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Summary. We investigate Ising models indexed by the sites of a branching 
plane T x 2g, which is the product  of a regular tree ql? and the line 2g. There 
are three parameter  regimes corresponding to: 

(1) a unique Gibbs distribution; 
(2) nonunique Gibbs distributions with treelike structure - the free 

boundary  condition field is not a mixture of the plus and minus b.c. fields; 
(3) nonunique Gibbs distributions with planelike structure - the free b.c. 

field is a mixture of the plus and minus b.c. fields. 
Our analysis is based on earlier work by Gr immet t  and Newman  concern- 

ing independent percolation on ql? x 2g, the Fortuin-Kasteleyn representation 
of Ising (and Potts) systems as dependent percolation models, and a "finite 
island" property of percolation models on ql" x 2g. 

1. Introduction 

The simplest examples of Markov  random fields with finite state spaces are 
_+ 1 valued nearest neighbor Ising models {Sx} indexed by the sites x of some 
lattice IL with a multidimensional graph structure. These have been extensively 
studied both  for ordinary d-dimensional lattices such as 2g d [D2,  LR~ and for 
regular trees q~,, where every site has exactly k +  1 neighbors [Pr]. (We will 
generally write I" rather than q~, below.) Trees are sometimes regarded as infinite 
dimensional because the volume of the "ba l l "  of radius R grows exponentially 
in R. For  both  types of lattices, phase transitions occur providing d > 2  [P, 
G, D 1] or k > 2 [KT, Pr] ; i.e., there is nonuniqueness of the Gibbs distributions 
corresponding to a fixed family of conditional probabilities. However, trees and 
ordinary d-dimensional lattices exhibit different types of nonuniqueness, as we 
now explain. 
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For  ferromagnetic (i.e., positively dependent) Ising models, it is convenient 
to focus on the translation invariant Gibbs distributions v +, v -  and v r obtained 
as the limit of finite volume systems {Sx: x e A  elL} as A--~IL with respectively 
plus, minus and free boundary  conditions. The Gibbs distribution is unique 
if and only if the distributions v + and v (which are necessarily extremal) are 
identical [LM, R]. In the models we consider there is no term in the Hamil tonian 
(which defines the conditional probabilities) to break the {Sx} ~ { - Sx} symme- 
try. Thus, v § is transformed to v -  and v I is unchanged by this symmetry opera- 
tion; furthermore, v+4:v  - if and only if M = ( S x ) + > 0  where ( . ) .  denotes 
expectation with respect to the measure v* (.  is + or - or f) .  If  v §  
and J is a mixture of v § and v- ,  it must be the symmetric mixture (v § + v-)/2. 
The decomposit ion of v f as a mixture of v § and v-  seems to be the case for 
Na _ at least, it has been proved for d = 2 [ M M ]  and for d > 2 at all low tempera- 
tures [GM],  and at all but countably many  temperatures [L I. However, this 
decomposition of v / is definitely not valid on the tree. To see this, consider 
the decay as x and y separate of (SxSy) I, the vl-covariance of S~ and Sy. 
In the language of [Pr, S], v s defines a Markov  chain on T which in particular 
is an ordinary Markov  chain along any linear path within T. Thus ( S ~ S y ) f  
= r  ~ (~'Y) where 0 < r < l  and 6~r is the natural distance in T (the number  of 
bonds on the unique linear path connecting x and y). Since ( S x S y ) s - - , O  as 
63r(X, y ) ~  oo, it follows that v s is not a mixture of v § and v- ,  when nonuniqueness 
occurs, since ( S  x Sy) _+ > M 2 > 0 for all x, y. 

In this paper, motivated by the work of [GN] ,  we consider Ising models 
(and the related Potts models with q states) on a lattice IL which is a branching 
plane intermediate between 2g 2 and ~ IL is the product  T x 2g, with two types 
of bonds, T-bonds  between sites x = ( t ,  z) and x '=( t ' ,  z) with 6T(t, t ' ) = l  and 
Z-bonds  between sites x = ( t ,  z) and x '=( t ,  z') with Iz-z'l--1. The distance 
c~ (x, x') between x = (t, z) and x'  = ( t', z') is defined as 6vr(t, t') + I z - z'l. It is natural  
to have two coupling parameters  (into which the temperature has already been 
absorbed) in the Hamiltonian,  Jt for T-bonds  and Jz for 2g-bonds, both  assumed 
to be positive so that the model is ferromagnetic. T x ~ may be regarded both 
as a branching plane and as a stack of trees. Although it is infinite dimensional 
in the same sense as the tree, the existence of loops in its graphical structure 
means that Ising models on T x 2g do not have simple embedded Markov  chains. 

A natural  question to ask concerning Ising models on such a branching 
plane is whether they are tree-like or plane-like in their phase transition behavior. 
Such a question for independent percolation on T x 2g was studied by Gr immet t  
and Newman [-GN] who discovered that as the parameters  are varied both 
types of behavior occur. In the percolation context, plane-like behavior means 
a unique infinite cluster and tree-like behavior means infinitely many  distinct 
infinite clusters. (Closely related results concerning the contact process on a 
tree have since been obtained in [Pe].) 

It is known that there are strong analogies between nonuniqueness of infinite 
clusters in percolation and the occurrence of translation invariant Gibbs distri- 
butions for Ising ferromagnets which are not mixtures of v + and v [AKN] .  
Thus the results of [ G N ]  suggest that also for Ising models on T x 2g there 
should occur both tree-like and plane-like behavior. The main results of this 
paper  substantiate this suggestion. We prove for any k > 2 that: 

(1) for small J~ and J~, v + = v-  (and so there is a unique Gibbs distribution); 
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(2) for intermediate values of J~ and J~, M > 0  (so v + 4=v -)  and (S~Sy)r---,O 
as 6 (x, y ) ~  Go (so v s 4 = (v + + v-)/2); the extent of this intermediate region depends 
on k but always has a nonempty interior; 

(3) for J~>0 and large Jr, M > 0  and vS=(v + +v-) /2 .  

In Sect. 2 of the paper we present more detailed versions of our results, valid 
for Potts as well as Ising models. (However the intermediate region for q-state 
Potts models with q > 3 has been proved nonempty only for sufficiently large 
k, depending on q.) The methods, which can be applied also to lattices such 
as T x Z d (see [-GN]), are based primarily on the independent percolation model 
results of [GN].  These results are carried over to Ising and Potts models by 
use of the Fortuin-Kasteleyn representation of Ising and Potts models as depen- 
dent percolation models [-FK] and Fortuin's comparison inequalities relating 
these dependent percolation models to independent ones [F, ACCN].  However, 
in order to show that v s = ( v + +  v-)/2 in some parameter region, the result of 
[-GN] that the infinite cluster for independent percolation is unique in a corre- 
sponding parameter region was not sufficient. This led us to investigate the 
independent percolation model again and verify a "finite island" property 
stronger than uniqueness of the infinite cluster (see Lemma 3.3 and preceding 
discussion below). 

2. Statement of main results 

2.1. Ising and Ports models 

The ferromagnetic Ising model on the lattice L = I "  x 2g is described by the 
"spin"  random variables {Sx}x~L. Each Sx takes on the values __+ 1. The interac- 
tion between the spins is described by the Hamiltonian 

H=-�89 ~, Jx,y(SxSy-1) (2.1) 
(x,y) 

in which the sum is over nearest neighbor bonds (x, y) .  The couplings {Jx,y} 
are nonnegative (ferromagnetic) and may take different value on the T-bonds 
and the Z-bonds. I.e., 

j~,y=J'Jt, if (x,  y ) i s a  T-bond  
if (x, y )  is a Z-bond 

(2.2) 

where Jr_-> 0 and Jz > 0. We will assume that Jt > 0 and J: > 0 unless stated other- 
wise. Such a Hamiltonian is translation invariant (i.e., with respect to all lattice 
translations). 

Potts models are a generalization of Ising models where each spin variable 
can take on one of q distinct values. The basic feature of the interaction is 
that the energy between any fixed nearest neighbor pair of spins depends only 
on whether or not the spin values agree. When the interaction always favors 
agreement, the model is said to be ferromagnetic. 

Two convenient representations for the spin variables are as taking values 
in the set {1, 2 . . . . .  q}, or as unit vectors {el, e2 . . . .  , eq} pointing to the vertices 
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of a fixed ( q -  1)-dimensional " te t rahedron".  We will use the latter representation 
and use cr~EIR q- ~ to describe the state of a spin. For  q = 2 ,  the values 1 and 
2 or e 1 and e 2 correspond respectively to the values + 1 and - 1  for the usual 
Ising variables, S~. The inner product  of any two such vectors assumes only 
two values and satisfies 

where 
q - 1  1 ' q] 

6 . . . .  = ~ 1 ,  if crx=ay 
( 0, otherwise. 

A Potts model is described therefore by a Hamil tonian 

i-I = - Z . . . .  , -  = - Z 1) 

(x,r) (x,y) 
(2.3) 

with ,7 x , = [ q -  / 1/Jx y. \ The case q =  2 coincides with the previously defined Ising 

model. '  \ q / ' 
We denote by v~ the finite volume free b.c. Gibbs distribution whose configu- 

ration probabilities are proport ional  to exp ( - / - / )  with the sum in (2.3) restricted 
i denotes the finite volume " i "  to x, yeA,  where A is a finite subset of IL. VA 

( i= 1, 2 . . . .  , q) b.c. Gibbs distribution in which only x is restricted to A while 
% is set to ei for each y in A c, the complement  of A. The free and " i "  distributions 
all have limits v* as A - ~ L  where �9 =f,  1, 2 . . . .  , q [ACCN].  The expectation 
w.r.t, v* is denoted by ( -  5, .  The infinite volume quantities of pr imary interest 
to us are the magnetization 

M = (el" (rxSi 

(this quantity, which does not depend on x, is just (Sx)+ for q = 2 )  and the 
two-point function with * boundary  conditions, 

(which is just (Sx Sy),  for q = 2). 
Let z = l - - e  -Jr and 2 = l - e  -Jz. We shall use z and 2 instead of J~ and 

J~ as the parameters  which describe the interaction between two spins. The 
reader should keep in mind that the measure v* and quantities like M and 
( a x ' % ) ,  depend on the parameters  q, z and 2. However, we will write, for 
example, M as Mq:,a only when we think it is necessary. Some of the main 
results in this paper  are about  the Gibbs distributions v*. We state them as 
several propositions. 

In these propositions, there is a quantity qS(z', 2') defined as follows (see 
Sect. 2 of [ G N ]  for more details). Consider independent nearest neighbor bond 
percolation on 7Z z in which horizontal bonds are occupied with probabili ty 
z and vertical ones with probabil i ty 2. Then q~(r, ,~) is the inverse correlation 



Markov fields on branching planes 543 

length in the horizontal direction. Two inequalities for ~b [GN]  are the trivial 
one 

e x p ( -  ~b(% 2)) > z (2.4) 

and the less trivial, but still elementary one 

(1 -~)(1 _2)2 
exp(--r  2))> 1 ( 1 - 2 ( 1 - ~ ) ) 2  �9 (2.5) 

Proposition 2.1.1. If 
�9 k(1 + 2 + ~ ) <  1 - 2 ,  

then M = 0 and consequently the Gibbs distribution is unique. 

Proposition 2.1.2. If 

(2.6) 

k e-+('"x') > 1, (2.7) 
where 

r 2 
z ' -  and 2 ' -  (2.8) 

r+ (1 - - z )  q 2 + ( 1 - 2 )  q ' 

then M > 0 (and hence there is more than one Gibbs distribution). 

Proposition 2.1.3. If 

v ]//k(1 + 2 + ~  -t-2))< 1 - 2 ,  (2.9) 

then (~x" ~r):  --* 0 as 6 (x, y ) ~  oo. Consequently, if also M > O, then 

v: 4= 1 (v I +. . .  + vq). (2.10) 
q 

Proposition 2.1.4. If 
]//k e -~"~ ' )  > 1 (2.11) 

where z' and 2' are given by (2.8), then 

( a x . % ) : > e > O ,  for any x and y in IU 

Proposition 2.1.5. I f  2 > 0 and "c is close to 1, then ( M > 0 and) 

: 1 
v = (v l+ . . .+vq) .  (2.12) 

q 

Before we introduce the Fortuin-Kasteleyn random cluster models, we make 
several remarks about  the above propositions. 
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IV 

" X 

Fig. 1. A Schematic phase diagram. In region 
I, the Gibbs distribution is unique. In region 
II, there is tree-like nonuniqueness and in 
regions I I I  and IVplane-like nonuniqueness. 
In region IV, the free b.c. Gibbs dist. has 
been proved to be a mixture of the plus and 
minus b.c. ones 

1. Proposition 2.1.1 provides a lower bound _ra(2 ) for the curve between 
regions I and II of Fig. 1 with the endpoint properties 

1 (2.13) ~L(0)= 1,  _~L(0)=--OO, _ZL(1)=0 and _~L(1)-- 4 k '  

where ~(2) denotes the derivative of z(2). 
2. Proposition 2.1.2 provides an upper bound fc(2) for the curve between 

regions I and II. The quality of this upper estimate depends on how accurate 
a bound is used for ~b(v', 2'). The trivial bound (2.4) yields the result (also easily 

(or equivalently q ) implies obtained by other methods) that z '> k Z > k + q - 1  

M>0 .  The improved bound (2.5) for r 2') can be shown to give a fg(2) 
with 

fm(O)= k q ~L(O ) --2(k--l)  
+ q - - l '  - ( k - ~  ' 

(2.14) 

fL(1)=O and ~ L ( 1 ) = - - q 2 ( k ~ k l - - l ) .  

3. Note that (2.9) differs from (2.6) only in the replacement of k by ]/k. 
Proposition 2.1.3 provides a lower bound _rv(2 ) for the curve between regions 
II and III of Fig. 1 with 

1 1 
-cu(O)-v~, _~v(o)=-o% _~v(1)=o and _~v(1)= 4]//-s (2.15) 

For any given q > 1, when k is sufficiently large (depending on q) 

~L(O)<_vv(O ) and ~u(1)<~L(1)<O (2.16) 

and hence the lower curve is really below the upper curve for sufficiently large 
k. Note that for k=  2 (the smallest relevant value of k), the first inequality 
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of (2.16) is valid only for q < ( ~ / 2 - 1 ) - 1 ~ 2 . 4 1 ;  this includes the Ising model 
case where q = 2. 

4. Equation (2.11) differs from (2.7) only in the replacement of k by ]//k. 
Proposition 2.1.4 provides an upper bound ~v(2) for the curve between regions 
II and III of Fig. 1 satisfying 

q  v(O) : --  2 q / k -  1) 

"gv(1)=O and ~ v ( 1 ) = - q 2 ( / [ / / ~ ] / k l - 1  ) .  

(2.17) 

5. Proposition 2.1.5 states that 

f 1 v = - -  (v 1 + .. .  + v  q) (2.18) 
q 

when z and 2 are in the region IV of Fig. 1. We remark that it is natural 
to conjecture that the region IV should extend all the way down to region 
II; i.e., (2.18) should be also true in region III; however this has not been 
proved. 

2.2. F o r t u i n - K a s t e l e y n  random cluster  models  

Propositions 2.1.1-2.1.5 will be proved together with analogous results about  
the Fortuin-Kasteleyn (FK) random cluster models [KF, FK, F]. The FK models 
are dependent percolation models which are closely related to the Potts/Ising 
models introduced in the previous section but are defined with a real positive 
parameter q, not necessarily an integer. The F K  random cluster models are 
described by probability measures on the configurations of bond occupation 
variables, n =  {rib}, which take the value 1 - meaning the bond b =  {x, y} is 
occupied, or 0 - meaning b is vacant. For  a finite A, the free b.c. measure 
YA =/~q,~,~,a f (restricted to bonds with x, y both in A) has bond-configuration 
probabilities proportional to 

q~(,)zr (,)(l_z)la~ -~ (,)2r ~)(I_2)IAI ~r ~) (2.19) 

where OK(n) denotes the number of distinct clusters of sites (defined by the bond 
configuration), ]A ]z the number of Z-bonds of A, ]A [T the number of T-bonds 
of A, (gT(n) the number of occupied T-bonds of A and (ge(n) the number of 
occupied Z-bonds of A. 

For q = 1, this is just an independent bond percolation model; for q = 2, 3 . . . . .  
one has, for g any function of the spin variables in A, the identity 

(g (a) ) I,A = ~ #YA (n) EY. (g ((r)) (2.20) 
n 
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where for each conf igura t ion  n of bond  variables,  E,Y(-)  is a very simple average  
over  the spins o- - the spins cons t ra ined  to be cons tan t  on each cluster with 
the values for different clusters being independent  and  symmetr ic  (i.e., with all 
q values equally likely). A special case of (2.20) is 

(0"  x " ( T y ) f , A  ~-- [,2 f (X  ~ y )  (2.21) 

where x +-+ y denotes  the event  consist ing of those b o n d  conf igurat ions  in which 
x and  y belong to the same cluster. The  ana logue  of the Gibbs  dis t r ibut ion 
v*, * = 1, 2, . . . ,  q, of the Pot ts / Is ing  mode l  is the " w i r e d "  b.c. m e a s u r e / ~  (for 
nearest  ne ighbor  bonds  with x in A and any  y) in which Cg(n) is de te rmined  
by regarding all the sites in A c, as well as those sites in A which are connected 
to A c by an occupied path,  as connected.  The  wired version of (2.20) is 

(oo(O")>,,A = 2  fl~(n) E*(g(a)), * = 1, 2 . . . .  , q (2.22) 
n 

where E * ( - )  is defined similarly to E{ ( - - )  but  with ax set to e .  for every 
x in A c or  connected  by  an occupied pa th  to A c. 

F o r  q >  1, infinite vo lume  measures  #Y and /2 ~ exist IF, A C C N ] .  Again,  
p* (* = f  or  w) depends  on q, -c and  2. We will write /t* as #q:.:~ only when 
necessary. # :  and  #w are equal  for q = 1; in this case we will write them as 
P, the Bernoulli  p roduc t  measure.  Fo r  q = 2, 3, . . . ,  the following identities are 
valid: 

m = #~(x +-+ oo), (2.23) 

(a~. % ) :  = / ( x  ~ y), (2.24) 

((rx.ay)i=]Aw(x~--->y, but  xff ;oQ and y+o~)+l~W(x~-~.oo and y~-~ oo),(2.25) 

where x +-+ ~ (x + oo) means  tha t  the cluster of  x is infinite (finite). (For  fur ther  
discussion of these identities, see [ A C C N ]  and [ IN] . )  

We state our  results abou t  For tu in -Kas te l eyn  r a n d o m  cluster models  as 
several proposi t ions .  First  define 

O~(q, z, ).) = #~:,~(0~--~ ~ ) .  (2.26) 

In  all the following proposi t ions ,  q is assumed to be real and  > 1 and  * can 
be either f or  w. 

Proposi t ion 2.2.1. I f  (2.6) is satisfied, then O~L(q, Z, 2 ) = 0 ,  SO there is a.s. no infinite 
occupied cluster in L with respect to (w.r.t.) * 

Proposi t ion 2.2.2. I f  (2.7) is satisfied, then O~(q, z, 2)> O, and there is a.s. an infinite 
occupied cluster in 1L w.r.t. * #q:,2- 

Proposi t ion 2.2.3. I f  (2.9) is satisfied and O~_(q, z, 2)> O, then there are a.s. infinitely 
many infinite occupied clusters in IL w.r.t. * 
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Remark. The proofs of these propositions given below also show that when 
(2.9) is satisfied #* (x ~--~ y) --, O as 3 ( x , y ) ~  but when (2.11) is satisfied 
#*(x~--~y)>e>0 for all x, y. 

Proposition 2.2.4. I f  2 > 0  and z is close to 1, then there exists a.s. a unique 
infinite occupied cluster in L w.r.t. * # q ,  ~, .Z . 

3. Proofs of the results 

The identities (2.23)-(2.25) allow one to rewrite Propositions 2.1.1-2.1.4 as state- 
ments about FK random cluster models. Our strategy will then be to prove 
these statements as well as Propositions 2.2.1-2.2.3 by comparison to indepen- 
dent percolation where the analogous results were proved in [GN]. Proposi- 
tions 2.1.5 and 2.2.4 will require us to obtain some new results for the indepen- 
dent percolation case before appealing to a comparison argument for FK models 
(see Lemma 3.3). We first present the following lemma which is a consequence 
of Harris' original version [H] of the F K G  inequalities. It is also a special 
case of Fortuin's comparison inequalities between #* and #$ [F, ACCN].  Fol- 
lowing standard practice, we say an event A is increasing if its indicator function 
is nondecreasing in each occupation variable n b and then we indicate stochastic 
ordering between probability measures # and #' by writing # ~ #' (resp. # >> #') 
if # (A)< #' (A) (resp., # (A)__> #' (A)) for every increasing event A. 

Lemma 3.1. For q > 1, let * #q,r be a free ot" wired b.c. measure of  the FK random 
cluster model in I .  and let Pr be the corresponding independent percolation mea- 
sure (for q = 1). Then 

(a) #* ~, ~ ~ P~, ~. 

and 

(b) #*,~, z > P,,, z" 

where z' and 2' are given by (2.8). 

Proof of Propositions 2.1.1 and 2.2.1. We first prove Proposition 2.2.1. By Lem- 
ma 3.1, 

O~*(q, z, 2) = #*,~,~(0 ~-~oo) <= P~,~(O+-*oo). 

From Proposition 1 of [GN], the RHS vanishes whenever (2.6) holds. So there 
is a.s. no infinite occupied cluster in ]L. This proves Proposition 2.2.1. Proposi- 
tion2.1.1 then follows because Mq,~,~=O~.(q,z, 2) (see Theorem2.4(b) of 
[-ACCN]). [] 

Before proceeding with the proof of Propositions 2.1.2 and 2.2.2, we introduce 
the following lemma. 

Lemma 3.2. Suppose q > 1 and * = f  or w, then 

#*(there exists an infinite cluster)=O or 1. 
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Proof We will only prove the case of * = w. The proof is similar for �9 = f  Let 
A denote the event that there exists an infinite cluster, and let c~ = #W(A). Suppose 
that 0 < c~ < 1. Then we could decompose ~t w as 

# ~ = ~ + ( 1 - c ~ ) ~  

w . . . .  # (B A) . . . .  #W(Bc~A c) 
where/~1 t~ )=  ~ and #2(t~)= ~ . By the F K G  inequality proper- 

ty of iz w,/z~ >> #w; on the other hand, #w as a Gibbs distribution, is the maximal 
one (see, for example, Theorem A.2 of [-ACCN]), so ~ < #~ and hence #~ = /2  ~', 
which implies that ~ = i, a contradiction. This finishes the proof of the lem- 
m a .  [ ]  

Proof of Propositions 2.1.2 and 2.2.2. We first prove Proposition 2.2.2. Again 
by Lemma 3.1, 

OUq, ~, ,~) = ~* ~,~(0,-,oo)___ P~, ~: (0 ~oo) .  (3.1) 

From Proposition 2 of [GN],  the RHS of (3.1) is positive when (2.7) holds. 
Hence by Lemma 3.2 there is a.s. an infinite occupied cluster in 11.. Proposi- 
tion 2.1.2 follows from the above and (2.23). [ ]  

Proof of Proposition 2.2.3. By Lemma 3.2 and the assumption of the proposition, 
we have that 

#q,~,~* (there exists an infinite cluster)= 1. (3.2) 

So to prove the proposition, it is sufficient to show that when (2.9) holds, 

#q,~,~* (there are exactly i infinite clusters) = 0, for any positive integer i. (3.3) 

Now it follows from (3.2) and the ;g-translation invariance of/~* that 

/%~,~* (there is a Z-line in L which has infinitely many points 
touching an infinite cluster)= 1. (3.4) 

Denote the event in (3.4) by A and the one in (3.3) by 1; then 

#q,,, z (I) --/~q,,, x (I c~ A) 

=< #q,* ~, z (there is a 2g-line in 112 which touches a single 
infinite cluster infinitely often) 

NP,, z (there is a ;g-line in L which touches a single 
infinite cluster infinitely often). (3.5) 

By Lemma 3 and Proposition 4 of [GNJ, the last probability in (3.5) vanishes 
when (2.9) holds. This completes the proof. [] 

Proof of Proposition 2.1.3. By (2.24) and Lemma 3.1, 

vf (a~ . ay) - (a~.ay) f = #f,~,z(x +--, y) < P:,~(x ~ y). (3.6) 
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By Lemma 3 of [GN],  the last probability in (3.6) tends to zero as 6(x, y)---,oo 
whenever (2.9) holds. Now we turn to the proof  of (2.10). By (2.25) and the 
F K G  inequalities, we have for i = 1, 2 . . . . .  q, 

v'(ox-~y)--- <ox. G,>i 
=#W(x+-+y, but xq;oo  and y~Z~oo) 

+#W(x+-+oo and y+--,oo) 

=>M2>0. 

This together with the just proved fact that vI(a~.ay)~O as 6(x, y )~oo  yields 
(2.10). [] 

Proof of Proposition 2.1.4. By (2.24) and Lemma 3.1 

(a~. try)s =/~,  ~, x (x ~ y) > P~. z, (x ~ y). (3.7) 

By Proposition 5 of [GN],  there exists a.s. a unique infinite cluster for the 
independent percolation model with parameters z' and 2' whenever (2.11) holds. 
So by the Harris (FKG) inequalities [H], 

P~,,~,(x+--~y)>=P~,~,(x+~,oo and y+-+oo)>[P~, ~,(x+-+oo)]2>0. (3.8) 

The proposition follows by combining (3.7) and (3.8). [] 

Before proceeding to the proofs of Propositions 2.1.5 and 2.2.4, we introduce 
the notion of a "finite island" property. We say a bond percolation model 
has the finite island property if the removal of all sites in all infinite occupied 
bond clusters leaves only finite site components. More precisely, if we color 
each site which belongs to any infinite occupied bond cluster red and color 
all the others white, we can define I(x), the (white) site component  co n t a in in g  
x by 

I (x )=  {yelL: y is connected to x by a path of white sites}. (3.9) 

I(x) is empty if x is red; otherwise I(x) includes x. The model is said to have 
the finite island property if for each site x in lk, I(x) is finite. 

Lemma 3.3. For independent percolation on 1L or for the FK random cluster 
model on IL with q > 1, if ~ is close to 1, then the model satisfies the finite island 
property almost surely. 

The proof  of this lemma will use the following fact. For  any site x = (t, z) 
in IL, there are k + 1 bonds on the tree T x {z} = {(t', z): t ' eT} passing through 
x. Each bond leads to a "one-sided" tree we call a branch of x. The original 
T may be thought of as composed of k +  1 such branches joined together by 
the site t and k + 1 bonds. Let S be any finite subset of sites in 1k. For  any 
x=(t ,  z)ES, we call x a boundary point of S if x has a branch in • x {z} which 
contains no point in S, and otherwise call x an interior point of S. Denote 
by 0(S) the set of boundary points of S and by i(S) the set of interior points 
of S. (Note: this is different than the usual definition of boundary.) 

Lemma 3.4. For any finite subset of sites S ~ 1L, ] ~ ( S) I > [ i ( S) I. 
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Proof If ] S] = 1, the only point of S is a boundary point and there is no interior 
point, so the lemma is true. Assume that the lemma is true for [S]__<m. When 
Is I= m + 1, it is clear that S has at least one boundary point, say x. Consider 
the two sets 8 ( S -  {x}) and 8(S). It is not hard to see that 

~(s) -~(s -{x})={x}  
and 

IS(S-{x})-8(S)I=O or 1. 

If 18 ( S -  {x}) - 0 (S)] = 0, then 8 (S) = 8 ( S -  {x}) w {x} and i(S) = i ( S -  {x}), so 

18 (S)[ = 18 ( S -  {x})[ + 1 > l i ( S -  {x})l + 1 = l i(S)[ + 1. (3.10) 

If 18 ( S -  {x}) - 8 (S) I = 1, define y by {y} = 8 ( S -  {x})-  8 (S); then 
8(S)=8(S-{x, y})w {x} and i(S)=i(S-{x, y})w {y}, so 

lS(S)[=lS(Sl{X,y})l+l>li(S--{x,y})[+l=]i(S)l. (3.11) 

The lemma is proved by combining the two cases (3.10) and (3.11). [] 

Proof of Lemma 3.3. We first prove the independent case. The FK model result 
then easily follows by the second part of Lemma 3.1. In order that 

P(co: [I(x)l < oo for each x~ll ,)= 1, 

it is sufficient that E(II((r 0))[)< 0% where E(.) is the expectation w.r.t. P and 
I((r 0)) is the white component of the origin. 

E(lI((qS, 0))l)= ~ P(there is a self-avoiding path {xi: i=0,  1, ..., n, 
ys~L 

with Xo =(~b, 0), x,=y} such that xi+/~oo in IL for each i) 

) _ _ < ~ P  ~ {x~-,oo in IL} , (3.12) 

where the inner sum of the rightmost expression in (3.12) is over self-avoiding 
paths S = {x~: i = 0, 1, ..., n} with Xo = (q~, 0). Now we will estimate the probability 

n + l  
in (3.12). By Lemma 3.4, one has that 10(S)l>~-.  For each x~8(S), there 

is a branch of xi which contains no point of S, which we denote Bxi. (If xo(~8(S), 
we define Bxo to be some fixed branch of Xo.) Then the events {xi~boc in Bx,}, 
for xi~8(S) are independent. So 

n 

] xieOt~j 

<P( ~ { x i ' ~  in Ux,}) 
x ,  sO(S) 

< [P(xo#;Oo in Bxo)](n+l)/2 
= [ l / ~ ]  "+1 (3.13) 
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where ~(z)= P(xo*/+oo in Bxo). Denote by N(n) the number of self-avoiding paths 
on IL of length n starting from the origin; then we have 

N(n)<(k + 3)(k + 2) "-1. (3.14) 

From (3.12)~3.14) we have 

E(lI((q~, 0))1) < ~ (k+3) (k+2)  "-x [ ] f~z) ]  "+1 �9 
n = O  

Since ~?(z)--*0 as z ~ 1, we can take z sufficiently close to 1 so that 

1 
t/(z) < (k + 2) 2 ' 

and hence E(I I ((qS, 0))[)< oo. This completes the proof. [] 

Proof of Proposition 2.2.4. Let A = {there exists an unique infinite occupied clus- 
ter in IL}. Note that A itself is not an increasing event but A = A r {co: [ I (x) I < oo 
for each xelL} is increasing. Thus by Lemma 3.1, it suffices to prove P~, z,(A)= 1 
for 2 '>  0 and z' close to 1. This follows from Proposition 5 of [GN]  and Lem- 
ma 3.3. [] 

Proof of Proposition 2.1.5. The proof  is based on an analysis of clusters in the 
FK model. Given an FK (bond) configuration, corresponding site configurations 
are generated by assigning spin values independently and symmetrically to each 

(bond) cluster; i.e., by assigning with probability 1 all sites in the same (bond) 
q 

cluster one of the q spin values. By Proposition 2.2.4 and Lemma 3.3, when 
2 > 0  and z is close to 1, the FK model satisfies the finite island property and 
the infinite occupied (bond) cluster is unique. So there is only one infinite site 
cluster with like spin values which " t raps"  IL; i.e., the complement of this infinite 
site cluster contains only finite connected components. 

Let Ai be the event that the infinite trapping site cluster has spin value 

i, i =  1, 2 . . . .  , q. Clearly the A~'s are disjoint and vS(A3= 1 for each i. So we 
can decompose v s as q 

n ,  1 [vf(AlnB) vf(AqnB)] 
vS(B)=vf(AlnB)+'"+vS(Aqn~)=~[ ~U(~ +"'+ v~(Aq) ]" 

vS(AinB) 
vf(Ai) is a Gibbs distribution, and is equal to vi(B) by a variant o f L e m m a  1 

of [Ru] (see also Lemma 1 and Proposition 4 of [A]). This completes the 
proos []  
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