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Summary, We take a detailed look at Akaike's information criterion (AIC) and 
Kullback-Leibler cross-validation (KLCV) in the problem of histogram density 
estimation. Two different definitions of "number of unknown parameters" in 
AIC are considered. A careful description is given of the influence of density tail 
properties on performance of both types of AIC and on KLCV. A number of 
practical conclusions emerge. In particular, we find that AIC will often give 
problems when used with heavy-tailed unbounded densities, but can perform 
quite well with compactly supported densities. In the latter case, both types of 
AIC produce similar results, and those results will sometimes be asymptotically 
equivalent to the ones obtained from KLCV. However, depending on the shape 
of the true density, the KLCVmethod can fail to balance "bias" and "variance" 
components of loss, with the result that KLCV and AIC may produce very 
different results. 

1. Introduction 

Methods founded on information theory have recently received considerable 
attention in statistics. One of the more commonly used definitions of"information" 
is the notion of Kullback-Leibler loss (Kullback [15]), which describes the amount 
of information in a single observation from one distribution for discriminating 
against another distribution. The associated method of Kullback-Leibler cross- 
validation is a popular tool in certain types of nonparametric density estimation, for 
discrimination and other problems [2, 3, 4, 7, 8, 9, 10, 1 l, 15, ~ 7, 20]. Other de- 
finitions of information include Akaike's criterion [1 ] and Rissanen's [18] concepts 
of stochastic complexity and minimum description length. Akaike's criterion has 
recently been applied to the problem of selecting bin width for histogram density 
estimators [22]. The purpose of the present paper is to take a detailed look at 
Akaike's information criterion (AIC) in the setting of histogram density estimators, 
and to relate it to Kullback-Leibler loss and Kullback-Leibler cross-validation 
(KLCV). 
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AIC works by adding to the negative of the estimated loglikelihood a term equal 
to the "number of unknown parameters", and minimizing this quantity rather than 
the negative estimated likelihood. In the present paper we consider two different 
interpretations of "number of unknown parameters", J -  one being the number of 
nonempty histogram bins, the other being the total number of bins (empty or 
nonempty) between the smallest and the largest data point. We show that each 
interpretation produces meaningful results provided the underlying distribution 
has sufficiently many finite moments. However, both will fail if certain low-order 
moments are infinite, and in those cases AIC is not workable. 

We analyse two different classes of distribution - distributions with bounded 
support, and unbounded distributions with regularly varying tails. On a coarse 
scale, our main conclusions are the following. When the distribution is bounded, 
both definitions of J yield similar results, Kullback-Leibler loss is well-defined, and 
the AIC method usually produces results similar to KLCV.  In the case of 
unbounded distributions, the different versions of J produce very different results, 
and neither Kullback-Leibler loss nor K L C V  is well-defined in large samples. 

In finer detail, our main conclusions are as follows. 

(i) Bounded distributions 

Assume that the true density f is supported on the interval [0, 1], and that f ( x )  and 
f (1  - x )  behave like x "1 and x ~2, respectively, as x,~0, where et ,  ~2 :>0. Divide [0, 1] 
into m equal-width histogram bins. Both AIC and KLCVarr ive  at the choice of an 
optimal m by minimizing respective functions of m. These functions may each be 
divided into "bias" and "variance" components. When AIC and K L C V  are both 
well-defined and finite, the respective bias and variance terms are essentially of the 
same size. In each case, minimization of the criterion "should" involve balancing 
bias against variance, and so both techniques "should" produce similar values ofm. 
However, this argument fails in circumstances where AIC is well-defined but K L C  V 
is not. The A IC function is well-defined for all possible choices of m, whereas K L C  V 
is only defined when m is chosen sufficiently small for each bin to contain at least 
two data points. Sometimes the latter condition can only be fulfilled by choosing m 
so small that it is impossible to achieve balance between bias and variance 
components of KLCV.  In this circumstance, AIC manages to balance bias against 
variance but K L C V d o e s  not. The value ofm selected by K L C V i s  then very close to 
the largest one compatible with each histogram bin containing at least two data 
points, and is of a smaller order of magnitude than the m selected by AIC. 

In particular, this type of behaviour occurs when the tail parameters cq and 0~ 2 
satisfy min (el, e2) > 1 and max (cq, c~z)> 2. On the other hand, there are many 
cases where the "low bin count" problem does not arise, for example when the 
optimal m is such as to ensure high counts in all bins. In such circumstances, AIC 
and K L C V  produce asymptotically equivalent histogram estimators. A case in 
point is that where 0 < min (el, 0~2) < 1 and max (cq, 0~2) < min (el, CX2) Aft 1. 

In the case of bounded distributions, K L C V  makes a very good attempt at 
selecting that value ofm which minimizes Kullback-Leibler loss, L. In all cases, the 
ratio of the cross-validatory m to that which minimizes L converges weakly to a 
proper limit distribution having no atom at zero. The limit is unity when the 
"optimal" m is sufficiently small for there to be no problem with low bin counts. 
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(ii) Unbounded distributions 

Assume that the true density f is positive on ( -  ~ ,  ~ )  and that its upper (lower) 
tails decrease like x -~1(Ix] -~2) respectively. Define ~=m in  (~z, ~2). If J is taken 
equal to the number of nonempty bins then the condition ~ > ~0 -~ 2.5 (where ~o is 
defined in Sect. 2) is necessary and sufficient for acceptable performance of AIC. 
Using the other criterion for J, ~ > 2 is necessary and sufficient for acceptable 
performance. Here, "acceptable" means that the bin width h produced by AIC 
converges to zero at a rate between n -~+~ and n -a for some 6>0 .  Should this 
condition fail, the pointwise mean squared error of the histogram estimator is of 
larger order than n -~ for each e > 0, which is exceedingly poor. (Note too that the 
conditions h ~ 0  and nh~oo are necessary and sufficient for consistent density 
estimation by the histogram method.) 

Our results also show that when both versions of J perform acceptably, the bin 
width selected using the "number of nonempty bins" criterion for J is of 
considerably smaller order of magnitude than that chosen using the other criterion. 
Neither criterion ever gives a smoothing parameter of the order which minimizes L 2 

loss; they smooth much more than is optimal there. 
Work on Kullback-Leibler loss and cross-validation for kernel-type density 

estimators includes Habbema et al. [9], Duin [4], Chow et al. [3], Bowman [2] and 
Hall [11, 12]. The present paper appears to be the first to take a detailed look at these 
methods for histogram estimators. Taylor [22] was the first to treat AIC in the 
context of histogram estimators. 

Properties of Kullback-Leibler loss and KLCV for histogram estimators and 
bounded distributions are described in Sect. 2. AIC for bounded distributions is 
discussed in Sect. 3. The conclusions in (i) are drawn from Sect. 2 and 3. Section 4 
describes AIC for unbounded distributions, and leads to the conclusions in (ii). 
Proofs are given in Sect. 5. 

2. Bounded distributions: Kullback-Leibler loss and cross-validation 

2.1. Introduction 

Assume that the underlying density f is supported on interval (0, 1). In this setting 
we shall describe properties of Kullback-Leibler loss, L, as a criterion for selecting 
the number m of bins in a histogram density estimator (see Subsect. 2.2), and discuss 
performance of the cross-validation criterion CV as a data-driven device for 
choosing that value o fm which minimizes Kullback-Leibler loss (see Subsect. 2.3). 
The functions L and CV are defined at (2.3) and (2.4), respectively. 

Divide the interval [0,1] into m bins, or cells, the i ' th being ~i 
- [ ( i -  1)m -1, im -1] where 1 <_i<_m. Let f -  {X 1 . . . . .  J(n} be a random n-sample 
from f , N  i be the number of Xj's in bin ~i,  and P i -  S f =n-~ E(Ni) be the chance 

that an arbitrary Xj is bin ~g. The histogram density estimator based on these bins is 
defined by 

f ( x ) - m n - l N i  for x ~ i ,  l <_i<m. (2.1) 

When discussing cross-validation it is convenient to introduce the estimator J~ 
constructed from the (n - l ) - s ample  Y ' j - f \ {X j} .  If N~j denotes the number of 
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values from .~ in bin .~, then 

j ~ ( x ) - m ( n - 1 ) - l N o  for xENi ,  l<--i<-m. (2.2) 

Kullback-Leibler loss or "discrimination information" is defined by 

L=L(m)  =_~ f l o g  ( f / f ) .  (2.3) 

It equals the average amount of information present in a single observation from f 
for discriminating against ~ The cross-validation criterion is defined by 

CV=CV(m)=_-n  ~ ~ Nz log (N~- l ) - l ogm.  (2.4) 
i = 1  

We use this version, with the minus signs, so that the cross-validatory m is found by 
minimizing rather than maximizing CV. 

A quantity identical to CV up to terms which do not depend on m is 

CVl(m)=_- ~ logf j (X,) .  
k = l  

Therefore minimizing CV is equivalent to maximizing an estimator of log- 
likelihood. Both CVand CV 1 may be derived by following the prescription given by 
Titterington [23, 24]. Note that C V and C V~ are either infinite or undefined if some 
N~< 1, and L is infinite or undefined if some N~=0. 

Assume f ( x )  and f ( 1 - x )  behave like x ~1 and x% respectively, as x~0. 
Asymptotic theory for L and for CV is governed by values taken by the tail 
parameters e~ and %. Some aspects are a little unusual and complex, so to make life 
easier for the reader we summarize the main features here. Both Kullback-Leibler 
loss and the cross-validation criterion have "bias components" which are of size 
m -  7 for some 1 < 7 < 2, or of size m-  2 log m, depending on cq and c~ 2 . There is also a 
variance component whose natural order is m/n. This means that in principle, the 
optimal number of bins is found by balancing m/n against m -~' (or m -2 logm), 
resulting in the optimal m being approximately n 1/(~+ 1) (or (n log n)1/3). However, 
the fact that each ~ must be positive in the case of Kullback-Leibler loss, or that 
each N~ - 1 must be positive in the case of the cross-validation criterion, results in 
this balance being unachievable in certain circumstances. 

For example, suppose e = min (cq, 62) > 1. Then the bias component is of size 
m -2. Balancing m - 2  against m/n entails m~-n 1/3. Now, the minimum of the 
expected numbers of data points in bins 1 through m is 
min~np~nm (e +1) ~_ n(2-#)/3, where /3 -  max (aq, ~2)- If fl > 2 then this number 
converges to zero, implying that 

P(Ni=O for some i)--+1 

as n--+ oo. This means that if we take m ~-n 1/3, as suggested above, then both L and 
CVtake infinite or undefined values with probability converging to one. Therefore 
with high probability, balance between variance and bias components cannot be 
achieved. 

In circumstances such as the one just described, minimum loss and maximum 
CV are achieved not by effecting a balance between bias and variance, but by 
increasing m to a number close to the largest value compatible with the relevant 
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criterion being well-defined and finite ! For  example when ~ > ] and/~ > 2, the re- 
quirement that loss be finite dictates that nm-  ~ + 1) not decrease to zero, meaning 
that the optimal m is of  size n 1/(a+1), not n 1/3. In this circumstance the bias com- 
ponent is of size m-2-~ n-Z/(a + 1), whereas the variance component  is negligible at 
m/n -~ n - a/(a + 1 ) = o (n - 2/(~ + 1)). The operations of  minimizing L and minimizing C V 
both produce values of  m of size n ~/(~+1), but the ratio of  the two values is not 
asymptotic to unity. This comes about because in the case of  Kullback-Leibler loss, 
the condition for finiteness is min i N/>  1, whereas in the case of  cross-validation it is 
rain/N~ > 2. Therefore minimizing CV is not necessarily asymptotically equivalent 
to minimizing Kullback-Leibler loss. However, there are cases where the operations 
of  minimizing C V and minimizing L do produce asymptotically equivalent results; 
see Sect. 2.3 for details. 

It is worth reiterating here one of the conclusions of this paper, which is that AIC 
avoids all these difficulties. Since AICis  well-defined and finite even when some bins 
are empty, then using AIC is in all cases asymptotically equivalent to balancing a 
variance term of size m/n against a bias term of size m -~ (or m - 2  logm). 

2.2. Kullback-Leibler loss 

Recall the definition of L at (2.3). Notice that in the case of  histogram estimators 
there is a nonzero probability that f vanishes within any given bin ~ .  Therefore 
E ( L ) =  + oe for all n >  ] and m__>2. This means that we must work directly with 
raw loss L, not expected loss E(L). 

Write L = B + V, where 

B - ~ f l o g ( f / E f )  and V = _ ~ f l o g ( E f / f )  (2.5) 

denote bias and variance components respectively. Convexity ensures that B > 0. Of  
course, B depends only on m, not on n, and is purely deterministic. It may be treated 
by routine analytical means, so we dispose of it first. 

Given ? > 0, define a i = a/(7) by 

- i - ( ~ + 1 ) a i - - = 7 ( 7 + l ) - l ( 1 - - i - 1 ) ~ + l l o g ( l - i - 1 ) + ? ( ? + l ) - 2 { l - ( l - i - 1 ) ~ + 1 }  

-~ (7 @ 1) -1  {1 --  (1 --  i -1  )~,+ 1} l o g  [(7 -/- 1 ) -1  i{1 _ (1 --  i -  1)~+1}] ,  

interpreting 0 log 0 as 0 in the case o fa  I . It may be shown that ]ai[= O(i ~-2) as i ~  oe, 
so that ~ [a/I < oe for 0 < 7 < 1. Define 

b(d,?)=-d ~ a/(7) for d > 0 a n d 0 < 7 < l .  
i=1 

Assume that the support  of  f equals [0, 1 ] and: 

f is nonzero on (0, 1); f '  exists and is continuous on (0, 1); either 

f ( x ) ~ c  I or f ' ( x )~Cl~ l  x~1-1 as x$0, where Cl, ~1 >0 ;  and (2.6) 

either f ( l  --X)---~C 2 o r  f ' ( ]  - x ) ~ C z ~ z X  ~2-1 as x,~0, where c2, (x 2 >0.  

In the cases f ( x ) ~ q  and f ( l  - x ) - ~ c  2, define cq -=0 and c~ 2 = 0  respectively. Then 
f ( x ) ~ c l x  ~ and f ( 1 - x ) ~ c 2  x~2 as x ~ 0 ,  which is the "tail parameter"  model 
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discussed in Sect. 1 and Subsect. 2.1. Put e = min (0~1, 0(2) , /~ ~- max (cq, c~2), c =-- c i if 
0 < e i <  ej, C=--Cj if 0=Ch<C~ j, and c = c 1 + c 2  if 7, =c~ 2. 

Theorem 2.1. Assume condition (2.6), and that m--+c~. I f  0<c~<1  then 
B ( m ) ~ b ( c ,  e)m-(~+l ) ; / f0  = ~  </? < 1 t h e n B ( m ) ~ b ( c ,  fi)m-<e+l); if  e =  i, o r i f e = O  
and f l = l ,  then B ( m ) ~ ( c / 2 4 ) m - Z l o g m ;  and i f  c~>l, or i f  ~ = f i = 0 ,  or i f  

= 0 and B > 1, then 

B(m)  ~ m - a ( l / 2 4 )  ~, ( f , ) z f - i .  (2.7) 

Except for the three cases ~ > l , ~ = f i = 0 ,  and ~ = 0  and f i > l ,  where B(m)  
satisfies formula  (2.7), the integral on the r ight-hand side of  (2.7) is infinite. 

We now turn to the variance term V, defined at (2.5). Observe that  V =  + oo 
unless m i n i N i > l .  The next theorem describes V when bin counts satisfy this 
condition, and uses the following weaker version of  condit ion (2.6) : 

f is bounded  away f rom zero on [& 1 -  8] for each 0 < ~ < �89 and 
satisfies 

(2.8) 
f (x) ~ c 1 x ~' and f (1 - x) ~ c 2 x ~2 as x$ 0, where c 1 , c 2 > 0 and cq, 0{ 2 ~ 0. 

Theorem 2.2. Assume condition (2.8). Then i f  0 < ~ < �89 

v = r m n  l +op(mn i) (2.9) 

uniformly in values m such that n~<_m<n 1-~ and miniN/=> 1, as n--+oo. 

Next  we combine results (2.7) and (2.9). Recall that  c~=min(cq ,%)  and 
fl = max (el, %). It is convenient  to ignore the circumstance when either c~ = 1 or 

= 0 and fi = 1, where B,-~ const, m - 2  log m. This case is easily treated separately. In 
all other situations, B ~ C m  -7 where C > 0  and 1 < 7 < 2 .  Results (2.7) and (2.9) 
entail 

L = B +  V = ( C m - ~  +�89 +op(1)} .  

In principle, the asymptotically optimal value o f  m should be obtained by 
minimizing C m - r + r m n  -1, giving m ~ ( 2 C T n )  i/(r+l). However,  remember that  
formula  (2.9) holds only for values of  m such that  min i N i > 1. Since 

min E ( N i) = n minpi  ~ const, nm - (~ + 1) , 
i i 

then a necessary and sufficient condit ion for P (min  i N i > 1) to converge to one is 
that  nm-(e+~)~c~  as n---,c~. If  m ~ ( 2 C 7 n )  ~/(~+~) then the latter condit ion is 
equivalent to fi < 7. Should it be true that  either (a) 0 < ~ < 1 and fl > ~ + 1, or (b) 
c~=0 or c~>1, and fl=>2, then the condit ion f i < 7  will be violated. In this 
circumstance the value of  m, m* say, which minimizes L will be asymptot ic  to 
min(mo,  Mo) , where mo=(2C7n)  ~/(~+~) and M o denotes the largest m such that  
min i N i > 1. Of  course, M o is a r a n d o m  variable. 

Asymptot ic  behaviour  of  M o is easily described in terms of  Poisson processes, as 
follows. Let N be a Poisson process on (0, oo) with intensity funct ion )o(x)=-cjx r 
w h e r e j  is the index such that fl=c~j. Let Zk(t  ) denote the number  of  points o f  
contained within the interval I k (t) = [(k - 1) t, kt),  where 0 < t < oo and k > 1. Define 
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the random variable S by 

S -1 - i n f { t > 0  "Zk(t)>l for each k > l } .  (2.10) 

Now, ~(t)=--P{Zk(t)>l for each k> 1}=IIk{1--exp(--#k)} , where ~t k equals the 
expected number of points of N in Ik(t ) and is dominated by const, k p. The series test 
for convergence of an infinite product shows that ~( t )~ l  as t---,oo. Therefore 
0 < S <  oo with probability one. In the case e=gfl it may be shown that under 
condition (2.8), n-a/(~+a)mo---,S in distribution. The proof  is by Poisson approxi- 
mation to the binomial distribution. 

We are now in a position to give a concise description of the optimal m, m*, in 
the exceptional cases (a) and (b) mentioned two paragraphs earlier. 

(a) 0 < c~ < 1 and/3 => c~ + 1" Here 7 = ~ + 1, m o = {2 C(c~ + l)n} 1/(~+2), and 

n-1/(~+ Z)m, ~ n-1/(~+ Z)min (mo, Mo ) 

__,~S if /3>c~+1 (2.11) 
min[{2C(e+l)}~/(~+2),S] if /3=c~+1 

in distribution; 
(b) e = 0 or ~ > 1, and fl > 2: Here 7 = 2, m o = (4 Cn) 1/3, and 

n -1/3 m* ~n-1/3min (mo, Mo) 

~ S S  if /3>2 and e4=/3 
(2.12) min{(4C)l/3, S} if /3=2 and e + f l  

in distribution. (The case e =/3 is only slightly different. There, both tails o f f  play a 
role, and S should be defined in terms of two independent Poisson processes ~a and 
~2 with respective intensities CxX~ and c2x~.) 

These peculiar properties of Kullback-Leibler loss arise solely because loss is 
infinite whenever one or more bins are empty. As we shall show in Sect. 3, AIC 
circumvents this pathological behaviour. 

2.3. Kullback-Leibler cross-validation 

Recall that CVwas defined at (2.4). Many of the characteristics of CVare also those 
of L. For  example, up to terms which do not depend on m and so play no role in the 
operation of minimization, CV and L have virtually identical asymptotic proper- 
ties, as the following theorem shows. 

Theorem 2.3. Assume condition (2.6). Then if  0 < e < �89 

C V + l o g ( n -  l ) + n  -1 ~ l og f (X j )=L+op(B+mn -~) 
j = l  

=B+�89 -1 +op(B+mn -1) 

uniformly in values of  m such that n~<m<n a-~ and miniNi> 2. 

The restriction "n~< m _< n ~-~'' imposed in Theorem 2.3 hardly matters, for it 
is now clear that the value ofm which we seek lies within this range ife is sufficiently 
small. However, the constraint "min iNi>2"  is very important. Recall from 
Subsect. 2.2 that in certain circumstances, the value of m which minimizes 
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Kullback-Leibler loss is asymptotic to the largest m such that min t N~ > 1. When we 
minimize CV in such cases, we obtain that value of rn which is asymptotic to the 
largest m such that min i N~ > 2. This difference can have a significant effect. For  
example it means that in cases (a) and (b) considered earlier, the value m* which 
minimizes C V satisfies the following analogues of (2.11) and (2.12) respectively: 

S '  if /3>c~+ 1 
n -  1/(~+2)m* --> (2.13) 

min[{2C(e+l)}l/(~+2),S'] if /3=c~+1, 

~S ' i f f l > 2  and e:#fl 
n-t/3m*~(min {(4C) 1/3, S'} if 1~=2 and e4:/3, (2.14) 

where S '  is defined as was S at (2.10) except that the inequality Zk(t)> 1 there 
should now be replaced by Zk(t ) >2. 

We conclude from this discussion that in cases (a) and (b), the ratio m*/m* of the 
m chosen by cross-validation to the m which minimizes loss does not converge to 
unity. However, the ratio does converge weakly to a proper limiting distribution 
(defined by ratios of  right-hand sides of  (2.11) to (2.14)) with no a tom at zero. 
Therefore at the very worst, cross-validation picks a bin width which is of  the right 
order of  magnitude from the point of  view of minimizing loss. The ratio mt/m * does 
converge to unity in all the other cases considered in Subsect. 2.2 - there, cross- 
validation selects a bin width which is asymptotically optimal from the point of view 
of minimizing loss. 

It is worth noting that the values of  rn which minimize L ~ and L 2 distance 
between f and f ,  are of size n1/3; see Scott [19] and Freedman and Diaconis [5]. The 
only cases where CV would give an m of  this size are 1 < e < / 3 < 2 ;  c~=0 and 
1 < f l < 2 ;  0 < ~ < 1  and f l=2 ;  and 0~=/3=0. 

3. Bounded distributions: Akaike's information criterion 

Adopt  notation introduced in Sect. 2. In particular, assume f is supported on 
interval (0, 1), let m be the number of histogram bins in the interval [0, 1 ], and let N~ 
denote the number of  data points in bin i. As shown by Taylor [22], Akaike's  
information criterion asks that m be selected so as to minimize 

AIC=AIC(m)=-n-IJ-n -1 ~ NilogNi-log m, 
i = 1  

(3.1) 

where J, a random variable, may be taken to equal either the number of  nonempty 
bins or the total number of bins between the smallest-index nonempty bin and the 
largest-index nonempty bin. Unlike either Kullback-Leibler loss L or the cross- 
validatory criterion CV, the function AIC is well-defined even when one or more 
Ni's are zero. 

Let B, the bias component  of both L and CV, be as at (2.5), and remember that 
the variance component  of both L and CV is asymptotic to �89 in those cases 
where the respective function is well-defined. Our next theorem shows that, up to 
terms which do not depend on m and so play no role in the operation of 
minimization, the function AIC is also equivalent to B+�89 -1. 
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Theorem 3.1. Assume condition (2.6). Then t f 0  < e < } ,  

AIC+logn+n -1 ~ log f (Xj )=B+�89  +ov(B+mn -1) 
j=a  

uniformly in values of m such that n~<_m<_n 1-~. 

Theorems 2.3 and 3.1 are directly comparable. The main feature which 
distinguishes them is that in Theorem 3.1, no conditions are imposed on values of 
the N~'s. Therefore when minimizing the function AIC we simply balance the bias 
term, B, against the variance term, ~mn-1, without being bothered by problems of 
empty or near-empty bins. For  example, consider cases (a) and (b) from 
Subsect. 2.2, which caused so much trouble when we minimized L and CV. The 
value rh of m which minimizes AIC satisfies rh ~ {2 C(c~ + 1)n} 1/(~+ 1) in case (a) and 
rh ~ (4 Cn) 1/3 in case (b). 

4. Unbounded distributions: Akaike's information criterion 

Assume that the underlying of f satisfies 

f > 0 on ( -  0% oQ), f '  exists and is continuous on ( -  oc, oe), 

and for constants cl,c2>0 and ~1,e2 > 1, f ' ( x ) ~  - q % x  -~1-1 (4.1) 

and f ' ( - x )  ~ -c2c~2 x - ' 2 - 1  as x ~  + oe. 

(Thus, f ( x )  ~c: x -~ and f ( - x )  ~c2 x-~2 as x-~ + ce, so that upper and lower tails 
of  f vary regularly with exponents el and e2 respectively.) Let h denote bin width for 
the histogram estimator, and let the i ' th bin be ~i - ((i - 1) h, ih ] where - oe < i < 00. 
(Identical asymptotic results are obtainable for AIC applied to variable-centre bins, 
but we avoid that version so as to minimize technicalities.) Let N~ denote the number 
of values from a random sample X 1 .. . . .  X, which fall into bin N'i, so that ~ ~ = n. 
Our histogram estimator of  the unknown density f of  the X~'s is 

f (x)=-N/nh,  for xE~i .  

Let M(x) denote a Poisson-distributed random variable with mean x, and put 

D ( e ) - e  -1 ~ x-1/~E(log[x-~ {M(x)+ l}])dx, e > l ,  
0 

and D k =-cl/~D(C~k). An equivalent definition of D k is 

D k =- ~ E[M(Ck x - ~ )  log {M(CkX-~O/CkX-~}]dx, 
o 

from which it follows by convexity that D u > O. 
Our first theorem in this section describes asymptotic behaviour of  the estimated 

loglikehood. It is basic to elucidation of AIC. Given 6 s (0, ~), let ~ f f , -  {m - 1 1  �9 m i s a n  
integer and nan  m-< n 1 -6 }. As in Sect. 3, our bin widths h will be chosen from this 
class. Our results may be extended to any collection yg', such that n - i  + ~< h < n -~ 
for each h E ~ ,  and #~gP = O ( n  ~) for some c > 0 ,  as in Stone [21]. However at 
several places in the proof,  such as the derivation of (5.10), this requires calculation 
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of high-order multinomial moments, and that takes very lengthy algebra. The 
restriction n-  1 + 6_< h _< n 6 is commonly made in work of this t y p e -  see e. g. Marron 
[16] - and anyway, consistency of f demands h ~ 0  and nh~oo. Define 

b--(1/24) ~ (f,)z f - 1  > O. 

Theorem 4.1. Assume condition (4.1). Then 
2 

L~-H -1 ~ l o g f ( X j ) : n  -1 ~ l o g f ( X j ) +  • Dk(nh)-l+(~/~k)-h2b 
j=l j=l k=l 

2 

uniformly in h ~ .it',. 

A related result for the "leave-one-out" estimate of loglikehood, in the case of 
kernel estimators, was obtained in [11 ]. The term n-  1 ~ log f (X j )  on the right-hand 
side of (4.2) does not depend on h, and so has no bearing on the operation of 
maximize/~. 

Unfortunately, the sum of those non-negligible terms not depending on h on the 
right-hand side of/2, is a decreasing function of h. Therefore it is maximized by 
taking h to be the smallest value in 2(f,. In fact, the over-all maximum ofs  s = + o% 
is achieved at h = 0. This means that maximizing/2 is not a practical procedure for 
selecting h. A similar difficulty was noted by Habbema et al. [9] in the context of 
kernel density estimation. Their solution, shown by Titterington [23, 24] to be cross- 
validatory, was to omit observation Xj when computing f for argument Xj. 
However, the corresponding version of L in the histogram case is not well-defined if 
one or more bins contain a single element. The probability that the latter event 
occurs converges to one i f f  satisfies (4.1), and so cross-validation cannot be used to 
remove the difficulties noted just above. 

AIC attempts to remove the difficulties by maximizing not s but L - n - l  J, 
where J denotes "number of unknown parameters". Two possible interpretations 
of J are -/1, the number of nonempty bins, and J2, the total number of bins between 
the smallest- and largest-index nonempty bins. Asymptotic theory for J2 is relatively 
easy, so we treat it first. 

Let e - m i n ( e l , % ) .  Recall from elementary extreme-value theory (e.g. 
Galambos [6, pp. 51 and 108] that n -1/(~-1) times the range between largest and 
smallest sample values, converges weakly to a proper, nondegenerate limit. Let Z 
have the distribution of this limit. Then n-1/(~-l)hJ2--+Z in distribution. Since 
n-l+l/(~-l)h-1 is of larger order than (nh) 1+(1/~) then by Theorem 4.1, 

A2(h)~ _ L +n- l  J2 =n(g-~)/(~-l)h -1Z,+hab+ov(n(2-~)/(~-l) h -z  q_h 2) 

uniformly in h e .~, ,  where Z,  does not depend on h and converges weakly to Z. 
Noting that ( 2 - e ) / ( e - 1 ) > 0  when ~<2,  we see that minimization of Akaike's 
information criterion A 2 (h) produces bin widths whose order exceeds n-  ~ for any 
c5 > 0 when rain (cq, %) =< 2. On the other hand, when min (~1, %) > 2, which 
corresponds to the existence of finite mean, the value of h which minimizes A z (h) 
satisfies 

n(~- 2)/3(c~- l) h_+(Z/2b )l/3 
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in distribution. Since 0 < (c~ - 2)/3 (a - l) < 1 then this bin width gives "acceptable" 
performance according to the definition in Sect. 1. 

Next we treat the option J1 for J, for which we need the following theorem. 

Theorem 4.2. Assume condition (4.1). Then 

n - i j l = k ~  i ca/~kF(1--~l)(nh)-i+(i/~k)+ov{k=~ t (nh) -i+(1/~k)} 

uniformly in h e Jr,. 

Combining Theorems 4.1 and 4.2, and remembering that D k = c~/~kD (~) ,  we see 
that Akaike's information criterion has the form 

2 
Al(h) = - L k - r t - I J 1  = 2 cl/ak{ F( l  -e;a)-D(ek)}(nh)-l+(1/~)+h2b 

k=l 

If we are to avoid having the minimum ofA 1 (h) achieved at an unacceptably small h 
value, then it is essential that F (1 - e-1) > D (a), where e -= rain (cq, e2). Again, this is 
only true for large values of c~, not for e close to 1. This is clear from the fact that 
F(I _ ~-1 )___~  1 and D(~ )~  1 as a ~ o v ,  whereas F(t __~-1)~(~__ 1)-1 and D(a) ~ ( a  
- 1)-2 as aS 1. If min (~1, a2) is close to one, minimization of Akaike's information 
criterion Al(h) will encounter precisely those problems which arise when we 
minimize - L :  we get a value h which converges to zero faster than n -~ for each c 
> 0. On the other hand, if a = rain (cq, a2) is sufficiently large then minimization of  
Al(h ) is tantamount to minimizing Cl(nh)-l+(1/~)+h2b, where G > 0 ,  and 
produces h ,,~ C2n -(~-1)/(3~-1). Since 0 < (a - 1)/(3 ~ -  1) < 1 then this bin width gives 
"adequate" performance. Numerical computation indicates that F (1 - a -  a) _ D (a) 
is a monotone function of a, equalling zero when a=ao  ~2.49. 

Comparing the sizes of bin widths selected by both criteria we see that, since 

( a -  2)/3 ( a -  l) < ( ~ -  1)/(3 ~ -  1) 

whenever a > 1, the "number  of nonempty bins" criterion will give a bin width of  
smaller order of magnitude. However, since ( a -  1)/(3 c~ - 1) < 1/3 for all ~ > 1 then 
both criteria produce bin widths of a larger order of magnitude than the n -  1/3 which 
is optimal in the sense of minimizing L 2 loss; see [5, 19] for accounts of  the latter. 
The fact that AIC produces larger bin widths than usual is in line with experience in 
certain other problems, where AIC tends to underestimate the number of unknown 
parameters; see e.g. [14]. 

5 .  P r o o f s  

All proofs are given in abbreviated form, with only the main points described in 
detail. 

Proof of Theorem 2.1. Put I = l ( q )  - ~ f log ( f /Ef) ,  where 0 < i/< 1. It suffices to 
(o, n) 

show that (i) I~b(cl, cq)m -(~l +l) if 0 < cq < l, (ii) I~(q/24)rn -z logm if cq = l, 
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and (iii) 

i~(1/24)m-2 ~ ( f , ) z f - 1  i f a l = O  or ~ t > l .  
(o, ~) 

Result (iii) follows easily by Taylor expansion, on writing l og ( f /E  f )  
= ( f - E f ) ( E f )  ~- �89  The proof of (ii) begins simi- 
larly, obtaining I =  ~ di+O(m -2) for any O<e<r/,  where 

i <=em 

d,-�89 ~ (E f  - f ) 2 (E f )  1. 

If ~1 = 1, di=(1-t-r i)m-2i-lcl /24 where lim limsup max Ir~l=O. This gives 
g ~ O , v ~ o o  m-~oo v < i < e m  

(ii). To prove (i), choose i0~c~ such that io/m--,O, notice that 

i/m 

p i = q ( l + r i )  ~ x~'dx and f(X)={I+r(x)}CI Xel 
(i - l )/m 

where A = max Vii + sup Ir(x)l->O, choose i x ~ oo such that i t < i o and i~ ' + t A -+0, 
i ~ i o  x<_io/m 

and note that for such i t , 1(17) - I(il/m) = o (m- (~ + 1)) and 

il i 
[(illm)=cl m-(~'+t) Z 

i : l  i 1 
X ~l log  ((~1 + 1 ) ( x l i )  ~i [i{1 --(]. - - i - t ) ~ l  + l } ] - l ) d  X 

+o(m-(,l+t)), 
where the integral equals ai(cq). [] 

Proof of Theorem 2.3. Define f and f j  as at (2.1) and (2.2), respectively. Put 
#(x) =_E{f(x)} =E{fj(x)}. Then 

- n C V -  n log (n - 1) - ~ log f (J(~) = Z log {fj(xj)I#(Xs)} 

+ ~  log {#(Xj)/f(Xj)}.  (5.1) 

The second series is a sum of independent variables with means - B .  It is readily 
shown to equal -nB+op(nB+m).  To treat the first series, fix t />0 very small; 
divide bins into two groups such that ~ is in group 1 if np~ > n n and in group 2 
otherwise; let d ,  s f b e  unions of group 1, group 2 bins respectively; and write 

j = l  X j E ~ /  

The second series is dominated by C(log n)( # Xj s ~r which equals op(m) if ~/is 
sufficiently small. The first series may be treated by Taylor expansion, 

log {D(X~)l~(Xj)} = {D (x~) - v (x~)} ~ ( x j ) - i  

- ~  [ {~(x~) - ~ (:vj)} ~(x~)-~:1 ~ + . . . ,  
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noting that 

{ f j (Xj)-#(Xj)}2 #(Xj) -2 =m +op(m), 
X j e x~ r 

E {fi(xj)-F'(Xi)}#(XJ) -~= ~ {~(XJ)-#(XJ)}#(Xi)  -~ +Op(m) 
X j ~ , ~  j = l  

= op(m). (5.2) 

Uniformity in m may be achieved via the continuity argument, much as in Stone 
[211. [] 

Proofs of Theorems 2.1 and 3.1 are similar. For  example, to derive Theorem 3.1 
note that in place of (5.1) we have 

- n A IC-  n log n - ~ log f (Xj)  = ~ log { f(Xj)/I~(Xj)} + Z log {p (Xj)/f (Xj)} - J .  

Now argue as before. The only essentially different feature is that, observing that 
J=m+op(m), ~,#(Xj)-' =n+op(n) ,  f ( x j ) = ( 2  -n-~) f j  (Xj)+mn -a and 

Z Z 

we obtained instead of (5.2): 

-f-ran - 1 E # ( X j )  1--1,  

{ f  ( x i ) - # ( X ~ ) } # ( X j ) - ~ - J = o p ( m )  . 

Proof of Theorem 4.1. Put p(x)=-Ef (x), and observe that 

[] 

n ~ ~ log {f(xj)/f(Xj)} = S  1 -1-$2, (5.3) 
j = l  

where $1 -=n -a Z log {f(Xj)/#(Xj)} and S 2 - n  -~ ~ log {#(Xj)/f(Xj)} represent 
J J 

"variance" and "bias" terms respectively. We treat S~ and S 2 separately. 

Step (i)." S r Let 0 < r k <  1 <Sk< Oe, and decompose S 1 into six parts: 

2 3 

31= E E Tkl, where Tkt=-n -1 E log{f(xj)/l~(Xj)}, 
k = l  /=1 X d e s ~ k l  

All=-(O, rl(nh)l/~:], A12=-(rl(nh)l/~l,sl(nh)l/~l], Ala-(Sl(nh)l/~, oe), A21 
=-(-r2(nh) ~/~2, 0], A2z=-(-sz(nh) z/~2, -r2(nh)~/~], A23 = ( -  Go, -sz(nh)i/~2]. We 
need rgh-l(nh) ~/~ and Skh-l(nh) ~/~ to be integers, so we shall take rk,s k to be 
[rh-l(nh)l/'~]h(nh)-l/~, [sh-l(nh)l/~]h(nh)-a/~ respectively, where O < r <  1 
< s <  oe are fixed and [.] denotes the integer part function. Let ~(k,t) denote 

summation over values i such that ~i-~ J u ,  and put Pi =- ~ f Then i 

Tkl=n -1 Z(k'l)Nilog(Ni/npi)=n -1 Z(k'l)Ni(Ni--npi)(npl)-l+Rk, (5.4) 
i i 
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where, since Ilog (1 + u) - u I ~ u 2 - log (1 + u) I (u  < - �89 

IRk,I <= n -1 ~(k,l) Ni [{(Ni -- np~)(npi ) -1  }2 _ log ( Ni/np,) I (Ni/npi < �89 
i 

<= Cn-1  Z(k, , )[N i {(Ni _ npO(npl) 1}2 + ( N  i _ npi)2 (npi) -  ~] = CSu, t 

say. 

Step ( i .a)  : 7 \ t  and Tz~. We begin by bounding  S ~ .  Observe that  

E (  S ~ )  = n - ~ Z ~ )  {(np~ - 2 p~ + 1)(1 =p~)(np~)- i + (1 -p~)} -_< Cr (nh ) - ~ + ~/'~) , 
i 

whence 

lira lim sup sup (nh) ~ -(~/~)E{S~z (h)} = 0. (5.5) 

Suppose we show tha t  for  each )~>0, and  some e=~(6 ,  2 ) > 0 ,  

sup P ( l S k l ( h )  - E S k l  (h)l > (nh) -1 +(1/~)n-~} = O(n-Z). (5.6) 
n t + z < _ h < - n - 6  

Since ~'~, contains only O(n ~) elements then if we choose 2 >  c, 

P {]Skl (h) -ESk l  (h)l > (rth)- ~ + (1/~k}n-~, some h e ~t~,} --,0. 

I t  then follows via (5.5) that  for  each e > 0 ,  

lira lim sup P fmax(nh)~-(~/~)lRk~(h)l>e}=O. 
r~O n~cc ~ hE 2~n 

(5.7) 

To  prove  (5.6), write N i - n p i =  ~ Ui2 where U i j - - = I ( X j E N i ) - p i .  Then 
J 

U~ . . . . .  Uz, are independent  r a n d o m  variables with zero means. It  may  be proved  
after some tedious algebra, as in M a t r o n  [16, pp. 1020-1022], that  with 

Z 1 - n -1 ~<k,t) {(N~ _ np~)2 (np~) -~ - E ( N  i - npi)2 (np~)- ~} 
i 

j = l  l=l i 

we have for sufficiently small e > O, 

E(Z?~) =o  n-~ E hJ{h-~(~h)~/~} ~+~J/~ 
j = 0  

= o[{ (nh)  -~ + ~ / ~ } ~ { ( n - ~ ~ h  ~ - ~ / ~ ) ~ + h ~ } ]  

= o [{n- ~(nh) -1 + ~/~}~ q .  

An identical bound  holds for E(Z2~),  where 

i 
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in each case, note that np~>e, for some e>0,  uniformly in ~)~_c aCk,. From these 
results and the fact that Skl-ESkl =2Z1 +Z2 we see that for any 2>  0, 

sup E[n~(nh)l-(1/~){Skl(h)-ESkl(h)}]Z~=O(n-~), (5.8) 
n ~+~'<h<_n a 

provided e is sufficiently small and v sufficiently large. Formula (5.6) follows via 
Markov's inequality. 

Finally we treat the term 

U k ( h ) = n  - 1  2 ( k , 1 )  Ni(Ul-nPi)(npi) -1 
i 

appearing in (5.4). Follow exactly the argument above, obtaining the following 
analogue of (5.8) : 

sup E[n~(nh)l-(1/~){Uk(h)-EUk(h)}]E~=O(n-X), 
rt-1 +,~ < h  < n  a 

for sufficiently small e and large v. It follows that 

sup P{[Uk(h)-EUk(h)l > (nh) -~ +(1/=k)n-~} = O(n-a), 
n-l+O<_h<_n-~ 

1 - (1/ak) whence max (nh) [Uk(h ) -- EUk(h)[---~O in probability. Furthermore, 
h c ~ n  

O<=EUk(h)=n-1 }-~}k,1)(1-pi)<=Cr(nh)-X+(a/~k), 
i 

and so for each e > 0, 

lim,_.o lim,~osup P (h~Jr.~max (nh)l-(t/=k)lUg(h )[ > e}=0 .  

From this result, (5.4) and (5.5) we deduce that for all e>0,  

~-~olimlim+supPtmax(nh)l-(1/~k)'Tkl(h)l>e} ~ ~h~e, 

Step (i.b): Tie and Tz2. Our initial goal is to prove that 

(5.9) 

sup (nh)~ - (~/~") [ Zk2 (h) - ETk2 (h)[ ~ 0 (5.10) 
h ~ g f .  

in probability. For this, it suffices to show that for some q > 0, each 6 _<a _< 1 - 6 and 
each e > 0, 

P {hs~,:nS, U_Ph<_n .... (nh)l-(1/~k)[Tk2(h)--ETk2(h)l>e} ~0" 

This in turn will follow if we prove that 

E { (nh )l-(1/~k)l TgE (h ) - -ETk2(h) l }2~0 .  
h~o f '  :n -~ n<<_h<n-a+'t 

(5.11) 
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I f  i=#j then, condi t ional  on N~, N~ is Bi{n-N~,pj(l-p~) ~}. F r o m  that  
observat ion and after some algebra it follows that  

= o {h -1  
whence 

E [(Elk )1 - (1 /zk)  { Tk 2 ( h )  - E T k 2  ( h ) }  12 = O { (Hh  )1 - (1/clk)Fl --1 } .  

Since H ,  contains O(n ~+~) values in the interval [n -~-~, n -"+"]  then the left-hand 
side of  (5.11) is of  the same order  as 

na+n(nl - a + ~t)l - (1 /~k)H- 1 = n,,,/ctk, 

where ~ ~ a - 1 + r/(2 a k - 1 ) < - ~ + r/(2 ~k -- 1) < 0 if t 1 < d/(2 ~k -- 1 ). Result  (5.11) is 
immediate.  

Finally, we compute  E(Tk2): 

E(Tk2 ) + n-1 ~ E { N i log ( Ni/nPi) } 
rk(nh) 1/~ < (--  1)k+lhi <sk(nh ) TM 

s~ h ~ 1 (nh )a/~k 
= {1 + O ( 1 ) } n  - 1  ~ E ( N { ( n h  I ~ k ) - l / ~ k X }  

rkh - ~ (nh )l/~ 

x log [N{(nh 1 - ~)-  1/~x}/(nh 1 - ~X-~Ck)]) dx, 

where N(x) has the Bi(n, n-lCkX-~) distribution. Let W(x) be Poisson-dis t r ibuted 
with mean  Ck x-~.  Changing variable in the above integral, and using the Poisson 
approx imat ion  to the Binomial,  we see that  E(Tk2)={I  +o(1)}(nh)-l+(l/~)Ak, 
where 

A k E[  Wk(x ) log { Wk(X)/CkX-~}]dx 
r 

F r o m  this result and (5.10) we conclude that  

max  ](nh )1 - (1/ek) Tk 2 (h) - Ak[-~ 0 
h ~,;4~ 

in probabil i ty.  The integral defining A k converges absolutely,  to Dk, as r ~ 0  and 
s ~  oo. Therefore  

lira t i m s u p P I m a x l ( n h )  1 (1/~'Tka(h)-Dkl>e}=O. (5.12) 
r ~ 0  s ~ m  n ~  [ . h s W ~  

Step (i.c) �9 T13 and Tza. An a rgument  similar to that  in Step (i.b) produces  the 
following analogue of  (5.10) : 

sup (nh)l-(1/~)[Tk3(h)--ETka(h)l--,O (5.13) 
h ~ ,;rE n 

in probabil i ty .  To  bound  EITk31, note that  if N is Bi(n,p) and C a > 0  then 
E{Nllog (N/np)[} < C2 np [log npl uniformly  in n > 2 and 0 < np< C 1 . Therefore  by 
(5.4), 
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EITk31 ~ C2 ~(k,3)pillognpil 
i 

<Ca ~ h i - ~ i - ~ l l o g ( n h l - ~ i - ~ ) l  
i> Skh-~(nh)~/~, 

< C4(nh)-i +(1/~) ~ x-=~llogxldx" 
Sk 

From this we deduce that 

lira lim sup sup (nh)l-~ , 
s ~ o o  n--*o~ n - l + 6 < < _ h < n  -,~ 

which together with (5.13) gives 

lim lim_supP~max(nh)l-(lm')lTk3[>@=O (5.14) 
s~oe n ~ [ heal'. 

for each e > 0. 
Combining (5.9), (5.12) and (5.14) we conclude that, uniformly in h �9 ~ , ,  

$1= 2 Z Tkl= ~, Dk(nh)-l+(am')+Op (/'/h) -l+(1/zt0 . (5.15) 
k = l  1=1 k = l  k 

Step (ii): S 2. Put Y - l o g  {#(X1)/f(X1)}, B -  - E ( Y )  and Z -  Y-E(Y) .  Let v> 1 
be an integer. By Rosenthal's inequality [13, p. 23], 

n 2 ~E(S 2 + B) 2~ < C [{nE(Z 2)}~ + nE(Z 2 ~)]. 

Since [ # ( x ) - f ( x ) [ < C l h x  -~''-1 and f ( x ) > C 2 x  -~q for x > l ,  with analogous 
bounds for x < - 1, then 

E ( Z  2v) ----- C 3 E ( Y  2v) --= C3 E ( l o g  [1 q- {]2 (JtZl) - f ( X  1 ) } f ( X 1 ) - l ] )  2v 

< C 4 ~ {/t (x) - f(x)}2~f(x)-2~+l dx < C 5 h 2~ . 

Consequently, E(S 2 + B) 2 v ~ C6 (/7- lh2)v. For any e > 1, n -  lh2 ___ �89 {(nh)- 1 + ca/a) 
+he}2n-1/~h 1-0/~). Therefore if 2 > 0 and v is chosen sufficiently large, 

sup El{(nh)-~+(1/~')+(nh)-l+~i/~2)+h2}-l(S2+B)[2~=O(n-X), 
n-l+~<h<n-O 

from which it follows that 

m a x  {(nh)- l+(1/~l )q- (nh)  -1 +(1/~2)q-h2}-1 IS2 q-BI---~0 (5.16) 
h~Jgn 

in probability. Elementary analysis shows that 

B =  - ~ f  log {1 + ( / ~ - f ) f - 1 }  ~�89 ~ (~_ f )2 f -1  ~ l h 2  ~ ( f , )2 f -1 .  

This result and (5.16) give 

_ ~ h  2 f $2= 24 j (f ')2f-a+Op{(nh)-l+(1/'l)+(nh)-l+(1/'2)+h2) (5.17) 

uniformly in h ~ , .  Theorem 4.1 follows from (5.15) and (5.17). [] 
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Proof of Theorem 4.2. The number  of  non -empty  bins equals 

2 3 

J l = ~  I ( U + > l ) =  ~ ~, U u, where Uk;--~ <k';) I(U,>l) 
i k = l  / = 1  i 

and  ~}k, t) is def ined as in the p r o o f  of  Theorem 4.1. Ana logues  of  a rguments  in Steps 
i 

( i .a)-( i .c)  o f  tha t  p r o o f  show tha t  for  small  r and  large s, Uk~ and Uk3 are negligible, 
and  tha t  

max  (nh )l - (1/~k) lUkz _ EUk21__ ,0 

in p robabi l i ty .  Now,  

E(Uk2)=2 'k'2, {1 - ( 1  -Pi)") ={1 +o(1)}  2 ~k'2' {1 --exp(--nhl-~cki-~k)} 
i i 

={1 +o(1)}n(nh) 1+(~/~) i {I --exp(--CkX-~)}dx. 
r 

Lett ing r-+O and  s ~  oc in the integral ,  in tegra t ing  by  par t s  and  changing  variable,  
the in tegral  becomes  c~/=~F{1 - - ( l / e k )  }, whence the theorem.  [] 
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