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Summary.  A Markov  process of Ornstein-Uhlenbeck type was introduced 
in [5] as a Markov  process on R e generated by a L6vy process generator 

d a 0 
plus a drift term - ~ ~, Q~k Xk with the matrix Q = (Qjk) having eigen- 

j= l  k=l ~ X j  
values with positive real parts. A criterion for positive recurrence of processes 
of this type was given by Sato-Yamazato  [5]. This paper  gives a criterion 
for null recurrence and transience by a integral condition involving the L6vy 
measure in the case of one dimension. Multi-dimensional cases are also dis- 
cussed. 

1. Introduction 

Let M+ (N a) be the totality of real d x d matrices whose all eigenvalues have 
positive real parts. For  Q e M +  (IR d) an Ornstein-Uhlenbeck process is defined 
as a diffusion process ( f 2 , ~ , ~ , ~ , X t )  on IR d, whose sample path is governed 
by the following equation: 

X t = x -  i QXsds+Bt, (1.1) 
0 

where xEIR d, and B t is a d-dimensional standard Brownian motion defined on 
a complete probabil i ty space (f2,~-,P). Then it is well-known that for every 
x~lR d the distribution of Xt converges to a Gaussian distribution as t ~ oo. 

Next  let us consider a generalized version of the equation (1.1) taking account 
of a process with homogeneous and independent increments (which we call 
a L6vy process) in place of B t in (1.1). 

Let A t be a L6vy process on NJ  whose characteristic function is given by 

E (e i ( z, At)) ____= exp t qo (z), (1.2) 

~o(z)= (~z , z )  ( . i ( z , x )  \ . . .  
2 t - i (z ,m)+ I e ' < ~ > - - I  iTix~Jptax) (1.3) 

Ra 
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where c~=(eij)l__<~.y_< a is a symmetric, non-negative definite and real matrix, 
msiR a, and p is a measure on IRa satisfying that p({0})= 0 and the integrability 
condition 

Ixl  2 
l+[X[2 p(dx)< +oo. (1.4) 

R a  

For given Q s M + (iRd) and At, let us consider the following equation: 

X t = x -  i QXsds+At .  (1.5) 
0 

As easily seen, the equation (1.5) has a unique solution, and the solution defines 
a standard Markov process (f2,~,o~t,P~,XO taking values in IR a, which we call 
a process of Ornstein-Uhlenbeck type (shortly, a process of OU type) following 
[5]. 

Such a class of Markov processes were introduced by Wolfe [8] in one 
dimensional case, and by Sato & Yamazato [5] in multidimensional case, which 
are paid attention by a fact that every operator-selfdecomposable distribution 
appears as a limit distribution of a process of O U types as t ~ oo. In particular, 
they proved the following results. 

Theorem 1.0. ([5]) Let pt(x, dy) be the transition probability of a process of OU 
type (g2,Y,~,P~,Xt)  associated with a Q ~ M  + (IR e) and (1.5). Suppose that 

loglxl p(dx)< + oo. (1.6) 
[xl >__ x 

Then there is a Q-selfdecomposable distribution t~ such that pt(x, dy) converges 
weakly to # as t--+ oo for every xe lR  a. 

Conversely, if the condition (1.6) fails, then 

lim sup Pz(X, B) = 0 for every bounded subset B. 
t --+ oo x 

As a next stage it is an interesting problem to find a criterion for the process 
to the null recurrent and transient in terms of L6vy measure. Concerning this 
problem it is to be noted that in the final section of [5] some examples of 
one dimensional processes of OU type are given that are null recurrent and 
transient. 

In the present paper we settle the recurrence problem in the one dimensional 
case, and we will also discuss it in certain multidimensional cases. 

Throughout  this paper we will adopt the following definition of recurrence 
and transience. 

Definition. Let ((2, ~ ,  ~ ,  Px,X~) be a Markov process of O U type on iRa associated 
with a Q~M+ (IR d) and (1.5). We say that the process (Y2,~,~,P~,Xt) is recurrent 
if there exists an a e N  a such that 

P~ (lira inf [ X t -  al = 0) = 1. (1.7) 
t ~ c O  
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On the other hand we say that the process (s fft,P~,Xt) is transient if 

P~(lim IXti= + o o ) = 1  for every xelR d. 
t --~ O0 

(1.8) 

We remark that for a process of O U type (f2,Y,~,Px,Xt),  it always holds 
that 

P~(lim sup IXtl = + o o ) =  1 for every xMR d, (1.9) 
t --roo 

unless A t is a deterministic process, i.e. At = b t for some b. 
In one dimensional case the equation (1.5) turns to 

t 

X t = x - ?  ~ X,  d s + A .  (1.10) 
0 

where xEIR, 7 is a positive constant, and A t is a one dimensional Lhvy process 
with the characteristic function 

~o(z)  . . . .  

E (e i~a') = exp t ~o (z), (1.11) 

~ Z  2 

t- ibz + ~ (e iz~- 1 - iza(x)) p(dx), (1.12) 
2 N. 

where e > 0  and b are real constants, a(x)=x if ]x]< 1, a (x)=0  otherwise, and 
p is a measure on IR satisfying that p({0})=0 and the integrability condition 

min {Ix] 2, 1} p(dx)< + o% (1.13) 

Let (f2, ~ ,  4 ,  Px, Xt) be the process of O U type taking values in N associated 
with (1.10). We remark that if At is not deterministic, the Markov process (f2, 
~ ,  4 ,  Px, Xt) is irreducible in the whole space IR except the following two cases: 

1 

e = 0 ,  p ( - o o , 0 ) = 0 ,  and O<c+=~xp(dx )<+oo ,  (1.14) 
0 

0 

c~=0, p ( 0 , + o o ) = 0 ,  and 0 ~ c _ =  ~ ]x[p(dx)<+oo. (1.15) 
- 1  

On the other hand, in the case of (1.14) (or (1.15)) the Markov process is irreduc- 
ible in ((b-c+)/7, +Go) (or ( - 0 %  (b+c_)/V)) since At has no downward (or 
upward) jump. 

Our main result of this paper is the following. 

Theorem 1.1. A one dimensional process of OU type (f2,~,~,P~,Xt) governed 
by the equation (1.10) is recurrent or transient according as 

i d z l e x p ( - i ~ d y ) = + o o  or < + o %  (1.16) 
0 z. \ y y  
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where 

2p(y)= ~ (1-e-Yl~l)p(dx). (1.17) 
Ixl>_-i 

The proof of transience is based on Fourier analysis method, that is quite 
standard. On the other hand for the proof of recurrence we first prove it under 
the assumption that A t is an increasing and pure jump L6vy process by making 
use of an explicit formula of Laplace functional of a hitting time distribution 
for any point. For general case it can be reduced to this case. Theorem 1.1 
will be proved in section 3. 

In section 4 we discuss several classes of multi-dimensional cases. Let 
(f2,~-,~,Px,Xt) be a Markov process of O U type on R d associated with a 
QeM+(IR d) and (1.5). Under some restrictive assumption on QeM+OR ~) and 
the L6vy measure p, we obtain a recurrence criterion for the process of O U 
type ((2, ~ ,  ~ ,  Px, X,). 

For instance we will prove 

Theorem 4.3. Suppose that 

(2 = (Qjk)l__<i,j__<~ e M +  (]R ~) (1.18) 

is symmetric, and the L~vy measure p of At is rotation invariant, i.e. p (0 (E))= p (E) 
for every EeN(IR d) and every orthogonal transformation O: IRd--+IR d. Then the 
process (fL Y ,  ~t, P~, Xt) is recurrent if and only if 

i d r  ~ -  exp ( -  i )@(f--) dY) = + ~ 1 7 6  r (1.19) 

where 7 is the minimum eigenvalue of Q, and 

2~(y)= ~ (1 -e -Yl :" l )p (dx) .  (1.20) 
]xd>l 

Let (f~,~,~,P~,X~) be a process of O U types on IRa under the situation 
of Theorem 4.3. If the process (f~,~,~,Px,Xt)  is transient, then the integral 
of (1.19) is convergent, hence "one-dimensional transience" occurs. Namely, since 
for any eigenvector e associated with the minimum eigenvalue 7 of Q, the one- 
dimensional projection process (Xt ,e)  is also a one-dimensional process of 
OU type associated with ? and the L6vy process (At,e) hence it follows from 
Theorem 1.1 that 

P~(lim [ (Xt ,  e)J = + oo)= 1 holds for every x6lR a. 

This phenomenon is a special character of the processes of OU type unlike 
L6vy processes. 
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2. Preliminaries 

We begin with summarizing some preliminary facts following [5]. Let G be 
an integro-differential operator defined by 

d d ( 
Gf(x)=�89 ~ ~ykDyDkf(x)+ ~ myDyf(x)+ ~ f ( x+y) - - f ( x )  

j , k =  1 j = l  lld 

~1 YJ Djf(x) p (dy ) -  ~ QjkXkDJ(x ), --I l+[y]2  
"= j , k =  l 

(2.1) 

where Dj stands for partial derivative in xy, m=(mj)eN d, Q=(Qjk)eM+(]Rd), 
= (ejk) is symmetric and nonnegative definite, and p is a measure on Re  satisfy- 

ing that p({0})=0 and 

[X]2 p(dx)< +oo. 
Na 

(2.2) 

We consider G as acting on C z functions defined on Nd with compact supports. 
Let Co(JR d) be the Banach space of continuous functions vanishing at infinity 
with the supremum norm. Then G has the smallest closed extention in the 
Banach space Co(lRd), which is the infinitesimal generator of a Markov semi- 
group Tt. Furthermore, it is easy to see that for the solution Xt of the equation 
(1.5) with Xo = x, 

Ttf (x) = E ( f  (Xt)) for every f~  Co (lRd). (2.3) 

Thus, corresponding to the Markov semigroup T~, we have a Markov process 
(Y2,Y,~,P~,Xt) taking values in Nd, which is called a process of OU type associat- 
ed with QeM+ (~d) and (1.5). 

Lemma 2.1. (cf. [5], Theor. 3.1) Let pt(x, ") be the transition probability of the 
process of OU types (f2, ~ ,  4 ,  Px, Xt) associated with Q e M  + (N~ a) and (1.5). 

Then the characteristic function of pt(x, .) is 

pt(x,z)=-exp(i(x,e-tQ*z>+ i qo(e-S~ (2.4) 
0 

where q)(z) is given in (1.3) and Q* stands for the transposed matrix of Q. 

Lemma 2.2. Let Xt be the solution of the equation (1.5) associated with a 
Q~M+(~) ,  a Ldvy process At, and the initial condition Xo=x.  Then Xt has 
the following decomposition: 

Xt = Yt + Zt, (2.4) 

where Yt and Z t are two processes independent of each other such that (i) Ytt 
is the solution of (1.5) with the Q and a Ldvy process A' t of pure jump type and 
Yo =x, and (ii) Z~ is the solution of(1.5) associated with the Q and a Ldvy process 
A't' such that Zo =0, and the distribution of Z, is convergent as t ~ oe. 
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Proof Use the L6vy-Ito decomposition to decompose A, into 

At= A; + A;' (2.5) 

such that A', and At  are independent of each other, A't is a L6vy process of 
pure jump type, and A't' is a L6vy process with the L6vy measure satisfying 
the condition (1.6). Let Yt and Z t be the solutions of (1.5) with the same Q, 
the initial conditions Yo = x and Z 0 = 0, and with A't and At  in place of At 
in (1.5) respectively. Then by Theorem 1.0 it is obvious that Y~ and Z t satisfies 
the requirements (i)-(iii). 

Let e > 0. For  a measurable subset B of IR e, and a positive measurable func- 
t i o n f o n  IR e, set 

oO GO 

R~(x, B)= ~ e-~tpt(x, B) dt, and R J ( x ) =  ~ R~(x, dy)f(y) .  (2.6) 
o o 

Lemma 2.3. Let (g2,~,fft,Px,X,) be the process of OU type associated with a 
QeM+ (]R a) and a Ldvy process At. Then there is an r o > 0 such that for every 
r >_ r o and every ~ > 0 

inf R~(x, B,) > 0, (2.7) 
x ~ B  r 

where B, = { x ~ d :  ]X] < r}. 

Proof Let x ~IR e be fixed. Using the decomposition of X, = Y~ + Z~ in Lemma 2.2 
together with Theorem 1.0, we will show that there are constants t o >0  and 
r 0 > 0 satisfying that 

inf P~([Xt]<r)>O forevery t>to  and r > r  o, (2.8) 
[xl<r 

which yields (2.7). Clearly 

P(Y~=e- tQx)>P(A;=O for all s t [0 ,  t ] )>0  (2.9) 

for every t>O. Q~M+(IR d) implies that for some a > 0  and b >0 ,  

le-tQx]<=ae-bt[x[ holds for every t>0 ,  (2.10) 

hence by (2.9) we have a c~ > 0 such that 

Px(lY~l<lxl/2)>ct forevery x~lR d. (2.11) 

On the other hand, by Theorem 1.0, Z~ has a limit distribution as t ~ o% from 
which and together which (2.11), (2.8) follows. 

Next we present a criterion of recurrence and transience for the process 
of O U type in terms of the transition probability. 

For  a measurable subset B of IR d, the hitting time of B is defined as usual; 
aB= in f{ t>0 :  X t e B  } if {" } 4=4, O-B= + oO otherwise. 

Theorem 2.4. Let (g2,~,~,P~,X,)  be the process of OU type associated with (1.5), 
and let pt(x, d y) be its transition probability. (i) I f  for some x~]R ~, it holds 

Ro (x, B) < + oo .(or every bounded subset B of ]R d, (2.12) 
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then (2.12) holds for every x t lR e and the process (~2, ~ , ~ t ,  P~, Xt) is transient. 
(ii) I f  for some xE]R e and a~]R e, it holds 

Ro(x, U)= + oo for every open subset U containing a, (2.13) 

then the process (fL ~ ,  4 ,  Px,Xt) is recurrent. 
(iii) Furthermore, if the process ((2, ~ ,  4 ,  Px, Xt) is recurrent, then there is an 
ae]R e such that (2.13) holds for every xs]R e. 

Proof We first claim that for any Lipschitz continuous function f on ]R e there 
is a constant C > 0 satisfying that 

I R j ( x ) - R J ( y ) l < - _ C l x - y [  forevery x,y~]R e and ~>0.  (2.14) 

Denote by Xt and Yt the solutions of the equation (1.5) associated with the 
common Q and At and with Xo = x and Yo = Y. Then, clearly X t -  Yz = e - t ~  y), 
so using (2.10) we easily obtain (2.14). The first part of (i) is obvious by (2.14). 
For the latter half of (i) we use Lemma 2.3. By the strong Markov property 

Ro(x , Br)> ex(a~r( + oo) inf Ro(y, B~). (2.15) 
[yl-<r 

Hence from (2.7), (2.12) and (2.15) it follows that for any sufficient large r > 0 

lim P~(aB,(0t)< + oo)= lim ~ pt(x, dy) Py(am< + oo) 
t ~ o O  t"-+ oo ~ d  

<const.  lim ~ p,(x, dy) Ro(y, Br) 
t ~ ~176 ~ ct 

=0, (2.16) 

which implies P~(lim IXt] = + oo)= 1 for every x~]R ~. 
t --+ oO 

(ii): Let U be a bounded open set containing a, and f > 0  be a C 2 function 
supported in U wi th f ( a )>  0. By the strong Markow property 

- ~ u  X R J ( x ) = E x ( e  R J ( , , ~ ) ) ,  (2.17) 
hence 

(1 - E:, (e ~ ~'I)) R , f  (x) = Ex (e - ~ ~ ~ ( R J  (X~ ~) - R , f  (x))) 
< C sup [ R j ( y ) - R j ( x ) ] .  (2.18) 

y ~ U  

Using (2.13) and (2.14), we have 

P~(av< + oo)= lim E x ( e - ~ ) =  1 
~ 0  

From this it is easy to see 

P~ (lim inf [Xt - a] = O) = 1 
t ~ o O  

for every x~]R e. (2.19) 

for every x~]R d, (2.20) 

thus we conclude the recurrence of the process ((2, ~-, ~t, Px, Xt). 
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(iii): Suppose that the process ( f2 ,~ ,~ ,Px ,X t )  is recurrent. If the conclusion 
of (iii) fails, then for every aelR a, there exists a bounded open set U containing 
a such that Ro(x, U)< +oo for some x, but by (2.14) it holds for all x. This 
implies the condition (2.13), so the process ( f2 ,~,~,P: , ,Xt)  is transient, complet- 
ing the proof of (iii). 

Next we show that the definition of recurrence in this paper is equivalent 
to the usual recurrence notion. 

Theorem 2.5. Suppose that the Markov process of OU type (Q,~,~t ,Px,Xt)  is 
recurrent, and that for a point belR ~, 

P~ (Ov < + oo) > 0 for every open set V containing b and every x ~IR a. (2.21) 

Then it holds that 

P~( l imin f]Xt -b l=O)= l for every x e N  a. 
t ~ c~ 

(2.22) 

Proof By Theorem 2.4 (iii) there is an a such that (2.13) holds. Let V be an 
open set containing b. By (2.21) it holds that for every x there is an r > 0  such 
that 

r 

ps(x, V) ds>O. (2.23) 
0 

But using the Feller property of T~ one can see that for every bounded open 
set U containing a, there is an r > 0 such that 

r 

inf ~ ps(x, V)ds>O. (2.24) 
x ~ U  0 

Hence by (2.13) and (2.24) 

rRo(x, V)>= ; du(uAr)pu(X, V)= ~ i Ps+t(x, V ) d s d t  
0 0 0 

p 

= inf S Ps(Y, V)ds  Ro(x, U) 
y ~ U  0 

= + oo for every open set Vcontaining b. (2.25) 

Accordingly by Theorem 2.4 (ii) the proof of Theorem 2.5 is complete. 
Finally we present an elementary lemma which will be often used. 

Lemma 2.6. Let g: [0, l] ~ [ 0 ,  +co) be a contionuous function. Suppose that 
(a) g is a C a function on (0, 1) satisfying g(0)=0, (b)for some cl > 0  and ca >0,  
Cl < g' (u) <=ca for every 0 < u <  1, (c) ug"(u) is bounded in 0 < u <  1. Then 

cos ug(y) dy is bounded in u>= 1. (i) sup 
1 >-r>- 1/u r Y 

(ii) Let p be a measure on N satisfying ~ (1/x ]u]) p(du)< + oo. 
N 
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Then i d y ~-  ~ p(du)(e-Mg(Y)--cos ug(y)) is bounded in 0 < r <  1. 
r 

Proof For  (i), use inegral by parts to get 

433 

f cos ug(y) dy 
Y 

< sin ug(1) 

ug'(1) 

sin u ~ (r) ]Yg"(Y)+ g'(Y)] 
u(yg'(Y)) 2 dy, 

which is bounded in u > 1 > r with r u > 1 by the assumption. 

(ii): 

i dy ~ p(du)(e_l,,ig(y)_co s 
; 

u g ( y ) )  

1 A 
~1/I.I) dy le-lulg(y) _ cos ug(y)[ S p(du) 
o Y 

+ ~ p(du) sup i e-l"lg(Y)-c~ 
l u [ > l  l>r>-l/lu[ r Y 

Use the inequality" ]e- lXl-cos x I ~2[xl  to show the finiteness of the first term. 
Moreover, using (i), one can easily see that the second term also is finite. 

3. P r o o f  o f  Th eorem 1.1 

Let (~ ,~- ,~ ,P~ ,X0 be the one dimensional process of OU type associated with 
the equation (1.10). For  simplicity we will henceforce assume 7 = 1 since other 
cases can be reduced to this case by changing the other parameters. Let us 
denote by pt(x, �9 ) the transition probability of (f2,~,~,Px,Xt). Then by Lem- 
ma 2.1 the characteristic function of pt(x, �9 ) is 

!3t(x,z)=exp(ixze-t + i tp(e-Sz)ds), (3.1) 
0 

where q)(z) is the one of (1.12). 
We first prove Theorem 1.1 under the following situation: 

1 

~ = p ( - - o o , 0 ) = 0 ,  and Sxp(dx)=c<+~176 (3.2) 
0 



434 T. Shiga 

Then the L6vy process A t has no downward jump, so that the Markov process 
(f2,~,~, 4 ,  P~, Xt) is irreducible if we take (v, + 03) as its state space, where v = b -  c. 
Note that in this case G of (2.1) turns to 

co 

Gf(x) = (v-  x)f'  (x) + ~ (f(x + y)-f(x)) p (dy). 
0 

(3.3) 

For the associated process of OU type (O,W,~,P~,XO, denote by a.  the 
hitting time of {a}, i.e. G=inf{t>O]X~=a} if { - } ~ b ,  and a , =  + 03 otherwise. 
We use the following formula hitting time distribution due to Hadjiev [-2]. 

Theorem 3.1. ([2]) Assume the condition (3.2). Then for every 2 > 0  and every 
x>=a>v, 

~dzz)~-~exp((v-x)z+S P~--~)dy) 
1 E~(e-Zr o (3.4/ 

~ dzz z-e exp((v-a)z + i ~(y) dyl '  
o l ~ -  / 

where 

/5(y)= ~o (1 --e - 'x) p(dx). (3.5) 
0 

In order to make the paper selfeontained we here give a simple proof of 
Theorem 3.1 in the present context. 

(~ t~(Y) dy) for 2>0,  and denote its Laplace Lemma 3.2. Let g;.(z)-=z ~ 1 exp " 1  - 7  
/ 

transform by fz(x) = ~- e(V-X)Zgz(z ) dz for x > v. 
0 

Then fz(x) is a decreasing Cl-function on (v, + 03) vanishing at infinity, and 
satisfies the following equation: 

(v-x) f ' (x)+ ; ( f(x+y)-f(x))p(dy)=2f(x)  for x>v. (3.6) 
0 

Proof. By (3.2) it follows that for every e > 0  we have a constant C~>0 such 
that 

t~(Y) < C~ + ey. (3.7) 

Using this one can easily see thatfz(x) is well-defined. Next show that 

zg'~(z)=(2-1+Mz))g~(z), z>O, (3.8) 

which implies thatfz(x) is a solution of the equation (3.6). 
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Proof of Theorem 3.1. Apply  the Dynk in  fo rmula  to get 

f f a A t  

Ex(e- ;'("~176 Ex 
o 

e- )'~(Gf~ - 2f;.)(X~) ds) 

=f~ (x) for x>=a, (3.9) 

here we used L e m m a  3.2 and  (3.3). N o t e  that  if x > a, then X t > a andfz(Xt)<__J~(a) 
for any  t < aa, because Xt has no d o w n w a r d  jump.  Let t ing t ~ oo in (3.9), we 
obta in  

E ,  _ ~ ,  f~(x) 
xte ) = ~ a 3  for x>a, 

which yields (3.4). 

Theorem 3.3. Consider the process of 0 U type (0, ~ ,  ~ ,  Px, Xt) under the condition 
(3.2). Then the process (K2,~,Yt,P~,Xt) is recurrent or transient according as 

dz exp - = + o o  or < + o o .  (3.10) 
o ~ Y / 

where ~(y) is the one defined in (3.5). 

Proof Let  a > v. Us ing  (3.7) one can easily see tha t  

exp ( v - x ) z +  ~ -  +oo f o r e v e r y  x>a. (3.11) 

Fu r the rmore ,  if the integral  of  (3.10) is divergent,  

' ( ; P(y) ,  \ 
dzz  a-1 exp \ ( v - x ) z +  Jt y - a Y ) = I "  (3.12) 

l im o 
4 + 0  1 

~ dzz  ~- '  exp((v--a)z+ S fi(Y) " \ 
o 1 ~ - a y )  

Hence  by  (3.4) we have  that  for every a > v 

P~(~ra<+Oo)=limEx(e-Z'a)=l for every x>a, (3.13) 
2J, o 

which implies 

P~(lim in f lXt - -v ]  = 0 )  = 1 for every xe lR.  (3.14) 
~ o O  

Thus  we see the recurrence of the M a r k o v  process  (f2,.,~, ~ ,  Px, Xt). 
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Conversely if the integral of (3.10) is convergent, by (3.4) 

;dzz-Iexp((1)--X)ZAr-~ P--~[dy) 
P~(a,, < + oo) - o x < 1 (3.15) 

dzz -1 exp (v--a)z+ d 
0 1 

i f x > a ,  and lira P~(aa< +oo)=0 .  
x - + c o  

Here note that (3.15) implies 

loglxl p(dx)= + oo, 
Ixl_>_l 

and by Theorem 1.0, 

lira P~(lX~l<b)=0 forevery b > 0 a n d x ~ N .  (3.16) 
t - ~ C O  

Combining this with (3.15) we get 

Pj l iminflX~[< + oo)= lim lim Px(o-,(0t)< + oo) 
t - - ~  a - ~ c o  t - ~ c o  

= lim lim Ex(Px~(~z~< + oo)) 
a ---~ ~ t - + c o  

= 0  for every xelR. (3.17) 

Therefore the process (f2, o~, o~, P~, X~) is transient. 
Now let us return to the general case. Recall that the process of O U type 

((2,~,o~t,Px,Xt) is governed by the infinitesimal generator G of (2.1) with y = 1. 
We first prove transience when the integral of (I.8) with 7 = 1 is convergent. 

Lemma 3.4. Suppose the following condition: 

i d z l e x p ( -  i 2P~(yY) dy)< +o% (3.18) 
0 z r 

where 
2o(Y)= f (1-e-YlXl)p(dx) �9 

I x [ _ > - i  

Then the process of 0 U type (fL ~ ,  ~t, P~, Xt) is transient. 

Proof For a > 0, let us define 

ha(x)=a-lx[ i f [ x [ < a ,  and h , (x)=0 otherwise. 

For the proof of transience, by Theorem 2.4 (i), it suffices to show that 

dtTth,(x)<+oo forevery a > 0  and xelR. (3.19) 
0 
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It is easy to calculate its Forier transform 

nea(Z) = 2(1 -cos  az) 
Z 2 

From the Parseval theorem and (3.1) it follows that 

r~ ha(x)=i S~,(x, z) &(z) dz 

----;~ I I~,(x, z)l &(z) dz 

( i  s) 1 - c ~  1 exp Re cp(ze -s) d z2 
- c o  

dz, 

hence we have 

where 

Assuming that 

~ (~  ( i  )) 1--cosaz Tth.(x) dt< 1 dz dtexp Req)(ze-*)ds z2 
0 TC - c o  

; ( i  1 (~ Re q ) ( y ) ) )  1--cosaz 2 dz dr exp - - d y  zZ 
7C 0 - r  Y 

<2 ;dz(fdr 1 [ ~*(y) y))l--cosaz 
= ~ o  r e X p i - j  - y d z2 

jO*(y)= ~ (1-cosyx)p(dx). 
- c o  

i d r l e x p ( - f ~ d Y )  <+~ 
0 

one can check that 

and 

oidZ(idrlexp(-~ --y-dy))l-c~ 2 < +o0, 

(i 1 ( f f i* (y ) .  ,\l-cosaz ~dz dr exp - ~--ay)) z2 
1 

< -t- oo. 

Also, obviously 

!dz dr exp - ~7--ay}} z2 ,< nt- oo, 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 
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Hence (3.19) follows from (3.20) and (3.23) to (3.25) under the condition (3.22). 
However it is easy to see that (3.22) is equivalent to the condition (3.18) since 
it holds by a modification of Lemma 2.6 that 

i ~*(y)-2o(y) dy 0<r=<l .  (3.26) is bounded in 
r Y 

Therefore the proof of Lemma 3.4 is complete. 
For  the proof of recurrence we use the L6vy-Ito decomposition of L6vy 

processes, that is, an arbitrary L6vy process At is constructed by means of 
a Poisson point process and a standard Brownian motion as follows: 

t +  t +  

At=]~Bt+bt+ ~ ~ yNp(dsdy)+ ~ ~ yNp(dsdy), (3.27) 
o lyl_->t o Irl<l 

where N, is a Poisson point process on R \ { 0 }  with characteristic measure 
p, Np(ds dy)= Np(ds dy)-dsp(dy), and B~ is a standard Brownian motion inde- 
pendent of N,. 

Let 
t +  

Ar ~ ~ yNp(dsdy), (3.28) 
0 l y [ > l  

and consider the process of OU type (f2,o~,~,P2 ,X]) governed by the following 
equation: 

t 

X~t =x-- ~ XJ ds+A~. (3.29) 
0 

Lemma 3.5. Suppose that 

o ~ - d y ) =  + oo. 

Then the process of OU type (f2,~,~,~,Px~ ,Xr is recurrent. 

Proof It is easy to see that 

t +  

IXll=lxl - i Ix21 as+ ~ 
o o ly[>=l 

Let Y~ be the solution of the equation 

where 

(IX J- + y l -  ISis-I)N,(ds dy). 

g~=lxl- i Y~ds+At, 
0 

t §  

X,= ~ ~ lYlgAdsdy). 
0 [yl>- i  

(3.30) 

(3.31) 

(3.32) 
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Noting that 

([X~_+y[-[X~_])Nv(dsdp)<dZ ~ for every s>0 ,  
ly]>=i 

by (3.31) and (3.32) one can easily see that 

[Xtll__<Yt forevery t>0 ,  a.s. (3.33) 

Since the Levy measure p of the Levy process Z t is given by t~ (E) = p ((E u ( -  E)) 
c~[--1, 1] c) for each E contained in IR+, the integral (3.10) is divergent for 
ft. Accordingly, Y~ is recurrent, and by Theorem 2.5 we see 

Px (lim inf [ X ] [  = 0 )  > P~ (lim inf Yt = 0 )  = 1 
t ~ o o  t ~ o ~  

for every x, 

which yields the recurrence of X~. 
Now we are in position to complete the proof of Theorem 1.1. Let (s ~,~, 

4 ,  p2, Xt2) be the process of 0 U type associated with the following equation: 

X 2 = x -  i X~ d s + A t - A  1. (3.34) 
0 

Noting that At--A~ is a L6vy process and its L6vy measure is the restriction 
of p on [ - 1 ,  1]\{0}, we have by Theorem 1.0 that the distribution of X 2 
converges to a limit distribution as t ~ oo. 

Let pl(x, dy) and pZ(x, dy) be the transition probabilities of the Markov 
processes associated with Xr and Xt 2 respectively. Since X 1 and X~ 2 are mutually 
independent, and X, = Xr + X 2 is a solution of the equation 

Xt=xl  +x2- i Xs ds+At, ( 3 . 3 5 )  
0 

X t is equivalent to the Markov process ((2, ~ ,  4 ,  P~, Xt) starting at x 1 + x2, hence 
it follows that 

Pt(Xt + xz, (a, b)) = f p] (Xl, dy) p2 (xz, dz), a < b. 
y+z~(a ,b)  

(3.36) 

Since X~ is recurrent, by Theorem 2.4, there is a c ~  such that 

c~3 

S pr +oo 
0 

for every e > 0  and xslR. (3.37) 
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By Theorem 1.0, p~(x, �9 ) converges to a distribution as t ~ oo, hence from this 
and (3.37) that there exists an a e R  such that 

;p,(x,(a-e,a+e))dt=+oe f o r e v e r y e > O  and x e R .  (3.38) 
0 

Accordingly, by Theorem 2.4 (ii), the Markov process (f2, ~ ,  4 ,  P~, Xt) is recur- 
rent. 

4. Mult i -dimensional  case 

Let (f2,~,~,P~,Xt) be the standard Markov process of OU type on R d (d>2)  
associated with a Q~M+ (R a) and the equation 

X , = x - -  i QX~ds+At,  (1.5) 
0 

where At is a L6vy process on R a whose characteristic function is given by 
(1.2) to (1.4). 

In this section we discuss the recurrence problem of the process 
((2,.~,o~,P~,X~) on R a under some restrictive situations. We obtain the following 
results. 

Theorem 4.1. Suppose that 

Q=(Qjk)l_~i,j<_a with Qjk=y6jk (4.1) 

for some 7>0,  and the L~vy measure p of A~ is symmetric, i.e. p(--E)=p(E) 
for every EeN(lRd), where ~jk stands for the Kronecker symbol. 7hen the process 
((2, ~', o~t, P~, X~) is recurrent if and only iffor all z e R  d, (X~, z) is a one dimensional 
recurrent process of OU type, which is equivalent to 

i dr exp ( -  i 2•(Y) d y l= + oo for all z E R  a 
r r YY ] 

2;(y)= ~ (1-e-I<x'z>yl)p(dx) for zMR a. 
I<x,z>l_-> 1 

(4.2) 

(4.3) 

Theorem 4.2. Suppose that the Markov process (~2, ~,~, 4 ,  P~,X~) is a direct product 
process of one dimensional processes of O U type (f2,~-d,~,P~,X~) (1 <=j <=d) such 
that each Ldvy measure pj of the associated Levy process A Jr is symmetric. 

Then the process (~, ~ ,  4 ,  P~, Xt) is recurrent or transient according as 

~ - e x p  - dy = + o Q  or < + o e .  
o i=t ~iY 
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Theorem 4.3. Suppose that 

Q = (Qjk)l <= i,j<_aeM+ (~a) (4.5) 

is symmetric, and the Lkvy measure p of At is rotation invariant, i.e. p (0 (E))= p(E) 
for every E ~ (iRa) and every orthogonal transformation O: IRd--~ IRa. 

Then the process (f2, ~ ,  4 ,  Px, Xt) is recurrent or transient according as 

i ~ e x p (  i2~ d \ -  o --r ~ -  Y) -  + c ~  or < + o o ,  (4.6) 

where ~ is the minimum eigenvalue of Q, and 21(y) is the one defined by (4.3) 
with z=(1,  0 . . . . .  0). 

We first prepare the following lemma which makes the situation simpler 
in the proofs of Theorems 4.1 to 4.3. 

Lemma 4.4. Let ( I2 ,~ ,~ ,P~,Xt )  and ( f 2 , Y , ~ , P  r, Yt) be two processes of  OU type 
on IRa associated with a common Q ~ M + (IR a) and Ldvy processes A t and A't respec- 
tively. Suppose that A't is of  pure jump type whose Ldvy measure p' is the restriction 
of  p (the Ldvy measure of Ar) onto {x ~]R a I I x l > 1 }, i.e. p' (E) = p (E n (] x[ > 1)) for 
every E~NORd). Then 

(i) /f(Yt,Pr) is recurrent, (Xt, Px) also is recurrent. 
(ii) Conversely, under an additional assumption that p is symmetric, if (Yt,Pr) is 
transient, then (Xt,P~) also is transient. 

Proof. (i) can be shown by the same argument as the final stage in the proof 
of Theorem 1.1. For (ii), let pt(x, dy) and fit(x, dy) be the transition probabilities 
of (Xt,P~) and (Yt,Pr) respectively. By the symmetry of p and (2.4) it is clear 
that 

]~t(x,z)l<fft(O,z ) forevery x and ze iR a. (4.7) 

Recall that for a > 0, 

ha(u)=a-lu[  for ]ulNa, and h , (u)=0 otherwise, 

and define a function ka (x) on IRa by 

Then 

d 

k~ (x) = I~ ha (x j) 
j = l  

for x = (x  j) 1 <_j<=d~:~t d. 

d e 1--COS az 
~.(z)= l-[ /ia(zj) =2d l~ z (4.8) 

j =  1 j = l  Zj 

Hence by the transience of (Yt, Pr) and (4.7) together with Parseval theorem 
on Fourier transform we have 

( S  pt(x, d y ) k . ( y ) ) d t <  (~ p't(O, d y ) k . ( y ) ) d t < + o o  forall a>O, 
0 R a  0 ~ a  
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which verifies the assumption of Theorem 2.4. Therefore the process (Xt,Px) is 
transient. 

Proof of Theorem4.1. Supposing first that the Markov process (~2,~,~,~,P~, 
X~) is transient we will show the transience of a one dimensional projection 
process <X~,z> for a.e. zr  d. By Lemma 4.4 we may assume that At is a pure 
jump L6vy process with Levy measure p satisfying p(]x]=< 1)=0. By (4.1) and 
Lemma 2.1, 

hence 

Pt(O,z)=exp(-- i ~ (1-cose-~'~<z,x))p(dx)ds), 
0 N a 

(4.9) 

T tk . (0 )=(~)e  ~ d dz~'.(z) e x p ( - / ~  (1-cose-'S<z,x>)p(dx)ds). (4.10) 

Y 
Since the process (~2,~,~,P~,Xt) is transient, by Theorem 2.4 j Ttk,(O)dt< 
+ o% so that we have o 

[ T~ ko(O) dt 
0 

1 - -  exp (1 - 
ad o 7 r \ - - ;  ~ - f f d  

cos y<z, x)) p(dx)) 

< + ~  (4.11) 

For zeRa\{0},  define a bounded measure p~(du) on IR by 

p~(du)f(u) = S p(dx)f(<z, x>) for every function f defined on 1R(4.12) 
N. Nd 

d 

Then from (4.11) and ~a(z)= I~ ~a(zj)>0 for a.e. zelR d, it follows that 
j = l  

~ - e x p  - ~ (1-cosyu)pz(du) < +oe fora.e, zeN. a, (4.13) 
0 

which, by (3.26), is equivalent to 

d r e x p  - ~ (1-e-YlUl)pz(du)dy < + o o  fora .e .z .  (4.14) 
o ~ -  r 7YM_>_I 

Note that for every zelRa\{0}, <Xt,z) is a one dimensional process of OU 
type associated with 7 and the Levy process <At,z> having the L6vy measure 
p~. Accordingly, by virtue of Theorem 1.1 and (4.14), <Xt,z> is a transient pro- 
cess of OU type for a.e. zMR a. 
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Conversely, if the process (t2,~-,~tt,Px,Xt) is recurrent, then clearly (Xt ,  z) 
also is recurrent for every zeR d, which yields (4.2) together with Theorem 1.1. 
Thus we complete the proof of Theorem 4.1. 

Proof of Theorem 4.2. By Lemma 4.4 we may assume pj([--  1, 1])-- 0 for all 
1 <j__< d. Suppose that the integral of (4.4) is convergent. Let us denote 

2*(y)= j" (1-cosyu)pj(du) ( l < j = d ) .  (4.15) 
I,l>=l 

By Lemma 2.1, 

A (1 - - C O S  e-~'jSzju) pj(du)) ds pt(0, z )=exp --J o 

=exp  - - j ~ l ~  exp(!,j~)7jY 

i 1 ,4 6, 
e x p ( -  tT) j = l  ~)JY 

where 7=  min 7j- 
l<=j<d 

Recall the functions ka(x) and [~a(Z) in (4.8). By the Parseval theorem and (4.16), 

~ Tt ka(x) dt 
0 

;o 
<= (~)d ~d lca(z) dz ~ d t e x p  - 

0 exp(-- t7) 1 = 1  ~JY 

_ 1 ~ [~a(z) dz i T exp - dy. (4.17) 
7(2~z) a a~ o r j = l  7jY 

Note by modifying Lemma 2.6 that 

i 2*(yz)-Ap,~(ylzl) dy 
r Y 

Since 2pj(y) is increasing in y > 0, we see 

] 2ps(YlzJ[) dy> i 2pj(y) d y -  
Y , Y 

is bounded in (r, z)~(0, 1) x N~. (4.18) 

1 

2Rs(Y) d y .  ( 4 . 1 9 )  

I~A A 1 Y 
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From (4.17), (4.18) and (4.19) it follows that 

r~ka(x)dt<const. (. L(z)dzexp ~ )~PJ(Y)dy 
0 ~ d  \ j =  1 Iz A/, 1 ~;JY 

" i ~ exp(--  ] ~  2~ d y). (4.20) 
o r j=l 7jY 

Noting that 2pj(y)~ 0 as y ~ 0, we see easily 

( '  ) /~a(zj) exp f )~P:(Y)dy < + o %  ( l < j < d ) .  (4.21 / 
a \lz~l a 1 YJY 

Thus we obtain 

~T,k,(x)dt< +oo forevery a > 0  and x ~ N  d, (4.22) 
o 

hence, by Theorem 2.4, the process (~ ,~ ,~ ,Px ,X t )  is transient. 
Conversely, suppose that the process ((2,~-,~,Px,X~) is transient. Recalling 

that p j ( [ - 1 ,  1])=0 for all 1Nj<d ,  by Theorem 2.4, Lemma 2.1, and (4.15) we 
have 

S Ttka(O)dt=(21),~ [~o(z)dz ~ d t e x p ( - /  ~ 2*(e-"Jzj)ds)<+oo, (4.23) 
0 0 j = l  

so that 

0 0 j = l  

By the same changes of variables as (4.17), (4.24) turns to 

o r j 7jY 

Using (4.18) we have 

~ -  exp - dy < + oo for a.e. z~]R d. (4.26) 
o r j=l 7jY 

Fix a Z=(Zj)I<=i<d such that z />0  for all l<j<=d, and that (4.26) holds for 
z. Then it is easy to check that (4.26) is equivalent to the convergence of the 
integral (4.4). Therefore we have completed the proof of Theorem 4.2. 
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Proof of Theorem 4.3. By Lemma 4.4 we may assume that At is of pure jump 
type and the L6vy measure p satisfies p ( [x [< l )=0 .  We can further assume 
that Q is diagonal; Qjk=Tjbjk with 7~>0 ( l < j < d )  by the symmetry of 
QeM+ (N J) and the rotation invariance of p. 

Suppose that the process of OU type (f2,ff ,~,P~,Xt) is transient. Then by 
Theorem 2.4 

; d t  T t k~(O) 
0 

_ 1 ( ) ~ f c , ( z ) d z ; d t e x p ( _ i  ~ 
-2re- a ~a~ o [xl >_- 1 

< + o 0 ,  

( d ,) ) 
1--cos ~ e-TJ~zjx p(dx)ds 

j=l 
(4.27) 

from which it follows that for a.e. z~N a 

~ d t e x p ( - i  ~ (1-cos~e-~J 'z jx j )p(dx)ds)<+oo.  
o o Ixl>l j=l 

(4.28) 

Recalling 7 = min 7,, use change of variables" e-Y~= y together with the rotation 
1 <=j<=d J 

invariance of p. Then (4.28) turns to 

; ~ e x p ( - - ]  dy (1 ~ p(dx)) o r 7;,x,{1 -c~ y Jzjxj) 

0 ~ ~ -  [x[> 1 

o 7 7;,x, 1 
< + oo for a.e. zeN a, (4.29) 

where ej = 7j/7 > 1, p 1 is a bounded measure on IR defined by 

and 

f (x  0 p(dx) = ~ f(u) p~ (du) 
R a  p.  

for every function f on IR, 

(j--~l \1/2 Y2 '4) for z~lR d. (4.30) 

Taking a z=(z;) satisfying that z j>0  (1 <j<d) and (4.29) holds for z, we can 
apply Lemma 2.6 for g~(y). Hence, 

o ~- --r ~ (1-e-lUlgz('))Pl(du) < +oo. (4.31) 
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Noting that p~ is a bounded measure on JR, and that for some c > 0 ,  g~(y)<cy 
holds for every 0 < y < 1, we obtain 

i d r  e x p ( - !  7 ~  (1-e-C'"")p~(du))<+oo, 
o r 

(4.32) 

which is equivalent to the convergence of the integral (4.6). 
Conversely, if the integral (4.6) is convergent, then for any unit eigenvector 

e of Q associated with the eigenvalue ~, (X~,e) is a one dimensional process 
of OU type associated with 7 and the L6vy process ~At,e) having the L6vy 
measure p~. Therefore, by virtue of Theorem 1.1, we see 

P~(lim I(X,, e)l = + oo)= 1. 

This implies that the process (f2,~,~,P~,Xt) is transient, completing the proof  
of Theorem 4.3. 

Finally we discuss an interesting example which is found in [5]. For  c >0 ,  
let p~ be a bounded measure on IR defined by 

c 
pC(dU)=u(logu)~du for [ul>=2, 

= 0 otherwise. 

Let (X~ c), Px) be a one dimensional process of OU type on lR associated with 
7 > 0  and a pure jump L6vy process At with the L6vy measure pC. Then it 
is known in [5] that 

(i) if 2 c__< 7, then the process is null recurrent, but 
(ii) if 2 c > 7, then the process is transient. 

Of course, we can show this by checking the condition (1.16) in our Theorem 1.1. 
We next consider a direct product  process (Y~t=(X~, X2, ... ,  X~), P ~  such 

that each component  process X{ is a one dimensional process of OU type whose 
probabili ty law is the same as (X~ c), P~). 

Then by Theorem 4.2 the d-dimensional process (Y~t, P:~) is transient if and 
only if 2cd > 7- Furthermore,  noting that every one dimensional projection pro- 
cess is of OU type, we see by Theorem 1.1 that  for z~lRe\{0} P•(lim [(2~t, 

t ~ o O  

z)[ = + oo)= 1 holds for every x~lR d if and only if ~ {1 <=j<=dlzj~O} >~//2c. 
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