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1. Introduction 

We start with an example illustrating the results we present in the paper. Con- 
sider the stochastic differential equation 

(1.1) l \ Z / d 

x ( 0 )  --  0 

with a given c~ > 0, and a Wiener process w. Note that the drift coefficient is 
not continuous at x = 0, x = 2k + 1, for integers k, and it does not satisfy the 
linear growth condition. Moreover the diffusion coefficient does not satisfy the 

1 and it is not H61der continuous with exponent linear growth condition for a > 
1 1/2 if  c~ < g. 

The coefficients in the above equations are rather irregular. However, one 
can define Euler's "polygonal" approximations: 

dx , ( t )  = b(xn(tcn(t))) dt + a(xn(~,(t)))  dw(t) , 
(1.2) 

x . (O)  = o 
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for every integer n > 0, where ~cn(t):= [nt]/n, with the corresponding drift 
and diffusion coefficient, setting for example b (x )=0  when x is an odd 
integer. One expects that Xn converges in probability to a process which solves 
equation (1.1). 

The existence of a local strong solution to equation (1.1) can be seen from 
the following result of Veretennikov [15]. Let b, a be bounded measurable 
functions on JR+ • ]R d with values in ]Ra and in ]R d• respectively, such 
that aa T is uniformly elliptic, a is H61der continuous in x c IR with exponent 
I when d = 1, and it is Lipschitz in x E IRa in the multidimensional case. Then 2 
there exists a unique strong solution to the stochastic differential equation 

(1.3) dx(t) = b(t ,x(t))dt  + a(t ,x(t))dw(t),  xo c ]R d 

The method of establishing this existence and uniqueness theorem is rather 
different from those used in the theory of ordinary differential equations. It is 
based on a famous result from Yamada and Watanabe [16] stating that the 
existence of a solution (on some probability space with some Wiener process) 
and the pathwise uniqueness imply the existence of  a strong solution. (See 
also [17] and the references therein on this topic.) We emphasize that the 
proof of this result involves no construction of the solution. 

The existence of a solution to equation (1.3) with bounded measurable 
coefficients is known under the additional condition that either a(t,x) and 
b(t,x) are continuous in x (Skorokhod [14], Stroock and Varadhan [13]), or 
f i a  T is uniformly elliptic (Krylov [6,9]). Hence Veretennikov [15] establishes 
the existence of a strong solution by proving the pathwise uniqueness. His 
proof raises the following questions. Is it possible to cons~uct the strong solu- 
tions in some classical way? Define, for example, Euler's approximations (1.2) 
to equation (1.3). Do these approximations converge to a stochastic process 
in probability and can one construct a strong solution in this way? Suppose 
the coefficients in the equation (1.3) are approximated by smooth ones. Do the 
strong soiutions of the corresponding equations converge in probability to the 
strong solution of equation (1.3) under the assumptions of  the cited existence 
theorem? More generally, does the strong solution depend continuously, in the 
topology of convergence in probability, on the initial condition and on the drift 
and diffusion coefficients? Our aim is to show that the answers to these ques- 
tions are in the affirmative. We prove that, roughly speaking, the Euler's polyg- 
onal approximations converge uniformly in t in bomaded intervals, in probabil- 
ity, to a process, which we show to be the strong solution. The basic assumption 
is that the pathwise uniqueness for the equation holds. In particular, applying 
Corollary 2.9 to equation (1.1) with D := ( -1 ,  1), Dk := ( - 1  + 2 -k, 1 - 2 -k) 
and with V(t, x) := (2 - x 2)/( 1 - x 2), we get that Euler's approximations xn(t), 
defined by (1.2) converge in probability, uniformly in t in bounded intervals 
to some stochastic process, which is the strong solution of equation (1.1). 

The possibility of showing the convergence in probability of different 
approximations to solutions of stochastic equations is based on the following 
simple observation. 

Lemma 1.1. Let Z~ be a sequence of  random elements in a Polish space 
(IE, p) equipped with the Borel a-algebra. Then Zn converges in probability 
to an ]E-valued random element i f  and only i f  for every pair o f  subsequences 
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Zt and Zm there exists a subsequence vk := (Zl(k~,Zm(k~) convergin9 weakly to 
a random element v supported on the diagonal {(x, y)  E IE • lE: x = y}. 

To prove the sufficiency of the above condition for the convergence in prob- 
ability it is enough to note that for the continuous function f (x ,  y)  = p(x, y)  the 
random variables f (vk)  converge to f ( v )  = 0 weakly and hence, f ( vk )  ~ 0 in 
probability. This implies that {Zn} is a Cauchy sequence in the space of random 
lE-valued elements with the metric corresponding to convergence in probability. 
Since this space is complete, our assertion holds indeed. The necessity of our 
condition is obvious. 

In our applications of  the lemma Skorokhod's embedding method and the 
assumption of pathwise uniqueness will allow us to check that the limiting 
random element v takes values in {(x, y)  E IE x IE: x = y}. 

We note that our approach is very close in spirit to the celebrated result 
of Yamada and Watanabe on the existence of strong solutions via pathwise 
uniqueness. We assume somewhat more and in return we can get more. From 
our approach it is clear that the strong solution depends continuously on the 
initial condition and on the drift and diffusion coefficient. In particular, in par- 
allel with the proofs of Theorems 2.4 and 2.8 the strong solution can be con- 
structed by smooth approximation of the coefficients. One can construct the 
strong solution by Euler's approximations and simultaneously approximating 
the coefficients and the initiaI condition. Clearly, we immediately get the con- 
vergence of Euler's approximations (or of the other approximations we men- 
tioned) in probability in every metric space V, in which these approximations 
are tight. (See [3], were the convergence in probability of Wong-Zakai type 
approximations are proved in suitable Banach spaces.) 

We also note that the convergence of Euler's approximations under var- 
ious conditions is proved by many authors. It is shown in Krylov [8] that 
under the monotonicity condition Euler's polygonal line method can be adjusted 
to prove (strong) solvability (for equations even with random coefficients). 
Earlier this was known from Maruyama [10] if the drift and diffusion coef- 
ficients are Lipschitz continuous. The method of [8] was afterward used in 
Alyushina [1] in a short proof of existence of strong solutions under mono- 
tonicity and linear growth. A short and simple proof of (strong) solvability is 
presented in Krylov [7] under monotonicity and under a condition which is 
weaker than the usual linear growth. Moreover, the continuous dependence of 
the strong solution on the coefficients is obtained. 

It is worth mentioning that the fact that the pathwise uniqueness implies the 
possibility of effective constructing the solutions has already been noticed in 
Zvonkin and Krylov [17] (see, for instance, Lemma 3.2 there). Later Kaneko 
and Nakao [5] exploited this fact without noticing [17]. In [5] the authors 
consider equation (1.3) in IR d and they assume that it admits a unique strong 
solution x(t). They show that x(t) can be constructed by approximating the 
coefficients and also by Euter's polygonal approximation. In what concerns 
Euler's approximations they only consider equations in the whole space with 
continuous coefficients satisfying the linear growth condition. We consider 
equations also in domains of IR d and with discontinuous coefficients as well. 
We construct the strong solution without assuming its existence. Our basic 
idea of proving convergence in probability is an extension of the idea of an- 
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other result o f  Yamada and Watanabe saying that pathwise uniqueness implies 
uniqueness in law. Essentially the same idea is used in [5]. Due to our above 
lemma this idea becomes more apparent and its range of  applicability becomes 
evident. 

The paper is organized as follows. In the next section we formulate our 
results in Theorems 2.4,2.8 and their corollaries. By Lemma t . t  the proof  of  
Theorem 2.4 is simple, we present it in Sect. 3. To prove Theorem 2.8 we need 
an estimate of  the distribution for Euler 's approximations. Since such estimates 
play an important role not only in the subject o f  the paper, we present our 
estimate (Theorem 4.2 below) separately in Sect. 4. We prove the main result, 
Theorem 2.8, in the last section. 

2. Formulation of the results 

On a given stochastic basis (~2,ff ,  P,(o~t)t>__o) we consider the stochastic 
differential equation 

d x ( t )  = b ( t , x ( t ) )  d t §  a ( t , x ( t ) )  d w ( t ) ,  
(2.1) 

x ( 0 )  = 

in a domain D of  IR d, where (w( t ) ,  ~ t )  is a dl-dimensional Wiener process, ~ is 
an o%-measurable random vector with values in D, b and a are Borel functions 
on IR+ x D taking values in IR d and in IR dxdl ,  respectively. For equation (2.1) 
to have sense we need the coefficients to be defined for any x E IR d. Actually 
under our future assumptions solutions of  (2.1) will never leave D so the 
values of  ~r and b outside D are irrelevant and just for convenience we define 
a( t , x )  = O, b ( t , x )  = 0 for x ~D,  t > 0. Let 

O = t~ < t~ < t~ < . . . < tT < t~+ 1 < . . .  

be a sequence of  partitions of  IR+ such that for every T > 0 

d n ( T )  := sup )7+1 - t;:l - +  0 
i: ti+ l <= T 

as n ---+ co. We define Euler 's "polygonal" approximations as the process (xn( t ) )  
satisfying 

d x . ( t )  = b(t, XnOCn(t)) d t +  a ( t , x . ( t c . ( t ) )  dw( t )  , 
(2.2) 

x ~ ( 0 )  = 

where Kn( t ) :=  t~' for t c [t~, t~'+l ). 
In the whole article M ( t )  > 0 and M l ( t )  > O, M2( t )  > 0 , . . .  are fixed locally 

integrable fimctions on [0, oo). We will use the following assumptions: 

(i) there exists an increasing sequence of  bounded domains {Dk}~-i such that 
U~_IDk D, and for every k, t E [0,k] 

sup Ib(t,x)l <=Mk(t), sup ta(t ,x)] 2 < M~( t )  ; 
x c D  k x G D  k 
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(ii) there exists a non-negative function V E C1'2(IR+ x D) such that 

L V ( t , x )  < M ( t ) V ( t , x ) ,  Vt > O, x c D ,  

Vk(T) := inf < [V(t,x)[ ~ 
xCODk, t=T 

as k ~ c~ for every finite T, where ODk denotes the boundary of D~ and L is 
the differential operator 

~ 1 0 2 

L :=  ~ + ~bi(t,x)i ~x @ 2 ~(G~TT)ij(t'X)~xi~xJi, j ; 

(iii) P(~ E D) = 1. 

Note that by (i) and by our definition of a and b outside D, Euler's 
approximations x , ( t )  are well defined for all t __> 0. 

Definition 2.1. By solution o f  equation (2.1) we mean an ~tt-adapted process 
x( t )  which does not ever leave D and satisfies (2.1). 

An explanation of the definition can be found in the following statement. 

Lemma 2.2. Let  x ( t )  be an ~t-adapted process defined for  all t > O. As-  
sume that x ( t )  satisfies ( 2 . 1 ) fo r  t <~  := inf{t: x( t )  @D}, and assume (i) 
through (iii). Then ~ = c~ (a.s.). 

Proo f  Define ~k as the first exit time of x( t )  from Dk. Obviously ~k T ~. 
Therefore to prove the lemma it suffices to show that for any k and 6, T > 0 
we have 

(2.3) 

p(rk __< T) <= P(r ~Dk)+P  (0, 4) _-> log +~k(T) expfM(t)dt. 
0 

Apply It6's formula to 7( t )V( t ,x ( t ) )  where 

7(t) := exp - M ( s ) d s  - V(O, , 

and use assumption (ii). Then it follows that for all t 

y( t )V( t  A zk ,x ( t  A zk))Z~k>o =< 7(0)V(0, 4) + m k ( t ) ,  

where ink(t) is a continuous local martingale starting from 0. Hence for 
any R > 0 

P ~ sup v(t)V(t ,  xk(t))x~k>O > R} < R1-E(7(0)V(0, ~ ) ) <  1 
(t<=zk = = = R ' 

and this gives (2.3) almost immediately. The 1emma is proved. 

In order to state our main results we need one more notion. 



148 I. Gy6ngy, N. K_rylov 

Definition 2.3. We say that the pathwise uniqueness holds for equation (2.1) 
i f  for any stochastic basis carrying a dl-dimensional Wiener process wt( �9 ) 
and a random variable ~ such that the joint distribution of  (w'( �9 ), ~') is 
the same as that of  the given (w( �9 ), ~), equation (2.1) with w'(t), 4' instead 
of  w(t), ~ cannot have more than one solution. 

Theorem 2.4. (cf. [5]) Assume (i) through (iii). Suppose moreover that b and 
a are continuous in x E D and that for equation (2.1) the pathwise unique- 
ness holds. Then x~(t) converges in probability to a process x(t), uniformly 
in t in bounded intervals, and x(t) is the unique solution o f  equation (2.1). 
Furthermore, x( t ) is .Ft ~ V a( ~ )-adapted. 

Remark. 2.5. Note that taking V(t,x) := (Ix[ 2 + 1 ) e x p ( -  f o m ( s ) d s )  in the 
case D = IR d, Dk := {x C IRd: Ixl < k}, conditions (i) and (ii) can be restated 
as follows: 

(1) supN<k{]b(t,x)]+]a(t,x)l 2} <M~(t)  for every t > 0  and positive inte- 

ger k; 
(2) 2xb(t,x) + [[a(t,x)[I 2 < M(t)([x] 2 + 1) for every t > 0 and x c IR d, 

where [[~[[ denotes the Hi[bert-Schmidt norm for matrices ~. 
We say that the coefficients b, a satisfy the monotonicity condition on D 

if  for every k and t > 0, x, y C Dk we have 

2(x - y)(b(t ,x)  - b(t, y))  + I Io - ( t ,x )  - a(t, y) l l  2 < M k ( t ) l x  - y l  2 . 

Corollary 2.6. (cf. [7]) Assume (i) through (iii) and let the coefficients b, 
satisfy the monotonicity condition on D. Or in case D = IR d we may assume 
that the conditions (1) and ( 2 ) f r o m  Remark 2.5 are satisfied and that the 
monotonicity condition is satisfied for Dk = {x E lRd: Ixt < k}. Assume more- 
over that b is continuous in x c D. Then the conclusions of  Theorem 2.4 hold. 

Proof One can easily show that the monotonicity condition implies the path- 
wise uniqueness (see e.g. Krylov [8]). Hence this corollary is immediate from 
Theorem 2.4. 

In the one-dimensional case (i.e. when d = 1 ) we have the following result. 

Corol lary 2.7, Let d = I. Assume (i) through (iii) and let b be continuous 
in x in D for any t. Assume moreover that for every k and t >= O, x, y E D~ 
we have 

(x  - y ) ( b ( t , x )  - b( t ,  y ) )  <= M k ( t ) l x  - y l  2 

la(t,x) - a( t ,y) l  2 =< Mk(t)pk(Ix -- y]) , 

where p~ is an increasing non negative function on JR+ such that 

l 

f 1 / p ~ ( r ) d r  = o 0 .  
0 

Then the conclusions of  Theorem 2.4 hold. 

Proof For any given k = 1,2 . . . .  we can make a nonrandom time change 
which reduces the general case to the case Mk = 1. In this case one can see 
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by a straightforward modification of the well-known method from Yamada and 
Watanabe [16] (see also [4]) that the above conditions imply the pathwise 
uniqueness for solutions of  equation (2.1) until they leave Dk. Of  course, after 
this we see that even without time change we have the pathwise uniqueness for 
solutions until they leave Dk. Since this is true for any k we have the pathwise 
uniqueness in D, and this is the only thing we need to apply Theorem 2.4. 

I f  we are dealing with nondegenerate equations, the continuity condition 
on b in Theorem 2.4 can be dropped. To state this more precisely, in addition 
to the conditions (i) through (iii) let us introduce the following non-degeneracy 
condition on the diffusion coefficient a: 

(iv) For every k the domain Dk is bounded and convex, and 

(aaX)ij(t,x)2i2 j >= ekMk(t) ~ [~il 2 
i , j  i 

for every t E [0, k], x c Dk, 2 i E IR, where ek > 0 are some constants. 

We say that a function f on IR+ x D is locally H61der in x in D (with 
exponent c~ C (0, 1]) if for every k and t > 0, x , y  E Dk 

I f ( t , x )  - f ( t ,  y)l 2 < Mk(t)[x - yl 2~ . 

I f  ~ = 1, then we say that f is locally Lipschitz in x in D. 

Theorem 2.8. Assume (i) throuqh (iv) and suppose that a is locally H61der 
in x in D with some exponent e c (0, 1]. In the case ~ =g 1 assume in addition 
that the pathwise uniqueness holds for  equation (2.1). Then Euler's approx- 
imations xn(t) converqe to a proeess x(t)  in probability, uniformly in t in 
bounded intervals, and x(t)  is the unique solution o f  equation (2.1). Further- 
more, x(t)  is ~t w V a(~)-adapted. 

In the one-dimensional case one can state a condition on pathwise unique- 
ness differently. 

Corollary 2.9. Let d = 1 and assume (i) throuqh (iv). Suppose that a is 
locally H61der in x in D with some exponent ~ c (0, 1]. Assume moreover 
that for  every k 

Io(t,x) - ~(t, y)l  2 _-< M ~ ( t ) ( p k ( j x  - y]) + lye(x) - vk(y)l)  

for  every t > O, x, y E Dk, where vk is a real function o f  locally bounded 
variation and Pk is an increasing continuous function satisfyin9 

1 

f 1/(r v oh(r) )  dr = ~. 
0 

Then the conclusions o f  Theorem 2.8 hold. 

Proof  Using the result obtained in Veretennikov [15] on pathwise uniqueness 
for stochastic It6's equations in one dimension (which generalizes the corre- 
sponding results in Yamada and Watanabe [16] and in Nakao [11]), we can 
repeat the argument from the proof of  Corollary 2.7. 
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3. The Proof of Theorem 2.4 

For every positive integers k, n define the stopping time 

k inf{t  > 0: Xn(t) ~Dk}.  1: n : =  

Then 
Ib(t,x,(~c,(t)))l <=Mk(t), [a(t,x,(~c,(t)))l 2 <Mk(t) 

for t <  ~k, and clearly the family of  stochastic processes {x~ 'n  = 1,2, . . .}  
defined by 

x~(t) : =  x.(t n ~ ) ,  

is weakly compact in C([0, T]) for every k and T-> 0. We want to deduce 
from this the weak compactness in C([0, T]) o f  

(3.1) {(xn(t))tc[o,r]'n = 1,2 . . . .  } .  

Clearly it suffices to show that 

(3.2) lim lim supP(z~ __< T)  = 0 .  
k- -+  (x3 n---+ ~ 

At first fix k and apply Skorokhod's embedding theorem. Then by virtue of  
the weak compactness of  distributions of  xk(t) in C([0, T]) for every T > 0, 

we can find a subsequence n(j) and a probability space ( ~ , ~ / 5 ) ,  carrying 
-k ~j ,  such that for every positive the sequences of  continuous processes xn(j), 

integer j finite dimensional distributions of  

~k ~ k W )  (xn(j),wj) and (x~(j), 

coincide, and for any T < ee for P-almost  every & E ~) 

(3.3) sup 12~u)(t ) - 2k(t)l ---+ 0, sup ]~j(t)  - ~(t)[  ~ 0 ,  
t<-<_T t < T  

~k ~k as j ---+ cx~, where 2, ~ are some stochastic processes. Define zn(j), z as the 
~k first exit times from Dk of  the processes x~(j), s respectively. It follows 

from (3.3) that 

(3.4) liminf~nk(j) > ~k (a.s .) .  
j---+ oo 

Next define 

~ t  J := a(2ku)(s), +j(S)" s <= t), ~t := a(2k(s), +(S)" S <= t) .  

Then it is easy to see that for every j the process ( ~ j ( t ) , ~ t / )  and (~(t),~.~t) 
~k are Wiener processes, and for all t E [0, z,(j)) 

(3.5) 
t t 

2nk(j)(t) ~k = x~u~(0 ) + f b(~,X~u~(~nu~(~))) ds + f o(~,~u~(~u~(~))) d~A~), 
0 0 

almost surely. Now we make use of  the following lemma which is just an 
adaptation of  a result of  Skorokhod [14]. 
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Lemma 3.1. Let f (s ,x)  be continuous in x and Borel in t bounded function 
defined on IR+ • IR a. Then for any i = 1,..., dl 

(3.6) 

t t 

f f(s,s ds --~ f f (s ,  Zk(s)) ds, 
0 0 

t t 

f f(s,2k.(j)(~.(j)(s))) ds --~ f f(s,s as, 
0 0 

t t 

f f(s,2~(j)(s)) d~}(s) ~ f f(s,2k(s))d~'(s),  
0 0 

t t 

f f(s,2k(j)(~,,(j)(s))) d~}(s) --+ f f(s,s dv~i(s) 
0 0 

uniformly in t E [0, T] in probability for any T< oc. 

Owing to (3.4) and (3.6) we then conclude that for t < ~k (a.s.) 

t t 

s = s + f b(s,Y~(s)) ds + f a(s, Yk(s)) dv?(s) . 
0 0 

In the proof of estimate (2.3) we have used only that x(t) satisfies equation 
k (2.1) until it hits 8Dk. Therefore estimate (2.3) holds for our ?k, and since z, 

~k have the same distributions as z, ,  

k ~k lira lim sup P(%(j) < T ) =  lim lim sup P(%o) < T) 
k-+c<) j--~oc k--+oo k--+c~ 

< liE p(~k < T)----O. 
k--*(:~ 

Arbitrariness in the choice of the subsequence n(j) allows us to assert that 
(3.2) holds, and thus the family (3.1) is indeed weakly compact. On our 
way of applying Lemma 1.1 we now take two subsequences xl, Xm of the ap- 
proximations {x,},~l. Then obviously {(xt,xm)} is a tight family of processes 
in C([0, T];IR 2d) for any T<cx~. Again by Skorokhod's embedding theorem 
there exist subsequences l(j),m(j), a probability space (~, ~ ,  ~5), carrying 
sequences of continuous processes ~l(j), ~,,(j), ~j, such that for every positive 
integer j finite dimensional distributions of 

(2l(j), YCm(j), r and (xl(j),Xm(j),w) 

coincide, and for /5-almost every & E (~ 

sup [.~1(j)(t) - ~(t)l -~ O, sup]Ycl(j)(t) - ~(t)[ ~ O, 
t < T  t < T  

sup l ~ j ( t ) -  ~(t)  I ~ 0,  
t < T  

as j ~ cx~ for any T < oo, where 2, ~, ~ are some stochastic processes. In the 
same way as above we get that for any k the processes :2(t)and 2(t) satisfy 
equation (2.1) on the time intervals [0,'~ k) and [0,~k), respectively, with ab 
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instead of w, where .~k and ~ are defined in an obvious way. Again as above 
~k, ~k --, oo, so that actually :?(t) and 2 ( 0  satisfy the corresponding equation 
on [0,oo). Since the initial condition in both cases is the same (:?l(j)(0)= 
2~(j)(0) because xl(0) =Xm(0) = 4) and since the joint distribution of the initial 
value and # coincides with the distribution of ~, w, by the pathwise uniqueness 
we conclude that 2(t) = 2(t)  for all t (a.s.). Hence, by applying Lemma 1.1 
we finish the proof of Theorem 2.4. 

4. An estimate of densities for Euler's approximations 

In the case when the coefficients of equation (2.1) are not supposed to be 
continuous, in order to apply the above scheme we need a counterpart of 
Lemma 3.1 for measurable f .  The proof of the corresponding assertion is 
based on an estimate on densities of distribution of the Euler approximation 
xn(t), Since such estimates can be applied in other situations, the result we 
prove below is stronger than we actually need in the proof of Theorem 2.8. 
First of all we need the following lemma. 

Lemma 4.1. Let  K, t, ~ > O, c~ E (0, 1 ) be f i xed  numbers, and let a(x) be a d • 
d matrix-valued funct ion such that K t I  > a = a* >= etI,  where 
I is the d • d unit matrix. Also let 9(x) be a real-valued function such 
that 1 9 ( x ) - 9 ( y ) l  < K I x -  yl ~ f o r  all x ,y .  Let  ~ and ~ be independent 
d-dimensional Gaussian vectors with zero means. Assume ~ ~ JV'(O,I). Define 
an operator T* by the formula  T ' f  ( y )  = E f ( y  + a x / ~  ) and let T be the 
conjugate f o r  T* in L2-sense. Then f o r  any i , j  = 1 . . . . .  d, x E IR d, p E [1,co], 
and bounded Borel f 

(4. l ) 9(x)E ~2 02 

<= Nt-a/(2p)-l+~/2llfllp , 

+ + (4.2) 

< Nt-l+=/2ll f l lp , 

where the constants N depend only on K, e, d, p and EI~I 2. 

Proo f  First observe that 

~xi~xJ r f ( x )  

6~2 X)/2} a=a(y) 
= f (2~z det a ( y ) ) - d / 2 f ( y )  ~ e x p { - ( a - l ( y  - x),  y - d y ,  

]Rd 

E(2~ d e t a ) - a / 2 e x p { - ( a  -1 (y  - x - ~), y - x - t/)/2} 

= (2~ det(a + a l ) ) -a /2exp{-((a  + al ) - l ( y  _ x), y - x)/2} =: pa(X, y ) ,  
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where al is the covariance matrix of  t/. Let A ( y ) =  ( a ( y ) + a l )  -1, then 

02 
E ~ r f ( x  + ~) 

= f f ( y ) [ ( A ( y ) ( y  - x ) ) i ( A ( y ) ( y  - x ) ) j  - Aij(y)]pa(y)(x, y )  d y .  
IR d 

Thus the expression on the left in (4.1) equals 

f [g(x) x ) ) i ( A ( y ) ( y  - x ) ) j  - Aij(y)]pa(y)(X, y )  dy g ( y ) ] f  ( y ) [ ( A ( y ) ( y  

exp { + 
-= td /2  p.d 

< Ilfllpt- ~ lyl q~' + exp = L t2 t ~ - q  Nt-  ~ dy 

= Nt--d/Zp--l+=/2llfll;. 

Here we have used the H61der inequality. To prove (4.2) we apply instead the 
Minkowski inequality. The lemma is proved. 

We will apply Lemma 4.1 to prove some estimates for distributions of  the 
process x , ( t )  defined as 

t 

xn(t) = xo + f ~(s,x~(~n(s))) dw(s), 
0 

where x0 E IR d is nonrandom and o- �9 IR+ x IRa : 4  lRdxdL is Borel measurable 
and satisfies the condition 

eI  < (GcrT)(s,x) < KI ,  Io-(s,x) - ~(s, y)[ < K t x -  yl ~ 

for some constants ~ E (0, 1), K, e > 0 and all x, y E ]R a, s > 0. Before stating 
the main result o f  this section we introduce some notations. For fixed n and 
t > 0 a very cumbersome expression can be found explicitly in an obvious way 
for the distribution density p~(t ,x)  of  x,( t ) .  We do not know if it is possible 
to estimate the density analyzing this expression, but at least it shows that the 
density is bounded on [6,6 -1] • ]R d for any c~ > 0. We denote by mn(t) the 
supremum of  p~(t ,x)  over x E IR d. The function mn(t) is bounded on [6,6 -1] 
for any 3 > 0 and any n. 

Theorem 4.2. (a) There exists a constant No depending only on d ,~ ,K ,e ,q  
d then fo r  a l l t > O , n = l , 2 , 3 ,  such that i f  l < q < ~ . . . .  (: )l q 

(4.3) pq,( t ,x)dx <= No(t -d/(2p) + 1) (p  = q/(q - 1)) .  

(b) I f  the partitions {0 = t~ < tf < . . - }  satisfy the additional condition 
~c~(s) > es f o r  all n a n d s  > tf, then there exists a constant No depending only 
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on d,e,K,e such that 

(4.4) m~(t) <No(t  -d /2+l) ,  t > 0 ,  n =  1,2 . . . . .  

Also (4.3) holds, for any q E [1,co], t > 0 ,  n = 1 , 2 , 3 , . . . .  

Proof The last assertion in (b) is true since pq < pn(mn) q-1 and f Pn dx = 1. 
To prove (a) for 0 -< s -< t < c~ and bounded measurable f ( x )  let 

Ts*,tf(y ) : = E l  y +  cr(r,y)dw(r) , 

and let the operator Ts, t be conjugate to Ts*t in L2-sense. The expression 
Ts, t f (x )  can be written as an integral with respect to a Gaussian-like den- 
sity, and from this formula it is not hard to see that for any s < t the function 
T~,tf(x) is infinitely differentiable and for s < t 

0 0 2 
(4.5) ~sT~, t f ( x ) -  OxioxjTs, taiJ(s, �9 ) f ( .  )(x), 

where aij :=  �89 For the sake o f  simplicity o f  notations we drop the 
subscripts n, and from (4.5) by the Newton-Leibnitz and It6's formulas for 
any r E [0, t] we obtain 

Ef(x( t ) )  = f d ET~,tf(x(s)) ds + ET~,tf(x(r)) 
r 

t 02 
= ETr, t f (x(r))  + fr E [ a i J ( s ' x Q c ( s ) ) ) ~  Ts, t f(x(s))  

0 2 
~xioxjTs, taq(s, �9 ) f ( "  )(x(s))]ds.  

We take conditional expectations given x(~(s)), and after denoting 

~(s,x) = ] a(r,x)dw(r) 
~(s) 

we get 

t 

(4.6) Ef(x( t ) )  = ETr, t f (x(r))  § f EH(s, t, xO~(s)) ) ds , 
F 

where 

H(s,t ,x) = aij(s,x)E ~ T s ,  t f  (x + r/(s,x)) 

a2 " )] (x - E [ ~ r , , , a i ; ( s ,  �9 ) f (  + ~(s,x)). 

By Lemma 4.1 

(4.7) 

]H(s,t,x)l < N(t - s) d/(2P)-l+~/2[lfll p, 

f [H(s,t,x)]dx <= N(t-s)-l+~/2[]f][1. 
~d 
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This and (4.6) with r = 0 give us (4.3) for p > d/~ and for t E (0, T] with a 
constant No depending on d, ~, K, e, q and also on T. Indeed, 

To, t f (xo)  <= Nt-d/Z f f ( y ) e x p { - ~ ( x -  y ) 2 1 d y  <= Nt-d/(2P)l[fllp, 
~d 

t 

f (t - s) -d/(2p)-l+a/2 ds = Nt -d/(2p)+~/2 . 
o 

To prove (4.4) and (4.3) with a constant No independent o f  T we need a 
longer argument. Fix T E (0, ec),  and define 7r as the smallest number 7 such 
that m(s) < y(s -a/2 + 1) for all s E (0, T]. Introduction of  such objects as 7T 
is rather common in the theory of  PDE. In probability theory they were used 
for instance in Stroock-Varadhan [13] for the same purposes. Such a number 
Yr does exist since m(t) is bounded on [tf, T] and re(t) < N(d,K,e) t  -a/2 for 
t ~ (0, t~') as follows from the explicit formula for the Gaussian density of  

x(t) = x 0 + f o  a(s, xo)dw(s). We want to estimate Yr. By using (4.6),(4.7) 
and the inequality to(s) > es for s _> tf, we obtain 

Ef(x ( t ) )  

? [ ( 1  ) l < gt-d/211flll + 7r ~/2(s-----~+1 Iln(s,t, . )]ll AsuplH(s , t ,x ) lds  
t'~ x 

{ E(x ) 11 <= Nt -a/z + N ? YT ~ +1 
,~ ( t - ~)~-~/~ 

A 
1 ) 

( t -  s)a/2+l-=/2 ds ] l f l l l ,  

(4.8) 

m(t) < Nt -a/2 + N 7T s~ ~ + 1 (t s)a-~/2 A (t -- s)a/2+1-~/2 
o 

ds 

for t E [t~, T]. Next as easy to see after the substitution s = uTf 2/a, 

t YT 1 ? 7r 1 
f (t - s) 1-~/2 A ds = ~ A sd/2+1_~/2 o (t - s)a/2+l-~/2 o 

ds 

2/d 
,1--~/d 'YT 1 

= Y r  J 
0 

1 
A ud/2+ l --ct/2 du 

.~ l-o:/d < IVy r . 
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,2/d .~ _ 1 Upon setting u = t?zr/d(1 + YT J , we also have 

7T 1 
s d / 2 (  t --S)I_~/2 A ( t  - - S )  d /2+1-~ /2  d s  

o 

< 
o (t - s )  d/2+1-c~/2 ds + sd/:(t _ s)1-~/2 ds 

2 2 
(d - ~)(t - u)d/2 ~/2 + 7rU-d/2~ (t 

u)~/2  <__ 

= Nt-(d-~)/2(1 + .g2/d)(d-~)/Z < N(1 + ylr-~/d)(t-d/2+ 1).  

Thus from (4.8) for t E [tf, T] we conclude 

(4.9) m(t) _~ N(1 + ;Jlr-~/d)(t-d/2 + 1).  

As we observed above this estimate is also true for t E (0, t~]. By definition o f  
7r estimate (4.9) means that 

1 -- c~/d \ 
7v < N(1 + ~ ) .  

We emphasize that the last constant N, as well as all constants called N in 
the above proof o f  (4.4), depends only on d,a,K,~. This implies the desired 
estimate o f  7T, and it remains only to notice that the estimate is independent 
of  T. We can see in the same way that the constant No in the estimate (4.3) 
can be taken to be the same for all t > 0. The theorem is proved. 

Corollary 4,3. Assume the conditions of Theorem 2.8. Let x,(t)  be the Euler 
k be the first exit time ofx~( t ) f rom approximation defined by (2.2) and let % 

Dk. Then for every t > 0 the measure P(x~(t) E P < z~) has a density p~(t,x), 
and for any O < to < T < oc, l < q < ~ and k = l ,2 , . . ,  we have 

(4.10) sup sup f [ p ~ ( t , x ) ] q d x < o c .  
n tC[to,T ] N d 

Proof By using a nonrandom time change we easily reduce the general case 
to the one with Mk(t) = 1. Next we observe that 

P(xn(t) E r, t < ~ )  ~ P(x~n(t) e r ) ,  

where x~(t) are Euler's approximations for equation (2.1) with coefficients 
or, b changed arbitrarily outside Dk. After this an application of  the Girsanov 
theorem allows us to take b -  0. Finally we get our assertion from (4.3) if 
we notice the obvious relation between Euler's approximations for fixed initial 
value and for random one. 

Remark. 4.4. One knows from Fabes and Kenig [2] and Safonov [12] that none 
of  the estimates (43) , (4 .4 )  and (4.10) remains valid if the H61der continuity 
o f  ~; in x is replaced by the assumption of  uniform contirmi~ of  a in (t,x). 
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5. Proof of  Theorem 2.8 

The reader can easily check that we can repeat the proof of  Theorem 2.4 from 
Sect. 3, if  we prove the following version of Lemma 3.1. We use the same 
notations as in this lemma. 

Lemma 5.1. Let f ( s , x )  be a Borel function defined on IR+ x IR a such that 
If(t ,x)l < Mk(t) for any k and x E Dk. Then for any i = 1 . . . . .  dl the first 
two convergences in (3.6) hold as j ---, oo uniformly in t C [0, T A fk)  in prob- 
ability for any T < oo. I f  ]f(t,x)l 2 <= Mk(t) for any k and x C Dk then for  any 
i = 1,.. . ,  dl the last two convergences (3.6) also hold as j ~ oo uniformly in 
t E [0, T A f k )  in probability for any T < oc. 

Proof We will prove only the last relation in (3.6). The other ones can be 
proved similarly. Take a function g(t,x) defined on IR+ x IRa such that it is 
continuous in x, Borel in t and satisfies the same hypotheses as f .  Define 

t t 
-k  - i  

= f g(s,x,(j)(tc,(j)(s))) dwj(s), Irk(g) = f g(s,2k(s)) d~i (s ) .  
0 0 

Owing to Lemma 3.1 for any 6 > 0 we have 

(5.1) l imsupP(sup{ lLkJ ( f ) - I t~ ( f ) ] :  t < T A ~  k} > 36) 
j--*oo 

< lira sup P(sup {llktJ(f - g)l: t < T A ~ }  > 8) 
j---+oo 

+ P(sup {lltk(f  - g)]: t < r A .gk} => 6) =: Jl + J 2 -  

Now, by virtue of  (3.4) and the well-known martingale inequalities 

T A ~  k 
7 J, < y- l l im supE f I f -glZ(s ,Y~(j )Oc,( j ) (s) ) )ds+ 5~ 

j ~ e ~  0 

q 

=< 4y-l  f MK(s)ds 
0 

T 
7 + 7-11ira sup f E l f  - glZ(s,Y~(j)(~c,(j)(s)))Is<e~(s)ds + 6-Z, 

j - + c ~  tl 

where 7 > 0 and t />  0 are arbitrary numbers. By Corollary 4.3 we conclude 
that for p large enough 

Jl < 47-1 f  Mk(s)ds + j + NY 1 [f _ gl2p(s,x)dxds 
0 

with N independent of  g. Since 2~(j)(t) ~ 2k(t) (a.s.) from Corollary 4.3 we 

also get an estimate for probability density of  xk(t), which shows that J2 is 
bounded from above by the same quantity as J1. Thus we obtain an estimate 
for the first limit in (5.1), and this estimate along with the freedom of choice 
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o f  9, q, ? shows that the l imit  in quest ion is zero. This br ings to the end the 
proofs o f  L e m m a  5.1 and Theorem 2.8. 
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