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1 Introduction 

In 1977 Figotin and Pastur [11, 12] introduced a class of simplified and 
exactly solvable models for mean-field spin-glasses, in which the random 
interaction Ji~ between two spins was of the form Ji~ = vv  U ?  ~ with (~, Z...p= 1 -i ~ j :  

i e N, # e {1, . . . ,  p} a family of independent, identically distributed random 
variables, taking, in the simplest case, the values + 1 and - 1 with equal 
probability. While these at first did not receive much attention, the same 
model was reintroduced in 1983 by Hopfield [18] as a model for autoas- 
sociative memory. The interpretation of a disordered spin-system in the 
context of neuroscience initiated the continuing wave of interest of the physics 
community in the field of "neural networks". An important new ingredient in 
Hopfield's version of the model was, however, the interpretation of the vectors 
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~,/~ = 1, . . . ,  p as a family of"patterns" to be memorized and the fact that the 
parameter p, the number of stored patterns, is allowed to depend on the size of 
the system, N. In an important paper, Amit et al. [1], using the replica method 
for a heuristic analysis of the thermodynamic properties of the model, dis- 
covered crucial changes in the behaviour of the model depending on the speed 
with which p(N) grows to infinity. In particular, they pointed out that there 
should be a transition to a truly spin-glass like behaviour (interpreted as 
"failure of the memory"), if p(N) grows faster than c~cN, with c~c ~ 0.14. 
Overall, it appeared that, using the speed of growth as a model-parameter, the 
Hopfield model yields an interesting class of models intermediating between 
ferromagnets and spin-glasses. Over the last few years, a fairly good math- 
ematical understanding of the thermodynamic properties of this model has 
been developed, albeit under more restrictive conditions on the growth of 
p(N) [19, 26, 2-4,  27]. 

From the point of view of spin systems, the Hopfield model is a mean field 
model and thus plagued with the typical pathologies of all such models, in 
particular the non-convexity of thermodynamic functions or the impossibility 
of implementing the DLR scheme to defne  the infinite volume Gibbs 
measures, etc. To overcome these pathologies and to give a natural interpreta- 
tion of mean field models in terms of limits of "standard" models of statistical 
mechanics, Kac et al. [-22] proposed a model with long, but finite, range 
interactions, known as the Kac model. Taking the infinite volume limit for 
such a model first, and then considering the limit as the range of interactions 
tends to infinity while appropriately rescaling the interaction strength, one 
then recovers mean field theory. The most precise and complete form of this 
asymptotic relation was later proven by Lebowitz and Penrose [23]. They 
showed that the rate function for the total mean magnetization in the Kac 
model converges, in the limit of infinite interaction range, to the convex hull of 
the corresponding rate function in the Curie-Weiss model. Such results were 
later recovered for more complicated mean field models, such as the 
Curie-Weiss-Potts  model (see e.g. [21] for a recent survey). 

Nothing is more natural than to consider the same question in the context 
of the Hopfield model; in fact, the first to introduce and study the Kac-version 
of the Hopfield model were Figotin and Pastur [13]. They proved, assuming 
that the number of stored patterns is bounded, the convergence of the free 
energy of the Kac-version to that of the mean-field Hopfield model (and hence 
to that of the Curie-Weiss model). The main purpose of the present paper is to 
extend this result in two ways: First, we want to allow the number of patterns 
to be an unbounded function of the interaction range, and second, we want to 
prove the convergence on the level of the rate functions. For  an exposition of 
both the theory of large deviations and mean field models, we refer in 
particular to the book by Ellis [10]. 

To do this, we are of course confronted with the problem of proving a large 
deviation principle (LDP) for the Hopfield model itself. In the case where the 
number of patterns is bounded, this is not a problem as the existence of an 
LDP is essentially covered by the classical G~irtner-Etlis theorem [15, 10, 8]. 
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In explicit form this can be found in [17] and in mathematically rigorous form 
in [6]. As soon as the number of pattern is an unbounded function of the 
system size, however, standard theorems do not apply anymore, and up to 
now no LDP was available in this case. An important task of the present 
paper is therefore to establish a large deviation principle for the Hopfield 
model with unbounded number of patterns. Before entering into the precise 
formulation of our results, let us mention one curious fact. We will actually be 
able to prove directly a large definition principle for the Hopfield model only 
under the condition that the number of patterns grows more slowly than the 
logarithm of the system size. By relating the Hopfield model to its Kac- 
version, it will, however, be possible to extend this result to much more rapidly 
growing number of patterns, in the sense that at least the convex hull of the 
rate function still exists in this case. This fact was, for us at least, quite 
surprising. 

Beyond the large deviation results for the mean magnetization, there are 
a lot of interesting questions to be answered concerning in particular the 
Gibbs states of the Kac-version of the Hopfield model. Even in the case of the 
standard Kac model, there are fairly interesting problems related to this, as 
can be seen in the recent paper by Cassandro et al. [7]. In the case of the 
Hopfield model, this promises to shed light on various aspects of the proper- 
ties of spin-glass type models. An investigation of these questions is under way 
and results will be published elsewhere [5]. 

We will refer to the Kac version of the Hopfield model as the F H K P -  
model. Let us now give a precise definition of this model. Since the results we 
are aiming for in the present paper will be independent of the dimension of the 
underlying lattice, to simplify notations we will work here in dimension one. 
For  the same reason, we will work only with free boundary conditions} We 
denote by A the set of integers A=- { - N ,  - N  + I , . . . ,N}  and by 
J A - - { - - 1 , 1 }  A the space of functions o - : A ~ { -  1,1}. We call c r a  spin 
configuration on A. We shall write 5 r - { - 1 ,  1} ~ for the space of infinite 
sequences equipped with the product topology of discrete topology on 
{ - 1, 1}. We denote by NA and ~ the corresponding Borel sigma algebras. We 
will define a random Hamiltonian function on the spaces YA as follows. Let 
(~2,~,IP) be an abstract probability space. Let s = {~Z}~EZ,~N be a two- 
parameter family of independent, identically distributed random variables on 
this space such that IP(~' = 1) = IP(~ = - 1) = �89 The Hamiltonian with free 
boundary conditions on SPA is then given by 

1 M(7) 
- ~ ~ ~[e)]~[o~]J,( i- j)~cO, (1.1) HA[~O](a) 2 (i,j)~A• ,=1 

1 Note, however, that the dimensionality will be important for the properties of the Gibbs 
states of the model and that more general boundary conditions will have to be considered to 
study them 
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where JT(i - j) -~ J (7 [ i  -Jl),  and 

, ( x ) = J ' l  i f l x [ < l ,  
(1.2) 10 otherwise. 

(Note that other choices for the function J(x) are possible. They must satisfy 
the conditions J(x) > O, f d x  J(x) -- 2, and must decay rapidly to zero on 
a scale of order unity. For  example, the original choice of Kac was 
J(x) = e-rX( For  us, the choice of the characteristic function is particularly 
convenient). 

We see that the spins in this Hamiltonian interact over a distance 7 1, and 
we will Obtain results for the limit when 7 tends to zero. Note  that in the 
FKHP-mode l  we have denoted the number  of patterns by M, rather than p. 
We reserve the name p =_ p(N) for the number  of patterns as a function of the 
system-size and M = M(7 ) as the number  of patterns as a function of the 
parameter  7- We are interested in the case where M(7)I" oo, as 750. We will set 
~(7) - ~M(7). 

The finite volume Gibbs measure for our model is defined by assigning to 
each ~r e YA the mass 

1 
~A,~,~[co](o-) -= ZA,~,~[co] e-P"A"X~~ (1.3) 

where ZA,~,~[co] is a normalizing factor usually called partition function. We 
will drop the explicit co dependence of various random variables when no 
confusion may arise. For  any subset A c ~, we define the M-dimensional 
vector of "overlaps" m~ [co](a) whose components are 

1 
m3[co](a) = ~  ~ ~[co]~i,  # = 1, . . . ,M.  (1.4) 

i E z l  

The main object we will study in this paper are the distributions of mA(a) 
under the Gibbs measure, i.e. 

~,~,~ [co](m) = ~,~,~({m~ [~ ] (~ )  = m}). (1.5) 

~a,~,~[co] defines a random probability measure on (IRU(7),~(IRM(~))). For 
fixed 7 > 0, this sequence of probability measures satisfies a large deviation 
principle in the sense that for instance the limit 2 

1 
lim lim ln(~A,/~,v[co] [-II mA - ;~ll2 2 < e]) = -/~F~, ,~(nS) (1.6) 
eLO N~oo ~ = 

exists almost surely by the subadditive ergodic theorem and is independent of 
the random parameter  co. Moreover, F~.~(r~) is a convex function of its 
argument. We will be interested in the limiting behaviour of F~,~ as 7J,0. Since 

2We comment below on the equivalence of this definition with the conventional one in our 
case. We find this formulation particularly convenient for our purposes 
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the domain of this function depends on 7 via M(7), it is natural to consider 
restrictions to finite dimensional cylinders. Thus, let I c N be a finite set and 
denote by FII:IR M ~ IR r, for any M such that I ~ {1, ... ,M}, the orthogonal 
projector on the components m ~, with # ~ I, of a vector m e IR M. We set, for 
r ~ l R  r, 

1 
FJ,,(rh) - - f i  1 lim lim ~ ln(~A,~,V[CO] [HIIImA -- n~ll 2 _--< ~]), (1.7) 

e;O NTco 

which enjoy the same properties as FB, 7 itself, and which potentially converge 
to a limit 7~0. The Lebowitz-Penrose theory relates the limit of these quantit- 
ies to the analogous ones in the corresponding mean-field model, i.e. in our 
case the standard Hopfield model. Recall that this model is defined by the 
Hamiltonian in the volume A = {1, ..., N}, 

1 p(N) 
H~~ 2N 2 E ~TEco]~[co]a:j. (1.8) 

(i,j)eAxA p = l  

(~Hopf I- :,',1 We denote by JN,, LuJj the corresponding Gibbs measure, and by ~N,p~H~ 
the induced distribution of the overlap parameters m~ [co] (a) _= 
1 N ~i= 1 ~[co] ai. We also write 

F~ovf, z(r~) __ _ f i -1  lim lim 1 Hopf ~XO NTo~ N ln(~N'€ [co][llHxmN -- mll~ < e]) (1.9) 

provided this limit exists. Note that, contrary to the case of the Kac-model, 
there are no simple arguments that prove existence and non-randomness of 
the limit, and even if it exists, we cannot expect it to be a convex function at 
low temperature, i.e. if fl > 1. In fact, our results on the FHKP-model  will turn 
out to be extremely useful in order to obtain some partial information on 
these questions. Let us define the convex functions C~ ~ which, if 
F~tOpf.i exists, are the convex hulls of these functions. Recall that the convex 
hull, Convf,  of a function f, is the largest convex function that is pointwise 
smaller than or equal to f. We set 

Hopf Cffopf, t(n~) ~/~-1 lira lira Cony( -- ln(~N, p [-co] [llH~mA -- ffz II~ _-< ~2)). 
eJ~O NTco 

(1.10) 

Notice that the functions C~ ~ depend on the asymptotic behaviour of the 
function p(N). Let D(I) ~ 1R x denote the set of values r~ for which the limsup 
on the right hand side of (1.9) is bounded. Our following convergence results 
hold for r~ e int D(I). 

Theorem 1 Suppose that p(N) is such that limN~o~p(N)= +oo  and 
limN,~ p(N)/N = O. Then, 

(i) For almost all co, C~~ defined through (1.10) exists for any finite set 
I ~ N and is independent of co, e, and the function p(N). 

(ii) If, moreover, limNToo 2P(N)/N = 0, then, almost surely, F~t~ defined 
through (1.9) exists and is independent of p(N). 
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Remark. We will give an explicit expression for the function C~~ in 
terms of a variational formula in Sect. 3. The independence of this function on 
the precise behaviour of p(N) is certainly quite surprising and indeed crucial 
for proving the theorem under such weak conditions on p(N). In fact, we will 
be able to give an elementary proof only of the statement (ii), while (i) will then 
follow by passing to the Kac-version of the model. 

For  the FHKP-model ,  we obtain the Lebowitz-Penrose theorem: 

Theorem 2 Assume that M(7 ) satisfies lim:,loM(7 ) = + oc and lim-:to7 
M(7 ) = 0. Then, for any fi, and any finite subset I, for almost all co, 

1 
_ f i - 1  tim lira lira ln(~.A,~,~[CO ] [[IHImA -- n-~[I ~ < ~3) = C~~ (r~). 

slO 710 Nloe ~ = 

(1.11) 

Let us make a short comment on our definitions of the rate functions through 
limits over balls of radius e. Since all the measures we are considering here 
have actually compact support, the families of measures are in particular 
exponentially tight. Thus to prove a strong LDP  it is enough to prove a weak 
one. By appropriately covering closed sets with balls of radius ~, respectively 
fitting such balls into open sets, one can easily proof the weak LDP with rate 
functions given as defined above, provided they exist. Also, of course, one can 
easily obtain the corresponding level-2 LDP by standard arguments. We 
refrain from entering into these technicalities. 

As a simple special result we note that the fi'ee energy, 
1 

FA, ~, ~ [co] ------ fiN in ZA, ~, .~ [co] satisfies 

Proposition 1.1 Assume that lim.~o yM(7) = 0. Then, for almost all co, 

]U'FIopf r q F~ w , (1.12) lim lim FA,/3,~[CO] = lira ~N,p Lc~ = 
'/70 AT2g N]'oc 

with F~ w - i n f ~ ( x 2 / 2  - / ~ -  1 in cosh fix) the free energy of the Curie-Weiss 
model. 

It should be noted that for/~ > 1 the rate function for the Hopfield model will 
not be convex and therefore, that of the FHKP-model  will contain a 'flat' 
horizontal piece. In fact it is known [4] and also follows quite easily from the 
estimates we will give in Sect. 3 that F~t~ takes on its absolute minimum 
for vectors rfi which have only one non-zero component of values _+ a(/~), 
where a(/~) is the maximal solution of the equation x = tanh fix. Obviously, 
these are the extremal points of the convex polytop described by the equation 

I[r~lll < a(fl) (lAB) 

and it is therefore this polytop on which the limiting rate function of the 
FHKP-model  takes on its minimum value. This information will not be 
enough to obtain the complete characterization of the Gibbs states, just as in 
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the Hopfield model the mere knowledge of the convex hull of the rate function 
would not suffice. While we have not been able to prove existence of the rate 
function itself in the Hopfield model if p ( N )  > in N / l n  2, it is possible to get 
lower bounds that suffice to determine the Gibbs states [-4]. This information 
will be necessary again for the analysis of the states in the FHKP-model .  

The remainder of this paper is organized as follows. In Sect. 2 we construct 
a block-spin approximation for the Kac-Hamiltonian and give a probabilistic 
estimate on the error term. As an almost immediate application, we also prove 
Proposition 1.1. Section 3 is devoted to results on the Hopfield model itself. 
We prove an exponential estimate on the deviation of the rate function from 
its mean value and prove statement (ii) of Theorem 1. In Sect. 4 we combine all 
these results to prove Theorem 2 and statement (i) of Theorem 1. 

2 A block-spin approximation 

The main step in the analysis of Kac-type models is always to exhibit the 
dominant part of the Hamiltonian as an effective model on local spin averages 
('block-spins') and to show that the remainder gives no contribution to the 
leading asymptotic behaviour of ~A,p,.~ when y tends to zero. The purpose of 
the present section is to do this in the case of the FHKP-model .  

We introduce a new scale l(7), with the property/(~/)T oo, as ~/$0. Further 
conditions on l(y) will be imposed later. We partition the volume A into blocks 
A(x) ,  x e F - { - L ,  - L  + 1, . . . ,L},  of length l(y): A = ~)~= _LA(X)  where 
(2L + 1)/(7) = 2N + 1 (Here we assume that (2N + 1)//(7) is an integer; thus, 
in principle, we must choose/N(7) depending on N in such a way that this is 
true while IN(7) converges to 1(7 ) as N'~ oo. To simplify our notation, we shall 
not make this explicit). 
This allows us to write 

1 
- ~ ~ J , e ( i - - j ) (~ i , { j )q iq j ,  (2.1) HA(If) 2 (x,y)~r• i~A(x) 

j~A(y) 

where ({i, {j) -= 

JT(i 

~ A(x) and j A(y) we write vM(~) ~i ~j. Now for i ~ /L/~= 1 

- J )  = J~(/(7)(x - y)) + (J,(i  - j )  - Jr(l(7)(x - y))) 

1 
1(7) Jv~{7)(x - y) + AJ,/(i,j). (2.2) 

Using this, we decompose HA into 

U2(q)-  

HA(G) = U~ + AHA(q), 
where 

(2.3) 

1 
/(7)-lJ~lct)(x - Y) ~ (~i,~2)aiaj (2.4) 

2 (x,y)~r• iEA(x) 
j~A(y) 
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and 
1 

AHA(a) -~ 2 ~' ~ AJy(i-j)(~_i,{j)alaj. (2.5) 
( x , y ) ~ F x F  i~A(x) 

jEA(y) 

Using that 

. ,u u 
2 ( ~ , , ~ j ) G i ~ T j  = {~0" i e ~ f f j  = l(~)2 2 m A ( x ) ( a ) m A ( y ) ( ~ ) ,  

i~A(x) # = 1 i x) / \ j~A(y) # = 1 
j eA(y)  

(2.6) 

we can write HA ~ as 

M(~) 
_ _  ,u  # H~ = -  I(y) ~ aT<.)(x y) ~ mA(x)(a)mA(,)(~r). (2.7) 

(x ,y )~F x F u = l  

Equation (2.7) makes explicit that H ~ depends on a only through the block- 
variables mA(x)(a) and thus has the desired form. We will now show that the 
remainder AHA(a) is asymptotically negligible. 
The decomposition given here was already used by Figotin and Pastur [13]. 
They also showed, under the assumption that M(7 )__< M < oo, that 
I AHA(a) II <= const. 71(y)MN, uniformly in a and uniformly in {, which implies 
that AH is negligible if l(7) is chosen such that y/(y),~0. In order to obtain 
results for M(7 ) that tend to infinity with optimal conditions on the allowed 
speed of growth, we will have to improve on this bound; this will require in 
particular to replace the uniform bound in ~ by an almost sure one. Precisely, 
we show that: 

Lemma 2.1 For all e > 0 

[ 1 
11' sup ~ IAHA(a)I 

ff~ZA k4x/2fl(2) 

x exp { ~ - } .  (2.8) 

An immediate consequence of this estimate is the 

Corollary 2.2 There exists a subset f2,~ c f2 of probability one, such that for all 
09 E Q~,, 

1 
l imsup sup ~ [AHA[CO](a)[ < fl(?)4x/21og2 + x/2yM(?)). (2.9) 

NTm aSiA 

Proof. If we choose e in Lemma 2.1 as e = 4x/271(7)(log 2 + M(7)/41(? ) + 6) 
for some 6 > 0, we get 

I P I 2 ~  ,AHA(~), >= 7l(y)4,,~(log 2 + 3 ) +  -~7M(7)1  _-< 16e-a(2N+ 1) 

(2.10) 

from which 2.9 follows by the first Borel-Cantelli lemma. []  
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Proof of Lemma 2.1 In order  to est imate AHA(a), we notice first that  

Y n JT(i --j) -- l(7)- ~J.et(~)(x -- Y) = ~{ {l~-Jt =<y - 1> R{l~-yl>(wl(v))- *} 

-- ~{li_jl>~-l}~{ix_yl__<(Tt(y))-,}}. (2.11) 

Moreover ,  

] l { l i _ j l ~ ? ,  1 } ] l { [ x_y l>( y l ( j )  1} : ] l{[i- j l<=7 1}] l{ (Tl (7) ) -1+l  >=lx-y]>(y l (2) ) - I  } (2.12) 

and 

l i [ l ~ _ ~ - i >  ~ _ ,} l{ix_rl < (~,~(~)) - ~} = l l { l i _ ) l >  ~ _ ~} l l { ( ~ . j )  1 _> I ~ - , l > ( : ( . , ) )  , _ ~ } .  ( 2 . t 3 )  

We now write AHA(a) = (7/2)[A tHa(a  ) - A2HA(a)] with 

1 
A1HA(a) - 2 Z Z ]l{ti Jl----<7 -I} 

( x , y ) ~ P x P  leA(x) 
jeA(y)  

X ~{(yl(7))- I+ 1 _->l x -Yl > (71(7))- i} (~i, ~j)(7i (Tj (2.14) 

and 

1 ()  E 2 ]I{'i--J]>Y 1} 

j~A(y) 

• tt{(vt(yl)-, _> i~-,i > (Tz(~) )1- ,} ( r  (2.15) 

We only present  the est imate of A tHa(~r); A2HA(~) can be treated in exactly the 
same way. We have 

L - -  [(71(7)) - 11- 1 

A*HA(a) = - Z Z 
x = -- L ieA(x) 

j eA ( x+  [(fl(7)) - 11 + 1) 

Let us set 

and 

• n{ l~ -~ l  _< ~ - ~} ( { i ,  ~ j ) ~  o-j. (2,16) 

M(7) 

f(x) =- ~ f~(x). (2.18) 
~ = 1  

Since L = [(7/(7))- 1] n + r with 0 < r < [(fl(7))- 1] for some positive integer n, 
where I-x] denotes the integer par t  of x, we can rewrite (2.16) as 

L_[(71(y)) 11 1 [(?l(y)) - l ] (n- -  1) - [(yl(7)) l l n -  1 

f(x) = ~, f(x) + E f(x) 
x =  - L  x = - [ ( y l ( 7 ) )  - -  1 ] n  x =  - L  

L -  Hr/(y)) - ~ -  1 

+ ~ f(x). (2.19) 
x =[(7l(y)) q(n- I) + i 

P f"(x) =- ~ ll{ii_ii<_,: 1}~i~i~ha j (2.17) 
ieA(x) 

jeA(x+[(~l(7)) - t] + 1) 
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Let us consider the first sum in (2.19) first. In order to take into account the 
independence of (~i, ~j) and ({'i, {)) when i # i' and j ~a j' we first decompose 
the first sum in (2.19) in the following way: 

[(yI(Y))-- 1](n 1 ) 2  f ( x )  ~-" [ n / 2 ] - l [ 1 / ( y l ( 7 ) ) ] - l f ( ~ l ~ l  2 2k + s  

~=-t(~,(~))-'> k=-t,/2~ ,=o \Lv/(y)J 
[(n+1)/2]-2 [1/@/(7))]-1 ([~@(7)] ) 

+ y'  ~ f (2k + 1) + s . (2.20) 
k= -[(n+ 1)/2] s=0 

The important point to observe here is that each of the two terms in (2.20) is 
now a sum of independent random variables. Let us denote these two terms by 
S, and $2, respectively. We have 

IP sup I&l > 
~ &  2N + 1 2 = 

< 222N+llp ~ Z Z 2 k + s  
_~=1 k=-~,/2l s=o 7/(2) 

> 4 7  1(2N + 1)] (2.21) 

where the probability on the right-hand side is in fact independent of the 
chosen spin configuration a. Using the exponential Markov inequality to- 
gether with the independence, we get that 

] s up 2N 1+ 1 271S11>~l<22N+2infe-te7-~(zN+l)/4= = IP 
~_ 6~fA t ~ 0 

• []Eetfl(~ 2M[n/2][1/Tl(7)] 

22N+2 inf e - ' ~ -  1(2N+I}/4 []EetTI(O) jML.  (2.22) 
t>O 

Thus we have to estimate the Laplace-transform off1(0). We write 

]Eetfl(O)~. lEexp{t ~ ~1 ~ ~.)l. (2.23) 
lEA(O) j~A([1/(Tl(y))] + 1) 

ii-jl<y 1 

Notice that all the d.~ with i~A(O) are independent of the ~) with 
j ~ A([1/(fl(y))] + 1), and that, conditioned on these latter variables, the vari- 
ables ~.] ~j~A([1/(yl(y))]+ 1) , [ i - j 1<7  1 ~) are independent. If we denote by IEi the 
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expectation w.r.t. ~l, this allows us to write 

i~A(O) j~A[ 1 ](Yl(7))] + 1) 
I i - j l < y  - 1  

expt ,  ( i~A(O) jEA([1/(71(7))] + 1) 
l i - j l < 7  - ~ 

4))2/, (2.24) 

where we have used that in cosh x __< �89 x 2. Using the HSlder-inequality on the 
last line, we arrive at 

N O W  

IE exp( 11(7)t2 ( 

�9 23"]1/I(Y) 

1121 /1  )21 ~ < IEexp  l(7)t 2 
JeA([1/(fl(7))l+li-jl<y - I 1) [ kj~A([1/(fl('/))]+ 1) 

1 
< (2.26) 
= ~ d l  - t 2 t ( ~ )  2 '  

where we have used the Khintchine inequality and the fact that 
[A([1/71(y))]+l)l_-<l(7). Since for 0_<x_<�89 1 /~ /1 -x__<e  x, for 
t 2 __< 1/2/(7) 2, we can replace (2.26) by the more convenient bound 

lee tfl(O) ~ e '2"~)2. (2.27) 

Therefore, choosing t = 1 / ~ I ( 7  ) in (2.22), we obtain 

r { 1 t 1 ~ ISll > < 2 2N+2 exp e(2N + 1) + �89 . 
IP 1_ ~jAsup 2N + 1 2 = = 4xf21(y)7 

(2.28) 

By the same procedure, one obtains exactly the same bound for $2. It remains 
to consider the two last sums in (2.19). Obviously, they are much smaller than 
$1 or $2 and can be treated in the same manner. Finally, AZHA is decomposed 
in the same way, so that we end up with eight terms all of which satisfy bounds 
like (2.28). Putting these together concludes the proof of Lemma 2.1. [] 

To understand the need for Corollary 2.2, let us anticipate that we may be 
able to treat H ~ further provided M(7)/I(y)$O. Then, if only ~M(y)~,0, we can 

choose e.g. l(y) = ~ to achieve that M(~)/t(y)j,O while at the same time 
[AH((r)I/N,LO, a.s. by Corollary 2.2. If, on the other hand, we had only the 
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uniform bound 71(7)M(7)N on AH, then we would have to demand 
? [M(7)]2;0, which is a much stronger, and quite unnatural, restriction on the 
number of patterns. 

Thus the Hamiltonian of the FHKP-model  is asymptotically equivalent to 
a block-spin Hamiltonian if 7M(7)~0. But it is more or less clear that the 
bounds in Lemma 2.1 cannot be substantially improved, and that therefore, 
once this condition is no longer satisfied, such an approximation breaks 
down. This sheds doubt on whether in such situations (which would also 
include real spin-glasses), mean field models can be seen as limits of ordinary 
models with diverging interaction range! 

As a simple first application of Corollary 2.1, let us give at this point 
a short proof of Proposition 1.1. 

Proof of Proposition 1.1 By Corollary 2.2, it will be enough if we can compute 
the behaviour of 

2A,~,e[CO]-=2 -(2N+1) ~ e -~n2(~). (2.29) 
0 " ~  A 

Using that J~y = 4,~(y)(x - y) is a positive definite quadratic form, it follows 
that 

eA.~,~[co] > 2-(2N+ 1) ~ exp (�89 ~ l(V)-*Joe, e)(x - y) ~, ~ #~ , i , i  I 
6~JA \ ( x , y )~F x F ieA(x) / 

j~A(y)  

=2-(2N+1) ~ e x p (  �89 2 l(30-IJ'A(7)(X-y) ~ ~irTJ) 
a~.Cf A (X, y)E F x F i~A(x) 

j e A ( y )  

> sup cw 2L+t = [Zz(~),e(m)] , (2.30) 

where cw Z~,r (m) =- ~w~ll{2 ,z~= ,~,=m}e ~1(*/2)~ is the restricted partition func- 
tion of the Curie-Weiss model with volume 1 and ~ = { - 1, - 1 + 2/l, ..., 
1 - 2/1, 1} denotes the set of possible values of ml(~) = I/ly,~= 1 a~. This yields 

l iminf -~  l~ ln ;~A,ece[co]  > Sup ~ 1  lnZ,~7)W~(m ). (2.31) 
Ar~ 2N + 1 m~%~) I(7) 

On the other hand, using the fact that 
p /~ 1 p 2 mA(x)((7)mA(y)(G ) ~ g(mA(x)(O)) q- �89 2 (2.32) 

and (2.7), we see that 

1 M(r) 
H5(a) > -- ~/(3') ~ J~,(,)(x -- y) ~ (�89 2 + �89 2) 

(x, y)~F x F / 1 = 1  

1 M(~) 
- z(~) ~ ~ (m~(~)(o)) ~, (2.33) 

2 x~F  ,u = 1 
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so that 

/ M(y) 1 ZA,p,7[co] < 2-(2U+*} ,~g~' ~rI] exp \{f1�89 ~=, (m~(x)(a)) 2 

\ l ~ = / /  M(7) ) = 1~ 2 l(,/) 2 exp { f l �89  (m~A(x,(a)) 2 
x e F  ae cJA(x) = 1 

= H 7H~ r , , ,  1 (2.34) ~I(7), fl k ~ x J "  
xE/"  

But this implies that 

1 1 
lim sup 2A, p,~[co] < IE Hope m~ 2 - N ~ l n  = /-@lnZl~),p[co], (2.35) 

where we have used the strong law of large numbers to replace the spatial 
average over F by the expectation over ~. If now l(y) is chosen such that 
M(y)/t(y)+O, while I(y)~ or, by a result of Koch [19], the right-hand side of 
(2_35) converges, as 7+0, to the negative of the free energy of the Curie-Weiss 
model, as does, obviously, the right hand side of (2.31) (see [101). This proves 
that 

1 
_/?-1 1ira 1ira (2.36) ,~| Ar~ ~ In 2A.f.~,[~] = F# w. 

Corollary 2.2 on the other hand implies immediately that for any sequence 7, 
tending to zero as n]" oo, 

lim ]r~,~, [col - Pfl,,~ [co] I = 0 (2.37) 
n'[co 

for almost all co (namely for those in the set 0,~r~ O7,), from which one obtains 
(1.12) for the subsequence y,. There remains in principle the possibility that 
(2.37) holds with probability one for any given sequence, while it fails  with 
probability one for some (random) sequence. However, this is excluded by the 
following 

Lemma 2.3 

1 
lim sup sup sup sup 2--~--+-~lHA,v[co](a) -- HA, x/,[col(a)l = 0. (2.38) 
n~m 1 / n < y ~ l / n + l  ~ e Q  A o~YA 

P r o o f  To prove (2.38), notice that 

IHA [CO](~) --  H ~ [CO](~)I 

1 M(7) 

( i , j ) ~ A x A  ~t=l 

lg(l/n) -- J)o'i~J -- ~, ~'[co]s 
#=l 
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F 
< (2N  + 1)LIM(1/(n + 1) - M(1/n)l 

The coefficients of N in all three terms vanish, as NT oo under our assump- 
tions on M(?) which proves (2.38) and the lemma. []  

Combining Lemma 2.3 with (2.37) and (2.36) gives immediately Proposi- 
tion 1.1. [] 

3 Large deviation results for the Hopfield model 

In this chapter we provide the large deviation results for the standard Hop- 
field model that will be needed to obtain the analogous ones for the F H K P -  
model. At a later stage, this will in turn allow us to improve the results for the 
Hopfield model itself. There are two results that will be given here. The first is 
a result on the self-averaging properties of the large deviation rate function 
under the assumption p(N)/N $ O, as N Y ~ -  The second is a large deviation 
theorem for the Hopfield model under the strong assumption p(N) < In N/ 
In 2. However, to do this we first have to provide some a priori large deviation 
estimates for the Hopfield model. 

3.1 Large deviation estimates for the Hopfield model 

Let us consider the quantities 

z H o p f  ( ~  2-N ~N N.p,ov,,, ----- ~ eTIIm~(~ (3.1) 
G~,~ca N 

We first proof large deviation upper and lower bounds. We define the 
functions 

and 

~N,~ (m, t )  ~ (re, t) - [Iml[ 2 - ~ f l  In cosh/~(~i,t) (3.2) 

4~N,~(m) ~- sup ~N,~(m, t) (3.3) 
tEIRP 

We also define t* (m) through ~N,~(m, t* (m)) = supt ~ ~a, ~N, p(m, t), if such a t* 
exists, while otherwise I[ t* [I -= oo. Properties of t*(m) will be discussed in 
Lemma 3.2. With these notations we have 

Lemma 3.1 Set fN,~,o(m) =_ -- 1/[JN in ZN,~,o(m). Then 

fN,p,p(m) >= ~N,p(m) -- P(ll t* 112 + I[ m rl2 + p) (3.4) 
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and for p > x / ~ ,  

l n 2  
/N,a,p(m) _-< CDN, fl(m) 4- p(  I[ t *  112 + I[ m 112 4- P) 4 - / ~  (35)  

Proof. W e  first p r o v e  the  lower  b o u n d .  N o t e  t ha t  for  a r b i t r a r y  t e IR p, 

n(it mN(~) - roll2 ~ p} < ~(llmN(~) roll2 =< P} e~N(t'(~N(~) -- ~)) + pan i[,l[~ (3.6) 

T h u s  
1 2 ZN, p,o(m) <= inf  2 - u  ~ eflg~(llmll2 + 2p lirnl[2 + p2) eflN(t,(mN(a)_m)) + flNplltll2 

t ~ -  p a f f c f s  

N 1 1 N _<_ inf  e fl [711ml122-(m't)+~'=11nc~ flNp(IImlI2+HtIle+p) (3.7) 

This  gives i m m e d i a t e l y  (3.4). [ ]  

Remark. N o t e  t ha t  to d e t e r m i n e  the  s u p r e m u m  in (3.3) we w o u l d  need  to  solve 
the  sy s t em of  e q u a t i o n s  

1 N 
m" = ~ ,~1 ~ '  t a n h  fl(~,, t) (3.8) 

wh ich  is qu i te  difficult. N o t e  t ha t  a t  the  cri t ical  po in t s  of  ~rc,a(m) we  h a v e  t ha t  
t*(m)  = m. 

N e x t  we p r o v e  the  u p p e r  b o u n d .  I t  is o f  cou r se  e n o u g h  to cons ide r  the  case  
whe re  t*(m) is finite. T h u s  we define,  for  t* ~ IRP, the  p r o b a b i l i t y  m e a s u r e s  

on  { - 1, 1} N t h r o u g h  their  e x p e c t a t i o n  IE~, g iven b y  

~ ( "  ) =_ lE~e~N(t*'"(~ ) 
]Eael3N(t,,mu(e) ) (3.9) 

we have  o b v i o u s l y  t ha t  

ZN, fl,p(m ) = ]~,~ e~ll raN(a)I122 - fiN(t*,mN(a)) ~{ II,nN(a) ml]2 =< p} lea eflu(t*'mN(a)) 
1 2 

e - f iN( t* ,  m) - f iN(  I[ t* [I 2 P - 711 m I[ 2 + P II m [I 2 + p 2/2) ] g o  e fiN(t*, mN (a)) ] ~  ~{11 rn~(,~) - m [I 2 < p} 

1 2 = eflN(5 II m II 2 - (t*, m) -- ~ Y~=I in cosh fl(~.i, t*)) e - flNp(ll t* II m + II m I[ 2 -- p/2) 

• ~ C II m N ( ~ )  - -  m II 2 _--< p ]  ( 3 . 1 0 )  

But,  us ing  C h e b y c h e v ' s  inequal i ty ,  we h a v e  t ha t  

~[ l lmN(~) -m]12  < p J  > 1 - ~lE~llmN(o-)  - roll 2 (3.11) 

W e  c h o o s e  t*(m) t h a t  satisfies Eq.  (3.7): T h e n  it is easy  to c o m p u t e  

II raN(e) -- m II ~ = 1 - N tanh2(fl(~i ,  t*(m))) (3.12) 
i = I  

f r o m  wh ich  the  l e m m a  follows.  I-I  
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In the following l emma  we collect a few propert ies  of  CN,a(m) that  arise from 
convexity. We set T - {m ~ lRglt*(m) exists}, D - {m ~ IRU145N,/~(m) < oo }, 
and we denote  by in tD  the interior of  D. We moreove r  denote  by 
I(x) -- supt ~ ~(tx - In cosh t) the Legendre  t ransform of the function in cosh t. 
A simple compu ta t ion  shows that  

J'!@~ln(1 + x) + ~ l n ( 1  - x), if Ixl ~ 1 
I(x) (3.13) 

/ + 0% otherwise 

Lemma 3.2 

1 1 N 
~bN,a(m) = --~l lm[]  2 + inf ~ I(y~) (3.14) 

y ~ IRX: m,~(y) = ra fiN i z =1 

where for each m ~ IR u the infimum is attained or is + oo vacuously. 

ii) 
D = {m ~ IR M [ 3y ~ [ - 1, 1] N s.t. raN(y) = m} (3.15) 

iii) ~N,#(m) is continuous relative to i n tD  

iv) T = int D 

Note  that  point  i) of  L e m m a  3.2 provides the following al ternative formula  for 
the var ia t ional  formula  (3.3), 

~N,a(m)= inf ( 1 1 N  ) 
y~r~-~=mN(y) = m - 2 I1 raN(y)II~ + ~-~ i=~1 I(yi) �9 (3.16) 

Proof. Note  that  the function g(t) i N = ~ Y4= 1 in cosh/~(~-i, t) is a p roper  convex 
function on IR M. Denot ing  by h ( m ) - s u p t ~ a M { ( m , t ) - g ( t ) }  its Legendre  
t ransform,  it follows f rom s tandard  results of convex analysis that  h(m) is 
a p roper  convex function on IR u and that  

1 N 

h(m) = inf Y'. I(yi) (3.17) 
y ~ ~ :  ,~(y) = ,~ ~N i=7"1 

where for each rn c IR M the inf imum is either at tained or is + oo. This 
immediate ly  yields i). Denot ing  by d o m  h ~ {x e IRMJ h(m) < oo } the effective 
domain  of h, we have, by (3.13), that  d o m  h equals the right hand  side of(3.15), 
and since - II m II 2 < 0, ii) is proven,  iii) s imply follows f rom the fact that  
h being convex, it is cont inuous  relative to the interior of d o m  h. Finally, to 
prove  iv), we will m a k e  use of  the following two impor tan t  results of  convex 
analysis. First, the subgradiant  o fh  at m, Oh(m), is a non  empty  set if and only if 
m belongs to the interior  o f d o m  h, i.e., m e intD. Oh(m) is moreove r  a bounded  
convex set. Next,  (m, t) - g(t) achieves its sup remum at t* - t*(m) if and only if 
t* ~ Oh(m). This concludes the p roo f  of  the lemma.  [ ]  
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3.2 Self averaging of the rate function 

We will now derive the self-averaging properties of the large deviation rates 
introduced above, or rather of some slightly modified versions of them. These 
are the results actually needed in the proofs of our Theorems, while the 
estimates above are needed to establish them. 

Let us make a few remarks on the questions of self-averaging in general. 
The central r61e played by 'self-averaging' properties in disordered systems 
has particularly been emphasized by Pastur and Shcherbina in their work on 
the Sherrington-Kirkpatrick model [25]. Shcherbina and Tirozzi [27], and 
Pastur et al. [26] have recently performed the same analysis for the Hopfield 
model. Basically, they prove two types of results: 

(i) The free energy, F~~ f as well as its derivatives, such as the Gibbsian mean 
of m~v(o-) are self-averaging for all choices of p(N) in the sense that their 
variance behaves like N-1  

1 N O" 2 (ii) If the so-called 'Edwards-Anderson' parameter q~--~Y~i=l(  i)N,~, 
where (.)rv, p denotes expectation w.r.t, the Gibbs measure of the Hopfield 
model, has variance of order 1/N, then a certain set of 'mean-field equa- 
tions', that can be formally derived using the so-called 'replicatrick' (see 
[1]), are exact. 

As we will see later, here we are in need of self-averaging results on the rate 
functions. While it is fairly easy to prove results on level of the variances for 
fixed argument, along the same lines as in the above cited papers, such 
estimates would not be sharp enough for our purposes, since we will require 
results that hold uniformly in the arguments. Thus, we must extend the 
variance estimate to exponential estimates. 
For  technical reasons, we consider here somewhat softened versions of 
the functions introduced earlier in which the characteristic function 
l[{llm A _mN 2 __< p} is replaced by a smooth version of this function. We let Zo(x) be 
a differentiable function satisfying: 

(1) zAx) ->_ o, 

(2) [)(p(x)[ < 2N/?n{o _< x _< p + 1/(~m), 

(3)  ll{ixl < p} =< )(p(x) < ~{Ixl < p + 1//~N)} 

(4) in Z(x) is concave. 

Let us introduce, for m e IR p(m, the functions 

, 1 ) 
~-~o~f, , - - l n ( ~  ~ e-~H~r176 ) (3.18) rN'~'Ptm) -~ fiN \2 ~s~  

These are the non-normalized versions of the rate function that differ from the 
F H ~  (1~,~ corresponding normalized functions -n,p,pv,oJ by the free energy. We remark 

at this point that we will be interested in this quantity only for very (but not 
too) small p (in fact p ~ p/N). In this case, we need only to consider m with, 
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: b ~H~  [m'~ e.g., ll~r/[I 2 < 2. For, --N.a,pv', can only be different from + co if there 
exists a c r e a m  such that N i f .i~itri~rn. But this implies that 

s 

I] m ]12 ~ ~ .Ei , j  a i c ~ a j  <= ]l B ]l, where B is the random matrix with elements 

Bij - F~. ~ .  It has been proved for instance in [27, 2]) that with probability 

larger than~- 1 - e N'/6r, II B l[ < 1 + 2r px/~/N. 

Lemma 3.3 For all m ~ IR p(N) with I[ rh 112 < 2 that satisfy II t*(m)II < ~ ,  there 

exists p with ~ <= p < 4x f~  , (possibly depending on m), and a constant 
C(r~) < oc such that and for z > O, 

{ ;  Nc(,~,;-, if z < l  ~ H o p f  ~ H o p f  
IP[lfN,~,o(m ) - = NC(~)~, if Z > 1. IEFN,r > z] < (3.19) 

Moreover, the constant C (m) depends only on !l t*(r~)ll~ and [] m 112. 

Proof. The proof of this lemma is based on the classical method of Yurinskii 
[28]. An exposition can be found in particular in the beautiful book by 
Ledoux and Talagrand [24]. Earlier applications of Yurinskii's method in the 
context of spin glasses and the Hopfield model can be found in [25, 26, 27]. Let 
us set for later use 

1 
ZN(m) -- ZN.a,o,o(rn) ~ @~ ~ e-~'~'(~)Z~,~(llmN(a) - mll2) (3.20) 

z . -  
a ~ ,rfr~ 

and write for simplicity 

fN(m) - - fl- ~ lnZN(m) (3.21) 

We now introduce the decreasing sequence of sigma-algebras -~k,~ that are 
generated by the random variables {:~'}~_>_=<2~ p w { ~  }" --> ~, and the correspond- 
ing martingale difference sequence 

f~'~)(rn) - IE [fN(m)l~k,~] -- IE [ f N ( m ) l f f ~ ]  (3.22) 

where for notational convenience we have set 

~ if K < p 
(3.23) 

if t c=p .  ( , ~ u  k + 1 ,1  

Notice that we have the identity 

N p 

fN(m)  EfN(m) 2 - -= fN ('"). (3.24) 
k = l  ~c= l  

Note that we use a finer filtration for the construction of the martingale than 
[26, 27] which allows us to get much sharper estimates. 
Our aim is to use an exponential Markov inequality for martingales. This 
requires in particular bounds on the conditional Laplace transforms of the 
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martingale differences. Namely, we clearly have that 

' ~) m > N z  < 

k 1 K  1 

2 i n f e  I~lmIEexp t f(~'~)(m) 
t ~ ] N .  k = l  K 1 

(3.25) 

( 1 , 1 )  + t 7(1'2)" X t f  (N'p)(m) ~ ' +  
= 2 i n f e  ItlNzlE[IE[... IE[etYN (m) l~l ,1]eJ~  ( m J l f f ~ - , 2 ] . . .  e ~ I~N, pJ 

To bound the conditional Laplace transforms, we introduce for u e [ - 1, 1] 
the p-dimensional vectors m~4~(a, u) with components 

X(Y~iehgi qi q- U~tk(~k), if # = k (3.26) 
m~'K)'"(~'u)  - ( ,n~,(~) ,  if u + K 

and define 

Naturally, we set 

N 
/~, k)(o_, U) = y II m~' ~)(a, u)[I 2 2 (3.27) 

Now, 

m N (~,u)--n~]lz) 
' 'N t~ 

(k~ K } , K  ~ K  /g 

x iim~,K)(a,u)_ml[ 2 ] 
(3.32) 

~ . 

Z~'~)(m'u) = ~ s ~  e -~H~'K'(~ ) -- roll2) (3.28) 

and finally 

f~'~)(m, u) = - fi-1 In Z~'~)(m, u). (3.29) 

Since for the remainder of the proof, m as well as N will be fixed values, to 
simplify our notations we will write simplyfi,~(u) --f~'k)(m, u). 
The point behind this definition is that 

~(k. ~c) f N  (m) = IE[fi, dl)bC(k,~)] -- ]E[A,~(1)IfL~] 

1 
21E[fk,~(1) - - f a , ~ ( -  1)]~k,~]. (3.30) 

To obtain the last line we have used the fact that fk,~(u) is actually a function 
of the product u ~ .  
On the other hand, fk,~(U) is a concave function of u (hence the condition (4) 
for go). This implies that 

I f~ ,d l ) - - f (k ,K)( -  1)l < 2 max(I f~,,~(1)l, Iflk,~)(- 1)l) 

_-< 21 f~,,dl)l + 21flk,~)( -- 1)1. (3.31) 
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where #k ..... denotes the expectation w.r.t, the probability measure 

1 
m N (a,u)--mll2)e-13P~'~'(ff, u)dcr (3.33) (k,~) z ,([I  (k,~) 

Z s (m, u) 

Using the s tandard inequalities e ~ < 1 + x + @ d xl and t + y < e y we get 

IE [e~P2 ) (") l~ ,~]  < exp -~IE '~)(rn) ~ [ ~  (3.34) 

~(k, K) To bound the f s  (m) in the exponent, we will simply use a uniform upper 
bound on If;,, ~( + 1)1. As the functions for _+ 1 have the same distribution, it is 
enough to consider the case + 1, Note that  

, _~ ~ t x;(ll mN(~) - ~112) 
]f(a,~)(1)l < #lmluk'~)(a)l + fiN ,Zo(l}rns(r~) rnl]2) 

1 Elz;(l[ms(o- ) - r~[[2)l __< 1 + ~  (3.35) 
Zp(rlms(cr)- mll2) 

where we wrote simply r for #k,~, ~, as this measure is independent of(k, K). To 
use this bound, we need the following lemma. 

Lemma 3.4 Let c(m) =- 2( tl m II 2 -}- II t* (/'~)112) befinite. Then there exists p sat- 
isfying x ~  < P < 4x/~ (where c~ - ~) such that 

1 Ix;( II ms(o-) - rh H2)] < 2e3~(,,, ) _ 2 (3.36) 
~ #  Zp(llms(cr) n-~l12) = 

(Note that p may in principle depend on m). 

Proof Note that the conditions on )~p imply that  

1 # I Z~, ( I I m s  (a)  --  rfi I I 2)1 ~ 2 ZN. B,p +l/(ps)(m) - -  Zs" r (m) 
f in  zp(llmN(o-) rn[12) - Zs,a,p(rn) 

= 2(Zs'~'P+~/(Pu)(m)-\ fs,~,p(m) 1) . (3.37) 

Let us set g(x) = ~ In ZN,~,~(m). Obviously, g(x) is a monotone  increasing 
function ofx. From the large deviation estimates in Lemma 3.1, it follows that, 

for x > 2xf~, 

g(nx/~) - g(2 , ,~ )  < c(m)(n + 2)x/~. (3.38) 

Therefore 

~/~(n 2)Nil 
c(m)(n + 2) ~ > ~ ( g ( ~  4- (k 4- 1)~(fiN)) -- g(x//~ 4- k/(fiN))) 

k = O  

(3.39) 
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But this implies that the number of values k in the sum for which 

C' 
(9 ( ,~  + (k + 1)~(fiN)) - g ( ~  + k/(flN))) > Nfi (3.40) 

is bounded by ~ (') (~ +~?)'/~N~; thus i f  we choose c' "+ 2 = r<~ c(m), we can deduce that 

there exists a smallest value ko < ~ f i N ( n  - 2) for which 

0 <= ( g ( ~  + (ko + 1)/(fiN)) - g ( , ~  + ko/(flN))) <= c'/(fiN) (3.41) 

Thus choosing p = Nfiko + 2 ~ ,  we get for this value the bound 

1 ~]Z~,(l[mN(a) - "5112)1 < 2(e~, _ 2) (3.42) 
f i n  Zp(llmN(a) roll2) = 

Choosing n = 4 concludes the proof of the lemma. [] 

Putting these observations together, we see already that [f~' ~)(m)l < C (where 

C depends on r~, if p is chosen appropriately (but of order , ~ ) .  Hence we can 
write 

]El etfN (~)IYZ~] _-< exp e2Clq lE  ~z-+ (3.43) 

Using the bounds (3.30) and (3.31) we get further that 

Inserting 
e m~xl~a < lE[eXl ~-], we get 

IPEfN(Im) - IE/N(m)I _--> Nx]  

V __< 2 inf e-tNxlE,exp 4t 2e 2tc • ~ (f;,~(1)) 2 
t > O  ] \ k = l  ~c=l 

Now, 

(fk,~(1)) < 2 N V ~ ,  ~a iak  
i 

( ~ V  (m~v(a) - r~ ~) 1 I z g ( l l m N ( a )  - ,5112) [T~ 2 

+ 2  e L ~  ml l2 f iN  Zp(l[mN(a) ~ J J ' "  

< 21E [(IE [ ]f~,~(1)l I Yk, ~])2 + (lg U If~,,~( - 1)11 ~k,~3)21 ~ 3  
__<21E[IE ' 1 2 ~ , _ [Ifk,~( ) l l  k ,~]+lEflfk,~(  1) 2 ~k.~] ~ Z ~ ]  

< 21E [IfZ,~(1)l 2 + IfZ,K(- 1)121YZ~] 

= 41E [INZ,~(1)I21 ~Z,~] (3.44) 

the resulting bound into (3.25), using Jensen's inequality 

(3.45) 
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< 2g ~ ai + 2d ~ 
= - - LIImN(~)-mll2J 

1 ~F/I%AIIm~(o)I ~ll~)l~] 

where we have used Lemma 3.4. Thus 

] E (f{,~(1)) 2 < 2N6 ~ ~, #~ G, + 2N(e 3~('') - 1) 
k L ~ :=1  K = I  i 

= 4EHN(O" ) + 2N(e 3c(m) - 1) (3.47) 

Note that this formula is quite remarkable, in that it relates the variance of the 
local free energy to the distribution of the (local) internal energy of the system. 
For  our present purposes it will, however, suffice to bound gHN(G) by the 
supremum of the Hamiltonian over all spin configurations. 
Lemma 3.5. There exist a constant c > 1 - 2 1/(2~)2 such that for all x, 

]P [ sup~ ~ .~N HN(cr)> x N ] < - e  -c(x-21nz)N. (3.48) 

Proof. Just use that 

1 1 ~ > x N  (3.49) IP sup 2Hu(cr) >= xN  < 2NIP 2 ~=1 i=1 

and the fact that ~ 52/u_ l ~: is subgaussian. [] 

From this estimate it follows easily that 

s ~ N IEe ~ [2,,=, g~=,Oq~.~,(1)Y] < eCUS (3.50) 

for some constant c' < oo if s is smaller than some constant. Lemma 3.3 now 
follows by choosing t appropriately. [] 

Remark. One has to keep in mind that the constants in the estimate in Lemma 
3.3 depend on m in a way that is difficult to control explicitly. The self- 
averaging result concerns thus the rate functions only at points where this 
constant is bounded, i.e. in the interior of the set where the rate function itself 
is finite. It  should be noted that this includes in particular the critical points, 
for which t*(m) = m. 

Let us introduce the sets 

~7,v(c)  - {m ~ IR~IV~ m" 

{ - - 1 , - - 1 + 2 / ~ , . . . , 1 - - 2 / ~ , 1 } ~ c ( m ) < c }  (3.5]) 
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Proposition 3.6 Assume that limNT ~ p(N) s - O. Then, for  almost all o~, there exist 

a sequences p = pN(m) satisfying ~ < p < 4ainu such that 

Hopf ] E F  H~ (" "~ 0 lim s u p  F N, p , p ( m ) ( m  ) - -  u ,~ ,p (m) , r r , )  = 
N "  co m e ~lrN,pml(c) 

(3.52) 

for  any c < oQ. 

Proof  By Lemma 3.3, there exist p(m) such that 

L ~ ~ ~f ....... (c) l --N,~,,(~),", -- lEFN,~,p(m)(m) > z 

< ~ IP ~N,~.p(, ,) ,",-  lEfN,p,~(m)(m) > z 

. s 2 .  < e c N N l n N - - N c ' z  2 (3.53) 

Where we have used the well-known fact that the number of lattice with 

1/x/N in the p-dimensional unit ball is bounded by exp(c" p In pN)  for spacing 
some numerical constant c". Since by our assumptions on p(N)  for any z > 0, 
this bound is exponentially small in N for N sufficiently large, the proposition 
follows from the first Borel-Cantelli Lemma. []  

3.3 Two variational formulae for  the rate function 

We now turn to the second result on the Hopfield model, which is a large 
deviation principle under a very strong condition on p(N),  namely that 
p(N)  < lnN/ ln  2. This makes use of a very nice technique introduced first 
by Grensing and Kiihn [16] and later used by Koch and Piasko [20] and 
Gayrard [14] to compute the free energy and to construct the Gibbs states of 
the model in this regime. 

Let us denote by I ~ N a finite set; we will always assume that N is so large 
that t ~ {1 . . . .  ,p(N)} (we exclude the trivial case p(N)  bounded). We denote 
by IIt the orthogonal projection from IR p(m to IR ~. Let us introduce, for 
r~ e [ - 1 ,  1] ~, the quantities 

z~,~,~Eco](rfi) = 2 -N ~ ~-~nu(~), , (3.54) H { II FlimN(a) - rh III --< e}' 
c r ~ N  

We introduce the family of vectors e~ ~ { - 1 ,  1} p, for 7 = 1,2, ... ,2 p which 
represent a complete enumeration of all vectors in IR p whose components take 
only the values _+ 1. We set 

~, - { i e A l ~  = e~, V~ = 1  . . . .  ,p}. (3.55) 

The v~ are of course random quantities depending on the ~ ,  however, their 
volumes I v~l almost deterministic in the sense that there exist a subset O c O 
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of probabi l i ty  one, and functions 6N tending to zero as N]" o% such that  for all 
but  a finite number  of indices N, 

llvT'l - 2-PN] < C~N2-P(N)N, V7 ~{1 . . . .  ,p(N)} (3.56) 

provided that  p(N) satisfies the assumpt ion  of L e m m a  3.4. A p roof  of this fact 
can be found in [143 (Proposi t ion 4.1). Let us r emark  further that  the vectors 
e~ have the p roper ty  that  

2P 

2-P 2 e~e; = 6~ .... (3.57) 
y = l  

where 6 here is the Kronecke r  symbol.  Let us denote  ~7,(a) - (1/Iw/I)F~i~ai. 
We then have 

2P 

m~(cr) = 2 p ~, e~c%(a) = mp(c~(a))). (3.58) 
y = l  

up to a negligible error  of order  6N. 

L e m m a  3.7 Assume that l i m m ~ 2 P ( m l n N / N  = O. Then there exists a set 
if2 c f2 with 1P(~) = 1, such that, for  all co ~ff2, for  all but a finite number of  
indices N, 

i t ~ e,c~'/ I fl-NlnZN.p,~[co](N) = sup2,,~. ' 2 p ~, 
c ~ [ -  1 ,1]  ~ 7,=1 

Ilr/x mT(~)-r~ll 2 < 

1 2p 

7'~/(~) + o(1). (3.59) 

Proof  We have 

e~,/~'#~ivH, y = 1 ,  . . . ,  2P 

11~.(~) =~,7' = 1 ..... 2,,~, (3.60) 

where ~#@,1 -= { - 1 ,  - 1  + 2/IvT,l, . . . ,  1 - 2/Iv~], 1}. The  last sum over  the ~ is 
easy to compute .  N a m e l y  

/ Iv, I 5 

= exp - 2 (Iv~.lI(=.) + O(lnlvT,l)) , (3.61) 
y = l  

with I the wel l -known en t ropy  function 

j ' l+Xln(1 + x) + 12Xln(1 - x) 
I(x) 

( + ~  
if Ixl < 1, 
otherwise. (3.62) 
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2 p The term y~7=l O(ln Iv~[) is of order 2PlnN and therefore totally negligible. 
Using (3.42) we obtain 

2 11{[[HII'IZP( ~)-l~qU2 <= ~1 exp (fiN�89 m,(cQ 11 Z1,~.~(rfi) 
o:>., Y = 1 ,  - . . ,  2 P  \ 

(]v, lI(G) + O(ln Iv.el)) + NO(aN)]. (3.63) 
),=1 / 

Observe that the e~ take values in the set ~/@,1 so that the total number of 
terms in the sum Y~,,~=I ..... 2~ is bounded by 2p ea,'lnN. l~p= 1 Iwl[ < Therefore, it 
suffices to use the upper and lower bounds 

1 1 2p 
sup limp(or)l[ 2 ~ (IvvlI(%) - O(Inlv~t)) - NO(aN) 

~ye~ y = 1 ..... 2P ~ - -  ~ y = l  
iiH~mp(~)-,n!l 2 <_ 

1 I ~ 1 
<= ~-NlnZN, I~,~(m) < sup - 11 rap(00 b] 

1 2. 2 p lnN 
fiN ~ ([v'elI(~ + O(ln Ivy[)) + NO(aN) + t3 -~ - -  (3.64) 

y = l  N 

Since we have assumed that 2 p in N/N],O as N{ oo, and using (3.56) we see that 
on 0 both the upper and the lower bound in (3.64) only differ by terms that 
converge to zero as N]" oo from the quantity 

1 1 2l' 
-- ~ 1(%). (3.65) �9 N,e,~(n~) = s u p  2P ~ Ilmp(c~)[12 2 ~ . /  

~ [ -  1,1] ,7= 1, ..., =1 
]lBlmp(:O n~ll2 < e 

But this proves the lemma. [] 

If p(N) were bounded, we would now be done. For  in such a case, the limit as 
N tends to infinity of ~bN,/3,,(rfi) clearly exists and yields the desired large 
deviation rate function in terms of a variational formula. In our situation, 
since the dimension of the space over which the c~ vary diverges, it is not 
a priori evident that the limit exists and can be expressed through a variational 
principle. To prove it we need some notation. Let us first observe that the 
vectors e ~ can be chosen in the following explicit form, 

e~ = ( - -  1) [72 -<"-~'],  (3.66) 

where Ix] denotes the integer part of x. Let us define the sets 

ag~ ~ {e ~[  - 1 ,  1120 [ VT, ~7 = 0{7+ 2'1}" (3.67) 

Obviously, 

P P ~;/g ~ ~a/f c - . .  ~ ~gp  i c d p =  [ - - 1 ,  1] 2P. (3 .68)  
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The points to notice are now the following: I f  ~ e sr with d < p, then 

(i) m~,(c 0 = 0, if v > d and 

(ii) m~,(c~) = m~'(c 0, if # < d. 

Let us set 

and 

Od~) =~ IImAcOII 2 - ~  1(%) (3.69) 

Up,,(rfi) = sup Op(C 0. (3.70) 
~ d p  p 

l i H t m p ( ~ ) -  rh ll2 2 -< 

Then, for ~ e d ~ ,  Op(e) = Oa(c 0, while at the same time the constraint  in the 
sup is satisfied simultaneously w.r.t, mp or me, as soon as d is large enough such 
that  I c (1, . . . ,  d}. Therefore,  

Yp,,(rfi) > sup Op(a) = sup Od(C 0 = Ua,,(n~). (3.71) 
~4~ ~o4d a 

II/ ' /zmd(r r~l[ 2 < e ]lF/t md(~)-- rhll 2 < e 

Hence ~,~(n~) is an increasing sequence in p and being bounded  from above, 
converges. With these preparations,  we are ready to prove the following 
proposit ion.  

Proposition 3,8 Assume that limN>o 2PCmln N/N = O. Then for almost all ~, 
o~nopfr,,,q satisfy a large deviation principle with rate the induced measures ~N,r L~a 

function F~~ given by the following variational formula: 

1 2-P ~ e,o:, i 1 ~_1 Ff~ = - -sup sup ~ -- ~ I(~,) 
p e n  : ~ [ -  1,  + 1] 2p "/= 1 y 

H12 p l~2P l&/,~y=t~ I 

x e [ -  1,  11 

I f  Fp denotes the set 

G - {~ e~. '  13~.(- ~.,.: h e m a l )  = ,~}, 
H o p f  I H o p f  I then F, ' fffi) is uniformly bounded on ~Ii and FI~ ' (fro = + oo if mr 

H o p f  I -  F, " (ffa) is tower-sen~icontinuous, and Lipshitz continuous on Fm. 

Proof. We have shown above that  )'~,~(rh) converges for fixed e, from which 
we obtain immediately that F~,~ exists and is given by the variat ional  
formula 

t 1 2~ 
f n~ = - -  sup sup l{ m~(~) [I ~ - ~ I(~) 

pffN ~r 1,  + 1] 2"~ 
II / / l  a PZ  2~- te-r~v - ~tll~ < e 

x s [ -  1 , 1 1  
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From this it is obvious that F~, ~ x converges, as eJ.0 to a lower-semicontinu- 
ous function and that 

/7Hope , I  [ ~  F ~  ~ I(m), (3.74) lim -~,~ v,oJ = lim inf 
850 s$0 m:[[m-thll@ < ~ 

with Ft~~ understood to be defined by (3.53). This will imply 

lim --~,~HoPf" I I.,,./[~7'~ = F~t~ f, I ( in)  (3.75) 
e+0 

whenever ~.Hopf, t is continuous in a neighborhood of rfi. --/s 

Recall that I(x) is uniformly bounded on [ - 1 ,  1], and continuous with 
bounded derivative on ( -  1, 1). Therefore, Op(C 0 enjoys the same properties on 
[ -  1, 1] p and ( -  1, 1) v, respectively. Moreover, a straightforward computation 
shows that on compact subsets of its domain of continuity, Op is in fact 
uniformly Lipshitz with constant C2 -p/2, i.e. for cqc( e ( - 1 ,  1) p, 

Io~(cO - o,,(cC)l < c 2  -~/z  II ~ - ~ '  112. (3 .76)  

It is clear that if there exists p and c~ ~ [ -  1, 1] p such that II, mv(~ ) = n~, then 
FI~~ < + oo. This shows that ~nopf.r is bounded on F m. But it is not 
difficult to see that F m ~ F v for all p > 1I 1, so that F m, so that Fl~ I is the domain 
of finiteness of F~ ~ 

Notice that if c ~ e [ - 1 ,  1] p is such that H~mp(c~)= m then ~' defined 
through c~'~ = % + 2,~z e~'( rh~ - m~') satisfies 171mp(u.) = rfi. Clearly 
Iicr cr IIz = 2P/a II rfi - m  112. Using this fact and (3.57), we find that ~p,o is 
actually uniformly Lipshitz continuous on compact subsets of F~ I with 
constant C, independent of p. But this implies by a simple three epsilon 
argument the Lipshitz continuity of F~ ~ on the interior of its domain of 
finiteness. This concludes the proof of Proposition 3.5. [] 

Remark. From the rate functions for the marginal distributions one can of 
course, by standard arguments construct the rate functions for the infinite 
dimensional distributions through an inductive limit, as in the Daw- 
son-G/irtner theorem I-9] (see e.g. [8]). 

It may be of interest to give an alternative expression for the variational 
formula (3.53) which allows to obtain some interesting bounds. To this end, we 
notice that the function I(x) is the Legendre transform of the function 
In cosh(t), i.e. that 

l(x) = sup (tx - In cosh t), (3.77) 
rein 

Let us first rewrite 

(PN,~,~(r~) = sup sup II m I1~ - _r(c~ 0 .  (3 .78)  
m~[-  1,1 ]p c~[ -  1,112p ~ ~, 

IIHzrn - rhll~ < z 2 - P E ~  ~y:x~ = rn 

To find the suprema under the constraints 9 -J 'x '> - =~=1 e~% = m, we introduce 
the corresponding Lagrange multipliers t~, I~ = 1, . . . ,p.  The resulting 
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function 

L(m,~,t)=~l[m[]~-~,l~_l I(c~,/)+ ~=*~ t~ 2 -p~=I ~' e~7-m~' (3.79) 

is quadrat ic  in m ~', and (d/dm~)L(m, ~, t) = 0 if and only if t ' = ml  Thus  for the 
c o m p o n e n t  v, with v e I c, over  which the s u p r e m u m  over m ~ is taken uncondi-  
tioned, we must  have that  t,, = mv. Therefore,  

tENP ~ e [ -  1 ,1]  2 /~ 

= sup 
m~[- 1, l]p 

1 
= sup sup inf ~ ~ (w ~ ' -  t~) 2 

w ~ [ -  1 ,1]  z [~N I~ t~N I pel 

v = l  p = l  

1 
= sup sup inf ~ 5 (w - tj,)2 

we[--  1, 1] / ten F telR 1 peI 
Ilw Thll~ < ~ 

- } - ~  ,'--~1 r E d~p ~- E d; ~v ( 3 . 8 0 )  

where r - zZ/2 + (1/fi)lncosh(flz) and where to get the last line we 
have used the or thogonal i ty  relat ions (3.57). 

F r o m  (3.80) we can derive the following al ternat ive variat ional  formula  for the 
rate f u n c t i o n  F~I~ 

1 
F~~ = -- sup sup inf ~, 5 (r~ ~ -- t,) 2 

p e n  feN{ t: - -pI ' , f  ~elR z ~ I  

+ p L_I E + E e;fv 
~el vel" 

In fact, to obta in  (3.81), we have to show, like in the p roof  of Propos i t ion  3.5, 
that  the limit of (3.80) as N tends to infinity exists. To  do this, let us define, in 
complete  ana logy to the p roof  of Propos i t ion  3.5, 

Ep(f,w) -= inf ~, - ( w "  - -  f~)2 + r e,~t, + ~ e~f~ (3.82) 
,eN, ~z  2 ~ y = 1 veI~ " 
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Note that ~bu,~,~(w) depends on N only through p(N). This suggests to define 

Up(w) = sup ~p(t', w). (3.83) 
f~lR~l, .. ,p}\s 

To compute this supremum, we can first compute the suprema over subspaces 
in which only the first d components of f are allowed to take non-zero values, 
and then take the supremum over d > p .  But notice that for such 
f, fly(f, w) = ffd(f, W), where obviously in the second function ~" is understood to 
be the projection of the original f onto the subspace ]R ~1 ..... d~\S. Thus 

Up(w) = sup sup Sp(f, w) 
d < p feN{ l' . ~p}kX 

fv= 0Vv>d 

= sup sup ~d(g, w) 
d <= p f G ~ I  1" . . . d } \ I  

= sup Ud(W). (3.84) 
d < p  

But this implies that Yp(w) is a monotone increasing sequence in p. Since it is 
bounded from above (see. e.g. (3.87), it therefore converges to a finite limit. 
Thus 

lira ~bN.~,~(rfi) = sup lim Yp(W). (3.85) 
N"co w e [ -  1,111 pToo 

I!w-r~lt2_< ~ 

From this it is obvious that the expression (3.81) represents the rate 
function. 

From (3.80), it is possible to derive two bounds that involve suprema in a finite 
number of variables only. First we obtain the obvious lower bound 

~u,/3,~(tn) > sup inf ~ - (w p - tp) 2 + 2Z i- q$~ e~tp (3.86) 
we[- -1 ,1 ]  / t ~ N  1 p~I 2 7= 1 
II w--ffl []~ < 

by bounding the sup over f by its value for f = 0. On the other hand, we get an 
upper bound 

1 
~)N,[3,e(l~l) ~ sup sup inf ~ - ( w  p -- t y  

w e [ -  1,1] z f~p.s~ t ~ z  p e l  2 
II w-rhl l~ < e 

+ ~  ~, ConcCp e~tp + 2 e;L 
y = 1 v e I  ~" 

__< sup inf E _1 ( wp _ t,)2 
w e [ - 1 , 1 1  z telR s p s i  2 
Ilw-rhll~ < e 

1 2111 

Here Concfdenotes  the concave hull of the function f, i.e. the smallest concave 
function that is pointwise larger or equal t o f  To obtain (3.87) we used two 
facts: First, the sum of the concave hulls of the functions ~z is in fact the 
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concave hull of the sum, as a function of the t and f. Moreover, the function 
appearing in the first line of (3.87) is symmetric in L Being also concave in f, its 
supremum must be taken on at zero. 

Remark. In the case 1II = 1 one can easily show that this upper bound 
coincides with the concave hull of the lower bound (3.86), and one may think 
that this could be true in general, but we cannot prove this. 

4 A Lebowitz-Penrose theorem 

Having reduced the FHKP-mode l  effectively to an interacting local mean field 
model in Sect. 2 we will now use the results on the rate function for the 
Hopfield model obtained in Sect. 3 to show that the large deviation properties 
of the total overlap parameters mA of the FHKP-mode l  can be found in terms 
of those of the usual mean field Hopfield model. This is an analogue of the 
Lebowitz-Penrose theory [23] of the Kac-model. 

As usual, we need to proof  upper and lower bounds on the non-normalized 
versions of the quantities -@A, p, ~ [CO] (rfi), that is we define for rfi e IR x 

ZA,fl, 7, e[O')~(t~) ~ 2 - ( 2 N + 1 )  E ll{[nzmA(a)--fnll2--<e} e-'SHA'r[~~ (4.1) 
o-e.~A 

Using Corollary 2.2, we see immediately that, for almost all co, for all but 
a finite number of indices N, this quantity differs from 

2A,I~,y,eFCO](Y~)~2-(2N+l) E ll{ll//lmA(a) rhll~--<e} e [Sn~ (4.2) 
~e~A 

only by a factor e -+ (2s + 1)~/(~)4,/~1og 2 +../27M(7) which, if 7l(7)+0 and 7M(7)+0, will 
give a negligible contribution in the limit 7~0. We thus have only to get 
bounds on 2A,/~,~,~ [co] (rh). 

In this section we will need the self averaging properties of Sect. 3.2. Due to 
the continuity problems on the boundary of the set on which r is finite, we 
have to impose some restrictions on the set of admissible rfi. Given rfi, we 
defined m* through ~b(m*)=inf~:n,m-~q~(m). Set T(I ) - {~13c<~ lim 
supN~o Ilt*(m*)112 < c}. In the remainder of this section we assume ~ e T(I). 
T(I) is constant on almost all of O and by Lemma 3.2 coincides with the 
interior of the set D(I). For  fixed rfi e T(I), we write in the sequel (see (3.51)) 
~ , ~  - ~ , ~ ( c ( ~ ) ) .  

Let us begin with the lower bound. For this, we write, using (2.7) 

2A,/L~,e [CO] (~t) = 2 - ( 2 N  + 1) E ~1{ 11/~I/t/A (6-) -- ft'/ 112 ~ ~} 

{1 
x exp fi~ I(7) 2 J'/le~)( x - Y) 

(x, y)eF x F 

Me) )} 

/~=J. 
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2-(zu+~)  ~, I ]  ~{il.vu~)(~)-,.il~_-<~} > = sup 
~IE';///'/ M 6 E ~  A xE/- 

I I / l /m-  ~ll~ < 6 (p )  {1 
x exp fl~/(7) sup ~" J,lo)(x -- y) 

1117xm-r~ll~<6(p) (x,y)s/- • 

s, ~, (4.3) • Z "~.)(o),~,c.)({ '  , 

where 6(p)  - (,,See - p)a. Equat ion  (4.3) holds for a rb i t ra ry  p > ~ but  we 
will later choose p = py that  tends to zero with y in a suitable way. Since under  
the characterist ic  functions in the last expression 

M(7) 

y. J : , ( , ) ( x -  y) Z m~c~)(.)m~.)(~) 
(x,  y) s F  x F ~ = 1 

M (7 ) 

= ~, J,/,(,l)(X -- y) ~,  ((m") 2 + m'(m~(x)(a)  -- m u) + mU(m~(y)(G) --  m t~) 
(x ,y )~Fx  F p = 1 

+ (m3(~)O-) - m")(m~<,(cr)  - rn")) 

--> • II m IL ~ - 2p II m II 2 - pZ, (4.4) 
xffF 

we get f rom (4.3) 

2~.,~,~:[o](~) > sup IF[ 2 -t~') ~, I{,.,.,~,(~.>.,,~__<,,} 
m ~ / ' l  M x ~ F  q~ c~9~ 

I lgxm- rnll~ <: 6(/,) 

x exp{f l~  l ( ? ) , , m i ] ~ - 2 f l l ( y ) p - f l l ( 7 ) p Z } .  (4.5) 

In the last line we recognize the function 

Hopf 2 -  ~(~) " ~  Zz(,~).~.,[m](m) - ~,  (4.6) e fl//tfr) (r l[{llm~(a)_mll 2 <p} ,  
c~E cJl(?,) 

so tha t  our  lower bound  can be expressed in the form 

Z A , ~ , . . / , e [ ( . O ] ( m  ) => sup l~  "-.t(,).:,.7H~ [a)~](m)e ( -  ar :1('/)`''), (4.7) 
In  ~ " l l f  l. M >r ~ F 

IIrQ.~-~II2 2 < a(p) 

where c% is defined, in a slightly abusive way, through the relat ion that  for 
i e {1, ...,/(~)}, ~i(co~) - ~z~)~ + ~(co). (Sorry[) Thus,  using K o l m o g o r o v ' s  s t rong 
law of large numbers ,  we see that  for fixed ?, for a lmost  all co, 

1 1 
lim ~ in 2 A ,8 7~  [ -co]  ( m )  ~- sup lim - -  
N~'co 2N + 1 ' ' ' m~"/::,~ N;~ 2N + 1 

t l /L,m- ~ll~ -< a(p) 

x ~ In Hopf ZI(.:),,8,p [(.%](m) --  2tip -- f lpz 

1 
sup - -  IE [In Hopf (2) r/ = z~c.,~,,[ ]( O] 

me,,:, ~ l(~) 
If B x m  - ~ I1~ =< a (p) 

- 2 t i p  - f i p ~ .  (4.8) 
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Fur thermore ,  we can write 

1 
sup - -  lE0n Hovf ,,~,,,-, ,~ 1(7) z~(,), ~, ~ [co]  (m)]  

1171m- ~q~2< 5 0 )  

1 1 Hopf > E sup / ~  nZ.~),~,p[coJ(m) 
rrl e ~ s M 

l l F I zm- -  rhl[ 2 <= 5 ( p )  

( , ) - IB sup [ Hopf ]Bin Z~)P~.; f-co] (m) l �9 (4.9) In Zlu),~,p [co] (m) - 
me'If-i, M ~ 

The first term in (4.9) is what  we want. To  control  the second, we can use 
Lemma 3.4. By the bound provided there, a simple calculation shows that  

[ 1 IE sup 1 . 7 H o p  f ~ I n  "THop f 
- -  Jm, xll  ~ l (y ) , f l , p  ~ ~','-, ,',,, / ~  . . . .  ,(~,),/~., [co] (m) [co] (m) I 

Ilnxm- ~11~ _-< a(;) 

< c ~  / ~  (4.10) 

for some positive constant  c, Here p is choosen as in Proposi t ion 3.7. To  
simplify the nota t ion we will set 5 = 5 (p). Taking fur thermore  advantage of 
the fact that limNToo (1/2N + 1)in 24,/~,.~,~ [co] (r~) is necessarily a concave func- 
tion, we arrive at the lower bound  

1 
lim ~ in ZA, ~,-/,~ [CO] (r~) 
N'~oo 

1 Hopf = ConclE sup ~) lnZ,7),~,l/M(~)[co](m ) 
[ mE~t[/'I.M 
L I I Z / r m - m l l ~  _-< ~s 

/ ~  (4.11) 

Finally, by using the trivial bound 
Hopf Z~(.~,~[co] (nS) _-- 2 -  ,(') Z - ;H , U) e ~(~) 11.{ II n~mt(o) - r~ll~ < e} 

o-G.Y/(V) 

~_ e c ' M  (7) ln (l(y)/ M (7) ) Hopf 
- Zl(,/),l~, l/M(,~) [co] (m), (4.12) sup 

mE'~/-I M 
; !nzrn-  ~'tt~ < ~; 

this becomes 

1 
lim - -  In ZA,~,~,~[co] (rfi) 
Nt~o 2N + 1 

This is in fact the desired form of the lower bound.  

(4.13) 
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We now derive the upper bound. Here we use the simple fact that 

mA(x)(a)mA(y)(r < l(m~l(x)(o-))2 + l(m~l(y)(a))2 

to write 

(4.14) 

=<2-(2N+1) 2 ~-{"n'ma(O--~'.l 2<~} 
~9~'A {1 } 

x exp fl-~ I(7) ~ II mA(x)(a)H~ 
xEF 

< ~, n{jln~zL__~Zx~rm x m,2< = ~12 = d 
m~,xeF,pgl  

X ~ 2 -l(r) Z ][{II/7,rn,(ry(a)-~IIm-<P}exPIfl 1 1 ( y ) 2  "mx" I t  
x~F O'~,ga/(y) Iv ~ X~F ) 

m~,xeF,#~l  

{ Hopf,/ ~ } x exp ~ lnZl(~f),~,p[wx] (~x) . (4.15) 

Since the number of terms in the sum over the m~ is bounded by 
[/(7)](2L+ a),rl = eOU+ 1)(l.,~)/l(~)),Ii we can bound (4.15) by the number of terms 
in the sum times the maximal term. This gives 

2a,~,,,~[m](r~ ) ~ e(ZU+ 1)~1II 

t /Hopf, I t" x sup exp ~ In l(,/),/Lp[gOxJ(mx) (4.16) 
m~, xeF,~eI  k x~F 

II r/~ zLI+ x Z~,r m~ - r~ I1~ < e 

Therefore, with e' = x / ~  + p 

1 2 in l(y) 
lira ~ - ~ - ] - l n  A,~,~,,[~0](rh) - - / ~ - I I I  
N]~ 

1 1 
< l i m -  sup E / ~  In Z~,f~'~o[m~](mx ) 
- L~o~ 2 L  + 1 ~ ' ~ , ~ r , ~ t  ~ r  

~ I f T ~  Z~rm~-r~lI  ~ _< e 

1 
=< Conc ~ IE In Z~7~'/~, [w ]  (r~) 

ItS) 

L~  2L + 1 ~, I 

Hopf,/ -- IE In Zl(7) ,~,p [w~] (mx)] 
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1 zHopf, I .1 [.~ =< C o n c / ~  IE in z(~:),/~,~.[~Jt"u 

+ l i m e [ , t T )  ] ~ l(7), fl,p [coX] ( m x )  - -  ~'" = l(7), fl,p ktZ/xJ (mx) l LT ~TZ.~IE s u p  [ln 7 H ~  ] E l n T H o p f ,  l F  . -I 

] _ r n ~ , ~ I  

(4.17) 

almost surely, by the Kolmogorov law of large numbers. Moreover, using 
Lemma 3.1 and the inequality (4.12), we can bound the expectation of the 
supremum in the last line just as in the case of the lower bound by 
c ~ .  Thus, we have that almost surely, 

1 
N"~lim ~ In ZA,~,~,,~ [CO] (rh) =< Conc /~1 IE in ZZt~),~,~[CO](m)Hopf,I ~ 

in l(v) 
+ c { / ~  + - / ~ 7  III. (4.18) 

A consequence of these bounds will be the following: 

Lemma 4.1. Assume that M(7), l(7) are such that lim,:+0 M(y)lnl(7)/l(?)= O. 
Then, for all e' < ~" and for almost all co, 

lim sup lim ffA,~,7,~ [co] (rfi) < lim sup Hopf I ~ Conv lEFl,/3,d (m), (4.19) 
7,L0 AT~ I%o 

and 

where 

lim inf lim FA, ~,,,~ [CO] (rh) > lira inf Conv lEF~,~Pf,:'(rfi), 
7~o A?Z l?oo 

(4.20) 

ffA,fi, y,~Fcol(i~l ) ~ __ f l - i  1 in 2A, B, ,:, ~ [co] (m) 
2N + 1 ZA,~,~,~[CO] 

H o p f , ~  C~~ exists and is In particular, if the limit lina~To~ Conv IEFz,~,~. v,~: = , 
continuous in e, then, for almost all co, 

cH~ (4.21) lira lim /~A,~,7,~[CO](r~) = /~,~ ~ :. 
y$O ATZ 

I f  in addition limAo 71(7) = 0 then for almost all co, 

C H~ l[g~lh (4.22) lim lim FA,/~,./,~[co](rfi) = /3,~ ~ :. 
~+o ATZ~ 

Proof Let us first remark that due to Lemma 2.3, if the statements concerning 
the limits 750 hold for subsequences 7, = 1/n with probability one, then they 
hold for with probability one for all subsequences. By this remark, Eqs. (4.19) 
and (4.20) follow directly from the bounds (4.18) and (4.13). (4.21) is a direct 
consequence of (4.19) and (4.20) under the additional assumptions on the 
existence and continuity of C~~ Finally, the use of the estimates of Sect. 
2, in particular Corollary 2.2 allows to replace ff by F and thus to obtain (4.22) 
under the additional assumption on l(7). [] 
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We will now use this lemma to prove Theorems 1 and 2. 

Proof  o f  Theorem 1. We consider the situation where M(7) = lln 7 I/ln 3. If we 
choose 1(7) such that/(Y) [ln/(7)1 = 7, then (4.22) relates this FHKP-model  to 
the Hopfield model with p(l) = ln(/ln/)/ln 3 = l n / +  In In l/ln 3. But this func- 
tion satisfies the assumption of Proposition 3.5, so that 

" Hopf. I ~ it?H~ I {r~] (4.23) hm Fl,~, ~ (m) = inf -/3 v,., 
11co m: II m r~il~<~ 

where ~.Hope,z is given in Proposition 3.5. In particular, the continuity of this 
function on F ,  I implies immediately the continuity of the left-hand side of 
(4.23) in e for all n5 ~Fiz I. Thus, under these assumption, (4.22) holds and, 
moreover, 

F/j(ffz) -= lim lira lira FA,[he,~[Og](rn) = C o n y  F~~ (4.24) 
~r 7.LO Atg  

exists and is given by the convex hull of the function (3.53). 

Now the left hand sides of (4.22) and (4.24) do not depend on the choice of 1(7 ). 
Therefore, we can make a different choice of/(7), to relate the same F H K P -  
model to a Hopfield model with different p(l). For any function p(1), such that 
p(1) = I q(l), where q(1)+O, we just have to choose 1(7) in such a way that 

l(7) q(l(7)) - [ln 71 _ M(7). (4.25) 
in 3 

Then the assumption of Lemma 4.1 on M(~/) and/(7) are still satisfied, but the 
rate functions of the FHKP-model  with this M(y) will be related to those of 
the Hopfield model with the chosen p(1). Now, instead of (4.19) and (4.20), we 
can derive from (4.13) and (4.18) that, for all e" > e, for almost all co, 

lim sup ConvlE F~V~'~(r~) < lim lira FA,~,,/,~[co](r~) (4.26) 
ll"m ~$0 AT 2g 

and 
liminf ConvlE F~fd( , f i )  > lira lim FA,~,.,,,~,,[co](ffO (4.27) 

1Too 210 AT2~ 

But the right-hand sides are continuous in e, and so the limit 

]uHopf, I ( ~ ]  lira Cony IE _t,/~,~ v,~ = lira lira FA, ~, ~,~ [co] Off) (4.28) 
l~oo }',,0 A]'2~ 

actually exists, almost surely, and is a continuous function of z. In fact, 

lim lim Conv IE F~~ --- Conv F~~ (4.29) 

with the left-hand side independent of the function p(1). This concludes the 
proof of Theorem 1. [] 

Proof o f  Theorem 2. We have actually just established that the requirements 
for (4.20) are in fact satisfied as long as p(1)= lq(I), with q(1) tending to 

zero arbitrarily slowly. Making the choice l(),) = ~ ,  we see that (4.21) 
and thus (4.25) hold as long as M(?) satisfies ~M(7)$0. But this proves 
Theorem 2. [] 
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