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Summary. In this paper we define two classes of Banach space (B, | + ||)-valued
random vectors called sub-Gaussian vectors and y-sub-Gaussian vectors.
The main purpose of this paper is to prove the exponential integrability
of a sub-Gaussian vector X, that is, E[e*!¥1*]< oo for some £>0, in the
case where B=L,. On the other hand, using the arguments of X. Fernique
and M. Talagrand, we also show that the exponential integrability of a
y-sub-Gaussian vector in an arbitrary separable Banach space.

These two definitions of sub-Gaussian vectors and y-sub-Gaussian vec-
tors are not comparable, and neither of these definitions is a necessary condi-
tion for the exponential integrability. We shall give illuminating examples.

§ 1. Introduction
Let (€, #, P) be the underlying probability space, IE[ ] denote the expectation,
B=(B, ||*|)) be a real separable Banach space, B* =(B*, || - ||,,) be the topological

dual space of B and { , ) denote the canonical bilinear form of B* x B.
A real random variable X is sub-Gaussian if there exists C >0 such that,

c
E[eX]<e3”

for any AeIR. Kahane [6] proved that a real random variable X is sub-Gaussian
if and only if E[ X]=0 and for some ¢>0

E[eX"] < 0.

The main purpose of this paper is to define a B-valued sub-Gaussian random
vector (in short sub-Gaussian vector) as a B-valued random vector X for which
there exists C >0 such that

E[e*®]< L X>2]<Oo (1.1)
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for any ye B¥, and to prove
]E[es”X“z:Koo

for some £>0, in the case where B=L, (Theorem 4.3). We call this type of
the integrability “exponential integrability”. A B-valued Gaussian vector and
a Rademacher series in B are typical examples of exponentially integrable sub-
Gaussian vectors (Fernique [2], Kwapien [9]).

A sub-Gaussian vector, as a random process defined on B¥, is a special
case of a random process with sub-Gaussian increment defined by Jain and
Marcus [10] who gave a sufficient condition for continuity, and also an estima-
tion for the tail distribution of the supremum norm.

There is another definition of sub-Gaussian vectors defined by Talagrand
[14]. A B-valued random vector X is a y-sub-Gaussian vector if there exists
a B-valued Gaussian vector G such that

IE[e<y’X>] gIE[e@’ G>](=e%IE[<y,G>2]) (1,2)

for any yeB*. He proved the necessity of the existence of a majorizing measure
for the boundedness of a Gaussian process, and as an application proved that
I X | is integrable for any y-sub-Gaussian vector X. Using the Fernique’s estima-
tion [2] we shall prove the exponential integrability of a y-sub-Gaussian vector
in an arbitrary Banach space (Theor. 3.4). A same type of estimation was given
by Heinkel [3] who gave a sufficient condition for sample continuity of random
processes using this estimation.

In the case where B=L, every sub-Gaussian vector is a y—sub-Gaussian
vector (Lemma 4.6). But, in general, these two definitions of sub-Gaussian vectors
turn out to be incomparable. We shall give illuminating examples in § 5 (Example
5.1 and Example 5.2). Moreover, the two examples are also exponentially integr-
able, and this implies that, neither of “sub-Gaussian” is a necessary condition
for the exponential integrability.

§2. Regularity conditions

First of all, we define two norms on the class of all real sub-Gaussian random
variables and the class of all exponentially integrable random vectors.

Definition 2.1. (1) Let 4,(IR) be the class of all real sub-Gaussian random vari-
ables, and for any element Y of %,(R), define

(Y)Einf{C<0: E[e*"] <er” for any AeC}.

(2) For a B-valued random vector X, define

t(X)&supa, B[ X[ 2],

nelN

where «, =‘/§{n 1/(2n)1} 12" and N denotes the collection of all natural numbers.

Remarks. (1) 7 is a norm on %,(R) and (%,(R), 7) is a Banach space (Buldygin
and Kozachenko [1]).
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(2) A B-valued random vector X is exponentially integrable if and only
if T(X) << co. Let %(B) be the class of all B-valued exponentially integrable random
vectors, then (#4(B), 7) is also a Banach space. Moreover, on the space %,(IR)
(=% (R)), v and 7 are equivalent and stronger than any L -norms (p = 1). (Buldy-
gin and Kozachenko [1], Kahane [6]).

Every B-valued sub-Gaussian vector X defined by (1.1) statisfies

(v, X)) = CE[Ky, X>I1% eRY)

for any yeB*, where the positive constant C is independent of y. The above
condition is called the “regularity condition” which plays a fundamental role
in the succeeding arguments.

In the following, we shall state several properties derived from the regularity
condition. They are proved in Kahane [6], Kadec and Pelczynski [7] and Jain
and Marcus [10], but for the completeness of the paper we shall give the proofs
of them.

Lemma 2.1. Let X be a non-negative random variable in L,(Q, P) with p>0.
Then for any q<(0, p) and 1€(0, 1) we have

{(1 _/111)1/‘1 (ol 1}pq/(p—q) §P(X>)VIE[X‘1]1/‘1),

E[ijl/p
]E[qullq :

Proof. Put r=p/g>1, and sZ=p/(p—q), (1/r+1/s=1). Then for any a>0 we
have

where C=

E[XN<E[X%]x. 4]1+a’
<E[X?]Y"P(X >a)'s+aq,
E[XY]—a®E[X7]'" P(X >a)*’,
E[X?] —a%\s
——— | S P(X .
( IE[Xp:ll/r ) —P( >(1)
Choose a=AIE[X“]', and we have the required. []

Proposition 2.2. Let {X,} be a sequence of B-valued random variables which
converges to X in probability.
(1a) Suppose that there exist C>0 and p>q >0 such that

E[X,[71"? < CE[]|X,[*]"" <
for any neN. Then,
E[|X|F]"? < CEL||IX||7]" < co.
(1b) If there exist C>0 and q>0 such that,

(X, =CE[||X,|1" <o
for any neIN. Then,
T(X) = CELIX[9]" < co.
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(2a) Besides the hypothesis of (1a), we suppose
E[|X,~X,[?1'"? < CE[| X, ~X,[|]" < c0.

for any n, meNN. Then, X, converges to X in L,.
(2b) Besides the hypothesis of (1b), we suppose

f(Xn*Xm)éC]E[HXn_Xqu:Il/q< 0.

for any n, meN. Then, X, converges to X with respect to 1.

Proof. We shall prove only (1a) and (2a). (1b) and (2b) can be proved by the
similar way.
(la) From Lemma 2.1 we obtain

P(1X,| zAEL|X, [T > (1 -9 C™Hypaem9 5.C, 2.1)

for any nelN, where A is an arbitrary fixed number in (0, 1).
Since {X,} converges in probability, we have,

sup P(|IX,|>M)>0 as M- co. 2.2)

By the hypothesis, (2.1) and (2.2) {IE[]| X, [“]*/%} and {IE[]| X ,|*]*/*} are bounded.

Subtracting a sub-sequence if necessary, we may assume that || X, || converges
to | X| almost surely. Then, since {IE[]|X,|”]} is bounded and p>gq, {||X,|%}
is uniformly integrable. Therefore, | X, || converges in L, and we have

E[|X|7]*? <lim inf EE[|| X, | *]"/

n—>w

<CliminfE[|X,| 1"
=CE[|X|17"" <. O

(2a) By the similar argument as above, we obtain
P(I|Xy— Xl > 2E[ X, — X919 > C,.

Then, since || X, — X,,|| converges to 0 in probability as n, m —» o0, E[|| X, — X,,.||7]
converges to 0 as n, m — co. Therefore, from the hypothesis, we obtain

lim E[|X,—X|?1=0. O
Proposition 2.3. For a B-valued random variable X, we have:
(a) Suppose
E[|X|7]"?<CE[|X {9 <c0  with p>g>0,

for some C=1, then, for any 0<r, s<p there exists a constant K which depends
only onr, s, p, q and C such that,

E[| X7 <KE[|X]]'*
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(b) Suppose
TX)SCE[|X||7]Y9<w  with ¢>0,

for some C=0, then, for any 0<s< oo there exists a constant K which depends
only on s, q and C such that,

HX)SKE[L[X |7

Proof. We shall give a proof only for (a) with r=p and s=1. From Lemma
2.1

{(1 _Aq)llq C_1}"’1/(”_")§P(X>ME[X‘1]1/‘1)

for any A€(0, 1). Therefore,

E[[X|1= | P(IX]>x)dx
0
z [ ELIX|7P(IX| > AELIX 7" dA
0

1
= j‘ {(1 _14)1/q C_l}pq/(p_q)di]E[HXHq] 1/q
0

1
>C 1-pa/le—a) q- i j (1 _x)p/(p—q) x(1—9/a dx]E[HXH”]l/P
0

=C 179 g7 B(1/q, (p/(p—q)+ D ELIX |71,
where B(-, *) is a beta function. [

Corollary 2.4. Let E be a linear subspace of Lo(Q— B), and suppose that there
exist p>q>0 and C>0 such that

E[|X|1'” < CE[| X"

for any XeE. Then Ly-topology is equivalent to L, -topology on E, where E is
an Lq-completion of E. Moreover, for any re(q, p] there exists K=K(r, p, g, C)>0
such that, for any X €E,

E[| X1 <KE[|X|9]". O

§3. y —sub-Gaussian vectors

In this section we prove the exponential integrability of a y-sub-Gaussian vector
valued in an arbitrary Banach space. In the proof we make use of the existence
of a majorizing measure for a bounded Gaussian process (Talagrand [14]) and
Fernique’s arguments (Fernique [2]).

At first we state their results in our terminology.
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Theorem 3.1 (Fernieque [2], Talagrand [14]). Let G be a Gaussian process on
a countable set T, and d be a pseudo-metric on T defined by

d(t, s)=E[|G(H)—G(s)|*]%.

Then, sup G(t)< o almost surely if and only if there exists a probability measure
teT

won (T, B,) such that,

1

28] 1 3
sup g" (logm) de< o0, (3.1

where %, is a Borel field with respect to d-topology, and B,(t, €) is the closed
d-ball with center t and radius &. [

Definition 3.1. Let (S, 4, v) be a probability space. For a B or R-valued measur-
able function f, we define

o,(f)Einf{c>0: [ e " 1/OI7 gy(s5)<2}.
S

A random vector X is exponentially integrable if and only if g,(X)< o0
and op is a norm on %(B) (Fernique [2]), and it is not difficult to show that
7 and op are equivalent on %,(R).

Theorem 3.2 (Fernique [2]). Let X(t) be a random process on a countable set
T such that 1(X (t)) < oo for any te T and X (t,) =0 for some tyeT. For a probability
measure y on (T, #,) we define

X(t)—X(S)>,

where p(t, s)=1(X(t)— X (5)) and 9%, is the Borel c-algebra of (T, p). Then, we
have ’

D/2 1 1
sup [ X ()| =KY(w) sup 0[ (log <1 -i-m)) de, (3.2)

almost surely, where D is the diameter of T with respect to p and K is an absolute
constant. []

Proposition 3.3 (Fernique [2]). Let (S, %, v) be a measurable function from 2 x S
to R. Suppose sup op(Z(s,*)) < oo then 6,(Z (-, w)) is exponentially integrable. []
seS

Summing up the above theorems and proposition, we can prove the exponen-
tial integrability of a y-sub-Gaussian vector as follows.

Theorem 3.4. Let X be a B-valued random variable. Suppose that there exists
a B-valued Gaussian vector G such that

]E[e<”’x>] SIE[e<y’G>] (=e%IE[<y,G>2])

for any ye B*. Then, X is exponentially integrable.
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Proof. Since B is separable, there exists a countable subset T of B* such that
0eT and

sup ¢, x) = [|x||
teT

for any xe B. We consider two processes on T defined by

XWey, Xy, GELy, Gy, yel

and two pseudo-metrics on T defined by

d(t, )=E[G(t)—G(s))*]%,
plt, )=t(X(t)—-X(s), ¢t,seT

Then, by Theorem 3.1 there exists a probability measure u on (1, 4,) which
satisfies the condition (3.1) since G(t) is bounded on T almost surely, where
4, is the Borel o-algebra of the pseudo metric space (T, d).

Since p(-,-) is a continuous function on (T, d)?, then B(t, £)e B, for any
te T and ¢>0, and by the hypothesis we have

X O—X($)E1(GO—-GE)=E[G()—G(s))*]*
Therefore, we have

® { %
sup (1°g (1 B, s)))) de 0.

and by (3.2)

D/2 1 1
sup XK Yo sup ] (log(1+ sl de,

%SJ) Since 7 and op are equivalent, there

exists M >0 such that ¢,(Z)< M1(Z) for any Ze%,(R). Then, by the definition
of p we have

Where Y(w):au Xp (l{p(t,s)#:()}

if p(z, s)#0. Therefore,

SEM<w

X)X (S))

sup o, (I{p(t,swm} R

t,seT

Then, by Theorem 3.3 Y(w) is exponentially integrable, and this implies that
[ X || =sup [ X (2)| is exponentially integrable. [
13
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§4. L ,-valued sub-Gaussian vectors

In this section we prove that an L,-valued sub-Gaussian random vector is expon-
entially integrable. At first, we shall give two types of approximations for an
L, -function.

Proposition 4.1. Let (T, %, u) be a o-finite measure space with countably generated
o-algebra #. Then,

(1) There exists a sequence of countable partitions {{A4; ;}ien}jen of T such
that

1(A;, )< oo for any i and j,
o({ A j}i jen) =B,

{A; j+1}ien is a refinement of {A; ;}iew for any jeN.

(2) There exists a sequence {n(j)} of positive integers, such that, for any
JeL,(T),
n(j) 1

?;(f)= Z (A, ) If(t)du(t)lA,.,j(') (4.1)

converges to f in L,(T) as j— .

Remark. {4; ;} and {n(j)} do not depend on the choice of f, and 1, JE(Ly)*
for any i, j.

Proof. Since p is o-finite, there exists an increasing sequence {T,} of #-measurable
sets such that u(T,)<oco for any n, and UT,=T Then, for any L, -function
£, {1z, f} is an L,-approximating sequence. Therefore, it is enough to prove
the proposition in the case where p is a finite measure, and without loss of
generality, we may assume that y is a probability measure.

Since 4 is countably generated, there exists a countable sub-family {B,},cn
of % such that

0({Bn}nsN):%'

For each jeN, there exists a finite partition {4; ;}7¥ such that

O-({At J}n(” a({Bn}n§j)'

Then, it clearly satisfies the condition (1), and by the definition of ®;(f), we
have

P,(f)=E,[fo({4; }i2))]

for any feL,(T), where E, [ f| 7] is the conditional expectation of f with respect
to the sub-g-algebra 5# of #. Therefore, from the martingale convergence theo-
rem P;(f) converges to fin L,(T) and also g-almost surely as j—co. O
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Proposition 4.2. Let (T, #, u) be a measure space which satisfies the hypothesis
of Proposition 4.1, and X ={X (t)},.r be a measurable random process on T. Sup-
pose that, for p=1,

[IX®Fdu)<o as., “4.2)
E[jX(®)F]<oo pu-ae.

Then, there exists a sequence of sub-families {{Al 19} jew of B, where p(A; ;)< oo
for any i, j, and a sequence of subsets {{A4; }19\},ox of T such that

n(j)
X;(t)=) X(1,) Ly, ,@®

i=1
almost surely converges to X (t) in L,(T).

Proof. As in the proof of Proposition 4.1, we may assume u(T) < co. We define
a pseudo-metric p on T by

p(t, ) EE[ X () — X (s)]P1",

and let B, (t, ¢) be the closed p-ball with center ¢ and radius e.

By (4.2), the process X is a L,(T)-valued random vector. Then, using the
same method as in the proof of Proposmon 4.1, we can obtain that {@;(X)}
converges to X ux P-almost everywhere, where {@;(X)} is the approximating
sequence defined by (4.1). Define

T ={t: ?,(X),» X (1) as.},

then u(Tc) 0. By the definition of @;(X), for every te T, there exists a sequence
{yj} in (L,)* such that {(y;, X(*)} converges to X (¢) almost surely, so that X (1)
is o(X)-measurable, where ¢(X) is the sub-c-algebra of & generated by the
L,(T)-valued random vector X. On the other hand, since 4 is countably generat-
ed, the Banach space L,(T) is separable and o(X) is also countably generated.
Therefore (T, p)={X(t): te T} = L,(Q, 0(X), P) is a separable pseudo metric
space.

Let {s;} be a countable dense subset of (T}, p), then by (4.2), for any jeN,
there exists n(j)eIN such that,

P( § |X(t)|"du(t)>Ji,)<-
(U B 157

k2n(j)

For any je N and i < n(j) we define

i—1
A, =B, 1/12)\( U Bse, 1/12)),
. k=1
ti,j(ESia

n(j)
X;(0)= z X(t;, ) 14, @)

i=1
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Then,

» 2
P(f1x,0-xw duy>2)

n(jf) 1
gp(z §|X,-(t>—X(t)|Pdu(t)>]—.)

i=1 4;;

+P< | IX(t)l"du(t)>Jl.>

4,
iSn(j)
. n(j) 1
<ix ), | ENX;0—-X@O" dﬂ(f)+]—.
i=1 4;;
n{j)
<j ! Zﬂ(Ai,j)+]l.§(L(TJ—?+—l)—>0 as j—oo.
i=1

Therefore, the sequence {X;} converges to X in probability, and a subsequence
converges almost surely. [

Then, we can show the following theorems.

Theorem 4.3. Let X be an L,(T, &, w-valued sub-Gaussian vector (1<p< ),
where (T, 8, 1) is a o-finite measure space with countably generated c-algebra
%. Then X is exponentially integrable.

Proof. Let {4, ;} be the sequence in & obtained by Proposition 4.1. We may
assume that 1,, €(L,)* for any i, j. Put

n(j) 1
()= i§1 m A{j X(®du@ La, (%)

Then, by Proposition 4.1, {Y;} converges to X almost surely in the space L,.
Therefore, by Proposition 2.2, it is enough to show the following inequality
for some C>0.

(1) =CEL[|Y;|]1< oo, 4.3)
for every jeN, where | Y;| Z | | Y;(2)|? d u(t)} /7.
T

It follows from the definition of sub-Gaussian vector, Remark 2 after Defini-
tion 2.1 and Proposition 2.3 (b) that there exists C, >0 such that,

W[ XOdu)=C E[l | X@dp®)). (4.4)

Ai, Ay 5

for any te T. Therefore by the definition of ¥; we have

n(j)
IE[IIY,-HjélE[Z {I{ X(t)dﬂ(t)lu(Ai,j)””}]<oo,

i=1 A



Exponential integrability of sub-Gaussian 515

and, since L,(T) is separable (% is countably generated), the function w —|X (-
, w)| is Bochner integrable with respect to the measure P as an L,(7)-valued
measurable function (Yosida [15] p. 132). Then, we have

(f E0Y;OIPdu@) =] 1Y dP|

<J11Y]] dPSM;< oo,
o

From (4.4) it follows that
Jr@eydu@=| CLE[ Y17 dut)<(C, MY,
and by the definition of %, we obtain
Fod E[ Y0112 d u(t) <(Cy MyP. (4.5)
Put no=min{n: 2n/p=1}, fix any n=n, and put
rE2n/p=1.
Then, (4.5) implies
JELZ@y]" du@) e, P(Co MY,

where Z(t)=1Y;(t)|?, and the function t — Z(t) is Bochner integrable with respect
to the measure p as an L (€)-valued measurable function, since it takes only

finite vectors
{ 1 f ( )}no‘) @
X (t = L,.(Q).
,Lt(Ai’j) A i=1

Therefore, we have,

E[(fZ©)dp@)T"=1{Z®) du®)L,@
§§ ”Z(t)HLr(.Q)d.u(t)
S, P(Cy My,

Hence,
o, E[(J| V(0P du@)*"?]*"< C M;

for any n=n,, and since the L,,-norm is weaker than the L,, -norm for any
m=ny, there exists C>0 such that

T(1Y;[) = CM;=CE[| Yj|]1< o0,

where C is depend only on p and C,. This implies the inequality (4.3) and
complete the proof. []

By the inequality (4.3) and Proposition 2.2 we have:
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Corollary. Let o/ be a family of L,(T)-valued sub-Gaussian vectors (p>1), where
T=(T, B, u} is the measure space which satisfies the hypothesis of Theorem 4.3.
We assume that there exists C >0 such that any element X € o/ satisfies

SELy, X)?
E[e<y3x>]§e2 Ky, >]<w

for any ye B*. Then, there exists C;=C,(C, p)> 0 such that
HX)SCE[|X|]<w forany Xesd. [

Using Proposition 4.2 instead of Proposition 4.1, we have:

Theorem 4.4. Let (T, &, u) be the measure space which satisfies the hypothesis
of Theorem 4.3, and X (t) be a measurable random process on T. Suppose that
there exist C>0 such that

HXO)VSCE[X ()< for any teT,
[IX@®Pdp)<oo  as.

Then, X (t) is exponentially integrable as an L ,(T)-valued random vector. []

It follows from Theorem 4.3, that every sub-Gaussian vector in a real separa-
ble Hilbert space is exponentially integrable. Moreover, using the above corol-
lary we can prove that every L,(T— H)-valued sub-Gaussian vector is exponen-
tially integrable, where L,(T— H) is the space of all L,-functions from T to
a real separable Hilbert space H.

Theorem 4.5. Let X =X () be an L,(T— H)-valued random variable, and assume
that there exists C>0 such that

c 2
]E[ej(h, Xy dﬂ(t)] §e§]E[U(hv X))y dp@®) ]< o

for each (h, X(*)), heH and any ye(L {T—-R))*, where (-, ") denotes the inner
product of H. Then, X is exponentially integrable. [

The proof of this theorem is parallel to that of Theorem 4.3.
Next, we show that every L,-valued sub-Gaussian vector is also a y-sub-
Gaussian vector.

Lemma 4.6. Under the same hypothesis with Theorem 4.3, there exists an L,~valued
Gaussian vector G such that,

E[y, XY 1=E[Ky, G>*1  for any ye(Ify*.

Proof. By the same way as in the proof of Theorem 4.3 we can prove that
there exists C>0 such that

X)) =CE[IX(1)]*)f <o
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for almost every teT. We define a Gaussian process G, as follows.

E[G() G(s)] ={f[X OXE] i X, X(9eLy(Q).

otherwise.

Then, since X(¢) and G(¢) satisfy the hypothesis of Proposition 2.3, there exist
positive constants C,, C, >0 such that,
E[GOIF1=C, E[IG®)I* 17,

E[[X ()17 <C, E[IX (1)I],
for almost every te T.

The process G is continuous in probability with respect to the pseudo metric
p on T defined by

p(t. )EE[X O —X )P (2, seT).

Therefore, there exists a (T, p)-Borel measurable version of G, and this will be
denoted by G also. Since the (T, p)-Borel g-algebra is a sub-g-algebra of 4, G(¢)
is #-measurable almost surely.

By the above arguments we have

E[] |G du(®]=[E[GOP]du)
=C, [E[IG®) 12 du(r)
=C, JE[IX (171 du(t)
<C, C, JENX P dp() < .

This implies that G(-)eL,(T) almost surely. By Theorem 4.3 we have
E[| X (*)|*]< oc, where |- || is the L,-norm on (T; ). Therefore,

E[fIX®)X(s) y(0) y(s)l du(®) d u(s)]
<yIZ, ELIX 12,1 <oo.

By Fubini’s Theorem and the definition of G,

E[{y, X>*1=E[[f X () X (s) y(&) y(s) d u(t) d pu(s)]
=[JE[X®OX )] y(0) y(s) du(t) du(s)
=[JEBLG®)G(s)] () y(s)du(t) d u(s)
=E[{y,6>’]. O

§5. Relations between the two definitions of sub-Gaussian vectors

In general, the two definitions of sub-Gaussian vectors are not comparable.
In this section, we shall give illuminating examples. At first, we give an example
of a y-sub-Gaussian vector which is not a sub-Gaussian vector in our definition.
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Proposition 5.1 (see Kahane [5], p. 20). Let {u,} be a sequence in B, and {X,},
{Y,} be sequences of independent symmetric random variables such that

Y X, uy,, Y, Y,u, converge as.,
[ X, Z1Y,] as. forany nelN.

Then for any convex increasing function ¢ (*) on [0, o), we have

Elo(1}. X, uDISEle(X Vw1 O

Example 5.1. Let {e,} be an orthonormal system in an infinite dimensional
Hilbert space H with inner product (-, ) and norm |-|, {y,} denote a standard
Gaussian sequence (i.i.d. y, ~N(0, 1)) and {a,} be a ¢,-sequence such that a,+0
for any neN. Put

Xu=Va Lipaiz -
Then,
() X=Y X,a,e,and I'=> y,a,e, converge almost surely.

(2) E[eY ] <E[e" D] for any ye H.
1
B) 0, (X) =05 (en 0212

Since IE[ X?2] converges to 0 and o is equivalent to 7, we have

e X)
m e, 07F

Therefore, X is not a sub-Gaussian vector, but a y-sub-Gaussian vector.

Proof of (2) and (3). (2) By Proposition 5.1 and the definition of X, we have
E[cosh(y, X)]ZIE[cosh(y, I'].

Since X and I" are symmetric, we obtain

E[e" ] <E[e" D]
for any ye H. [

(3) By the definition of X,

E[eéx%]gl/zi- [et¥e ¥ dx=00>2.
T on

Therefore, 7, (X ,,)gl/i for any neN. [

Next, we shall give an example of a sub-Gaussian vector which is not y-sub-
Gaussian.

Proposition 5.2. Let ( , ) be a non-negative definite symmetric bilinear form of
B* x B*, |+| denote the semi-norm determined by ( , ) and G be a B-valued Gaussian
vector which satisfies

y? <E[y, G>*]
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for any yeB*. Then, there exists a B-valued Gaussian vector G such that, for
any ye B*,

2 =E[{y, G>].
Proof. We shall prove the proposition for the case where (-, -) is positive definite.
Put
1, 26 ZE[(, G><z, G)),  |yle= »)&

for any y, ze B¥, and let H be the | |;-completion of B*. Put
WA)ZP(GeA)

for any Borel set 4 in B. Then (B, Hg, 1) is an abstract Wiener space. Let
[ be the identity map from (B*,| |¢) to (B*,| |). Then it can be extended to
a continuous map from Hg to H, where H is the |-|-completion of B*. In this
sense H in a subset of Hg, hence we can assume that H is included by B.
Let ¢ be an isomorphism from Hg. Then, ||+ || is a measurable semi-norm (see
Kuo [8], p. 59) on H if and only if |¢:-| is a measurable semi-norm on Hg,
and since @1 is a bounded operator on Hyg, |lgi-| is a measurable semi-norm
on H (see Kuo [8], p. 62). Therefore, there exists a Gaussian measure v on
B such that '

0, 2)= [ <y, x> <z, xydv(x)
B
for any y, ze B*. [

Theorem 5.3. Let {¢,} be a Rademacher sequence (i.id. P(e,=1)=Pg,= —1)=1)),
{yn} be a standard Gaussian sequence and {u,} be a sequence in B. Suppose that
the sum R=Y ¢, u, converges almost surely, and that there exists a B-valued Gaus-
sian vector G such that

E[e R <IE[e” ]

for any ye B*. Then, the sum )_y,u, converges almost surely.

Proof. From the hypothesis

E[<y, R>* 1=Ky, RY)?
sy, GV =E[y, 6’1

Then, by Proposition 5.2 there exists a B-valued Gaussian vector G such that

E[<y, 6)*]=E[(y, R)’]
for any ye B*. Put

Gy

T

N
Y Vntha
n=1
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Then,

N

E[ei<¥ %] = e—%ﬂZ < u?

©

1
-1 3 <)t
—e 2" ’ as N- oo

=E[e¢ 6],

By Ito-Nisio’s theorem [4], ¥ y,u, converges almost surely. []

If a Gaussian series ) 7,u, converges almost surely, then the Rademacher
series Y &,u, also converges almost surely with the same sequence {u,} = B (Jain
and Marcus [11]). But the converse is not true in general.

Theorem 5.4 (Maurey, Pisier [13]). The following two conditions are equivalent.
(1) Y &,u, converges almost surely if and only if Y y,u, converges almost
surely for any sequence {u,} in B.
(2) B has finite cotype, that is, there exists p< oo such that, if ¥ ¢,u, converges
almost surely then ) |u,||” < oo for any sequence {u,} in B. []

A Rademacher series is always exponentially integrable, if it converges almost
surely.

Theorem 5.5 (Kwapien [9]). Let {¢,} be a Rademacher sequence and {u,} be
a sequence in B. Suppose that R:Z &, U, converges almost surely, then

]E[e“”R”2]<oo
for any a>0. [

Summing up the above theorems we have:

Example 5.2. Let {¢,} be a Rademacher sequence and {y,} be a normal sequence.
If B does not have finite cotype, there exists a sequence {u,} in B such that

(1) R=) &,u, converges almost surely, but ) y,u, does not converge almost
surely.

(2) R is a sub-Gaussian vector, but it is not y-sub-Gaussian.

(3) R is exponentially integrable.

Proof of the first part of (2). Let Y and Z be independent real sub-Gaussian
random variables. Then,

(Y+Z)2 <t(Y)2 +(Z)%
Therefore,
(s ) entt))? =T QY U £4)°
<2 1 (<, U £)°
=2 u)?=E[y ) eup?]l. O

Remark. Jain and Marcus [12], (p. 228) gave a concrete example of above {u,},.en
as a sequence of vectors in C[0, 1].
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