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Summary. In this paper we consider the nearest neighbour Random Walk on 
infinite graphs. We discuss the connection between the two smallest eigenvalues 
of the Laplacian of the graph and the diffusion speed of the RW. 

1. Introduction 

In the recent literature on graphs a new trend is apparent: the study of how spectral 
properties of graphs and other graph properties determining the behaviour of the 
RW on the graph (cf. [MW, SW]). We consider this paper as a continuation of our 
previous (cf. iT]). There we studied thefractal dimension d, the resistance dimension 
de, and the R W dimension d R. We found under some restriction on the graph that 

and 

and consequently 

d~ <_d 

4 = d + 2 - 4  

dR=>2. 

To establish this inequality the graph was supposed to be "smooth".  This condition 
is formulated in detail in iT]. At the end of the present paper we shall give an 
example of  a "nonsmooth"  graph. 

The main problem of  this paper comes from Domokos Sz/tsz. He suggested 
studying the "spectral gap", i.e. the second smallest eigenvalue (the first nonzero 
and nontrivial) of the Laplacian of the graph and conjectured that this eigenvalue 
tends to zero as fast as the diffusion expands. 

In the recent literature of theoretical physics one can find a lot of papers on 
fractals and spectral dimensions. Here we mention only a few of them cf. 
[DABK, R, RT]. We refer separately to Mohar 's  and Woess's work [MW], which is 
an excellent overview of questions of spectra of graphs arising in connection with 
RW-s on graphs. 
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In the next sect ion we give the necessary defini t ions and in Sect. 3 we present  our  
results. 

2. Basic notations 

2.1 Geometry 

Let  G = (V, E)  be a connected infinite locally finite graph  wi thout  loops  wi th  vertex 
set V and edge set E. Let  a �9 V be a fixed vertex. 

We use the convenient  g raph  dis tance 

d(x, y) = rain {k:  3 {xi}i=o k : x 0 = x ,  x ,  = y ,  V0 < i<k(x~_ 1, xi) �9 E}.  

Let B u = B(a, N) and S N = S(a, N), be the ball and sphere centered in a �9 V wi th  
radius  N, (B u, S u ~ V). Let  d x denote  the degree o f  the vertex x e V. More  fo rmal ly  

B u = { y � 9  V: d(a,y)<=N} 

S u = {y �9 V: d(a,y)=U} 

dx=l{y~ V:d(a,y)<-_l}]. 

We often use the subgraphs  G N of  G given by 

a N = (B N, EN) 
where 

EN={e=(x ,y ) �9  

The degree o f  vertex x in G N will be deno ted  by dx, N. No te  tha t  dx,u=dx i f x  is an 
internal  po in t  of  B u. [] 

T h r o u g h o u t  this pape r  we suppose  tha t  G is locally finite, i. e. d x has a fixed upper  
b o u n d  D for all x �9 V. 

The adj acence mat r ix  A N = (a~, y) x, y ~ B N is defined as ax, y = 1 if  (x, y) �9 E and 
zero otherwise.  [] 

Let  D N be the d iagona l  ma t r ix  ofdx, u-S for  x �9 B N. Then A N the Laplace  ope ra to r  
of  G N can be defined by 

AN=DN-AN.  [] 

Let ]'* = ( 1 , . . . ,  1) be the vector  of  ones o f  length IbN=BNI. It  is obvious  tha t  
A N ] ' = 0 ~  i.e., 2~ = 0 .  We shall s tudy the second smallest  e igenvalue 22, u o f A  N. We 
note  tha t  A N is symmetr ic  and  has nonnegat ive  entries so 22, N is posi t ive accord ing  
to the P e r r o n - F r o b e n i u s  theorem and the spectral  ma pp ing  theorem.  

2.2 Exponents 

We are deal ing with  m o n o t o n e  sequences tending to zero or  to infinity. F o r  such a 
sequence {ai} we define 

ln(ai)  
LS({al} ) = lim,~osup ln( i )  
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and for a sequence {ki} of  indices such that  k i~  oo 

in (a k.) 
Lim ({ai}, {kl}) = lim ' 

i ~  In (kl) 

provided the latter exists. We say tha t  an exponent  a is exact if there is a sequence of  
indices {kl} for  the sequence {al} such that  

a = L im ({a~}, {k~}) = LS({a~}) 

and there are constants  1 < Q__< Q '  < oo forming un i fo rm bound  as follows 

and 

Q< ak' <Q' if ai~oo (1) 
akl 

Q < % - I ~ Q ,  if a i ~ 0 .  [] (2) 
ak i 

Remark 1. We have defined in [T] a similar condi t ion for the sequence k i ; instead of  
(1) (or (2)) there we supposed that  

Q < ~ < Q '  (3) 

holds. It  is impor t an t  to note tha t  a long all series we reach the same limit as it follows 
f rom the condi t ion (1), (2) or (3). 

Using the above nota t ions  we can now define the fractal  d imension 

d=LS({bN}) 
and the exponent  of  22,N 

d2=LS({;~;,~}). [] 

The isoperimetric constant of  a graph  is 

IE(B, V\B)I 
i t =  rain 

Bey IBI 
IBI < IVI/2 

where E(A, B) is the set of  edges connecting the vertex sets A and B. 

It is easy to prove  that  
n - 1  

22,N = < ~ -  it 

[] 

where n = I V[. So we have that  22, N < i t .  One can find a lot o f  further  results for 22 
(cf. [AM, A, F]) and we ment ion  the fundamenta l  work  of  Cheeger ([C]). 

2.3 The Random Walk 

Our  main  object is the R W ;  {X,},~ N, X, e Vand  X 0 = a. The transi t ion probabi l i ty  is 
determined by G. F r o m  any x e Vthe  R a n d o m  Walk can j u m p  to nearest  neighbour  
vertices and chooses between them with equal probabi l i ty :  

1 
P(X. =ylX.-1 = x) = P(x,y) = T .  

ax 
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for all (x, y) E E and for all n ~ N. We write P to denote the transition probability 
matrix of the RW. Let QN be the restriction of P to B N. 

QN(x, y) = P(x, y) 

on B N. [] 

Let Da, N be the diagonal matrix of vertex degrees restricted to B,, N 

Da,  N = (d, ,  z ) , , z  ~BN 

where dy,~=@ if y = z  and 0 otherwise. (Not to confuse with DN. ) The Laplace 
operator restricted to B N is defined as follows 

AN=D N-DNQN. [] 

We believe that the spectrum of A N determines the important  properties of  the 
RW. As one can find in the literature (cf. [KSK, DS]) this operator is the inverse of  
the fundamental matrix determined by the RW plays a central role in the potential 
theory of Markov chains. As was pointed out in [MW] p. 13, the first eigenvalue of 
the Laplace operator of  the subgraph G N does not necessarily converge to the first 
eigenvalue of the Laplace operator of  G, but the spectrum of A N tends to the 
spectrum of the Laplacian on G. 

The smallest eigenvalue of AN will be denoted by/~I,N- [] 

Let us observe that #i,N > 0 for the same reason that 22, N > 0. Let TN be the first 
hitting time of S N if the RW is started from a~V,  and let E(TN) be its 
expectation. [] 

Using the notations introduced above we now define 

dR= LS(E(TN)) 
to be the RW dimension and 

d I = LS(~;,~,) 
to be the exponent of #l,N. [] 

2.4 The electric network model 

One can consider the finite graph G N as an electric network (cf. [DS, NW]). The 
edges are unit resistors and we apply a voltage between the poles a s V and S N such 
that the effective current ia, N along the network is 1. Here we shortcut the vertices of  
SN into a single one. Let us denote the effective resistance between a and SN by 

RN = R (a, SN). 

Let us consider the voltage vx, x ~ B  N, generated by the unit current. Then 

and va = RN 

vy=0 for a l l y 6 S  N. 

It can be proved that (cf. [DS], p. 52) 

P ( X  i reaches a before SNIXo=x)=v~/RN, 
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and if u x is the expected number  of  visits o f  X i to x before it reaches SN, then 
(cf. [DS], p. 50) 

ux=d~.Nv x. (4) 

It  is clear that,  

x E V  x E V  

N o w  we can give the exact definit ion of  resistance dimension via 

d a = 2 - L S ( R N ) ,  if R N ~  
and 

d a = 2 - L S ( R ( G ) - R N ) ,  i f R N ~ R ( G ) < o o .  [] 

Remark 2. The exponent  d a is said to be exact if R N (or R(G)--RN) satisfies the 
condi t ion (1) (or (2)). 

Fo r  the sake of  brevity we introduce 

c S = d + 2 - d a - d  g. [] 

2.5 The conditions 

We say that  G is modera t e  if 

1. G is locally finite and connected graph  without  loops 
2. d, d e are exact exponents  with a c o m m o n  {ki}, 
3. for  the sequence of  spheres Sk, there is a sequence ofequipoten t ia l  surfaces Fk, 

such that  Fk, lies strictly between Ski and Ski+ 1" [] 

Remark 3. We say that  a g raph  is smooth  if 1 .-3. hold but  we suppose (3) instead of  
(1) or (2) (see R e m a r k  1). 

Our  previous result [T] states that  6 = 0 if G is smooth.  On the other  hand  it is 
easy to see that  the p r o o f  of  6 = 0 in [T] works  if we assume that  G is modera te  but  we 
do not  use this fact in the present  context.  

Condi t ion  3. means  in detail that  for  any finite subgraph  Gk, the potent ia l  
surfaces lie between the geometr ic  surfaces if Ski is on the zero potent ia l  level 
(va= 1), i.e. it is an  equipotent ia l  surface itself. 

3. Results 

Theorem 1. I f  G is moderate then 

24>4+2a.  
In particular, i f  ~ = 0 

2d 2 >=d R . [] 

Theorem 2. I f  RN~ov as N ~  then 

dl >=4-a 
In particular, if  6 = 0 then 

dl>=dR. [] 
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4. Proofs 

Proof of Theorem 1 

We start with 
Y Z 

xEB N x E B N  

The r.h.s, of  (5) can be written as 

Z (Vx+V,). (5) 
( x , y ) e E N  

Vx 

(v x+ vy )>  ~ (v x+vy)=2 Z 5pdp (6) 
(x, y) s EN (x, y) e E~ (x, y) e E~ Vx - -  Vy vy 

where E~ = {(x, y)~ EN[v ~ > vy}. The r.h.s, of (6) can be put into the form 

] RN 

2 - -  2 ~ Z(P ~ (vy, vxl)pd p 
( x , y )~E  + U x - - U y  0 

RN ] 

= 2  ~ Z - - ; ( ( p ~ ( v y , v ~ ] ) p d p .  (7) 
0 (x,y)~E~ l ) x - - U y  

Now we introduce the edge set cutting the equipotential surface of an arbitrary 
potential p defined as 

d , =  {(x, y) ~E;lp~(v, ,  Vx]} 
and write 

a e = Is~l 
for its cardinality. The region containing the reference point a and surrounded by 
the equipotential surface with potential p is defined by 

~v = {xe V[vx>pK, 
and its volume by 

In terms of electric networks we can speak of "equipotential surface" for an 
arbitrary potential p in our graph in the following sense. I f p  e (v~, vy], (x, y) e E we 
can say that on this edge there is an internal point w with potentialp. In this sense we 
use the notation Fp = {w e Ex (0, 1 ] [Vw = p} for the equipotential surface (cf. IT]). The 
sum in (7) now can be estimated from below using the relation between the 
harmonic and arithmetic mean as follows 

2 

(x ,y )e  Jff p 

Now remember that an equipotential surface is a cutset of the graph and the current 
crossing it is the total current. So the sum in the last denominator is the total current 
which is 1. It is important  to note that the inequality becomes equality if and only if 
all terms in the sum are equal, i. e. if and only if the potential differences are the same 
on all of  the edges. This may happen for nice graphs, e.g. for hierarchical structures. 
The r.h.s, of  (7) can now be estimated from below by 

RN 
pa2 dp . (S) 

0 
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We can use the isoperimetr ic  cons tant  as a lower bound  if the volume of  the ball 
is smaller  than  the ha l f  o f  the total  volume,  so we introduce 

Let  us consider  the sequence producing  the exact exponents ,  choose N=N,, and 
abbrevia te  the double  subscripts  like AN~ by A k. It  follows f rom the proper ty  3 of  
modera teness  that  there is a fixed integer k such that  

B m _ k _ 4 ~ q C B m _ k .  ( 1 0 )  

Condi t ion  3. on equipotent ia l  surfaces implies that  there is an equipotent ia l  surface 
F, of  potent ial  r > q such that  

B~_k_9~,cB~_k_5 
and so 

B m - k - 9 > C  "bm (11) 

where c = (Q ,)k+9 N o w  we can use the relation between the isoperimetric  constant  
and 2a,N given by 

ap > 22, m tip 
for  all p > q, We get that  

RN r r 
p@ de > ~ p@ dp 2 2 _>22,rob r ~ pdp 

0 q q 

C ~2 1~2 @2 ~2"~ ~> C 2 2 2 22, m bm (r - q) =2>-,~2,m~,,~ - q  ) = ~  . (12) 

In order  to calculate r - q  r emember  the propert ies  relating the equipotent ia l  
surfaces and the geometr ic  surfaces. Here  

r -q=R(r , ,  S~)-R(rq, s.,)= [R(a, Sin) --R(F~, Sin) ] - -  [R(a, S~)+R(F,, Sin) ] 

=R(a, Fq)-R(a, Fr) (13) 

and f rom the separa t ion  p roper ty  of  the surfaces we get that  the r.h.s, of  (13) is 
greater  than 

R(a, Sm_k_4)-R(a, Sin-5) �9 (14) 

N o w  we have to separate  the cases when R(G) is finite or not. There is no 
essential difference between the proofs,  but  the finite case is a little more  complex.  
We present  the calculat ion for the case R(G) < oe and the other  case will be left to 
the reader.  

By the definit ion o f  dr~ we can introduce ~k, ek as 

o~k= R(G)-- R (a, Sk)= N~ -d"+`k 

where ek--,0 as k ~ o o .  Then (14) will have the fo rm 

R(a, Sra_k_4) - R(a, Sin_g_5)= Ore-k-5 -- O,,- k-4 

__->(Q-1)Qm_k_~__->c~m (15) 
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where e=Qk+4(Q-l). Collecting our inequalities and combining the constants 
(which do not depend on m) into one C, we get from (12) that 

- 2  2 2 E(Tm)22,m> CbmOm, 

which leads to the desired estimate if R,n is bounded: 

dR> - 2d2 + 2 (2 -da )  + 2d, 
i.e. 

2dE>=2d+ 2(2-do . ) -dR=dR + 2a 

and if 6 = (d+ 2 - dry) - dR = 0 then 

2d2>=d R . 

Remark 4. It is instructive to consider the Sierpinski graph [DS], since the 
4 

isoperimetric number for this graph is rather small: ]~u[" So 

In (d+ 1) 
d2>d 

In (2) 
but 

In (g+ 3) 
d R - -  

In  (2) 

where dis the dimension of the space the graph is embedded in. This shows that 2d2 
and d R can be rather far from each other. 

Proof of  Theorem 2 

By the definition of &,N 

#I,N =min  (q~, AN~b) 

Let us consider ~b = v on B N. One can easily check that 

(v, ANY) =RN. 
On the other hand 

/)x b/x 1 
2 >  > > _ _ _ _  

(v,v) ~ v x= bN = D2bN =D z xEBN 
and we get that 

E(TN)2 =< D2R~vbN#E 1. 

By our assumption on the exponents it follows that 

2dR <d+ 2-d~a+d 1 =6+dg +dl 

and if ~ = 0 we get our statement. 

E2 ( TN ) 

bN 

Remark 5. Let us consider Z 3 and Z% the three and four dimensional integer 
lattices, as separate graphs and connect their origins by an edge. It is easy to see that 
this graph is not smooth. One can easily prove this statement by observing that the 
potential surfaces with the same value on the two graphs are very far from each 
other. 
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