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Summary. We consider nonparametric estimation of hazard functions and 
their derivatives under random censorship, based on kernel smoothing of 
the Nelson (1972) estimator. One critically important  ingredient for smooth- 
ing methods is the choice of an appropriate bandwidth. Since local variance 
of these estimates depends on the point where the hazard function is estimat- 
ed and the bandwidth determines the trade-off between local variance and 
local bias, data-based local bandwidth choice is proposed. A general principle 
for obtaining asymptotically efficient data-based local bandwiths is obtained 
by means of weak convergence of a local bandwidth process to a Gaussian 
limit process. Several specific asymptotically efficient bandwidth estimators 
are discussed. We propose in particular an asymptotically efficient method 
derived from direct pilot estimators of the hazard function and of the local 
mean squared error. This bandwidth choice method has practical advantages 
and is also of interest in the uncensored case as well as for density estimation. 

1. Introduction 
We consider the problem of local bandwidth choice for the nonparametric kernel 
estimation of a hazard function and its derivatives under censoring. Local band- 
width choice is of specific interest here since the variance of such an estimator 
depends critically on the number of observations available above the point 
where the hazard function is to be estimated. The variance of the hazard estimate 
goes to infinity as the last observation is approached; on the other hand it 
is well known that for the kernel method the bandwidth regulates the tradeoff 
between bias and variance (see Rosenblatt, 1956, 1971, and Parzen, 1962, for 
density estimation). Therefore, when estimating the hazard function or its deriva- 
tives, bandwidths should be chosen locally, adapting to the local Mean Squared 
Error  (MSE). The estimation of derivatives of the hazard function is of interest 
e.g. in order to track maxima or minima via zeros of a derivative. Bandwidth 
choice for derivatives is especially delicate, since there the variance depends 
even more critically on the local bandwidth. We will show (Theorems 1 and 
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2) that locally adaptive bandwidth choice is indeed feasible and propose asymp- 
totically efficient methods to achieve it. In particular, a pilot estimation approach 
is proposed, where in a first step estimators of finite bias and variance are 
found based on pilot estimates of relevant quantities. Then the minimizer of 
the resulting estimate of finite mean squared error is the estimated optimal 
bandwidth. This new method of bandwidth choice is not only efficient, but 
also practically feasible and applies as well to the density estimation problem, 
both in censored and uncensored cases. 

As kernel estimator for the hazard function or its derivatives, we consider 
the convolution of the Nelson (1972) estimator with a kernel function (cf. (2.3)). 
When the target of interest is the hazard function itself, i.e. when v = 0, properties 
of estimator (2.3), like asymptotic normality, were investigated by Ramlau-Hau- 
sen (1983), Tanner and Wong (1983) and Yandell (1983), using different tech- 
niques. Our analysis makes use of an asymptotic representation (2.8) of estimator 
(2.3) and is a consequence of an asymptotic representation of the Nelson estima- 
tor (cf. (2.6)) as a sum of i.i.d, random variables due to Lo and Singh (1986). 
A similar representation for a different hazard function estimate was studied 
by Lo, Mack and Wang (1989). Another representation for the kernel density 
estimate under censoring is given in Diehl and Stute (1988), and is used to 
establish the exact rates of pointwise and uniform convergence as well as asymp- 
totic distributions. This representation together with the oscillation behavior 
of empirical processes was also applied by Stute (1985) to obtain a result similar 
to Theorem 1 for the case v = 0 and k = 2. Our approach is different, since the 
representation (2.8) allows us to take moments on the remainder term and there- 
fore to compute actual variance and bias of the estimator (2.3) as well as to 
establish weak convergence of a bandwidth process to a Gaussian limiting pro- 
cess in a straightforward way. In addition, for v=0,  the remainder term of 

o[l~ our representation is \ nb ] a.s., whereas the remainder term in the above 

,/l~ ~ - b ~  -2-1~ n /] paper is Ok t-(bloglogn) 1/z a.s., b being the bandwidth of the kernel 

estimator. 
Efficient local bandwidth choice based on weak convergence was discussed 

for kernel density estimates by Abramson (1982) and Krieger and Pickands 
(1981) and for nonparametric kernel regression in the random design case by 
Mack and Miiller (1987). Global bandwidth choice for density estimation under 
censoring was considered by Marron and Padgett (1987). A review on nonpara- 
metric density estimation under censoring is given in Padgett and McNichols 
(1984). 

The paper is organized as follows: In Sect. 2, notations and kernel estimator 
are introduced, and the asymptotic representation of this estimator is derived. 
The main results on weak convergence of a bandwidth process and feasibility 
of local bandwidth choice are stated in Sect. 3. Some further remarks and discus- 
sions are compiled in Sect. 4, and proofs and auxiliary results are given in Sect. 5. 

2. Preliminary results and asymptotic representation 

In order to write down the estimator we introduce some notation. 
We asume that T1 . . . .  , T, are i.i.d, lifetimes with distribution function (d.f.) 

F, and that C1 . . . . .  Cn are i.i.d, censoring times with d.f .G.  The Ci, T~ are 
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assumed to be independent, and the actual observations are (X~, 6~), i=  1... n, 
where X~=min(Tz, Cz) and 6i=l(x,=r,} is an indicator of the censoring status 
of Xz. Then X~ are i.i.d, with d.f. L which satisfies L =  FG, where for any d.f. 
E, we denote by E =  1 - E  the corresponding survival function. Further let 
H(x) = --log(F(x)) be the cumulative hazard function. 

Our aim is to estimate h(x)=H'(x)=f(x)/F(x), the hazard function (where 
f=F'  is assumed to exist), or more generally some derivative h(~)(x), v>O, on 
an interval [0, Tj, such that L(T)< 1. A basic assumption we make for all of 
the following is: 

For some k>=v, h~Cgk([O, T]), (2.1) 

i.e. h is k times continuously differentiable on [0, T]. 
Denote by Ll(x)= P(X~ < x, 6~ = 1) the subdistribution function for the uncen- 

sored observations, and by 

Ll"(x) = n +  1 l~x~_<x.~,= 1}, 
i = 1  

the corresponding modified empirical subdistribution function. Similarly, denote 
the modified empirical distribution function of L(x) by 

L,(x)- n + 1 l~x,<=x}. 
i = 1  

Using the fact that 

dL a (t)/L(t) = h (t), (2.2) 

the Nelson (1972) estimator of H(x) is 

H,(x) = ~ [1--L,(y)] - tdLa, (y) .  
0 

As estimator of h(~)(x) we consider the following kernel estimate, which is a 
convolution of the Nelson estimator H,  with an appropriate kernel function 
Kv: 

x--u 1 
h~)(x)=~q-+l S K ~ ( ~ ) d H , , ( u ) = ~  ~ K ~ ( ~ ) 6 ~ o / ( n - i + l ) .  

i = 1  

(2.3) 

Here, Xt~) are the order statistics of Xi, and 6t~) is the concomitant of Xt0. 
Further, b = b (n) is a sequence of bandwidths for which we require 

nb 
b--*0, nbZ~+t--*oo, (logn) 2 ~oo, as n--*oo, (2.4) 
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and Kv is a kernel function of bounded variation and is of order (v, k) with 
support [-- 1, 1], i.e. satisfying 

K~ ~ M/,(~. k ={f~L2([  - 

(-1)~v! j=v } 
1, 1]): ~f (x )xJdx= 0 O < j < k , j # v  . 

# 0  j = k  

(2.5) 

When estimating near 0 or T, there usually will occur boundary effects due 
to the fact that the "effective support" Ix - b, x + b] of the kernel is not contained 
in [0, T]. These boundary effects can be avoided in the finite sample situation 
by modifying estimators (2.3) in such a way that near these end-points kernels 
with asymmetric supports are used in complete analogy to nonparametric regres- 
sion (see, e.g., Rice, 1984); we will not go into the details here. Asymptotically, 
since L(T)< 1, we will not encounter boundary effects at T since b--*0, but 
there are still such effects when estimating at 0. Therefore, we assume that 
for local considerations, xe(0, T], and uniform and global considerations will 
always be made with respect to a compact subset C in (0, T]. 

Let 

g(x) = [. (L(x))- 2 aLl(s), 
0 

and for positive reals z and x, and 8 -  0 or 1, let 

~(z, 6, x)=g(min(z, x ) ) -  l~__<x,~= l~/L(x). 

Observe that 

and 

E(~(X, ,  ,~, x))=O 

cov(r gi, s), r 61, t))= g(min(s, t)). 

It follows from the proof of Theorem 1 of Lo and Singh (1986), that 

H.(x)-H(x) -1~ ~ +(X,, 6+, x)+r.(x), 
- - n  . 

t = l  

(2.6) 

where 

sup Ir,(x)l = O {(log n/n) 3/4} almost surely. 
O<_x<-T 

The remainder r,(x) is further improved by Lo et al. (1989) to the order of 
O (log n/n) a.s. More specifically, for any fl > 0 there exists c~ > 0 such that 

P{ sup [r,(x)[>~(logn/n)}=O(n-P). 
O<_x<_T 

(2.7) 

The following asymptotic representation is the base of our considerations. 
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Asymptotic representation. There exists a decomposition 

~)(x)  = h (~)(x) + fin (x) + an (x) + en (x) a.s., 

where 

is the bias, 

1 
ft, (x) = ~ ~ H (x -- b y) dK~ (y) - h (~) (x) 

527 

(2.8) 

(2.9) 

V,,k = ~ (K~ (u)) z d u, (2.14) 

the decomposition (2.8) provides the following asymptotic limit distribution for 
any x in (0, T] (see Sect. 5 for details on the proof): 

Lemma 1. Assume that v < k and that 

d =  lim nb 2k+1 
n ---r ~ 

and 

1 
a , ( x ) -  nb~+ 1 ~ ~ ~(X i, 6 i, x - b y ) d K v ( y )  (2.10) 

i = 1  

is the stochastic component of ~V)(x), and e.(x) is the remainder of the approxima- 
tion, satisfying 

/ log n \ 
sup ] e . ( x ) 4 = O l ~  ) a.s. 

O < x < T  

and 

E(le,(x)lr)= 0 ((n~7_))logn for r = l ,  2. (2.11) 

Proof The asymptotic representation (2.8) is a result of (2.6), (2.7) and integration 
by parts. Observe that ~'s are bounded random variables on I-0, T], H is bounded 
on [0, T] and from the definition of H,,  H , (x )<  l + l o g n  for all x. Therefore, 
(2.6) implies that r , (x)=O(logn)  for all x in [0, T]. This fact and (2.7) thus 
imply (2.11). [] 

A further assumption we make is 

LECg([0, T]), (2.12) 

i.e. L is continuous on [0, T]. Then, writing 

Bv, k = (( -- 1)k/k t) ~ K~ (u) u k d u (2.13) 
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exists for some 0 <= d < oe. Then 

(nb2V+l)l/z(ff~ D-~A/'(dl/2h(k)(x)B~,k, V~,kh(X)/L(x)). (2.15) 

From (2.15) one can derive the asymptotic MSE of hXV)(x). We assume that 
h(k)(x) + 0 in all of the following, and will discuss this assumption further in 
Sect. 4. Minimizing the asymptotic MSE with respect to b, yields what we define 
as optimal local bandwidth b* (x)s It should be noted that in the proof of Lem- 
ma 1, (5.1) to (5.3), the actual variance and bias of ~V)(x) are computed, so 
that b* (x) also minimizes the direct MSE defined via moments (for the distinction 
between asymptotic and actual MSE compare, e.g., Lehmann, 1986, Chapt. 6.1). 
We find 

b*(x)  = S*(X) n -  1/(2k+ 1) 

where 

=[_2v+ 1 h(x) V~,k ]1/(2k+ t) 
s*(x) [2(k-v) L(x) (h(k)(~)B~,k) 2] (2.16) 

An obvious problem for data-adaptive local bandwidth variation is that 
s* depends on the unknowns h, h (k) and L. This problem will be addressed 
in the next section. 

3. Main results 

Denote the kernel estimate (2.3) with local bandwidth b(x)= s(x)n-~/(2k+ ~) by 

1 " ( x - X < i )  
~(v)(x, S) = [SH- 1/(2k+ 1)iv+ 1 i~_l K~ sn-  1/(2k+ 1)] ~<i)/(n-- i+  1). (3.1) 

We show in Theorem 1 that any local bandwidth estimator ~(x) satisfying $(x) 
--* s* (x) in probability is asymptotically efficient in the sense of Theorem 1 below. 

The proof of Theorem 1 relies on the weak convergence of a bandwidth 
process which is of interest in its own right and is given in the following lemma. 
Here we choose Sa, Sb such that O<S,<S*(X)<Sb< o0. The proof is in Sect. 5. 

Lemma 2. I f  Kv is Lipschitz continuous, k > v, then the processes 

q,(x, s)=n (k-v)/(2k+ 1)(h'(V)(x, s)-h(~)(x)), ssEs,, Sb], 

for all xe(O, T] converge weakly on cg([s a, Sb]) to a Gaussian process tl(x, s) 
with 

E(rl(x , s))=s k vh(k)(x) (-- 1)k [ K (u] uk du 
k! ~ ~'" 
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and 

c~ sl)' tl(x' s2))= s]+ lls~z + l h(x)L(x) S K~ ( ~ )  K~ (~2) du. 

Theorem 1. Assume that K~ is Lipschitz continuous and that k> v. For any local 

bandwidth estimator g(x) satisfying ~(x) P-% s*(x) it then holds, that asymptotically, 

( n ( k  - 0/(2 k + 1) (h ' (v )  (X, S) - -  h (v) (x))) ~ ~f (n (k ~)/(2 k + a)(h(~)(x, s*) -- h (~) (x))) 

,.~Ar (s,k_~ h(k)(x) B~,k ' h(x) ) 
L ( x ) s ,  2~+l  V~,~ , 

i.e., the hazard function estimator [~)(x, ~(x)) has the same normal limit distribution 
as an estimator supplied with the optimal bandwidths, ~V)(x, s*(x)). 

Proof According to Slutsky's theorem and Lemma 1 it remains to show that 

n (k-v)/(2k+ 1)(~(v)(x, ~)--~(V)(x, S*))~ 0 in probability. 

This follows by a standard argument from Lemma 2, since the limiting process 
is continuous. []  

One way to construct a consistent estimate ~ of s* is to estimate h, h (k) 
and L consistently in (2.16). Here the following result is helpful, which for v < k 
is a consequence of Lemma 1. 

Lemma 3. Under the assumptions of Lemma 1, it holds for any xe(O, T]: 

I f  d>O and v<k, ~V)(x)&h(~)(x). (3.2) 

n b  k + 1 
I f  nb 2k+ 1 ~ 0% and ~ ~ Go Ok)(x) P--%h(k)(x). (3.3) 

Proof We observe that d > 0 implies that n b 2~ + 1 ~ o9, from which (3.2) follows 
via (5.1) and (5.3) in Sect. 5. In case that v=k, the variance of the estimator 
is O(1/(nbZk+X)), and the bias (through continuity of h (k)) is o(1), which implies 
(3.3). []  

Since obviously L,(x)~  L(x) in probability, we consequently have available 
a consistent estimator ~(x) of s* (x) as 

A �9 f 2 v + l  h(x) Vv, k ]a/(2k+l) 
S(X)=[Z~--V) L,(X) (h'(k)(x~,k) 2] (3.4) 

The data-adaptive procedure (3.4) is asymptotically efficient but might encounter 
some difficulties in practical application owing to the fact that h(k)(x) has to 
be estimated; estimators of h(k)(x) might be unstable for small sample sizes. 
Asymptotically, however, this would not cause any problem. 

Another method which avoids estimation of derivatives is to estimate in 
a first step, for v=0 ,  bias and variance directly, using a consistent pilot 
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estimator of h and then in case that v > 0  to apply in a second step the "factor 
method"  described in Mfiller, Stadtmfiller and Schmitt (1987), which relates 
optimal bandwidths for v--0 and for v > 0  by a factor as explained below in 
(3.9). In order to estimate the bias (as a function of b) for v = 0 (see (2.9)), 

1 
fi(x, b )=~ ~ H (x--b y) dKo(y)--h(x), 

where x is in a compact subset of (0, T], we propose 

fl(x, b) = ~ ~ ( x -  by) Ko (y) d y - ~(x). (3.5) 

For  the variance we use the analogous estimate 

e(x, b ) = ~ I  Ko(y) ~ &x-by) L--,(x-- by) dy. (3.6) 

Note that fl, ~ can be readily evaluated numerically by discrete approxima- 
tions to these convolution integrals, e.g., application of the fast Fourier transform 
would allow for fast computation. If in these estimators/~ a n d / , ,  are replaced 
by the true values, they yield closer approximations to the leading convolution 
integrals defining variance and bias than the asymptotically leading terms in 
the limit n ~ o o  as given in (2.15). Our proposed local bandwidth estimate for 
v = 0 is then obtained as minimizer of 

MSE(x, b)=~(x, b) + fl2(x, b) (3.7) 

with respect to b, which we denote by ~o- 
In order to obtain the local bandwidth estimate in case that v > 0, we apply 

a kernel Ko of order (0, k) to estimate h(x) and a kernel K~ of order (v, k) 
to estimate h(~)(x). For  the corresponding optimal local bandwidths 

b*(x) [ 2 j + l  h(x) V~,k ]l/(2k+l) 
= [-2 (k---)) L(x) (h (k) (x) B~, k) 2 n , j = O, v, 

(3.8) 

it holds according to (2.16) that: 

. . ,  , [ k ( 2 v + l )  V~ k ~2 ,,1/(2k+1) 
, _ , - o , k ~  = b * ( x )  d~ ,k ,  (3.9) 

where Bo, k and Vo, k are defined as in (2.13) and (2.14). 
The factor d~,k on the right hand side of (3.9) depends only on v, k and 

the kernel functions K o, K~ and is therefore known. It follows, writing b* 
= S v*/'1- i / ( 2 k +  1), bo* = S 0. n -  1 / (2k+  1), that goOS * in probability implies god~,k~s* 
in probability, if appropriate kernels are chosen. Therefore it satisfies for the 
current proposal to consider local bandwidth choice for v=0.  Once this leads 
to an efficient procedure, an efficient procedure for v > 0 will also be available. 
It remains to be shown that procedure (3.7) for v = 0  indeed leads to efficient 
curve estimates in the sense of Theorem 1. 
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Theorem 2. Let ~ be a bandwidth sequence satisfying (2.4) and 

n~2k+2 --+ O0 (3.10) 

and assume that Cc (O ,  T] is a compact set and that x ~ C  is given. Assume 
that [i in (3.5), (3.6) employs bandwidth ~ and a kernel of order all{o, k which is 
k times continuously differentiable, and that if v > O, ~ )  is to be estimated using 
a kernel of J/Qk- Let ~o(X) be the minimizer of (3.7) on an interval Eb ~ b(2)], 
where b ~ D 2~ satisfy (2.4), and define (see (3.9)) 

& (x) = ~o (x) dr, k = s~ (x) n-1/(2 k +1) (3.11) 

Then it holds that 

P * g~(x)~s~ (x), 

i.e., this method of local bandwidth choice for [;[(~) leads to asymptotically efficient 
estimates. 

The proof is postponed to Sect. 5. It is based on a uniform convergence 
result for kernel derivative estimates of hazard functions (Lemma 4), which is 
given in Sect. 5. 

4. Discussion 

1. It should be noted that although our proposed method (3.7), (3.11) of local 
bandwidth choice depends on pilot estimators ~ for which a preliminary band- 
width has to be employed, choice of this preliminary bandwidth is not critical 
as long as this bandwidth is somewhat oversmoothing according to requirement 
(3.10). Our method of local bandwidth choice can also be adapted for density 
estimation and nonparametrie regression; for fixed design nonparametric regres- 
sion, compare Mfiller (1985). 

For instance, in the case of density estimation with or without censoring, 
we can consider local bandwidth choice for the estimator 

1 

where F, is the empirical distribution function in the uncensored case and the 
Kaplan-Meier estimator in case of censoring. Results analogous to Theorem 
1 and 2 can be obtained for this situation, where our estimators for asymptotic 
bias and variance are 

~](x, b ) = ~ f ( x - b y ) K ( y ) d y - f ( x ) ,  g(x, b ) = ~ I K ( y ) Z f ( x - - b y ) d y .  

Here again, f is a pilot estimator of f The local bandwidth estimator is then 
defined as the minimizer of 

MgE(x, b)=g(x, b)+/~2(x, b), 
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as before, and this method will be efficient under analogous conditions as in 
Theorem 2. 

2. In our analysis we assumed that at the point x where the hazard function 
h is to be estimated, it holds that h(k)(x)4= 0. This assumption is necessary in 
order to obtain the leading term for the bias and to obtain a proper minimizer 
of the mean squared error, and therefore the optimal rate of convergence. This 
is also reflected by the fact that h (k) (x) appears in the denominator  of the optimal 
bandwidth s* (2.16). In case that h(k)(x)=0, according to (5.1), the bias fin(x) 
=o(bk-~), while the variance (5.3) remains unchanged (The same is true if a 
kernel of an order higher than k is used). Then asymptotic choice of b ~ n-  1/(2 k + 1) 
yields MSE = o(n-2(k-~)/(2k+ 1)). Although Lemma 2 remains valid, the theorems 
do not and an asymptotic MSE minimizing bandwidth cannot be identified. 
However, it is easy to see that (5.9) still holds, so that consistent estimators 
of MSE will remain available, and these can be minimized to define finite sample 
bandwidth choice. Then, assuming b0 is the (possibly non-unique) minimizer 
of MSE, and/~ the minimizer of MSE, such that b0~[b (1), b(2)], it follows from 
(5.9) that 

M S E ( ~  1 MSE(b0) 
MSE(bo) = MSE(bo) = 1 + or(l), 

which provides some asymptotic motivation for this procedure even in case 
that h (k)(x) = 0. 

3. Among asymptotically efficient bandwidth estimators there could still be 
differences, in particular with respect to the finite sample behavior. For  instance, 
an alternative to our proposed estimator 6o which was defined as minimizer 
of estimates of the finite MSE (3.7) is method (3.4), which is obtained by minimiz- 
ing estimates of the leading terms of asymptotic MSE (2.15) and was also shown 
to be asymptotically efficient. If we only admit k continuous derivatives for 
h, the quotients [(estimated bandwidth)/(optimal bandwidth)] are (1 + %(1)) for 
both methods, and the %(1) term cannot be improved; the reason is that then 
fftk)(x) --* h(k~(x) in probability uniformly, without the possibility of assessing the 
rate over this class of functions. However, apart from these asymptotic considera- 
tions, it is clear that estimator (3.7) seems to be close to minimizing the finite 
MSE, since the approximation step involved in the asymptotic arguments leading 
to, e.g., (3.4) is avoided. Further, this method only requires estimators of h 
itself and not of h (k). Especially when higher order kernels (k > 2) are used, this 
is a clear advantage. 

4. The algorithmic implementation of our proposed method still requires 
a number of choices to be made. These concern b, the pilot bandwidth (see 
Theorem 2) and b 1, b 2, the bounds between which a minimizer is sought. 

For  the choice of ~, a number of options are available, and it will depend 
on the specific situation which of these will be the most appropriate one. Once 
b" is found, it is recommended to choose b(1)= 0.5 g, b ~2) = 2.0 g. This choice proved 
to be satisfactory in nonparametric regression. It is also advisable to smooth 
the chosen local bandwidths /~(x) over x, if global curve estimates with local 
bandwidth choices are desired, since otherwise random fluctuations in 6(x) will 
give rise to oscillations in estimated curves, with the possible effect of disturbing 
the aesthetic appeal of the estimated curve. 
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For the choice of b, we recommend the following options: 
a) Application of a global bandwidth choice criterion like (modified) cross- 

validation; such a criterion was discussed for the estimation of densities under 
censoring by Marron and Padgett (1988). 

b) Choose a paratnetric pilot by assuming initially that the survival times 
follow a common model, say exponential or Weibull. A maximum likelihood 
fit of such a model would then first be obtained. Then the fitted model acts 
as ~(-) in (3.7). Comparison of this pilot estimator with the final kernel estimator 
can also be applied to check goodness-of-fit of the pilot model. 

c) Another possibility is to find b such that b and the derived bo do not 
differ much. This would indicate that b is already close to optimal. Such "fixed 
points" might be obtained by iterating the procedure. 

It should be noted that according to Theorem 2, some oversmoothing in 
the pilot estimator is desirable, i.e., b should rather be chosen larger than optimal. 
For instance, method b) above would achieve this, since parametric pilots in 
general would be smoother than the actual hazard functions. Theorem 2 also 
shows that efficiency can be achieved for a large class of pilot bandwidths b'. 
This, of course, does not mean that choice of ~ would not matter for the practical 
performance of the method. Which of the considered specific algorithms will 
prove most successful remains to be investigated. A limitation for bandwidth 
choice to keep in mind for practical purposes are boundary effects. The larger 
the chosen bandwidth is, the more boundary effects occur. 

5. Auxiliary results and proofs 

In this section we provide proofs for some of the results in Sects. 2, 3 and 
some auxiliary results which might be of independent interest. 

Proof of Lemma 1. By a standard argument used repeatedly in curve estimation, 
compare, e.g., Rosenblatt (1971), we obtain, by a Taylor expansion, the bias 
(2.9) for v<k: 

ft, (x) = b k-v {h(k} (x) B~, k + o (1)}, (5.1) 

as long as 0 < x < T .  In the end point 0, (5.1) is not valid due to boundary 
effects, which have been discussed earlier. 

Next we evaluate the variance of h~)(x). Observing var(h~)(x))=var(G(x)) 
+ var (e, (x)) + 2 cov (o-, (x), e, (x)), we obtain for the individual terms: 

1 ~ ~ 
var (a~(x)) = E {a~ (x)} - n b 2(~ + ~) g (min (x -- ub, x -  vb)) dK~(u) dK~(v) 

- -c13 - - c O  

x-tb / x - - u \  
r/b2(V+l) _ 

dg(u) 

1 
(K~(v))2 {h(x -bv) /L(x -bv)}  dr, / , /b2(V + 1) 

- o o  
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where the last equality follows from the definition of g(.) and (2.2). Continuity 
of h/L at x implies that 

var((r"(x))=nb~+l [ ( ) ' j (5.2) 

Further, var(e,(x))< E(e 2 (x)), which can be bounded via (2.11). The bandwidth 
condition then implies that var(e,(x)) is of smaller order than var(an(x)) and 
by the Cauchy-Schwarz inequality applied to the covariance term we have 

h(~) var(~(~)(x))=nb 1~+1 {L(x)V~'k+~ (5.3) 

The asymptotic normality of ~(') follows immediately from the representation 
(2.8) and the central limit theorem. The above results on the variance (5.3) 
and on the asymptotic bias (5.1) then imply Lemma 1. []  

Proof of Lemma 2. We consider the stochastic processes 

~.(s)=n(k-~)/(2k+a~(g~(x, s)--E(g~(x, s))), s~[s., s~]. 

Observe that ~,s~(Es~, Sb]). 
Evaluating the covariance structure of these processes we obtain, writing 

~r,(x, sl), en(x, si) in obvious analogy to h~)(x, si), for si~[s,, sb], i=  1, 2: 

COV(ffn(S1) ' ~n(S2) ) -~-Fl2(k-v)/(2k+ 1)ECOV(O.n(X, $1), ~Tn(X, $2)) 

+cov(%(x,  sO, e,(x, s2))+cov(e,(x, $1) , Gn(X , Sn) ) 

+ COV (e n (x, s l) , e n (x, 82))] = n 2(k v)/(2k + I)(I + II + I I I  + IV). 

We observe that, writing hi=sin -1/(2k+a), i=1,  2, and using the definition of 
g and (2.2), 

I =  g((Tn(X , S1) O'n(X, S2) ) 

n b~ + i b~+ 1 g (min ( x -  u b 1, x - v b2) dK~ (u) dK~ (v) 
-oo -oo 

1 ; x-vb; X--U 
--rtb~+l b~+ 1 ' K , ( ~ )  dg(u)dKv(v) 

-oo -co  

- nb~+ 1 b~+l K,  K~ E(x_vn_l/(2k+l) ) dv 

[L(x) -co K~ K~ du+o(1 . (5.4) 
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Further, by (2.11), 

II < {var(an(x, sO)Elen(x, s2)12} 1/2 

=~O(n-2(k-v)/(2k+ I)]O[ { logn ~2~).i/2 
" \ \ n b ~ + l j J J  

=o(n -2(k-~)/(2k§ if k>v.  

The same bound holds for III, IV, and therefore 

1 L(x)h'x'{~_ (U)~l (~22) } cov(~n(sl),~,(s2))=s~+ls~z+ 1 K~ K~ d u + o ( 1 ) .  (5.5) 

By similar arguments as those leading to Lemma 1 and by the Cramer-Wold 
device, we obtain then for any s~ . . . . .  s,~e [s~, Sb]: 
[(,(S0, (n(S2) . . . . .  ~n(S,,)] ~ ~ ( O ,  C) in distribution, where 

C=(cu)l~i'J<-m'- - C U = L ( x l " ~ a ~ +  ~ i  aJ ~K~ K~ du. (5.6) 

Now turning to tightness of processes ~n, observe that, according to (2.8)-(2.11) 
(with obvious notation), 

(,(s) = n (k-~)/(zk+ 1)(O'n (X, S) + en(x, s) -- Een(x, s)), 

and 

sup n(k-~)/(Zk+ l)(le,(x, s)[+ Ee,(x, s))=ov(1), 
Sa~S~Sb 

so that it remains to investigate tightness of ~ln(S)~-n(k-v)/(2k+l)(Tn(X, S). Now 
according to the derivation of (5.4), using the Lipschitz continuity of K~, 

J~(On(Sl) - -On(S2))2~Clj[~~))][SVl~- t~v\Sl]  S~+l v (~-2) ] dl) 

z~C2(Sl--$2) 2. 
Tightness of the processes ~,  follows from Billingsley (1968), Theorems 6.2, 
12.3 and formula (12.51). Lemma 2 thus follows by applying in addition (5.1) 
in order to evaluate the expectation. [] 

For the proof of Theorem 2, we observe that we only have to consider 
v = 0 and first derive a result on uniform convergence of hazard function esti- 
mates. 

Lemma 4. Under the assumptions of  Theorem 2, using a kernel K of  JgO,k, which 
is k times continuously differentiable, 

supl~J)(x)-h~ for O<j<k.  xeC 
Proof We observe that on any compact set C in (0, Tl, replacing v by j, the 
bias fin (5.1) can be uniformly bounded by O(b k-J) under the assumptions made 
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on bandwidth h and kernel Kj for the j-th derivative. Restriction to a compact 
subset of the interval (0, T] is necessary due to the previously mentioned bound- 
ary effects. According to (2.8), it remains to investigate sup la,(x)+e,(x)l. From 
(2.8) and (2.9) we conclude that .~c 

j) i 
sup l~.(~)+ e.(~)l = S~cP Ig ( ~ ) - ~  ~ H(~- byl dKj(y)I 

sup 1 x- -u  
= x~c b~4T ~ [H. (u) -  H (u)J d K ~ ( ~ )  

< ~ SUPclH,(x)- H (x)] V (K~)= b@f+ ~ O,(n-1/2), 

according to Theorem 4 of Breslow and Crowley (1974), where V(Kj) is the 
total variation of Kj. Lemma 4 now follows from the conditions imposed on 
the bandwidth. []  

Proof of Theorem 2. Since by the Glivenko-Cantelli Lemma 

sup I L. (x) - L(x) l = op (1), 
x~C 

and by Lemma 4 

sup [~(x)-  h(x)] = op (1), 
m e t  

we have (writing ~(x, b) for the estimate employing local bandwidth b at x), 

1 ..2, , [  ~ ( x - b y )  h ( x - b y ) ]  , [ 1 \ 
~ f ~0tY' t ~ _ ~ y y  ) ~ l a Y = ~  ' 

and therefore by (5.2), (5.3) and (5.4), 

O(x, b)= var(~(x, b))(1 + %(1)), 

where the Op-term is uniform on intervals [b (1), b(Z)]. Further, 

sup ](Ok)(y)-- h(k)(y))--(~k)(x)-- h(k)(X))l 
x, ycC 

< sup [ h~k) (y)-- h(k)(y)[ + sup ] h'Xk)(x)-- h(k)(x)] = Op(1), 
yeC xeC 

(5.7) 

and therefore 

j ( h ( x -  b y ) -  h ( x -  b y)) Ko (y) d y -  (~ (x ) -  h(x)) 
= b k ~ Ko (y) yk (fi(k)(x -- b y) - h (k) (x - b y)) d y 

= bk(fi(k)(X)-- h(k)(x)) ~ Ko(y) yk dy(1 + op(1)) 

= op (bk), uniformly in b ~ [b (~), b(2)]. 
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It follows that  

fl(x, b) = (Eli(x,  b) - h (x)) (1 + o v (1)), 

and (5.7), (5.8) imply that  

MSE(x,  b) = MSE(x,  b)(1 + o,(1)), 

where op(1) is uniform in be  [b m, b(2)]. Defining 

g(x,  s) = s2k(h(k)(x) B0,k) 2 + 1  h(x) 

and 

b(s.) = s. n -  1/(2k + 1) 

we observe that  according to (5.1) and (5.3), 

nZk/(2k+ 1 )MSE(x ,  b(s.)) = g(x, s.)(l  + o (1)), 
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(5.8) 

(5.9) 

where o (1) is uniform over sequences b (s.) such that  b(1)< b(s . )<  b (2). 
Since g(x, s) achieves a unique min imum at s* and is strictly convex, it 

follows that  given e > 0 ,  there exist s e < s * < s ,  such that  for sufficiently large 
n, the minimizer ~ satisfies P(~e[ s t ,  s . ] ) >  1 - e .  Owing to the uniformity of  the 
o(1)- and op(1)-term, 

sup In2k/~Zk+ a )MSE(x ,  b(s) ) - -g(x ,  s)l=op(1),  
se [s~ , s,d 

and it follows by s tandard  arguments  that  ~(x)'-+s*(x). [] 
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