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Summary. In this paper we define two classes of Banach space (B, II" [I)-valued 
random vectors called sub-Gaussian vectors and 7-sub-Gaussian vectors. 
The main purpose of this paper is to prove the exponential integrability 
of a sub-Gaussian vector X, that is, lEEe ~llxllz] <c~ for some e>0 ,  in the 
case where B--Lp.  On the other hand, using the arguments of X. Fernique 
and M. Talagrand, we also show that the exponential integrability of a 
7-sub-Gaussian vector in an arbitrary separable Banach space. 

These two definitions of sub-Gaussian vectors and 7-sub-Gaussian vec- 
tors are not comparable, and neither of these definitions is a necessary condi- 
tion for the exponential integrability. We shall give illuminating examples. 

w 1. Introduction 

Let (g2, ~ ,  P) be the underlying probability space, lE [ ] denote the expectation, 
B = (B, I1" I[) be a real separable Banach space, B * =  (B*, I1"1[,) be the topological 
dual space of B and < , ) denote the canonical bilinear form of B* x B. 

A real random variable X is sub-Gaussian if there exists C > 0 such that, 

E [e ~x] < e2 ~2 

for any Z~IR. Kahane [6] proved that a real random variable X is sub-Gaussian 
if and only if IE IX] = 0 and for some e > 0 

IE [e ~x~] < oo. 

The main purpose of this paper is to define a B-valued sub-Gaussian random 
vector (in short sub-Gaussian vector) as a B-valued random vector X for which 
there exists C > 0 such that 

E [ e<y' x>] < e~r<y, x>2]< oo (i. 1) 
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for any yeB*, and to prove 

for some e>0 ,  in the case where B=Lp (Theorem 4.3). We call this type of 
the integrability "exponential integrability". A B-valued Gaussian vector and 
a Rademacher series in B are typical examples of exponentially integrable sub- 
Gaussian vectors (Fernique [2], Kwapien [9]). 

A sub-Gaussian vector, as a random process defined on B*, is a special 
case of a random process with sub-Gaussian increment defined by Jain and 
Marcus [-10] who gave a sufficient condition for continuity, and also an estima- 
tion for the tail distribution of the supremum norm. 

There is another definition of sub-Gaussian vectors defined by Talagrand 
[14]. A B-valued random vector X is a 7-sub-Gaussian vector if there exists 
a B-valued Gaussian vector G such that 

IE [e <y' x>] < IE [e <y' G>] (=  e~f<y, G521) (1.2) 

for any yEB*. He proved the necessity of the existence of a majorizing measure 
for the boundedness of a Gaussian process, and as an application proved that 
]IX [I is integrable for any 7-sub-Gaussian vector X. Using the Fernique's estima- 
tion [2] we shall prove the exponential integrability of a 7-sub-Gaussian vector 
in an arbitrary Banach space (Theor. 3.4). A same type of estimation was given 
by Heinkel [-3] who gave a sufficient condition for sample continuity of random 
processes using this estimation. 

In the case where B = L p  every sub-Gaussian vector is a 7 - sub-Gauss ian  
vector (Lemma 4.6). But, in general, these two definitions of sub-Gaussian vectors 
turn out to be incomparable. We shall give illuminating examples in w 5 (Example 
5.1 and Example 5.2). Moreover, the two examples are also exponentially integr- 
able, and this implies that, neither of "sub-Gaussian" is a necessary condition 
for the exponential integrability. 

w 2. Regularity conditions 

First of all, we define two norms on the class of all real sub-Gaussian random 
variables and the class of all exponentially integrable random vectors. 

Definition 2.1. (1) Let % (IR) be the class of all real sub-Gaussian random vari- 
ables, and for any element Y of ~o (IR), define 

c2~2 
~(Y)~_inf{C<0: lE[e xr] =<e2 for any 2eC}. 

(2) For  a B-valued random vector X, define 

~(X)~sup ~,IE[I[XH Z"] I/a", 
n~N 

where % = l /2  {n !/(2 n)!} 1/2, and N denotes the collection of all natural numbers. 

Remarks. (1) z is a norm on ~o(~) and (~o(N), z) is a Banach space (Buldygin 
and Kozachenko [1]). 
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(2) A B-valued random vector X is exponentially integrable if and only 
if r  oo. Let N (B) be the class of all B-valued exponentially integrable random 
vectors, then (N(B), f) is also a Banach space. Moreover, on the space f#o(lR) 
( c  fq (IR)), z and ~ are equivalent and stronger than any Lp-norms (p > 1). (Buldy- 
gin and Kozachenko [11, Kahane [6]). 

Every B-valued sub-Gaussian vector X defined by (1.1) statisfies 

-c((y, X ) ) <  CIE[l(y, X)121 + (2.1) 

for any yeB*, where the positive constant C is independent of y. The above 
condition is called the "regularity condition" which plays a fundamental role 
in the succeeding arguments. 

In the following, we shall state several properties derived from the regularity 
condition. They are proved in Kahane [61, Kadec and Pdczyfiski [7] and Jain 
and Marcus [10], but for the completeness of the paper we shall give the proofs 
of them. 

Lemma 2.1. Let X be a non-negative random variable in Lp((2, P) with p>0 .  
Then for any q~(O, p) and 2~(0, 1) we have 

{(1 - 2q) 1/q C-  1}pq/(p-q) <=_ P ( X  > ),IF, [xql  */q), 

where C= IE[Xp]I/P 
IE IX q] 1/q- 

Proof. Put rU--p/q>l, and sU-p/(p-q),  (1 / r+l / s=l ) .  Then for any a > 0  we 
have 

E [xql <= 1E IX  q l{x > a}] + aq 

]E [XPl 1/r p (X > a)*/s + a q, 

IE IX  q ] -- aq]E IX  p] 1/~ p (X > a) 1/s, 

IE [xql  -- aq\ s < n ,X  " ~ - )  = / ' ( > a ) .  

Choose a = 21E [Xq]*/q, and we have the required. []  

Proposition 2.2. Let {X,} be a sequence of B-valued random variables which 
converges to X in probability. 

(la) Suppose that there exist C>O and p > q > O  such that 

for any n~N.  Then, 

~,EIIX.lt*'l*/P <~ CE[ l IX . l lq * /~  < oo 

E[IIXIIqI/~ <~ CXE[IIXIlalI/~ < oo. 

( lb)  I f  there exist C>O and q>O such that, 

~ ( x . ) <  ClEr l lX. l lq ' /~  < oo 
for any ndN. Then, 

.~(X)< CE[llXliq]l/q < co, 
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(2a) Besides the hypothesis of (1 a), we suppose 

l E [ l l X . -  XmllP]l/p < ClE[[[X.-  Xmllq~/q < oo. 

for any n, m e N .  Then, X ,  converges to X in L , .  
(2b) Besides the hypothesis of (1 b), we suppose 

~(Xn-- Xm) < C l E [ l l X , -  Xm[IqJl/q < oo. 

for any n, m e N .  Then, X ,  converges to X with respect to f. 

Proof We shall prove only (la) and (2a). (lb) and (2b) can be proved by the 
similar way. 

(1 a) From Lemma 2.1 we obtain 

P(lIX.ll >,~lgEIIX.ll~31/~)>((1-;~q)~/~c-~)'o/<'-q>~Co (2.1) 

for any neN,  where 2 is an arbitrary fixed number in (0, 1). 
Since {X,} converges in probability, we have, 

s u p P ( l I X , [ l > M ) ~ O  as M ~ .  (2.2) 

By the hypothesis, (2.1) and (2.2) {lE[llX.[lo] 1/~} and {~EEIIX.IrP3 l/p} are bounded. 
Subtracting a sub-sequence if necessary, we may assume that IIx.II converges 

to IlXll almost surely. Then, since {lE[l[X.llq} is bounded and p>q,  {llX.IF} 
is uniformly integrable. Therefore, FIX, II converges in Lq and we have 

IEEIIX]lP]~/P ~l im inf lE [- ll X, [l P] 1/p 
8 --+ CC 

< C lim inf E [IIX, I I ~3 ~/~ 

=C~[[IXl[q31/q< oo. [] 

(2a) By the similar argument as above, we obtain 

P ( I I X , -  X~II > 21EEllX,-  Xm]rq]l/q)> Co. 

Then, since IIX.-Xml[ converges to 0 in probability as n, m ~ 0% ~ E [ l I X . - X J ]  
converges to 0 as n, m ~ oo. Therefore, from the hypothesis, we obtain 

lira IE[]IX,--XI]']=O. [] 
n - - + ~  

Proposition 2.3. For a B-valued random variable X,  we have: 
(a) Suppose 

EEl[Xl4,]a/,<=clE[llXdla3~/q<~ with p>q>0, 

for some C > 1, then, for any 0 < r, s <= p there exists a constant K which depends 
only on r, s, p, q and C such that, 

1E[]tXII']I/" < KE[rIxIIs3 */~. 
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(b) Suppose 

~(x)<clE[lIXllql/~< o~ with q >0 ,  

for some C >0, then, for any 0 <=s< co there exists a constant K which depends 
only on s, q and C such that, 

~(X)< KlE[llXllS] 1Is. 

Proof. We shall give a proof  only for (a) with r= p  and s =  1. From Lemma 
2.1 

{(1 - 2q)l/q C -  1}eq/(e -q) ~ P ( X  > ~]g I X  q] 1/q) 

for any 2~(0, 1). Therefore, 

oo 

E[llXlll= S P(l lXl l>x)dx 
0 

1 

> S IE[llXllq]l/qe(lIXll >~E[llXllq] l/q) d2 
0 

1 

> ~ {(1-~q)l/qC-1}Pq/ce-q)d;~EKlIXl[q 1/q 
0 

1 
C -  1 -pq/(p-q) q -  1 5 (1 - x )  e/<e- q> x <1 -q)/q dxlE[I]X II e ]  1/e 

o 

= C-1 -eq/tp -q) q -1 B(1/q, (p/(p -- q)) + 1) E [ IIX IIe] l/e, 

where B(. ,  .) is a beta function. []  

Corollary 2.4. Let E be a linear subspace of Lo(~?---,B), and suppose that there 
exist p > q > 0 and C > 0 such that 

]E[I]XHql/" <= CE[lIXl[q 1/q 

for any X s E .  Then Lo-topology is equivalent to Le-topology on E, where E is 
an Lo-compIetion of E. Moreover, for any re(q, p] there exists K = K(r, p, q, C)> 0 
such that, for any X ~ E ,  

lEffllXllr]l/" ~:KlgUllXllq] 1/q. [] 

w ? -  sub-Gaussian vectors 

In this section we prove the exponential integrability of a ?-sub-Gaussian vector 
valued in an arbitrary Banach space. In the proof  we make use of the existence 
of a majorizing measure for a bounded Gaussian process (Talagrand [14]) and 
Fernique's arguments (Fernique [2]). 

At first we state their results in our terminology. 



510 R. Fukuda 

Theorem 3.1 (Fernieque [2], Talagrand [14]). Let G be a Gaussian process on 
a countable set T, and d be a pseudo-metric on T defined by 

d(t, s)--IE [I G( t ) -  C(s)12]L 

Then, sup G(t)< co almost surely if and only if there exists a probability measure 
t ~ T  

# on (T, Na) such that, 

sup log de < o% (3.1) 
~" o ~(B~(t ,  ~)) 

where ~d is a Borel field with respect to d-topology, and Bd(t, ~) is the closed 
d-ball with center t and radius a. [] 

Definition 3.1. Let (S, ~ ,  v) be a probability space. For a B or R-valued measur- 
able function f, we define 

G ( f ) ~ i n f { a > O :  ~ e ~ ~lJS~s)Jl~dv(s)<2}. 
S 

A random vector X is exponentially integrable if and only if ae(X)<o�9 
and ae is a norm on fg(B) (Fernique [2]), and it is not difficult to show that 

and ae are equivalent on % (R). 

Theorem 3.2 (Fernique [2]). Let X(t)  be a random process on a countable set 
T such that "c (X (t)) < oo for any t e T and X (to) = 0 for some to e T. For a probability 
measure # on (T, ~p) we define 

Y(co)~ G • (l~p~t,s~,o} X(t-)p(-s ), 
where p(t, s ) = r ( X ( t ) - X ( s ) )  and ~p is the Borel a-algebra of (T, p). Then, we 
have 

suplX( t )[<KY(co)sup log 1+ d~, (3.2) 
t~T teT 0 #(Bp(t, e) 

almost surely, where D is the diameter of T with respect to p and K is an absolute 
constant. [] 

Proposition 3.3 (Fernique [2]). Let (S, ~ ,  v) be a measurable function from f2 x S 
to JR. Suppose sup ap(Z(s, ' ) )< oo then a~ (Z (., co)) is exponentially integrable. [] 

SES 

Summing up the above theorems and proposition, we can prove the exponen- 
tial integrability of a ?-sub-Gaussian vector as follows. 

Theorem 3.4. Let X be a B-valued random variable. Suppose that there exists 
a B-valued Gaussian vector G such that 

E[e<y,x>]<=lE[e<S,a>] (=  e~E[<y,a>21) 

for any yeB*.  Then, X is exponentially integrable. 



Exponential integrability of sub-Gaussian 511 

Proof. Since B is separable, there exists a countable subset T of B* such that 
0 e T and 

sup (t ,  x )  = lix[[ 
t~T 

for any xeB.  We consider two processes on T defined by 

•  G(y)~-(y ,  6>, y ~  

and two pseudo-metrics on T defined by 

d(t, s)=E[IG(t)-  G(s)?]~, 

p(t, s)=~(X(O-X(s)), t, s t  T. 

Then, by Theorem 3.1 there exists a probability measure # on (7;, ~a) which 
satisfies the condition (3.1) since G(t) is bounded on T almost surely, where 
~d is the Borel a-algebra of the pseudo metric space (T, d). 

Since p( . , - )  is a continuous function on (T, d) 2, then B(t, O c ~  a for any 
tE T and e > 0, and by the hypothesis we have 

�9 (x(t)-X(s))< ~(G(t)- G(s))=E[IO(t)- 6 (s)l~] ~ 

Therefore, we have 

and by (3.2) 

, 

,~r o #(B,(t, 0 
d e < ~ .  

sup]X(t)l<KY(o~)sup ~ log 1-~ de. 
, ~ r  , ~ r  o # ( B o ( t ,  " 

x (t) - x (s)] 
where Y(co)= o-, • t, l~o(t,s), o~ p(t, s) ]. Since r and ap are equivalent, there 

exists M > 0 such that ap(Z ) < M~ (Z) for any Z e .floOR). Then, by the definition 
of p we have 

\ p(t,s) ]= \ p(t,s) / 

if p(t, s) ~- O. Therefore, 

( x ( t ) -X( s )  I 
t , s~T \ p [  , ) ] 

Then, by Theorem 3.3 Y(~o) is exponentially integrable, and this implies that 
IIXll -- sup IX(t)\ is exponentially integrable. [] 

r 
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w Lp-valued sub-Gauss ian  vectors  

In this section we prove that an Lp-valued sub-Gaussian random vector is expon- 
entially integrable. At first, we shall give two types of approximations for an 
L:funct ion.  

Propos i t ion  4.1. Let (T, ~,  #) be a a-finite measure space with countably generated 
a-algebra B. Then, 

(1) There exists a sequence of countable partitions {{A~, j}~} j~  of T such 
that 

#(Aid)< oo for any i and j, 

1}i N is a refinement of {Ai, for any j e N .  

(2) There exists a sequence {n(j)} of positive integers, such that, for any 
feL.(T) ,  

n(j) 1 

q~J(f)= ~-1 #(A,,J) ~ f(t)  d#(t) 1A,.:(') (4.1) 
i = Ai,  j 

converges to f in Lp(T) as j--* co. 

Remark. {Ai,j} and {n(j)} do not depend on the choice of f and 1A,,je(Lp)* 
for any i, j. 

Proof Since # is a-finite, there exists an increasing sequence { T,} of B-measurable 
sets such that #(T,)<oo for any n, and u T,=T. Then, for any L: func t ion  
f {lr, f}  is an Lfapproximat ing sequence. Therefore, it is enough to prove 
the proposition in the case where # is a finite measure, and without loss of 
generality, we may assume that # is a probability measure. 

Since ~ is countably generated, there exists a countable sub-family ( B ,} ,~  
of ~ such that 

a({B,},~N)=~. 

For e a c h j c N ,  there exists a finite partition YA "t.n(j) such that i, j J i = l  

n(j) __ f a({Ai,j}i= 1)-  a(tB.}.__<j). 

Then, it clearly satisfies the condition (1), and by the definition of ebj(f), we 
have 

q~ j( f)  = E~ [ f  la ({Ai, j} 7~)~)3 

for any feLp(T),  where 1E, u [-fl ~f]  is the conditional expectation o f f  with respect 
to the sub-a-algebra ~f  of B. Therefore, from the martingale convergence theo- 
rem �9 j ( f )  converges to f in Lp(T) and also #-almost surely as j ~ c~. [] 
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Proposition 4.2. Let (T, ~ ,  #) be a measure space which satisfies the hypothesis 
of Proposition 4.1, and X = {X(t)}t~r be a measurable random process on T. Sup- 
pose that, for p >= 1, 

[X(t)lPd#(t)< oo a.s., (4.2) 

IE [IX(t)l p] < oo #-a.e. 

Then, there exists a sequence of sub-families {{A i j},".~)~}j~ of ~ ,  where #(Aid ) < oo 
for any i,j, and a sequence of subsets {{Ai, j}7~)l}j~s ~ T such that 

n(j) 
Xj(t)= ~ X(tl,j) 1A,i(t ) 

i = 1  

almost surely converges to X (t) in Lp(T). 

Proof. As in the proof of Proposition 4.1, we may assume # ( T ) <  oo. We define 
a pseudo-metric p on T by 

p(t, s )~E[IX  ( t ) -X  (s)lq 1/', 

and let Bp(t, ~) be the closed p-ball with center t and radius e. 
By (4.2), the process X is a Lp(T)-valued random vector. Then, using the 

same method as in the proof of Proposition 4.1, we can obtain that {Oj(X)} 
converges to X # x P-almost everywhere, where {~j(X)} is the approximating 
sequence defined by (4.1). Define 

r l  ~- {t: ~ j ( X ) , ~ X ( t )  a.s.}, 

then #(T~)=0. By the definition of ~j(X), for every te  T 1 there exists a sequence 
{yj} in (Lv)* such that (y  j, X( - ) )  converges to X(t) almost surely, so that X(t) 
is a(X)-measurable, where a(X) is the sub-a-algebra of ~- generated by the 
Lv(T)-valued random vector X. On the other hand, since ~ is countably generat- 
ed, the Banach space Lp(T) is separable and a(X) is also countably generated. 
Therefore (Tl,p)~-{X(t): teT1}cLv( f2  , a(X),P) is a separable pseudo metric 
space. 

Let {Sk} be a countable dense subset of (i/"1, p), then by (4.2), for any j 6 N ,  
there exists n ( j ) e N  such that, 

( e ~ ]X(t)lPd#(t)> < _ .  
J 

( U S(s~, l/j2)) c 
k-<n(/) 

For any j e N and i__< n 0") we define 

i--1 ) 
Ai,J ~-u(si' l / j2) \  U B(sk, l/j2) , 

�9 \ k =  1 

ti, j~-Si, 
n (j) 

Xj( t )=  ~ X(ti,j) 1A~.j(t ). 
i = 1  
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Then, 

P ( ~ ]X j ( t ) -  X(t)] p d #(t) > 2) 

<p(n(j) Ai,y 

+P(, 
i--<n(j) 

n(i) 1 
<=jx 2 ~ ]E[lXj(t)-X(t)lP]d#(t) §  

i = l  Ai, j  J 

"(J) , 1 < ( # ( T ) + I )  
<=j-zv+l ~ #(Ai, y ) + _ =  . 

i=1 J Y 
,0  as j-+oO. 

Therefore, the sequence {X j} converges to X in probability, and a subsequence 
converges almost surely. []  

Then, we can show the following theorems. 

Theorem 4.3. Let X be an Lp(T, ~,  #)-valued sub-Gaussian vector ( l < p < o o ) ,  
where (T, ~, #) is a a-finite measure space with countably generated a-algebra 
~. Then X is exponentially integrable. 

Proof Let {Aid } be the sequence in N obtained by Proposition 4.1. We may 
assume that 1A, j~(Lp)* for any i,j. Put 

n(j) 1 
YJ(')~- ~ #(A~,j) ~ X(tld#(t) lA"~(')" 

i = 1  Ai,j 

Then, by Proposition 4.1, {Y j} converges to X almost surely in the space Lp. 
Therefore, by Proposition 2.2, it is enough to show the following inequality 
for some C > 0. 

~(11YjlI)_ -< CIE[II Yj[I] < oo, (4.3) 

for every j ~ N ,  where II gill ~- S I YJ(t)lVd#(t)} 1Iv 
T 

It follows from the definition of sub-Gaussian vector, Remark 2 after Defini- 
tion 2.1 and Proposition 2.3 (b) that there exists C 1 > 0  such that, 

f( I X(t) d#(t))<= C 11E[] f X(t) d#(t)l ]. (4.4) 
Ai, j Ai, j 

for any te  T. Therefore by the definition of Yj we have 

rnU) ] E[I]Y:]I]--<IE[,~ {l ~ X(t)d#( t ) [#(Ai , j )  alp} < 
Ai, j  

(30, 
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and, since Lp(T) is separable (N is countably generated), the function co ~ IX(. 
, co)l is Bochner integrable with respect to the measure P as an Lp(T)-valued 
measurable function (Yosida [15] p. 132). Then, we have 

(~ El i  Yj(t)l]P d#(t)) l/p= [I ~ I~1 dP[] 
T YJ 

~ II IYjl II dP~Mj<oo. 

From (4.4) it follows that 

"~(Yj (t)) p d #(t) <= ~ C~ IE El Yjl]P d p(t) <= (C 1 M j) p, 

and by the definition of ~, we obtain 

I O~Pn ]E [[ Yj(t)12n] p/2n d#(t) <= (C1 Mj) p. 

Put no=rain{n: 2n/p> 1}, fix any n>n o and put 

r ~ 2 n / p >  1. 

Then, (4.5) implies 

(4.5) 

Hence, 

Therefore, we have, 

EE([ Z(t) d#(O)~] ~/~= IlJ'Z(t) d#(t)ll~<~) 

j" IIZ(t) IIL~(~)d~(t) 
< ~2"(C~ My .  

=. E I-(j" I Y~(t)l p d ff (t))2"/q*/~" =< C 1 Mj  

for any n>=no, and since the L2m-norm is weaker than the Lz.o-norm for any 
m < no, there exists C > 0 such that 

"g([l Yj[]) < CMj= cE [ / I  YjlI] < oo, 

where C is depend only on p and C1. This implies the inequality (4.3) and 
complete the proof. [] 

By the inequality (4.3) and Proposition 2.2 we have: 

S E [Z(t) r] 1/. d#(t) ~ o~ P(C 1 M y ,  

where Z(t)= [ Yj(t)[ p, and the function t ~ Z(t) is Boehner integrable with respect 
to the measure # as an Lr(~2)-valued measurable function, since it takes only 
finite vectors 

(~Ai,  j) AS.:i,. X(t)}i~)lCLr(~'~)" 
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Corollary. Let sJ be a family of Lp(T)-vaIued sub-Gaussian vectors (p >= 1), where 
T=(T, ~ ,  #) is the measure space which satisfies the hypothesis of Theorem 4.3. 
We assume that there exists C > 0 such that any element X ~ d satisfies 

C 2 
lE[e<y,x>] <-_e ~?c<y' x5 ] < oo 

for any y~B*. Then, there exists C 1 = C I ( C  , p)>0  such that 

~ ( x ) ~ c ~ E [ l l X l l ] < o o  forany  X e d .  [] 

Using Proposition 4.2 instead of Proposition 4.1, we have: 

Theorem 4.4. Let (T, ~ ,  #) be the measure space which satisfies the hypothesis 
of Theorem 4.3, and X(t) be a measurable random process on T. Suppose that 
there exist C > 0 such that 

~(X(t))~C~[]X(t)[2]~<oo for any teT, 

[X(t)[ p d#(t)< oo a.s. 

Then, X (t) is exponentially integrable as an Lp(T)-valued random vector. [] 

It follows from Theorem 4.3, that every sub-Gaussian vector in a real separa- 
ble Hilbert space is exponentially integrable. Moreover, using the above corol- 
lary we can prove that every Lp(T--* H)-valued sub-Gaussian vector is exponen- 
tially integrable, where L v ( T ~ H  ) is the space of all Lffunct ions from T to 
a real separable Hilbert space H. 

Theorem 4.5. Let X = X ( ' )  be an Lv( T-~ H)-valued random variable, and assume 
that there exists C > 0 such that 

d~(t)] <=e~[l[(h, X(t))y(t)dli( t) l  ] < O0 E [e J (h, X (t)) y (t) c 2 

for each (h, X(')), h~H and any y~(Lp(T~]R))*, where ( ' ,  ") denotes the inner 
product of H. Then, X is exponentially integrabte. [] 

The proof of this theorem is parallel to that of Theorem 4.3. 
Next, we show that every Lfva lued  sub-Gaussian vector is also a y-sub- 

Gaussian vector. 

Lemma 4.6. Under the same hypothesis with Theorem 4.3, there exists an Lp-valued 
Gaussian vector G such that, 

IE [<y, X> 2] = lE[(y, G> 2] for any y~(LP) *. 

Proof By the same way as in the proof of Theorem 4.3 we can prove that 
there exists C > 0 such that 

( x  (t)) __< c ~  1_1 x (t) l ~] ~ < oo 



Exponential integrability of sub-Gaussian 517 

for almost every te  T. We define a Gaussian process G, as follows. 

]E EG(t) G(s)] =~00 EX(t)X(s)l ifotherwise.X(t), X(s)eL2(Y2). 

Then, since X(t) and G(t) satisfy the hypothesis of Proposition 2.3, there exist 
positive constants C1, C2 > 0  such that, 

E El G(t)[ ~] -- C~ ]EEl G(t)lZy/~ , 

]g EIX(t)123 ~/2 _-< C2 IE E]X(t) IP], 
for almost every te  T. 

The process G is continuous in probability with respect to the pseudo metric 
p on T defined by 

p(t, s),=_lEElX(t)-X(s)f] lip (t, seT). 

Therefore, there exists a (T, p)-Borel measurable version of G, and this will be 
denoted by G also. Since the (T, p)-Borel o--algebra is a sub-o--algebra of N, G(t) 
is ~-measurable almost surely. 

By the above arguments we have 

]EE~ i G(t)l~ d ~(t)] -- [ ]EElG(t) l ' ]  d #(t) 

-- C~ j" EEl G(t)12] p/2 d#(O 

= C1 y • EIX(t) 123 p/2 d#(t) 

=< C1 C2 1 ]E [IX(t)[ p] d#(t)< co. 

This implies that G(.)eLp(T) almost surely. By Theorem 4.3 we have 
IE[lIX(-)ll 2] < 0% where I[" I[ is the Lp-norm on (T, #). Therefore, 

E E~S Ix(t) X(s) y(t) y(s) l d#(t) d #(s)] 

< 11y[ ]2 IEE[ ]X( t ) [42 ]  < 0o. 

By Fubini's Theorem and the definition of G, 

]g [(y, X> 2] =]E [ ~  X(t  ) X(s)y(t) y(s) d#(t) d#(s)] 

= ~S E Ex (t) x (s)3 y (t) y (s) d # (t) d # (s) 

= ~ E E G ( t  ) G(s)] y(t) y(s) d #(t) d #(s) 

--El<y, G>21. [] 

w 5. Relations between the two definitions of sub-Gaussian vectors 

In general, the two definitions of sub-Gaussian vectors are not comparable. 
In this section, we shall give illuminating examples. At first, we give an example 
of a 7-sub-Gaussian vector which is not a sub-Gaussian vector in our definition. 
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Proposition 5.1 (see Kahane [5], p. 20). Let {un} be a sequence in B, and {Xn}, 
{ Y~} be sequences of independent symmetric random variables such that 

Y, Xn un, ~ Yn un converge a.s., 

IXnl=<lY.I a.s. for any heN.  

Then for any convex increasing function (p(') on [0, oo), we have 

]E Eq~(ll~ Xn U. II)-I ~ IE E~o(ll~ Y. Unll)]. [ ]  

Example 5.1. Let {e,} be an orthonormal system in an infinite dimensional 
Hilbert space H with inner product (', ") and norm l'l, {Tn} denote a standard 
Gaussian sequence (i.i.d. 71 ~ N(0, 1)) and {a,} be a #2-sequence such that an ~ 0 
for any neN.  Put 

Then, 
(1) X = ~ X ,  Ge,  and F=~TnanG converge almost surely. 

(2) E[e (y'x)] <lE[e (y'r~] for any yeH. 

(3) % ( X n ) = ~ l , ( l  (en, X))>]/2. 

Since lie IX, z] converges to 0 and O-p is equivalent to ~, we have 

fie,, X)) 
lim 1E [(e,, X)21 ~ = oo. 

n + o o  

Therefore, X is not a sub-Gaussian vector, but a 7-sub-Gaussian vector. 

Proof of (2) and (3). (2) By Proposition 5.1 and the definition of X,  we have 

lE[cosh(y, X)] <•[cosh(y,  F)]. 

Since X and F are symmetric, we obtain 

IE [d y' x)] < lie [d  y' r)] 

for a n y y e H .  [] 

(3) By the definition of X,,  

> 2 Te~X2e_~X2dx=oe>2. IE [e ~ x~] = l / ~  . 

Therefore, % ( X , ) > ~ 2  for any neN.  [] 

Next, we shall give an example of a sub-Gaussian vector which is not ?-sub- 
Gaussian. 

Proposition 5.2. Let ( , ) be a non-negative definite symmetric bilinear form of 
B* x B*, l" I denote the semi-norm determined by ( , ) and G be a B-valued Gaussian 
vector which satisfies 

lyI2 <lE[~y, G> 2] 
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for any y~B*. Then, there exists a B-valued Gaussian vector G such that, for 
any yeB*, 

]y]2 = E l < y ,  G>=]. 

Proof We shall prove the proposition for the case where (-, -) is positive definite. 
Put 

( y , z ) ~ l E [ ( y ,  G) <z, G)], lYJG~-(Y, Y)~ 

for any y, zEB*, and let H o be the [ [G-completion of B*. Put 

#(A)~-P(G~A) 

for any Borel set A in B. Then (B, H o, #) is an abstract Wiener space. Let 
1 be the identity map from (B*, I ]G) to (B*, I I). Then it can be extended to 
a continuous map from H G to H, where H is the I'l-comp letion of B*. In this 
sense H in a subset of H a, hence we can assume that H is included by B. 
Let qo be an isomorphism from H G. Then, I1" 1[ is a measurable semi-norm (see 
Kuo [81, p. 59) on H if and only if ][q0z. U is a measurable semi-norm on HG, 
and since (p~ is a bounded operator  on H a, I1 opt. II is a measurable semi-norm 
on H (see Kuo [8], p. 62). Therefore, there exists a Gaussian measure v on 
B such that 

(y, z)= f (Y, x) (z, x) dr(x) 
B 

for anyy ,  zeB*.  [] 

Theorem 5.3. Let {e,} be a Rademaeher sequence (i.i.d. P(et = 1)= P(e 1 = - 1)= �89 
{7,} be a standard Gaussian sequence and {u,} be a sequence in B. Suppose that 
the sum R = ~ e, u, converges almost surely, and that there exists a B-valued Gaus- 
sian vector G such that 

IE [e <~,~>3 =< IE [e <~, G>] 

for any y~B*. Then, the sum ~ 7, u, converges almost surely. 

Proof From the hypothesis 

E l ( y ,  R )  2] __< z((y, R))  2 

< r ( ( y ,  G) )2=IE[ (y ,  G)z].  

Then, by Proposition 5.2 there exists a B-valued Gaussian vector G such that 

for any yEB*. Put 

El<y, ~>~] =~[<y, R> ~] 

N 
GNU--- Z ~n Un. 

n = l  
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Then, 
-=* ~ (y, u.y 

~.[ei(Y, GN>]_.=e ~ 

-�89 ~ (y, u,) ~ 
- +  e n=l  as N ~  

= E [e/<y,c'>]. 

By Ito-Nisio's theorem [4], ~ 7 , u ,  converges almost surely. []  

If a Gaussian series ~,7, u, converges almost surely, then the Rademacher 
series ~ e, u, also converges almost surely with the same sequence {u,} c B (Jain 
and Marcus [11]). But the converse is not true in general. 

Theorem 5.4 (Maurey, Pisier [13]). The following two conditions are equivalent. 
(1) ~ e , u ,  converges almost surely if and only if ~ ,? ,u ,  converges almost 

surely for any sequence {u,} in B. 
(2) B has finite cotype, that is, there exists p < co such that, if ~, e, u, converges 

almost surely then ~ llu,]["< oe for any sequence {u,} in B. [] 

A Rademacher series is always exponentially integrable, if it converges almost 
surely. 

Theorem 5.5 (Kwapien [9]). Let {e,} be a Rademacher sequence and {u,} be 
a sequence in B. Suppose that R = ~ a, u, converges almost surely, then 

lE[e" 11~112] < oo 

for any c~>O. [] 

Summing up the above theorems we have: 

Example 5.2. Let {e.} be a Rademacher sequence and {7.} be a normal sequence. 
If B does not have finite cotype, there exists a sequence {u.} in B such that 

(1) R = ~, e, u, converges almost surely, but ~ 7, u, does not converge almost 
surely. 

(2) R is a sub-Gaussian vector, but it is not ?-sub-Gaussian. 
(3) R is exponentially integrable. 

Proof of the first part of (2). Let Y and Z be independent real sub-Gaussian 
random variables. Then, 

z(Y+ Z) 2 =< z(Y) 2 + z(Z) 2. 

Therefore, 
((y, ~ ~. u.>) 2 = ~(X (y, u.)  ~.)2 

=<2 z((y, u.) ~.)2 
=Z(y,u~ [] 

Remark. Jain and Marcus [12], (p. 228) gave a concrete example of above {u,},.~ 
as a sequence of vectors in C [0, 1]. 

Acknowledgement. I am most indebted to Professor H. Sato, who gave many invaluable com- 
ments and advices. 
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