pt)t_->0 that 
we began with. 

Formula (6.7) tells us how the Dirichlet form (g ,D(g) )  behaves on the 
space cg,, which is the linear span of { sin(1), cos( l ) l l E D((AE)*)}. The space 
~ is useful for identification purposes, but for computations, the following 
space (6.11) is more useful. Using fairly standard techniques in functional 
calculus for Dirichlet forms [S 92], you can show that (g ,D(g ) )  can also be 
realized as the closure of 

•(u,v) = f(-BA*u',Bv')H* d#, u,v C ~C~(D( (AE)*) ) ,  (6.10) 
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where 

Y C ~ ( D ( ( A E ) * ) )  = { f ( l b . . . ,  lk)[k ~ N,  ll . . . .  , lk C D((AE)*), 

f e c ~ ( ~ ) } .  (6.11) 

To show the Dirichlet property we shall use [MR 92; Chap. I, Propositions 4.7 
and 4.10]. So, let q0~ : IR --~ [-e, 1 + c] be a smooth function such that q~(t) = t 
for all t E [0,1], and 0 < ~o~(h)-~o~(tl) < t 2 - h  for h _-< h. Then by the 
chain rule, for all u E g C ~ ( D ( ( A E ) * ) )  we have qo~(u)E ~ C ~ ( D ( ( A ~ ) * ) )  
and 

/ * / / 
8 ( u •  opt(u), u~: (&(u)) = f ( l  • r ~: q~(u))(-BA u ,Bu )d#  > O, 

(6.12) 

by (4.15), since 0 < (p~e G 1. Hence [MR 92; Chap. I, Proposition 4.10] implies 
that (8 ,D(8))  is a Dirichlet form on L2(E, kt). The local property follows 
immediately from [S 95; Proposition 2.3]. [] 

Remark. 6.4. (i) For l ,k E D((A~) *) and u := exp[il], v := exp[ik] 

fvptu d# = exp[(- 1/2)lIBll]~, ]exp[(- 1/2)llBkj/~. ]exp[-(Bk, BT7 l),7-]. 

(6.13) 

Hence (pt)t_>0 is symmetric on L2(E; #) (or equivalently (8 ,D(8))  is a sym- 
metric Dirichlet form), if  and only if ( k , 1 ) ~  (Bk, BTt*I)#, is symmetric for 
all t >= 0. This situation has been studied in [BR 951. Note that, in [BR 95], 
B~ := V/1 - T~B for all t > 0, where (Tt*)t>0 was assumed to be a strongly 
continuous symmetric contraction semigroup on H*, which commutes with B, 
(ii) There is a result due to Fuhrman [Fuh 93J related to Theorem 6.3 above 
proved in a different framework under more restrictive assumptions. 
(iii) Let (/3t)t__>0 be the dual semigroup to (Pt)t__>0 on L2(E;#). Then the fact 
that # is an invariant measure for (pt)t__>0 (cf. Theorem 4.4) implies that/3tl 
= 1, t ~ 0. Since each -Pt is positivity preserving (because each Pt is so), we 
obtain that (/~r is sub-Markovian (i.e., 0 < u < 1 implies 0 </Stu < 1 
for all t > 0, 0 < u G 1 implies 0 < P t u  < 1 for all t => 0) as is (Pt)t=>0 
by definition. Hence (instead of the last argttment in the preceding proof) 
the Dirichlet property of (6~,D(6~)) also follows from [MR 92, Chap. I, 
Theorem 4.4 and Proposition 4.3]. 

7 Quasi-regularity, continuity of sample paths, and weak solutions of the 
associated stochastic differential equations via Dirichlet forms. 

Let E, # be as in Sect, 6, in particular, Condition 6.2 is assumed to hold. We 
recall the following notions from [MR 92], 

Definition 7.1 Let (•,D(8)) be a Dirichlet form on L2(E; #). 
(i) An increasing sequence (Fk )k6~< o f  closed subsets o rE  is called an g-nest 

7 o l / 2  z i f  Uk>=l{u ~ D(8)  Iu = 0 ~t-a.e. on E\Fk for  some k E N }  is e t -aense in 

D(8). Here 81 := g + (,)Lz(e;u) and ~1 is its symmetric part. 
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(ii) A subset N C E is called g-exceptional i f  N C_ f-]k>=lF~ for some g-nest 
(Fk)kE~. A property of  points in E holds g-quasi-everywhere (abbreviated 
g-q.e. ), if  the property holds outside some g-exceptional set. 
(iii) An g-q.e, defined function f :E ---+ IR is called g-quasi-continuous/f there 
exists an g-nest (F~)kcN so that flF~ is continuous for each k E N. 

Definition 7.2 A Dirichlet form (g ,D(g))  on L2(E; #) is called quasi-regular 

(QR1) There exists an g-nest (Fk)kEN consisting of  compact sets. 

(QR2) There exists an ~ll/2-dense subset o f  D(g )  whose elements have g- 
quasi-continuous #-versions. 
(QR3) There exist un E D(g) ,  n E N,  having g-quasi-continuous m-versions 
fin, n E N,  and an g-exceptional set N C E such that { ~  In E N} separates 
the points o f  E\N.  

Now we are prepared to prove the first main result of this section. Let (pt)t>=o 
and (g ,D(g))  be as in Sect. 6. We also adopt the notation of Sect. 3. 

Theorem 7.3 The following assertions are equivalent: 
(i) Condition (3.2) holds. 
(ii) (Pt)t>=o is the transition function of  a (conservative) diffusion process. 
(iii) Condition (3.2) holds with f~ resp. Xt, t > O, replaced by the set f~ of  
all cadlag paths from [0, ~ )  to E resp. X/  :=evaluation at t on f~, t > O. 
(iv) (g ,D(g))  is quasi-regular. 

Proof (i) =~ (ii): This is the last part of Theorem 3.2. 
(ii) ~ (iii): Trivial. 
(iii) =~ (iv): Since (pt)t>=0 is Feller, it follows by [Dy 71; Satz 5.10] that 
the normal Markov process M ~ in Remark 3.3(ii) is strong Markov, hence a 
right process. Clearly, M ~ is associated with (N,D(N)) (cf. [MR 92; Chap. IV, 
Sect. 2]). Therefore, using [MR 92; Chap. IV, Theorems 1.15 and 5.4 (including 
Remark 5.5)] and also [MR 92; Chap. III, Proposition 2.1 l(i)] we conclude that 
(QR1) holds. Hence ( g , D ( g ) )  is quasi-regular. 
(iv) ~ (i): Since ( g , D ( g ) )  has the local property by Theorem 6.3 [MR 92; 
Chap. V, Theorem 1.11] (see also [AMR 93]) implies that there exists a 
diffusion process M=(~,,,~,(Xt)t=>0, (Px)xc/~) having (p~)t~_o as transition 
semigroup. (Note that the lifetime ~ is identically equal to +cx~, since ptl  = 
1, t > 0.) Hence P := f P x # ( d x )  satisfies (3.2). [] 

Remark. 7.4. (i) Note that if (g ,D(g))  is quasi-regular, by [MR 92; Chap. V, 
Theorem 1.11] there always exists a diffusion process such that for its transition 
semigroup (/St)t>_0 we have that /3t f  is a g-quasi-continuous #-version of P~f 

2 for all f E L (E ~, #), t - 0. Theorem 6.3, however, implies that we can even 
find "better versions", namely (Pt)r given by (2.1) and these (Pt)t>__o are 
even Feller. 
(ii) We emphasize that (g ,D(g))  is not always quasi-regular and refer to 
[BR 95; Example 6.6(ii)] for a counterexample. A sufficient condition for 
quasi-regularity is given in the following proposition (cf. [BR 95; Proposition 
6.5] for a special case of this). 
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Proposition 7.5 Suppose that there exists c E (0, z~ ) such that (-BA*I,  BI)H. 
:_< clllll~, for  all I E D((AE)*). Then (6~,D(g)) is quasi-regular. In particular, 
this is always true for a Hilbert space E satisfying the properties in 
Theorem 1.6. 

Proof. We want to apply [RS 95; Theorem 3.4]. To this end, let lj E 
D((AE)*), j E N,  such that IlljllE* = 1 for all j E N,  and IlzllE = supj lj(z) 
for all z E E. Let ~o E CI(IR) such that 9 ( 0 ) =  0, q~ is strictly increasing, 
and q/ is both decreasing and bounded by 1. Then pl ( z , x ) :=  q, ( l lz -x l lE)  
is a bounded metric on E that is uniformly equivalent with the usual met- 
ric p(z,x) = IIz - Nile" Let {xi]i E N }  be a countable dense subset o f  E, and 
define for i , j  E N 

f i j ( Z )  :=  ( p ( l j ( g -  X i ) ) .  (7.1) 

Then f i j  E ~ C ~ ( D ( ( A E ) * ) )  for every i,j E N and 

f ~ ( z )  = q/(lj(z - xi))lj , 

and so for all z E E, 

sup(-BA* ftij.,B f~j)H * 
l,J 

= sup((y( I j (z  -- X i ) ) )2 (_BA,  l j ,  l j  )H* 
i,j 

(7.2) 

cllZjll2, c .  (7.3) 

Furthermore, for every fixed i E N 

sup f i j ( z )  = cp ( a u p  l j ( z  -- \ J 

=  o(llz - N i l l E )  

= pl(Z,  Xi) (7.4) 

for every z E E. Hence the conditions of  [RS 95; Theorem 3.4] with Fh(u, v) = 
( -BA*u ' ,Bd)H. ,  u,v E ~ C ~ ( D ( ( A ~ ) * ) )  and h _= 1, are satisfied and hence 
( g , D ( g ) )  is quasi-regular. To prove the last part o f  the assertion, let In E 
D((AE)*), n E N,  such that In --+ 0 in E* as n --+ oe. Clearly, it suffices to 
prove that A*ln--~ 0 weakly in H* as n---+ oc. So, let l E H*. Then, if  R e :  
H* ~ H denotes the Riesz isomorphism, 

(A*ln, I)H* = H* (A*ln,RHI)H 

= E* ((AE)*In,RHI)E 

= E* (ln,AERHI)E 

--+ 0 as n ---+ oc (7.5) 

where we used that, by construction in the situation o f  Theorem 1.6, we have 
H C D(AE). [] 

Assumption 7.6 We assume from now on that one of  the equivalent conditions 
in Theorem 7.3 holds. 
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Let M = (f~,J~,(Xt)t>o,(Px)xEe) be the (conservative) diffusion process 
introduced in Theorem 3.2. Since (Pt)t_>0 is the corresponding transition semi- 
group, by [MR 92; Chap. IV, Theorem 5.1], M is properly associated (see 
ibidem) to the quasi-regular Dirichlet form (g,D(N)). We intend to show that 
u_nder Px (for ~-q.e, x c E), (Xt)t_>0 solves an equation of type (0.1) where 
(CWt)t>=o will be a Gaussian process whose covariance is determined by a not- 
necessarily bounded linear operator C* on H*. This operator exists by virtue 
of the sector condition (6.8) and is defined as follows: 

Let 
q(k, l) := 2( -BA*k ,  Bl)h,. ,  k, l c D(A*) .  (7.6) 

Then, since B is bounded on H*, it is known (e.g. by [MR 92; Chap. I, Propo- 
sitions 3.3 and 3.5]) that (q,D(A*))  is closable and the closure (q ,D(q))  is a 
closed coercive form. Therefore, its symmetric part (~,D(q))  is also closed. 
Let (C1,D(C1)) be the corresponding self-adjoint operator, i.e., the unique 
negative definite self-adjoint operator on H* such that D(C~)C  D(q) and 
~(k, l )  = ( - C l k ,  l)H* for all k E D(C1), l E D(q). Define C* := -~2C~1. Note 
that C1 is negative definite by (4~15), that D(A*) c D(C*),  and that 

(C*I,C*I)H. = 2 ( -BA*I ,  BI)H. for all l E D(A*) .  (7.7) 

For l C E *  set 
uz(x) := e*(l,x)E, x E E . (7.8) 

Note that for l C E*, f u~ d# = LIBll]~., and hence ul E LZ(E; #). Moreover, 
we have 

Lemma 7.7 Let  l E D((Ae)*).  Then ut E D(L)  and Lul = UA*Z. 

Proof  We will approximate ul with the trigonometric function un := n sin(ul/n). 
Elementary calculations show that (x - n sin(x/n)) 2 < x6/(36n 4) for all x ClR. 
Thus, we obtain 

f (u1(x) - u , (x))Z#(dx)  < (1/(36n4)) f u1(x)6#(dx) ~ 0,  (7.9) 
E E 

as n --+ oc, since # is Gaussian and f u~ d# < oo. Furthermore, taking imagi- 
nary parts in (6.5) shows that un E D(L)  and that 

Lun = cos(ul/n )(UA* l ) + ( 1/n ) sin(ul/n )( -B A*  I, Bl  )h'* �9 (7.10 ) 

Taking the limit as n---+ cx~ shows that Lu, converges to UA~I in L2(E;#), and 
since L is a closed operator, the result follows. [] 

Proposition 7.8 Let l 6 D((AE)*). Then for  d-q.e, x E E we have P~-a.s. that 

, t ( X , ) -  u~(Xo) = M~,U'l + f uA.z(X,)d~, t >= O, (7.11) 
0 

where (M[Ul])t__>0 is a martingale additive functional o f  finite energy (cf. [Fu 
80; Sect. 5.1, Sect. 5.2]) resp. [MR 92; Chap. IV, Sect. 2]). Furthermore, 
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(ML.~3>, = tllC*lll2.,t  ~ 0; in particular, (M~Ul])t>=o is a (time-scaled) one- 
dimensional (~t)t>=o-Brownian motion starting at zero, where (~t)t>_o is the 
minimum completed admissible filtration corresponding to M (cf  [Fu 80; 
Sect. 4.1]). 

Proof This follows by [MR 92; Chap. VI, Theorem 2.5] and [Fu 80; p. 138]. 
Since (g ,D(g ) )  is quasi-regular, by [MR 92; Chap. VI, Theorem 2.5], the last 
part is proved in exactly the same way as Proposition 4.5 in [AR 91]. [] 

For the rest of this section we assume that E is as in Theorem 1.6. In particular, 
we know that #(D(Ae)) = 1 and that Assumption 7.6 holds. Set 

Aex := 0 if x C E \ D ( A e ) .  (7.12) 

Theorem 7.9 Let E be as in Theorem 1.6. Then there exists a map CW : f~ --+ 
C([0, oc)) such that for g-q.e, x E E, under Px the process CW = (CWt)t>o is 
an ( ~-t)t>=o-Brownian motion on E starting at zero with covariance []C* �9 [[2. 
such that for C-q.e. x E E, 

t 

Xt = z + CWt + f AE(X~)ds, t > O, Px-a.e. . (7.13) 
0 

Proof Since /~ is a mean zero Gaussian measure on D(Ae), we know by 
Fernique's theorem (cf. [Fe 70], [Fe 75; Th6or~me 1.3.2]) that fe IIA~xli~(dx) 
< oc. Thus, the result is proved in exactly the same way as Theorem 6.10 in 
{AR 91]. [] 

Remark. 7.10. (i) Equation (7.13) says that M solves (0.1) weakly (in the 
sense of probability theory). The reader is warned that (7.13) does not imply 
that (Xt)t_>0 takes values in D(AE), but merely that for g-q.e, x C E, and for 
Px-a.e. co E f~, Xs(o3) E D(A ~) for ds-a.e, s E [0, oo) (cf. the proof of Theorem 
6.10 in [AR 91]). Therefore, (7.13) in general cannot be rewritten in the form 
(5.2) (cf. Remark 5.2(i)). In particular, in contrast to the process given by (5.2), 
the .process (Xt)t__>0 in (7.13) is maybe not adapted to the filtration generated 
by (CWt)t>_o. 
(ii) By Proposition 6.1 the solution constructed in Theorem 7.10 is unique (in 
the weak sense). This follows by [AR 95; Theorem 3.5]. We also refer to [AR 
95] with respect to the definitions of "uniqueness" in this case. 
(iii) It follows from Theorem 7.9 that (CWt)t>=o has nuclear covariance on 
E*. Since by the continuity of its sample paths (Xt)t_>_0 is predictable with 
respect to (@t)t_>0, it is then easy to see that it is in fact a "mild solution" 
to (0.1) (resp. (7.13)) in the sense of [DPZ 92]. In particular, (Xt)t>__0 can be 
expressed in terms of a stochastic integral with respect to (CWt)t__>0 and the 
filtration (Yt)t=>0. 
(iv) To solve (0.1) (with given C and A) using the above scheme one has to 
find B E Y(H*) such that (7.7) (which essentially is an analogue of condition 
(d) in Theorem 4.1 in [ZSn 70]) and (6.8) hold. Then one obtains (Bt)t>0 
from (4.14) (with (Tt)L_>0 being the semigroup generated by A on H)  and 
(4.2) automatically holds. Hence Proposition 4.1 and Theorem 4.4(ii) provide 
us with a generalized Mehler semigroup (Pt)t>=o with invafiant measure ff to 
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which all results in Sects. 6 and 7 (in particular, Theorem 7.9) apply to give 
a solution of  (0.1) on the space E constructed in Theorem 1.6. 

8 Appendix 

Lemma 8.1 Let  H be a separable Hitbert space and (Tt)t>=o be a strongly 
continuous semigroup on H. Suppose that (Bt)t>=o is a fami ly  in ~ ( H )  that 
satisfies 

tlBt+flll~ - [IBs/II 2 -- lIB, TAll 2 ,  f o r  all s, t > O, l ~ H . (8.1) 

Then the map (t, I) ---+ IIB, ZlI~ is continuous on [0, vo) x H. 

Proo f  We first show that g ( t ) : =  IIBdll 2 is continuous on [0, oc) for each 
fixed I E H.  By (8.1) we see that g is increasing, and so for each l E H ,  and 
T > 0  

sup IIBdlIH----IlgrZllH < c r  (8.2) 
O<_t<T 

which, by the uniform boundedness principle, means that 

sup IIBtll~<g) == el < ~ .  (8,3) 
O<_t<_T 

Similarly, by the strong continuity of  (Tt)t>=o, we get suPo<t<TllTtllLe(H ) = :  

c2 < c~. Define a family ( f t )o<t<r  of  real-valued functions on [0, T] by 

ft(s) : =  [[Bt+fl[[ 2 -tlBAII 2,  0 ~ s ~ T .  (8.4) 

Then using (8.1) we see that for 0 < t < T and 0 < s, u < T we have 

[ f  t(s) - f t (u ) l  = IllBtTslll~ - ][BtT, II[2 [ 

= (ttB, r . l l t~  + [lB, r~l l l . ) l l lB ,  r . t t l ,  iIBIT~,tI[H[ 
< (2e~c2)e111Zll~llT, l -  ruZll,, 

<= ( 2 c ~ c 2 ) c l [ I Z l I H I I T x , , ~ ( T I ~ _ x 4  - I)ZliH 

5- (2e2d)ilZll~,ll(Tl~-~l - I)Zll,~. (8.5) 

Because of  the strong continuity of  (Tt)t>=o, (8.5) shows that (ft)o<t<T is 
equicontinuous on [0, T]. Now for each s E [0, T], as t + 0 we have f t ( s )  -+ 
9(s+)  - 9(s) =:  f ( s ) .  By Ascoli 's  theorem the convergence is uniform and so 
f is continuous. But 9 is increasing and so f is equal to zero, except possibly 
at countably many points. Thus f = 0 and 9 is right-continuous on [0, T]. 
Since T is arbitrary, 9 is right-continuous on [0,o c).  Similarly, consider the 
family (ht)o<t<l/r in C([1/T, T]) given by 

ht(s) := f t ( s  - t) = I l B s l l l 2 H  - -  IlB,-t/ll~, 1 / r  <- s < T .  (8.6) 

As before, (ht)o<t<l/T is equicontinuous and converges pointwise to h ( s ) : =  
g(s) - g ( s - )  as t ~. 0. As before, h -- 0 and so g is left-continuous on [1/T, T]. 
Since T is arbitrary, we conclude that g is left-continuous on (0, oo). 
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Now consider the family o f  continuous fimctions (gt)o<t<r defined on H 
by g t ( l ) =  ]]Btl]] 2. We have 

Ig,(Z) - g , (k) l  =< e~( l l l l l .  + Ilkll.)lll - kllg, (8.7) 

and so the family is equicontinuous at each point in H.  Let tn --~ t E [0, T] and 
In ~ l E H and let K be the compact set K :=  {11,12,...} U {l} C H. Since, 
by the first part, gtn(l) --~ gt(l)  for all l E H,  the Ascoli theorem says that the 
convergence is uniform on compact sets. In particular, for e > 0 there exists 
N so that if  n >_- N,  then 

sup Igt,(k) - gt(k)l < e .  (8.8) 
kEK 

For n => N, then 

Ig,.(l .)  - g,(l)l 8 Igt.(l .) - g,(l~)l + Igt(l~) - g,(l)l 

< e + Ig , ( l . )  - g , ( l ) l  - (8.9) 

Thus l imsupn_~]gt~(ln ) - g t ( l ) ]  < e by the continuity of  gt. Since ~ is arbi- 
Vary, gt,(In) ~ gt(l)  which establishes the joint continuity. [] 

Lemma 8.2 Let  H be a separable Hilbert space and (Tt)t>:o be a strongly 
continuous semigroup on H. Suppose that (Bt)t>o i8 a family  in ~ ( H )  that 
satisfies ( 8 . 1 )  I f  the map t -~  IIB, ll l~ is differentiable at zero for  all l E H,  
then t ~ IIB, lll 2 is continuously differentiable for  all l E H. 

Proof. Fix l ~ H and  def ine  g ( t )  :-- IIB, l l l~.  Dividing (8.1) by t > 0 and let- 
ting t ~ 0 shows that g is also right differentiable at s with 

D+g(s) = lim(1/t)[lBt(Tfl)ll~ =:  I l C * ( T s t ) l l ~  . (8.10) 
t.L o 

By assumption ((1/t)llBdll~)o<_~<_a is bounded for each I E H ,  so the uni- 
form boundedness principle says that supo<_t<_~llBdvSll.~(m =:  c < oc. Thus 

the family of  functions f t ( l )  :=  (1/t)HBdll~ for 0 _< t _< 1 is equicontinuous 
on H,  and so the convergence f t( l)---* IIC*ll l5 is uniform on compacts. To 
check left differentiability, consider 0 < t < s, and look at the ratio 

IIBsll[5 - I I B ~ - , l l l  2 _- IIIB,(T _,I)II  (8.11) 
t t 

For fixed s > 0, I E H the set K : =  (Ts-tl)o<_t<s is compact. So for any e > 0, 
there exists 0 < to < 1 so that t < to implies 

sup I(1/t)llB, kil2H --IIC*kl]~,l _-< 5. (8.12) 
kEK 

For such t we have, 

[(1/t)llB,(T~-,l)ll~ -IIC*(T~I)II,~I 
I I I C * ( T ~ - , I ) I I ~  - I I C * ( T A ) I I ~ I  § 

2 d l l l l l G I I r ~ - , l  - r a i l .  § ~ .  (8.13) 
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This  implies that 

limsup I(1/t)[IB,(r~ tZ)ll~ - IIC*(TA)II2h ~ e ,  
t+0 

(8.14) 

and since e is arbitrary, we conclude that the left derivative D-g(s), is also 
equal to ]]C*(Tfl)H ~. This shows that, in fact, g is cont inuous ly  differentiable. 

[] 
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