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Summary. We construct Brownian motion on a continuum tree, a structure 
introduced as an asymptotic limit to certain families of finite trees. We ap- 
proximate the Dirichlet form of Brownian motion on the continuum tree by 
adjoining one-dimensional Brownian excursions. We study the local times of 
the resulting diffusion. Using time-change methods, we find explicit expressions 
for certain hitting probabilities and the mean occupation density of the process. 
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0 Introduction 

Over the last several years, various authors have extended the theory of 
continuous-time Markov processes to inherently rough sets. Barlow and 
Perkins [8], Lindstrom [11], Hambly [10], and Barlow and Bass [5-7] have 
defined Brownian motions on various classes of fractal sets. A characteristic 
of  all these works is that the Brownian motions in question must be defined 
through approximations by simpler processes, generally random walks on ap- 
proximating lattices. As a consequence, it is difficult to describe functionals of  
the resulting Brownian motion explicitly. 

In this paper, we approach constructing such Brownian motions from a 
different angle. Our  underlying state space is a continuum tree; think of this 
a limit at infinity of a finite, graph-theoretical tree of segements in Euclidean 
space. A natural approach to consta-ucting a Brownian motion on such a state 
space is to start from Brownian motion on the approximating finite trees, then 
let the finite trees converge to the continuum limit while suitably rescaling 
time. It turns out that this can be done rigorously through potential theoretic 
methods. The details comprise the bulk of this paper. 

A standard property of  graph-theoretic trees is that any two points x, y are 
joined by a unique path Ix, Yl, a property common to the real line. This property 
allows many standard calculations for linear Brownian motion to be transferred 
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to Brownian motion in the tree setting. As a result, the hitting distribution and 
the occupation density for Brownian motion on the continuum tree may be 
described fairly explicitly. Standard results on Brownian local times also carry 
over directly to the tree. 

Brownian motion on the continuum tree was proposed in Aldous [3]; a 
rigorous construction was not provided, although an intuitive argument for the 
existence of  the process was sketched. This paper formalizes that argument 
carefully. Besides clarifying Aldous'  argument, we feel that the argument pre- 
sented here has a couple of  other points of  interest. 

(i) Certain fractal subsets of  Euclidean space have natural approximations by 
trees. The construction given here (with a slight modification) will define 
Brownian motion on such spaces. Many of  these fractals do not admit 
easy approximating lattices. 

(ii) In Aldous [2-4] models for random continuum trees are developed, to- 
gether with applications to family trees of  branching processes and random 
combinatorial sh-uctures. Brownian motions can be constructed on realiza- 
tions of  these random trees. These may be useful for studying random 
walk on finite or discrete random trees. 

(iii) In [3, Sect. 6.3.1], Aldous remarks that local time at the root for Brownian 
motion on the continuum tree can be recovered from the superprocess 
constructed over the Ray-Knight  diffusion. Other interesting relationships 
might exist between superprocesses and diffusions on continuum trees. 

The remainder of  this paper is organized as follows: In the first section we re- 
view the properties of  continuum trees that we will need and explicitly define 
our Brownian motions. In the second section, we construct the Dirichlet space 
for our process and develop some of  its potential-theoretic properties. In the 
third section, we study additive ftmctionals of  our processes, prove that our 
Brownian motion has jointly continuous local times, and describe the occupa- 
tion density of  our process explicitly. 

1 A review of continuum trees 

Let (SP,~t) be a continuum tree, in the sense of  Aldous [4, Sect. 2.3]. That 
is, 5 e C ~'I(N) is closed, contains 0, and for every x , y  E 5 ~, there is a unique 
path ~x,y I connecting x to y, of  length d ( x , y ) =  Ilx-ylll;~ is a measure 
corresponding to choosing a point "at random" from 5 P. 

Taking 0 as the root of  the tree and x, y E 5 P, define the branch point 
b = b ( x , y )  as the point b in IO, x]NlO, y ~ of  maximal distance 0. Say that 
x E Y is in the skeleton of  5 ,a if  there exists y ~ 5 P such that x E I0, Yl. I f  x 
is not in the skeleton of  5 P, we say that x is a leaf. Following Aldous [4], we 
assume 

(a) I f  XI,X2,X3 C ~ are such that b(xl ,x2) = b(xl ,x3) = b(x2,x3) = b, then at 
least one of  x i ,x2 ,x  3 equals b. 

(b) /~{x :x  is a leaf of  5 P} = 1. 
(c) p{y  :x  E IO, yl} > 0 for all x in the skeleton of  5C 
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We also assume 

(d) 5 P is compact and the support of  # is 5 ~. (In the terminology of  Aldous 
[4], (5~  is said to be "leaf-dense".) 

(e) 5 P has finite box-counting dimension cc 

For convenience, we assume that i f x  = (Xl,X2,x 3 . . . .  ) E -Y then (xl, 0, 0 . . . .  ), 
(x l ,x2 ,0 , . . . ) , (xbx2,x3 ,0  . . . .  ),(Xl . . . . .  xj, O,O . . . .  ) E 5 ~ for all j .  (Thus, for any 
x C Y ,  IO, xl = IO,xls p, as defined in Aldous [2-4] .)  Let {kl,k2 . . . .  } be the stan- 
dard unit vector basis for f l .  Let sn be the maximal segment in the direction 
kn contained in 5 p. Let 50oo = U ~  sn. By the assumption that all paths are 
"special", we can see that 5~oo contains the skeleton of  b ~ It is not hard to 
see that this also implies that 5~ = U l n  sk is connected n = 1,2,. . . .  

As Y is compact, D = SUPx,y~SO d(x, y)  < ec. Let 2i be Lebesgue measure 
OO 

on si, and define a measure m ~  on 5 ~  by taking m ~ ( E )  = ~-~i=1 2-i)~i(Si f-) E) 
for Borel sets E C •1. As )~i(si) <= D for all i, mc~(5 ~ < oo. 

Call a graph-theoretic tree with exactly k leaves labeled 1 . . . . .  k, such that 

all internal nodes have exactly two children a proper k-tree. I f  5~k = ~Jk 1 sj 
then assumption a. implies that 5ek is a proper k-tree. Let #k be Lebesgue 
measure on J k ,  normalized so that #k(5~k)=  1. We assume 
(f) #k converges weakly to # as k --+ oc. 

Explicit constructions of  pairs (5 p, #) satisfying assumptions (a) - (f) appear 
in [2,3]. In particular, i f  Bt is a Brownian excursion started at 0 and conditioned 
to end at time 1, then a function f can be defined mapping Bt into a pair (5 f, #)  
which satisfy (a) - (f) with Probability 1. See [3] for a heuristic explanation 
and [4, Sect. 2.6] for a detailed proof. Alternatively, some well-known fractal 
subsets of  Euclidean space are quite similar to the continuum trees. 
Let {Xt} be an 5~ stochastic process. We make the following: 

Definition 1 {Xt} is an (5P,#)-Brownian motion i f  

(i) {Xt} has continuous sample paths. 
(ii) {Xt} is strong Markov. 
(iii) {Xt} is symmetric with respect to the invariant measure #. 
(iv) For each path Ia, b I C 5 P and each x C ]a, b I, 

d(x, b) 
P~[Ta < T b ] -  d(a,b~) ' (1) 

where Tz = inf{t : Xt = z} , z  C 50. 
(v)  For x, y E 50, let mx,y be the mean occupation measure for  Xt started at 

x and run until it first hits y. Then, 

mx,y(dz) = 2d(e(z; Ix, Yl), y )# (dz )  , (2) 

where (c(z; Ix, yl) is the point where Iy, x~ and Iy, zl diverge. 
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2 Constructing the Diriehlet space 

Our objective is to construct an (5P#)-Brownian motion explicitly. To do this, 
we will define a Dirichlet form on the Hilbert space L2(SP, m~).  Let Y C ~  
be the set of functions f : f l  ___, R such that f depends on a finite set of 
coordinates xl , . . .xn and is a C ~  function when restricted to these coordinates. 
Since J is compact and moo(5 ~) < ~ , @ C ~  C L2(SP, moo). We define forms 

 f~ f~ ( f 'g )  = 2~ ~k~ Ok/ i = 1,2 . . . . .  

~ ( f ,  g) = ~ , ( f ,  g) ,  
i 

~ ( ~ )  = ~ ( E ~ )  = ~ c g  ~ 

~?f/Oki is a partial derivative in the direction ki, in the sense of Gfiteau; see 
[1, p. 409, expression (3.3)]. So that the sign of d" will be well-defined, we 
establish a convention that integrals over si will always be directed outwards 
from the root. For convenience, we will write ~ ( ~ )  = @~ 

Theorem 2 d'oo is a symmetric, regular, local, Markovian, closable form. 

Proof o~'~ is a sum of the forms L'i. A standard calculation shows that ~ is 
closable if the forms o~i are; see Robinson [14], 1.2.9. Note that o~i(f, 9) is a 
"classical Dirichlet form" in the sense of Albeverio and R6ckner [1]; Theorem 
3 of that paper gives necessary and sufficient conditions for the closability of  
such a form. Examination of d'i shows that it satisfies these conditions trivially. 
Thus, each ~'~i is closable, hence so is do~. 
Routine arguments show that each doi is symmetric, Markovian and local. (See, 
for example, [9, Sect. 2.1]) It is easy to see that these properties will pass 
through the sum to the form do~. 
To see that o ~  is regular, observe that Y C ~  is an algebra of  functions, 
whose restrictions to 5 P separate points and vanish nowhere. Thus, ~ ( o ~ )  
is uniformly dense in C(5 p) by the Stone-Weierstrass theorem and do~ is 
regular. [] 

Corollary 3 (i) Let C be the closure of C~. Then ~ is a Dirichlet form. 
(ii) There exists an moo-symmetric 5P-valued strong Markov process X ~ with 
continuous sample paths and Dirichlet form 0. 

Proof do is a Dirichlet form, by definition. Since J is compact, Statement (ii) 
follows from Fukushima [9. Theorems 6.21 and 6.22]. D 

Let ~ ( ~ )  be the domain of d o . For any ~ > 0 and f , g ~ ( d o )  let 
do~(f,g) = g ( f , g ) +  c~ f f g d m ~ .  It is well-known that Ca defines an inner 
product which makes ~(d ' )  a Hilbert space. 

Our Brownian motion will ultimately be produced by a time-change of X ~ 
To show that a suitable time change is possible, we prove 

Lemma 4 (i) Let {fn} C ~ ,  and suppose El(fn - f , f ,  - f )  --* O. Then 
{f,,} is uniformly equicontinuous and f is uniformly continuous. 
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(ii) There exists a constant C < ec such that sup~Es~ f ( x )  < C ~  
for all f in 9(E) .  
(iii) All non-empty subsets of  5 a have positive capacity. 

Proof Let p,q E 5P~; without loss of generality, suppose p,q,C 5an. Let 
7 = 7pq be the unique path in 5Pn connecting p and q. If f E 9 ( C ~ ) ,  then 
by elementary calculus f ( p ) -  f ( q ) =  ~ifs,(c3f/c3ki)~ri(7)l~(t)2i(dt), where 
ai(7 ) is 1 if 7 is directed away from the root on si, - 1  if ? is directed towards 
the root, and 0 if 7 does not cross si. Then, 

(~i fsi ((~j., 2 )1/2 ( )1/2 
I f (P)  - f (q)[  < \Ok i )  d2i ~fl~ d)~i 

sis i 
= x / ~ E ( f , f )  1/2 �9 d(p ,q)  1/2. 

Suppose g~(f~ - f ,  fn  - f )  --+ O. Then f ,  ~ f in L2(m~). Furthermore, 
since E(fn,  f~)  is bounded {fn} is uniformly equicontinuous. As 5 ~ is 
compact, we can choose a subsequence f~k such that f~k converges uni- 

formly to some limit jT. But then f = f ( m o ~ -  a.s.). So, we may take f 
to be uniformly continuous. Observe that passage to the limit gives If(x)- 
f ( y ) [  < x /2~ ( f , f ) l / 2d (x , y )  1/2 for all f C 9 .  An elementary inequality gives 
�89 2 < I f (x)  - f (y)[2  + f ( y )2  for f E 9 ,x ,  y E 5 P. Substituting the bound 
on If(x)  - f ( y ) [  and integrating both sides over 5 P with respect to y gives 

f ( x )  . m ~ ( J )  <= 2 e ( f  , f ) .  D m ~ ( J )  + f f2(y)mo~(dy) , 

which gives (ii). 
To prove (iii), observe that (ii) implies that all point masses {fix} are of 

finite energy integral. Measures of finite energy integral charge no polar sets, so 
all singletons have positive capacity. As capacities are increasing set functions, 
it follows that all non-empty sets have positive capacity. [] 

From this we get 

Corollary 5 Let v be a finite measure on ~ (  6P). Then, 

(i) There exists an additive functional A ~ satisfying the relation 

1 t 
l im-  f h (x)U f f(XDdA~mo~(dx) = f h(x) f (x)v(dx)  , 
t--~O ts~ 0 5 e 

for any y-excessive function h and nonnegative measurable f .  
(ii) Let zt = inf{s > 0 : A~ > t}. Then Xt ~ = X~ is a v-symmetric Hunt 

process. 
(iii) The Dirichlet Jbrm of  X v is oct(f , f )  = g(Hr where H~ is the 

first hitting operator for the support M~ of  v, and 7 denotes restriction 
to My. I f  f E 9 ,  then f E Dom(E~). 

Proof Statement (i) is Theorem 5.1.3 in [9]. Statement (ii) follows from Sil- 
verstein [16, Lemma 5.1]. To see (iii), first note that since all non-empty sets 
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have positive capacity for d ~ the support o f  v and the fine support o f A  ~ are the 
same. I f  f E 9 ,  then f is continuous, hence bounded on 50. Thus, f E L2(v), 
so (iii) follows from, Silverstein [16, Theorem 8.4.]. [] 

In particular, 

Corollary 6 For every z 6 5 f there exists a local time L~ for X ~ at z. 

Besides local times, we are interested in two other additive functionals, together 
with their associated time-changes. First, suppose A - - A  p, with corresponding 
time-change z. Then Xt = X~ is a g-symmetric Hunt process with continu- 
ous sample paths. We restate this as 

Corollary 7 {Xl} satisfies conditions' (i), (ii), and (iii) of Definition 1. 

Now let x ,y  C 5P, x@y,  and let c = d(x,y).  Define 7 : [0, 1] -~ ~x,y~ by 
taking 7(t) to be the unique point z on Ix, yl such that d(x,z)/c = t. Then, 
evidently, 7 is continuous. Let 2 = 2ix, y I be the image of  Lebesgue measure on 

[0,1] under 7, let A 2 be the additive functional corresponding to 2 and let z~ be 
the time change induced by A ;~. X/" = X~ ~) is then a X-symmetric Markov 
process. 
I f  f ~ ~ ( E ) ,  then f E L2(2). Thus H;~f E L2(2), and it is not difficult to show 
that 

do~(f, f)  O(H;oTf, H;.Tf) ~ f ------( ~ 2  = = d2i. 
i s iCllx ,y  ] \ ul~i / 

Proposit ion 8 Let ( ~ , ~ )  denote the Dirichlet space associated with X ~. 
Then (Y;~,do~) is isometric to the Dirichlet space for Brownian motion on 
[0,1] reflecting at the endpoints. 

Proof I f  x, y c 50oo then it is easy to see that there exist points 0 = v0 < 
vl < . - .  < vk = 1 such that 7 restricted to (vj, vj+l) is a C ~ mapping. For 
arbitrary points x ,y  E 5 P, by letting x~,yk be the closest points in J k  to 
x ,y  respectively, we can find an increasing sequence {vn}n~__~ such that 
limn~_oo vn = 0, l i m ~ _ ~  v~ = 1, and 7 is a C ~ mapping when restricted to 
(Vn, Vn+l). On [0,1], define 

! dSdg 
do*(f'9) = 2 ;  dt dt dt, f , g  e , (3) 

~*  = { f c  C[0, 1] : f  restricted to (vn, vn+l) is CC~,n . . . .  , - 1 , 0 ,  1 . . . .  ; 

f is constant on [0, V-n] and [v,, 1] for some n} ,  

where the derivatives in (3) are taken in the sense of  Schwarz distributions. 
I f  f ~ 9 ~  C~ Y;;~, then we can define f on [0,1] by f ( t ) =  f (7 ( t ) ) .  Then, 

f E D*. Clearly, 
, 

f fi2(t dt, do (f,S  : 5f  o \ dt / dr. 
{x, yl o 

Thus, 7 induces an isometry between (~z-;., do~0 and the closure of  (9* ,  do~). 
To complete the proof  of  the proposition, we must show do* is a closable form 
generating reflecting Brownian motion on [0,1]. 
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Let f E C~176 1]. Let e > 

f(Y)l < ~/2 for I x - y [  < 3. 

n --+ oc. Choose n sufficiently large that 

~.~ d r -  dt < 5/2, 
2~_~ \ d r }  

Define 

f* ( t )  = { 

Then f *  E ~* and 

C~(f  - f * , f  - f * )  = ~  

0, and choose 3 sufficiently small that If(x)  - 

Note that f~" (d f /d t )Zd t -+  f2(df /dt )Zdt  as 

V-n, l - vn < a . 

f ( t ) ,  v_~ < t < v , ,  
f (v -n) ,  O<_t<_v_n,  
f(vn), vn < t <_ 1. 

+ Z dt 

+ f ( f ( t )  - f(v_~))2dt + f ( f ( t )  - f(v~))2dt 
0 Vn 

< ~/2 + &: /4  
< ~ .  

Thus, f E ~* for all f E C~[0,1],  and ~ * ( f , f )  is given by the usual 
Dirichlet integral. But this is the Dirichlet form for reflecting Bownnian motion 
on [0,1]. (See, for example, [9], Theorem 2.3.1, and the discussion following 
Theorem 2.3.2.) [] 

As a consequence, if T/ is the transition semigroup associated with X 2 and 
f is a continuous, real-valued function on 5 P then T/'f(z) = Ttf(7-1z), where 
Tt is the transition semigroup for reflecting Brownian motion on [0,1]. Thus, 
7-1(X~ is a realization of reflecting Brownian motion on [0,1]. In parti- 
cular, it follows that the hitting distribution and the occupation density of X )~ 
for a C Iz, w t C Ix, Yl are given by 

pa[Tz < T~] - d(a,w) ~ 2d(a'x)d(z,'Y)2(dz), Z E Ia, y~ 
d(z,w) ma(dz) = [ atx,y) ' 2d(z@d(,<Y)2(dz), Z E Ia, xl ,  

a~x,y) 

by directly applying the usual formulas for Brownian motion. 

Corollary 9 {Xt} satisfies (iv) of  Definition 1. 

Proof The distribution of hitting places is unaffected by changes in time scale, 
so iv. follows from Proposition 8. [] 

3 Analysis of the mean occupation density 

Let Yn = ([;xl . . . .  ,X2n--1 ) be a finite proper n-tree, in the sense of Aldous [4]. 
Thus, Z is a rooted tree, with n leaves in the usual sense of graph theory. Let 
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0 denote the root of  ?, assume the degree of  the root 0 is 1, and assume that 
the degree of  v is 3 if  v is an internal vertex of  ?. Let el . . . .  ,e2n-/ denote the 
edges of  i and let x 9 be the length of  ej. For vertices vl, v2 in {, let Iv1, v2~ be 
the path from vl to v2, and define the distance 

4(Vl,V2)= ~ xj. 
ejEtVl,V2] 

It will be convenient to represent Y'7 as a connected set o f  line segments in R n. 
Suppose vl,. . . ,v'7 are the leaves of  L Let & = ( t , 0 , . . . , 0 ) , 0  < t <_ d'7(O, vl). 
Let Yl be the branch point of  I0,vl~ and I0, v21. Let r~ = d'7(0, y l ) .  Then, let 
sl = (rl,t,O . . . . .  0) ,0 < t <_ dn(Yl,V2). Note that any vertex w C f0,Vll tA I0,v21 
corresponds to a point (wl,w2, 0 , . . . ,  0), where 0 < w~ < d'7(0, Va), 0 < w2 < 
d'7(yl,v2). Continuing recursively, let yj be the branch point between I0,vj+l~ 

and [..J{IO, vil, and let sj+l = (q  . . . .  ,rj, t,O . . . .  ,0 ) ,0  <- t <_ d'7(yj, vj+l). Hence- 
forward, we will always identify ~ and its set representation in R'7. 

Let m'7 be linear Lebesgue measure on 3--'7 normalized so that m'7(r = l. 
On L2(.Y-;~,m'7), define 

g'7 1 "7 ~ f  ~g 
�9 ~iidm'7 , 

~(oz~) = { f  C C(J-n)}  " f  =flJ~,f ~ Cg~ 

where @fi?ki is the usual partial derivative of  f in the direction ki. As in Sect�9 
2, Co~ is a symmetric, regular, local Markovian, closable form on L2(Jn,m'7) .  

- , 7  

Let d ~ = o~0 and let @'7 = ~(d~'7). Then o ~n is a Dirichlet form, and there is 
a m'7-symmetric strong Markov process Y[ with continuous sample paths and 
Dirichlet form o ~ ' .  

Let f C ~ ( d ~ )  and suppose x E ~--,, is not a vertex. Then some neighbor- 
hood of  x contains no vertices, and we can compute a derivative f ' ( x )  by 
difference quotients; paths outward from the root will have a positive direc- 

1 [" (ft]2dm'7 The same formula will hold for general tion. Then, g ( f , f )  = ~ a~-~,- , �9 
f ~ ~ .  if  we take derivatives in the sense of  Schwarz distributions. 

L e m m a  10 Let  x, y C J-'7 and let Ty = inf{t : Yt = y}. For any bounded 
Borel-measurable h, 

re 
E~ fh(Y~)dt  = f h(z ) .  2d(c(z; Ix, Yl), y)m'7(dz).  (4) 

0 .~k 

Proof. Without loss of  generality, let h be a positive continuous function and 
suppose y = 0. Write T = To, and let y~,0 be y~ killed on hitting 0. From 
Dynkin 's  formula and Theorem 4.4.l of  Fukushima [9] we deduce that the 
Dirichlet form o ~~ corresponding to yO has domain ~ ( O  ~ = {u E ~'7 : u(0) = 
0}, with g~  = C'7(u,u) for u E ~ ( E ~  

Let g(x) = f y  h(z ) .  2d(c(z; Ix, 01) , O)m'7(dz). l f x  E J -  is not a vertex of  J ,  
then we can differentiate g along J -  by the standard argument for differentiating 
integrals on RI;  it is not hard to see that for such x,g '(x)  = f~ -2 .  h(z)l[x C 
Iz, Ol]m~(dz ). An argument similar to the proof  of  Proposition 8 shows that 
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Let u be the restriction to 3-- of  a C ~ ( R  n) function with u(0) = 0. Then 

g~ = l f u'(x) . f 2 . h(z)l[x c Iz, Ol]m(dz)m(dx ) 

= f h ( z ) ,  u(z)m(dz) .  
y- 

As u is arbitrary, this shows that 2d(c(z; Ix, 0~),0) is the Green's  function for 

the infinitesimal generator of  y~,0, by the Corollary to Theorem 1.3.1 in [9]. 
Formula (3) follows as a consequence. [] 

Corollary 11 Let . f  ~ be a proper n-tree, let x, y E Y--n, and Yt be a diffusion 
process on ~--n. Suppose Yt satisfies (1) of Definition 1, and suppose the 
speed measure v of  Yt is equivalent to ran. I f  Ty : inf{t : Yt = Y}, then for 
any Borel measurable f ,  

ry 
EX f f (Y t )d t  = f f ( z ) .  2d(c(z; Ix, Yl), y ) v (dy ) .  

0 J n  

Proof Since Yt satisfies (1) of  Defintion 1, Yt is a time change of  Brownian 
motion on Y-n- Let p be the density of  v with respect to m. Then the time 
change  of  Brownian motion giving Yt corresponds to the additive functional 
fo p(Y~)ds. The corollary then follows from Lemma 10, after a change of  
variables in the integral. [] 

We next extend (2) to the process X ~ defined in Corollary 3. 

Lemma 12 Let x, y C 5Poo, and let Ty = inf{t �9 J(t o = y}. Then for any Borel 
measurable f ,  

Ty 
E ~ f f (X ,~  = f f (~ ) .  2U(c(~; Ix, Yl), y ) m ~ ( d y ) .  

0 5Poo 

Remark. Since m ~ ( S P \ ~ )  = 0, we can take the integral on the right-hand 
side over 5 P. 

oc> k Proof Recall that we can write 5Poo = [-Jn=l sn, where 5Pk = Un=l Sn is a 
proper k-tree. Without loss of  generality, suppose x E sl. 

For k = l , 2 , . . . ,  let Ak=Jols~(X~~ = i n f { s ' A  k > t } .  The ~- 

potential for At k is E x ~0 ~ e -~t dA~t = E x f ~  e - ~ t l s ~ ( X  ~  = R~ls%(x). Since 

C ~ ( R ~ I ~ , u )  = .[s~ k udmoo, we see that A k and z k are, respectively, the addi- 

tive functional and the time-change corresponding to the measure moo(- A Yk).  
1 k By Corollary 5,X~ has Dirichlet form g ~ 1  fs,@f/Oki)(@/Oki) dx and is 

moo(- N Jk ) - symmet r i c .  Thus, X~ is a time-changed Brownian motion on 
5Pk, with speed measure moo(o • 5Pk). 

By Corollary 11, if  f is a positive measurable function on 5~oo, 

ry ry 
E ~ f f ( X  ~ )l,~k (X~)ds = E ~ f f (X ( z~  ))ds 

o o 

= f f(z)2d(c(z;Ix,  y l ) ,y) ls~(z)mo~(dz) .  (5) 
J e c  
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Let k ---+ oc and apply the monotone convergence theorem to both sides of  (5) 
to prove the lemma. [] 

Remark. We can also state Corollary 12 in this fashion: The 0-potential density 
of  X 9 killed on hitting y is 2d(c(z; Ix, Yl), Y). 

From Lemma 12 we have the following 

Corollary 13 For x, y E ~,EXTe + E Y T x  = 2.d(x, y ) .  moo(5~). 

Proof Recall that moo(5 p) < oc. Let x ,y  ~ 5 f~  and apply the preceding 
lemma twice with f _= 1 to get 

U T y  = EX f l . ds = f l . 2d(c(z;tx, yl),y)moo(dz ) , 
0 ,~ 

E-VT~ = f l �9 2d(c(z; Ix, y~),x)moo(dz). 

Thus, 
Exry + EUTx = f2d(x,  y ) m ~ ( d z )  = 2d(x, y ) m ~ ( Y o ) .  

For x E 5P\~9~ y E 5 ~ ,  let Xk be the nearest point to x in 5rk. Then xk E 
I x, Yl for all k and Xk --+ x as k ~ oc. Let Tk = Txk. By sample path continuity, 
Tk l" Tx, (PY - a.s.). By  the strong Markov property, 

ry ry 
U f l s~(X~ = E xk f l s~(X~ = f k~(z)2d(c(z ;  ~x, y l ) , x lm~(dz)  . 

o o 5 ~ 

Letting k --~ cxD gives 

ry 
U f ls~k(X~ -+ U f l s ~ ( X ~  = U f l . ds ,  

o 0 o 

f l jk(z)2d(c(z;  Ix, yl),x)moo(dz) ~ f 2d(c(z; Ix, yl),x)moo(dz) . 
s* 50 

On the other hand, 

EYTx = lim EYTk = lira f 2d(c(z;Ixk, yl),xk)moo(dz) 
k ~ cx) k--+ c~ 5~ 

= f l .  2d(c(z; Ix, yl),x)m~o(dz). 
J 

Thus, E~Ty +EYT~ = 2d(x,y)moo(Jo),  as before. A similar argument gives 
EXTy + EYTx = 2d(x, y)mo~(Seo) for arbitrary y in 5 P. D 

Remark. If  we think of  5 ~ as an object of  finite resistivity, then the resistance 
from x to y is a constant multiple of  d(x, y). Thus, Corollary 13 can be restated 
as saying that EXTy + EYT x equals the resistance between x and y. This result is 
well-known for reversible Markov chians on finite graphs, from the connection 
between random walks and electrical networks. 
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This estimate on the expected hitting times is extremely strong. In particular, 
it implies that the local times of X ~ are jointly continuous. We state this result 
as a separate theorem. 

Theorem 14 The local times {L~} of X ~ may be chosen to jointly continuous 
in (z, t). 

Proof For c~ > 0, let U ~ be the resolvent operator for Xt ~ For x E 5 p, let 
U~ = U~IA(x) be the corresponding e-potential measure. By Lemma 3, 
all non-empty subsets of 5 e have positive capacity for d ~ By Theorem 4.31 in 
Fukushima [9], this implies that X ~ has no non-empty exceptional sets. Thus, 
by Theorem 4.2.2 of Fukushima [9], U~ has a density uS(x, y) with respect 
t o  m o o .  

Let ul(x,y) be the 1-potential density for Xt ~ Let {G(z),z E 5 P} be a 
Gaussian process with covariance fimction u l, and define r/(x, y)  = (E(G(x) - 
G(y))2) 1/2. By Theorem 1 of Marcus and Rosen [13], to show that L~ is jointly 
continuous almost sm'ely it suffices to show that G(z) has continuous sample 
paths almost surely. 
For x,y E 5 p, let O(x,y) =EXe ry and h(x,y) = (1 - O(x,y)O(y,x)) 1/2. An 
elementary estimate gives O(x,y) > 1 - U ( T y  A 1), so 

h2(x,y) <= EXTy + EXTy = 2m~(SP)d(x, y ) .  

By Marcus and Rosen [13, Lemma 9.4], there exist constants 0 < Co < C1 
< oc such that Coq(x,y) <= h(x,y) <= Cltl(x,y ). Thus, for x ,y  E 5 ~ and2 E R, 

Eexp(2(G(x)-G(y)))  < exp ( ~ - - -  m~(~), a(x, y)'~ 
C 2 ] 

Let N(Se,~) be the minimum number of balls of radius e in the met- 
ric d(-, .) required to cover 5 P. Since the box-counting dimension of 5 ~ is 
e < ec,N(5~,e) < C3(1/e) ~ for a suitably chosen constant C3. Thus 

1 1 
f ( log(N(Y,  uZ))l/Zdu < (log C3) 1/2 + v/~f(log(1/u))l/2du < e~. 
0 0 

By Marcus and Pisier [12, Theorem 3.1], this suffices to show that G has 
continuous sample paths. (Note that the metric p in the statement of  Theorem 
3,1 is Cx/-d.) This proves the theorena. [] 

We have already remarked that for any finite measure v on 5 P we can define 
a v-symmetric Hunt process with continuous sample paths as a time-change of 
X ~ This time change corresponds to an additive functional A v with Revuz 
measure v. As the local times {L~} are jointly continuous we can express A ~ 
explicitly as 

A~ = fL~v(dz) ,  
5~ 

by applying the representation theorem for additive functionals. (See, for ex- 
ample, Sharpe [15, Exercise 75.2]). 
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k Recall that ;Tk = Un=l sn and Pk is normalized Lebesgue measure on Yk- 

By assumption (f) ,Pk ~ kt. I f  we let A~ = f~L~p/~(dz) and At = fs~Utp(dz), 
then A~(co)--* At(co) for each t and each sample path co such that {Lf} is 
jointly continuous. 

We now state the main result of  this section. 

Theorem 15 {Xt} satisfies formula (2). 

Proof It suffices to show (2) for positive continuous functions f .  Furthermore, 
without loss of  generality we can take y = 0; henceforth, let T = To. For k = 
1,2 . . . . .  take A~ and At as defined above and let zt k and zt be the corresponding 
time-changes. Let Xt k = X~ Then, by Lemma 10, 

E:' f (X f )d s  = f f (z ) .2d(c(z ,  lx, Ol),O)pk(dz ) 
Y k  

= f f ( z ) .  2d(c(z, Ix, OIL O)#k(dz). (6) 
s~ 

As k ~ o% the right-hand side of  (6) converges to fs~ f(z))2d(c(z,),Ol),O ) 
x/~(dz). 
Now consider the left-hand side of  (6). For any co such that X g ( o  ) is conti- 
nuous in t and L~(co) is jointly continuous in (z, t), we have 

T T T 

f f ( X  f )ds  = f f(x~ ))ds = f f(Xf)dAks . 
o o o 

As k ~ oc, we have 

T T T 

f f(X ~ ---* f f(X ~ = f f(X,)ds. 
o o o 

It remains to show that {fo r f (X~ converges in L 1. To do this, first note 
that f is bounded on -Y, so 

T T 

fo f (X f )d s  < flf(Xs~ <= ]If liAr" 

We shall show that EX(A~) 2 is bounded. It will then follow that Ex(for f(X~ ~ 
• dAks) 2 is bounded and {for f(Xs~ is uniformly integrable. 
First, note that 

2 

E (A t L~t~(dz) <= EXf(L~)2ktk(dz ) 
�9 f f  

Local times are defined within a multiplicative constant, so we can always 
assume that E X f o  e talLY =ul(x,y) ,  with u 1 as defined in the proof  of  

Theorem 14. With this normalization, E ~: fo r dLYt ~ EXL~. = 2d(c(y, Ix, 01), 0), 
by the Remark following the proof  of  Corollary 12. 
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Argu ing  as in the p roo f  o f  expression (4.8) in [13], we  have 

TT T o T 
EX(L~) 2 = 2EX f f dLYsdLYt = 2EX f E x~ f d(Or o L sy)dLry = 2EXL~ �9 EYL~ , 

or  o o 

where  0 is the usual shift operator  for Markov  processes.  The  second equal i ty  
fol lows by  the ordinary Markov  property,  and the fact that Lr y is supported by 
{s �9 X~ = y}  gives  the third equality. 

Thus EX(A~) 2 < 8D 2, and Theorem 15 follows. [] 
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