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Summary. We investigate classes of conditioned super-Brownian motions, name- 
ly H-transforms P~ with non-negative finitely-based space-time harmonic func- 
tions H(t, #). We prove that P~ is the unique solution of a martingale problem 
with interaction and is a weak limit of a sequence of rescaled interacting branch- 
ing Brownian motions. We identify the limit behaviour of H-transforms with 
functions H(t, #)=h(t, #(1)) depending only on the total mass #(1). Using the 
Palm measures of the super-Brownian motion we describe for an additive space- 
time harmonic function H(t, #)=Sh(t, x) #(dx) the H-transform P/~ as a condi- 
tioned super-Brownian motion in which an immortal particle moves like an 
h-transform of Brownian motion. 

Mathematics Subject Classification (1991): 60G57, 60J50, 60K35, 60J80 

1 Introduction 

Measure-valued processes, in particular superprocesses, have been extensively 
studied in recent years. For a survey of the relevant facts and literature we 
refer to the lecture notes of D.A. Dawson FD]. In this paper we concentrate 
on a class of conditioned super-Brownian motions defined as H-transforms in 
the sense of J.L. Doob for certain space-time harmonic functions H of the super- 
Brownian motion. If the function H is not multiplicative this conditioning leads 
us to processes which do not belong to the class of measure-valued branching 
processes defined in [W], because the mean of the branching law of an H- 
transform depends on the whole population. As a special case of a Girsanov 
transformation, H-transforms are superprocesses with interaction considered in 
[D, 10.1.1, 7.2.2]. 
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1. Our basic datum is the distribution P of the critical super-Brownian motion 
with intensity 2~ starting from a finite measure #o on IRa, i.e., the superprocess 
connected with the equation 

0 
(1.1) ~[ u= �89 Au-c~u 2, 

cf. (1.15) below. 
We consider P as a probability measure on the space DM of cadlag paths 

in the space M of finite measures over IR a equiped with the weak topology. 
Let X = (Xt)t>_ 0 denote the coordinate process in D~t, (~)t~ o the right-continuous 
filtration generated by X, and 2 = V if*" 

t > O  

We call a non-negative function H on [0, oo)x M space-time harmonic for 
P iff the process 

(t-l (t, x,)t~=o 

is a martingale under P with H(0 ,#o)=  1. According to [Me] a space-time 
harmonic function H allows us to construct the H-transform pH as a probability 
measure on Dza such that for every t >= 0 

(1.2) dP tt [~ = H(t, X~) dP I~. 

The investigation of some classes of H-transforms is the aim of our paper. 

2. In order to state the first theorem we introduce some notation 

If f is a measurable function on IRa and # ~ M  we define #( f ) :=Sf(x)#(dx)  
and e I (#):= exp ( -  #(f)).  For  a time-dependent function f (t,-) we consequently 
write 

#(f(t)) = ~ f( t ,  x) #(dx). 
gta 

The vector (#(fl(t)), ..., #(fro(t))) is denoted by fi(f(t)). We define the directional 
derivative F' of a function F on M by 

(1.3) Fx' (#):-- lira F (/~ + e bx) -- F (#) 
~0 

provided the limit exists for every x~iR a, #~M. 
All space-time harmonic functions in this paper belong to the class ~ 

of finitely based functions F defined as follows: 

(1.4) 

where 

F(t, #)= qb(t, #( f l  (t)) . . . .  , #(f~(t))) 

qbeC1,2([-0, oo) xiRm), f / e e l , z ( [0 ,  c~)xiRa), 

We are now able to state our first main result: 

l <<_i<_m, mEN. 
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Theorem A Let the function H e ~ N  be space-time harmonic for the super- 
Brownian motion. The measure pH is the unique measure on DM such that for 
every positive f e C 2 the process M H [er defined by 

(1.5) M H lee] := ef (XO - ef (Xo) 

( 2  H'(s'Xs) "f) ef(Xs)ds -- i Xs c~f 2 -  Af--2c~ H(s, Xs) 
0 

is a local martingale and such that pH [Xo = #o]. 

The main difficulty in the proof is caused by the zeros of H. We resolve this 
problem by localization with the stopping times 

(1.6) T~ :=inf {t > O, H (t, Xt)r n]}. 

3. We interpret the coefficient 

(1.7) H;~ (s, #) 
H (s, #) 

as the interacting branching of a "masspoint"  at place x, time s induced by 
the configuration #. This interpretation is justified by the approximation result. 
Theorem B, below. 

4. The only H-transform of super-Brownian motion already considered in the 
literature is the process conditioned on non-extinction [EP1, RR1].  As S.N. 
Evans and E. Perkins remarked this is the H-transform with H(s, #)=#(1).  This 
space-time harmonic function belongs to two subclasses of @N. It is an additive 
function and it is a function to the total mass #(1), see 5. below. This process 
is described in [RR1]  as a process with interacting immigration as a generaliza- 
tion of the processes considered in [KW]. In our general setting, we give an 
intrinsic characterization in terms of interacting branching. 

5. The following examples will be analysed: 

(i) Additive H-transforms, where H(s, p)= #(h(s)), cf. 7. below and Sect. 3. 
(ii) H-transforms depending only on the total mass H(s, #)=  t/(s, g(1)) and prod- 
ucts of those functions with additive functions, i.e., H(s, #)=#(h(s)) qo(S, #(1)), 
cf. Sect. 2.2.2 (iii), (iv), and Sect. 4. 
(iii) A multiplicative space-time harmonic function H (s, # )=  e-u(h(s)) yields a non- 
critical super-Brownian motion as its H-transform, (cf. Sect. 2.2.2 (v) and e.g. 
[W, ER, Dy2]). 

6. Our results should be viewed as a first step towards the probabilistic Martin 
boundary of super-Brownian motion. In [EP2] it is proved, that if the transition 
function ~(t, x, dy) of a Markov process satisfies 

(1.8) ~ ~(t, x,') #1(dx) ~ ~ ( t  + h, x,') #2 (dx) 
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then the transition function P(t ,  v, dl~) of the superprocess over this Markov 
process satisfies 

(1.9) P ( t , # ~ , ' ) ~ P ( t + h , # 2 , ' ) .  

The Brownian motion on IRa has property (1.8). Therefore, according to the 
results of E.B Dynkin in [Dyl, Sect. 10] there exists a Martin kernel of the 
super-Brownian motion w.r.t, the reference measure P(t, #o,'). Additionally all 
extremal space-time harmonic functions H e arise as limits of the Martin kernel. 
Every H-transform with H =  ~ H e m ~ ( d e )  can be viewed as the super-Brownian 

motion conditioned to have the exit distribution m ~ at the Martin boundary. 
We will give a detailed description of the conditioning for additive H-trans- 

forms (cf. Theorem 3.10 in Sect. 3.4) and for H-transforms depending on the 
total mass (cf. Sect. 2.2.2 (iii)). 

7. Consider now an additive H- t rans form P~. The n-th approximation P" of 
the super-Brownian motion is a rescaled critical branching Brownian motion. 
The critical branching implies that the function H is also space-time harmonic 
for every P" (cf. Sect. 3.1). We prove that the sequence {pn.U},~ of the corre- 
sponding H-transforms converges weakly to the H-transform of the super- 
Brownian motion (Theorem 3.2, Sect. 3.2). 

Subsequently we compute the Laplace functional of the transition function 
(Theorem 3.6, Sect. 3.3). This formula connects additive H-transforms with the 
Palm distribution of the super-Brownian motion and gives insight into the condi- 
tioning implicit in the H-transform (Theorem 3.10, Sect. 3.4). The additive H- 
transform can be viewed as the super-Brownian motion conditioned on the 
event, that there is an "immortal particle" it in the support of the super-Brow- 
nian motion such that it converges in the Martin topology as the h-transform 
of the Brownian motion. In addition, the Laplace functional enables us to prove 
a representation of an additive H-transform as a sum of a superprocess and 
an independent random measure generated by the immortal particle. This gener- 
alizes the representation of superprocesses conditioned on non-extinction in 
[E]. 

8. An H-transform is the limit of a sequence of interacting branching Brownian 
motions. 

For fixed n ~ N ,  let X l'"'u denote the interacting (binary) branching Brownian 
motion with intensities 

(1.10) q(o ") = (s, x, t~) = fl(n)(s, x, #) p~o ") (s, x,  #) = n o~. 

q~")(s, x ,  ~)= fl~"~(s, x, ~) p~~ x,  ~) = h a .  
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and with mass 1 of each particle. The condition 

(1.11) \ n/ I_>0 
. . . .  pv(u) \ n H ( s , ~ ) ] - -  

for all point measures p ensures that q!"), i = 0, 2, are intensities. The construction 
of the processes X l""'n is carried out in Sect. 4.1. It generalizes results of [MR, 
RR2]  to unbounded and time-inhomogeneous intensities. Define the process 
X "'H on DM by x " n , = n  - ~ X a'"'H and let p,.n be its distribution on O M. 

Theorem B Let H be a space-time harmonic function of the super-Brownian 
motion satisfying (1.11) and 

I (s, p) 
(1.12) 0 ~ / t [ ~ - ] = < # ( 1 )  K 1 + K o <  oo forall # ~ M  

\ nts ,  Y) l 

with Ko, KIG[0 ,  0(3). Then the sequence of the rescaled interacting branching 
Brownian motions {P"'H},~N with branching intensities (1.10) converges weakly 
in the space of probability measures over DM towards the H-transform of the 
super-Brownian motion. 

This result justifies the interpretation of the additional drift in the H-transform 
of the super-Brownian motion as the interaction in the branching behaviour. 
By mixing, we can generalize Theorem B slightly. 

Lemma 1.1 Let H(s, #)= S He(S, fl) re(de) be a mixture of space-time harmonic 
E 

functions H e with some finite measure m such that there exist approximating 
particle systems {p..H.}. for every eeE with 

(1.13) p.,ne=~pn~ on D M. 

Then pH is the weak limit of the sequence {p.,H}. with 

(1.14) P"'~:= ~ W,nem(de). 
E 

Proof Use bounded convergence. [] 

Remarks. (i) Additive space-time harmonic functions satisfy the assumption of 
Theorem B, cf. Sect. 4. 

(ii) If there exists KI < oe s.t. 

0 < H;, (s,/~) = H(s,#) _-<K1Vse[0, oo),  x ~ R  d, /x~M 

(bounded interaction in the mean of the branching law), then the convergence 
result is contained in [MR].  

9. Let us recall a definition and some martingale properties of the super- 
Brownian motion 
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Proposit ion 1.2 Let c~ > O. 
a. There is an M-valued strong Markov process with cadlag paths and transition 
function Pal#, dr) whose Laplace functional satisfies 

(1.15) ~ e s (v) Pt (/~, d v) -- exp ( - /~  (Vtf)) 

for every positive function f eC2o. The function Vtf is the unique solution of (1.1) 
with Vo f = f. 

This process is called the super-Brownian motion. 

b. Let X be a cadlag M-valued process with Xo = #o, adapted to a right continuous 
filtration. Then the following properties are equivalent: 

1. For all positive f e C O and T> 0 the process 

is a martingale. 

2. For all positive f e  C~ the process M l-ey] defined by Mt [eI] := 

(1.16) ey (X t ) -  ey(Xo)+ i ey(X,) X ~ ( � 8 9  2) ds 
o 

is a martingale. 

3. For all feC~ the process M( f )  defined by 

M t ( f ) = X t ( f ) - X o ( f )  - i Xs(�89 A f )  ds 
0 

is a continuous local martingale with increasing process 

d (M( f ) ) s  = 2 e X ~ ( f  2) ds. 

4. For every finitely based function F having base functions fi~ C~ the process 
M [ f ]  defined by 

(1.17) M,[FI,=F(t, Xt)--F(O, Xo) 

- - i  X~((2 3+~-s)F') +aX~(F'')+~s ~b(s'x~(f(s)))ds 

is a local martingale. 

The super-Brownian motion is the unique solution of one and hence of all the 
above equivalent "'martingale problems ". 

c. For the super-Brownian motion X starting from a measure with a compact 
support the process defined by (1.17) is a local martingale for every F ~ o ~ .  

Proof a. and  b. are s tandard  (cf. e.g. JR, I, D, MR]) .  



Conditioned super-Brownian motion 551 

Assertion c. follows because the support of the super-Brownian motion is com- 
pact [DIP, Theorem 1.2]. [] 

Remarks. (i) We will need the extension of the martingale problem to unbounded 
base functions in Sect. 2.1 in order to state a necessary condition of space-time 
harmonicity in terms of the operator associated with the martingale problem. 

(ii) All results are given in terms of (super-) Brownian motion. But there are 
of course generalizations to other superprocesses under sufficient regular condi- 
tions. In [-O 2] the result of Theorem A is even extended to H-transforms of 
all measure-valued diffusions defined as in [D, 7.1], including the Fleming-Viot 
process, and to functions H which belong only locally to f iN .  

2 Proof of Theorem A 

Proposition 1.2c yields the operator d in (2.1) below, associated with the mart- 
ingale problem of the super-Brownian motion and thereby a necessary condition 
for space-time harmonicity of functions in f iN .  

2.1 Space-time harmonic functions of the super-Brownian motion 

Let the mapping ~r on ~ N  be defined by 

(2.1) d~(t ,#)i=#((1A+ ~--~)F' +~F")+Jt c~(t,#(f(t)) 

i = 1  

+ ~ ~ 4)(t, fi(f(t))) 4(t, ~(f(t))). ~x~ i , j= l 

If H e o~N is space-time harmonic then a.s. ~r Xt)= 0 for dt a.s. 

2.2 H-transforms 

We describe the H-transform of the super-Brownian motion with a space-time 
harmonic function H~o~N by proving that P~ is uniquely determined as the 
solution of a martingale problem. An H-transform can be considered as a super- 
Brownian motion with interaction. For superprocesses which exhibit an interac- 
tion also in the variance of the branching law the question of uniqueness of 
the solution to the martingale problem is open, cf. [MR]. But because H-trans- 
forms have their interaction only in the mean of the branching law, the unique- 
ness follows by a suitable stopping argument from the Girsanov transformation 
for measure-valued processes proved by D.A. Dawson [D, 7.2.2, 10.1.2]. 
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The interaction of an H-transform induced by state # of the process is mani- 
fest in the non-criticality H'~(t, #) H-l( t , /2)  of the branching law of a "mass- 
point" at x at time t. 

2.2.1 Proof of Theorem A. In the setting of [D, 7.2] the domain of the martingale 
problem of the super-Brownian motion is {F(#) = q~ (#(f))l q5 e CW OR), f e  D (A)}. 
By Proposition 1.2.b.2 and because Cg is a core of (A, D(A)) uniqueness of the 
solution of the martingale problem still holds if the domain is restricted to 
the exponential functions, i.e., (a(x)=e -x and positive f~C~, cf. also JR, Theo- 
rem 1.3]. 

Hence we can apply Theorem 7.2.2 in [D]. We have to write the martingale 
(H(t, Xt))t>:o as an exponential martingale. Up to the stopping time T, defined 
in (1.6) we have the equation 

(2.2) logH(t, Xt)=o ~ H(s, Xs) dH(s,X~)- o H2(s,X~) d(H(s'Xs))" 

By It6's lemma and Proposition 1.2 we obtain 

(2.3) 
t 

H(t, Xt)=Mt[H] = S ~ H'~(s, X~) M(ds, dx), 
0 p,a 

where M(ds, dx) is the martingale measure associated with the super-Brownian 
motion, which is an extension of the martingales M(f) ,  f eC~,  cf. [D, 7.1.3], 
[MR].  By the covariation for martingale measures (or Proposition 1.2 applied 
to H 2 (t, #)) it follows that 

(2.4) d ( H (s, Xs) ) = 2,X~((H' (s, Xs)) 2) ds. 

Hence 

(j; . . . . . .  ( (2.5) H( t ,X , )=exp  ~ , ~ : ,  Mtas, a x ) - ~  Xs 2 c ~ l ~ , , ~ ) )  )ds).  
l'l [S, As) Z 0 

It follows that the martingale problem associated with pU is well-posed up 
to T,, i.e., P~r]o~T, is the unique solution. But it is easy to see (use e.g. [El, 

Theorem 4.16] and that H is the density of P/~), that 

(2.6) pr~ [sup T, = oe] = 1. 

Uniqueness of the stopped martingale problem and (2.6) imply that for every 
solution P* of the (global) martingale problem the random variable sup T, 

n 

is also P* a.s. infinite. The assertion is now proved, because V ~ T , - = ~ -  

=~-oo, cf. [De, T31]. []  

Remarks. (i) By Proposition 1.2.b.3. it is easy to see that pH is even the unique 
measure s.t. (M~, T, [ei])~--> o is only a local martingale for all f ~  Co 2 and n ~ N. 

(ii) In the present case of H-transforms with H ~ - ~ ,  Dawson's Girsanov trans- 
formation can be avoided by using ordinary stochastic calculus, Proposition 1.2 
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and Eq. (2.1). We derive from the Girsanov transformation for real-valued mart- 
ingales that pU is a solution of the martingale problem in Theorem A. Addition- 
ally we get the exponential martingale under every solution P* and from this 
the local characteristics of X(f).  This yields the martingale property of every 
M H [F] defined by 

(2.7) M~[F]'.=F(t,X,)-- F(O, Xo)-- i[~s +(s,X~(f(s))) 
o 

ds. 

(This approch is in the spirit of [ER].) In particular, H-1  (t, Xt) is a martingale 
up to T,. Then proceed by "backward transformation" to prove the assertion 
of Theorem A. 

2.2.2 Examples. We assume H(0, #0)= 1. 

(i) Non-extinction. Let us define for every t > 0  and every A E ~  the measure 
P' by P ' [A] ,= l im P[AIXt+r(1)>O ]. Then it is shown in [EP1, RR1] that 

r ~ o o  

p ,=  pu with the space-time harmonic function H(t, #)= #(1). 

(ii) Additive harmonic functions. Because we consider critical super-Brownian 
motion, a function H(t,#)=#(h(t)) is space-time harmonic iff h is space-time 
harmonic for Brownian motion, which is equivalent to 

~--~ h(t, 1 x)+~Ah(t,x)=O. 

The corresponding H-transform exhibits the non-criticality 

lira # (h (t)) + e h (t, x ) -  # (h (t)). # (h (t)) - 1  = h (t, x) # (h (t))-i  
e,LO 8 

This H-transform is analysed in Sect. 3. 

(iii) Harmonic functions of the total mass. Let e = 1. A function H (t, #)= q(t, #(1)) 
is space-time harmonic iff q is space-time harmonic for Feller's continuous-state 
branching process, which is equivalent to 

0 2 
C~ q(t, x) + 2x- ~ t/(t, x) =0. 

The corresponding H-transform causes the following additional drift in the 
branching behaviour: 

, I -~ ( t ,  # (1 ) )  �9 ~(t ,  #(1)+e)-n(t, ~(1)) 

0 ~l(t,x) =.t~)~l_ ~ 7 x  (t, ~(1)). 
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Hence the total drift is the drift which an//-transform of Feller's continuous-state 

branching process causes, i.e., 2eX~xlOgtl(S,X)[x=u(~). In [-O1] 
, . 3  

the Martin 

boundary of Feller's continuous-state branching process was identified as [0, oo) 
w {O}. The extremal space-time harmonic functions ~/e, e~ [0, oo)~ {0} are: 

//0 (s, x) = 1, 

rl~ (s, x )  = x 

//C(s,x)=~ (cx)k (co c k ~-1 
e -sc, 0 < c < o o .  , 

k ! ( k - 1 ) '  =~ k!(k---1)(J 
k = l  ' k 1 

The Martin boundary theory (ef. [,Dyl, Fol ,  Fo2]) yields the limit behaviour 
of the coordinate process in the Martin topology, i.e., 

P~ iX~2(1 )~e ]=I  if e~(0, oo), 

p~O X t ( 1 ) > 0 f o r a l l t > 0 a n d  t2~ ~ =1, 

and 

p0 [-There is a t > 0 s.t. Xt(1) = 0] = 1, 

and also the interpretation of the H-transform as a conditioned process: 

pUe= lim P[-[X~(1)=a~>0],  e~[,0, oo). 
at ~Z --+ e 

(iv) Harmonic functions of product type. Let e =  1. A function H(t, #)=#(hi(t))  
h2(t,/l(1)) is space-time harmonic iff hi and h2 are space-time harmonic for 
Brownian motion and Feller's continuous-state branching process conditioned 
on non-extinction, respectively. In particular, 

h 2 (t, x) = x - 1/7 (t, x) 

where / / i s  space-time harmonic for Feller's continuous-state branching process 
and of course (cf. [O 1]) 

6 2 
4 2 h2 (t, x) = 0. --~h2(t,x)+ 2x ~ h2(t,x)+ 

Such a function H produces in its H-transform the interaction term 

,, [hl(t,x) ~-~logh2( t ,# (1) ) )  (2.8) 

at position x, time t which depends on the state ~ of the process. 



Conditioned super-Brownian motion 555 

(v) Multiplicative harmonic functions. A function H (t, #)=exp(-#(h(t)) is space- 
time harmonic if h satisfies 

~{ h(t,x)+ 1 Ah(t, x):c~h2(t, x). 

The additional total drift is 2c~(-#(h(t) F')). This H-transform keeps the branch- 
ing property and does not entail any additional interaction. It belongs to the 
class of non-critical superprocesses considered by several authors, cf. e.g. [W] 
or [ER]. 

2.2.3 Martingale problem of the H-transform on DMo. In order to use convenient 
tightness criteria in Sect. 3 and 4 we have to consider the martingale problem 
on a slightly changed state space. Let lRe,=lRdw {o e} denote the one point 
compactification of N d. We extend every f~Co to ~eC(IR d) by y(oe)=0. Let 
M0-'=M(~ d) denote the space of finite measures on N d, cf. [I]. Every element 
/ ~ M  is viewed as an element / ~ M o  by /~ - -p ( ' \ {~} ) .  According to a result 
of Iscoe [Il the super-Brownian motion does not charge the point at infinity. 
In the proof of Theorem A we only use test functions f vanishing at infinity. 
Therefore these arguments are independent of the fact whether we view X as 
a DM or a DMo valued random variable. Hence it is obvious that the only 
probability measure on Duo such that for all positive f ~  C 2 the process 

Mt[eif]'.=e~(X,)-e~(Xo)+ S e~(Xs) Xs z~f+2e H (s, Xs~ ~-c~j~2 ds 
o 

is a local martingale, is the distribution of Jf under P~. In particular, the solution 
P of this martingale problem on DMo satisfies P [DM] = 1. 

3 Additive H-transforms 

First we prove that an additive H-transform of the super-Brownian motion 
is the weak limit of additive H-transforms of the approximating branching Brow- 
nian motion. Therefore we summarize some properties of H-transforms of 
branching Brownian motion. 

3.1 H-transform of the n-th Approximation 

Let the operator s~'" be defined on ~-N by 

d"F(s, #)"=~s q~(s, ~(jT(s))) 

+ ~r AA(s)+ A(s) 
k = l  

1 m (~2 
+ - -  ~ 4)(s, ~(f(s))).~(v f~. vk) 2n k,l=l r 
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The distribution pn on D~ of the rescaled branching Brownian motion is the 
unique probabil i ty measure on D~ such that 

F(t, Xt)--F(O , X o ) -  i dnF(s, Xs) ds 
0 

is a local martingale for every F e f f ~ ,  cf. e.g. [-R]. 

Since a space-time harmonic function H n e f f N  satisfies P" a.s. that 
~r n(s ,Xs)=0 ds a.s., and since ~r exhibits for G(/~)=~b(fi(~)), 
F(#) = d? ( f i ( f ) )E~N the product  rule 

sJn FG (#) = F (#). d n G (#) + G (#). d "  F (#) 

+ 2n i,j ~ oxj 

o,.0) 
we easily derive the following 

Proposition 3.1 Let pn,n, be the distribution of an H"-transform of the n-th 
approximation of the super-Brownian motion, Hn=tln(fi(~n(s)))E~. Then for 
every function F 6 ~  the process M n'n" [F] defined by 

(3.1) M~'~" IF] :=F(t, Xt)-- F(O, Xo)-- i tin'n" F(s, X~) ds 
0 

is a local martingale under pn,~i,, where 

,,J Hn(s ' #) #(Vh~(s) Vf~) 

+ nZc~#((F(F--16) - F(#) ) H"(s' l~--l  b)--Hn(s' n (s, I0 

+(F (~+-1 '~) -F(~)) H"(s,~+�88 
n H" (s, #) " 

Examples. (i) Since under P" the intensity measure of Xt is also determined 
by E"[Xt(f)] = #o(Ttf), every space-time harmonic function of the Brownian 
motion gives an additive space-time harmonic function of the branching Brow- 
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nian motion at every approximation level. This is important  in Theorem 3.2 
below. 
(ii) In the case n =  1, e =  1 all space-time harmonic functions t/a(s,#(1)) of the 
total mass are computed in [O 1]. 

3.2 Convergence theorem for additive H-transforms 

We now state and prove the convergence theorem for additive H-transforms. 
For  the proof  we use the method of [MR, RR2] ,  but the approximating H- 
transforms do not satisfy the assumption of boundedness of the mean of the 
reproduction law and of the drift coefficient in the one-particle motion in [MR, 

h(s, x) . 
RR2] ,  because ~ is not uniformly bounded in x ~ N  d, #~M.  Hence, in par- 

ticular, we have to control the drift of the motion of an individual particle. 
Therefore we first consider extremal space-time harmonic functions h(t,x) 
= h"(t, x )=  e ax-~a2'. 
Theorem 3.2 Let h be an extremal space-time harmonic function of the Brownian 
motion. Let H(s,/t):=/~(h(s)) be the corresponding additive space-time harmonic 
function of the super-Brownian motion and of the approximating branching Brow- 
nian motions. Let p,,H be the distribution of the additive H-transform of the 
rescaled branching Brownian motion on D u. Then the sequence {p,m}, converges 
weakly to the additive H-transform of the super-Brownian motion pn. 
By the integral representation of space-time harmonic functions and by bounded 
convergence we obtain 
Corollary 3.3 Let h be a space-time harmonic function of the Brownian motion, 
pn,H the corresponding additive H-transform of the approximating branching Brow- 
nian motion and pn the additive H-transform of the super-Brownian motion. Then 
the sequence {p,m}, converges weakly to pH. 
In the following subsections we prove that P"'~r [)~ e- ] ~ pH [_g ~. ] as measures 
on DMo. But, because by Subsection 2.2.3 P"'n [ ~  ~ Du ] = pH [)~ e Du] = 1, it fol- 
lows (e.g. by Corollary 3.2 in [-EK, Chap. 3]) that p ,m  converges also weakly 
to pH as measures on D~t; cf. also "main remark"  in [MR].  We will therefore 
denote P"' n [)~ e. ] and pH [j~ e. ] also by P"'n and pn  and the coordinate process 
on D~to by X. 
3.2.1 The process of the total mass and the exponential martingale. Since the 
total mass process of an additive H-transform is a critical branching process 
conditioned on survival we have the following result (cf. e.g. [KW]). 
Lemma 3.4 Let p,,H be the distribution of the additive H-transform, not neccessar- 
ily with an extremal h a, of the rescaled branching Brownian motion X "'~ on Duo 
with P"'H[X 0 =#0]  = 1. Then the coordinate process X on D u satisfies the follow- 
ing equations 

(3.2) E"'n[xt(1)lXr(1)]=2a(t--r)+Xr(1) and 
(3.3) En'n[X~(1)] <po(1) +4et(c~t + 1). 

The main tool for the convergence result is the 'exponential martingale'. 
Lemma 3.5 Consider the situation in Lemma 3.4 and assume in addition that 
h (s, x) = h a (s, x) = e " 'x- (~/2)a~ is an extremal space-time harmonic function of Brow- 
nian motion. Then the process M"'H[ef] is a martingale for f ~Cg under p,,H. 
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Proof The random variable S~c"'ne,(s, X~) is bounded by 
1 1 

X~(1)( N 1AU II ~ + (2 n)- i  N V f  I] ~ + ct n 2 U enf+ e-h i - -  2 II ~) 

+(2n)-lsup f ~ ia~l+ncz( l l l -e  ~ 'Sll~+lll e-" 'sll~). 
i i = 1  

For a localizing sequence {S,,},, of stopping times and a stopping time T bounded 
by N ~ N  this estimate yields 

n,H ]MT ^s~[ef][ < 2 + N c l  sup X~(1)+ Nca 
s<=N 

with two reals c a and c 2. Lemma 3.4 and the submartingale inequality prove 
that n,H {MT^ s,, [ef]}m is a uniformly integrable family of random variables. Hence 
the assertion is proved. [] 

3.2.2 Weak eonvergence of{P" 'n} ,  

Step 1. Tightness. 

It is well-known, cf. e.g. l-D, 3.7], that a sequence of measures {P"},c~(Dmo) 
is tight if the one dimensional projections {P"oX( f ) } ,  are tight for every 
f~CZw{1}. For tightness of the projections X ( f )  we apply the criterion in 
[-EK, Theorem 8.6, Chap. 3]. 

Since E"'H[Xt(1)]=#o(1)+2c~t is independent of n the first condition in [EK, 
Theorem 8.6, Chap. 3] is easily proved by the Chebyshev inequality. In order 
to prove the second condition in [EK, Theorem 8.6, Chap. 31 we choose for 
every n a sequence of stopping times {S~,}m which localizes M [F] as well with 
r  as with r  2. By the representation of the semimartingales X ( f )  
and X 2 (f)  the following inequality is obtained for t_>_ 0, 0_< u _< 6 < 1 : 

E"'H [(X(t + u) ,, s~ ( f )  -- Xt  ^ s~, (f))21J~t] 
= E"'H [X~t +,) ̂  s~ ( f )  -- 2 Xt  ^ s~ ( f )  X(t +,) ^ s~ (f) + X2^ s~ (f)  [~]  
= E"' H [X~ +,) ̂  s~ ( f )  -- X~^ s~ ( f )  -- 2 Xt  ^ s,~ ( f )  

,+ , ) ^ s~ l  I i  \ 

,L < % { ~ ( h " ( ~ - )  \2istn ts)) I I  I J 

('+")"S~l 11 + 1  2 Vh"(s) V f  

h ( )  f ) + Z c ~ X ~ ( f z ) _ 2 X t ^ s  o ( f ) X s ( � 8 9  + 4c~xs(/) Xs ( x F , ( s ) )  ,, 

v 1 . i V h  (s) f \  . h~ ds ~.] 

[( sup x ( ).4H -ASN .NIII  
L \ O N s N t +  I 

~ f  
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Letting m ~ ~ we have by Fatou's lemma 

(3.4) 

559 

E".'E(X(,+.)(f)-X~(f))21~J<=FE"'E( sup X~(1))x'4111A.fl[o~ Ilfl[oo 
O--<s<-t+ 1 

af +oSUp+lXs(1)(211Vf211oo+2llfll~o L ai ~ ~o+e21[fl12)~]" 
i = i  

Hence it remains to show that the expression 

(3.5) supE"'n[-( sup X,(1)) 2] 
n 0 <-s<-- t+ 1 

is finite. Since X(1) is a non-negative submartingale under every P', Lemma 3.4 
and the strong maximal U-inequality complete the proof of tightness. 

Step 2. Identification of the limit point. 

Let p,k,H~p% We prove that under P~ the process M ~ Eef] defined by 

MtnEer]:=ef(X~)--ef(X~ i X~( 2 A f  x~h~(s) f --af 2] e f(X~) ds 

is a martingale for every positive f ~  Co 2 . 

Let ~r be the mapping corresponding to the particle system X" and d the 
mapping corresponding to the H-transform of the super-Brownian motion: 

1 Vh(s).Vf\ , . d"ef(s, #):=--#  ~ A f+ ~ ) ef(#)+(1/2n) #(IVfl 2) ef(#) 

+eY(#)en2#((14n;@h)(s)))e-~f+(1-ng(h(s))]h(s) ~e+�88 

1 h(s) z d e f ( s , # ) : = - - # ( ~ A f + 2 c ~ f - - ~ f ) e f ( # ) .  

It sufficies to show that for 0<s l  < ... <s~<s<t, GeC b M 
i 

[( , ) ] E ~ es(Xt)-ei(Xs)-- S dei(a,X,)da G(Xs~, ...,X 0 =0. 
s 

By weak convergence 

lim E "k'H [(ey(Xt)-- ef(X~)) G(X ....... X~)] 

= E ~ [(el(X,)-- ei(XA) G(X ....... X~,)]. 
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Since P"~'~ solves the martingale problem in Lemma 3.5, it remains to show 
that 

t 

tends to 0 as k--* oo. But this expression is dominated by 

E"k'n[!xdef(a,X~)-d"key(a,X,)da [G(X~I,...,X~)I ] 

+ E~[!def(~r,X,,)daG(Xs 1, ...,Xs)] 

f! ] - E  "~'~ def(a,X~)dcr G(X~, ...,X~,) . 

By a Taylor expansion it is easy to prove that the first term is bounded by 

1 
• cl +c2 sup E"k'~[X,(1)]), 
n r=<t 

C l ,  C 2 ~  (Z)~ 

and converges to 0 by Lemma 3.4. The function d ey is not bounded in # 
but continuous and s~'es(s, Xs) is dominated by the function c3 Xs(1), c 3 < oo. 
By Lemma 3.4 the latter function is bounded in L2(P "'~) uniformly in n and 
in s < t. Hence, by uniform integrability and weak convergence the second term 
tends also to 0. []  

Remark. This approximation differs from the approximation in Theorem B, be- 
cause the particles are also subject to an interacting drift; namely the H-trans- 
form of a branching Brownian motion with individual mass 1 has 

1 1 
(3.6) ~ A f + ~  V h(s). V f 

as the generator of the motion and 

(3.7) ~ s PO,2(#, , x ) = 1 / 2 ( 1  h(s,x)'~ 1/2(1 h(s,x)\ #(h(s))]' + ~ )  resp. 

as the branching law. The new drift in the motion shows that the drift caused 
by an h-transform of the Brownian motion is distributed among all living parti- 
cles, as easily seen by considering h = h a. In the limit, however, the interacting 
drift of the one particle motion disappears by scaling. 

For  h = 1 the branching law p0 n, 2 = 1/2(1 -- 1/#(1)), 1/2(1 + 1/#(1)), resp., corre- 
sponds to the branching law of a Galton-Watson process conditioned on non- 
extinction. For  general h, at branching times the particles are weighted with 
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h and are subject to the same reproduction as in the case h = i. In particular, 
this shows very nicely, that an H-t ransform moves to the subset of the state 
space where H takes greater values. 

3.3 Laplace functional of additive/-/-transforms 

We set c~ = 1. 

Theorem 3.6 Let pu be the /-/-transform of the super-Brownian motion. Then 
for every f e  Ca (lRd), r < t, we have 

(3.8) E u [ef (Xt) IX ~ = #3 

- - ~  #(h(r,')@h.[exp(-- f V: f(~s)ds)])e -u(vr:), 

where ~ is the coordinate process on C([-0, ~), ~d) and ~h denotes the h-transform r , x  

of the Brownian motion in ]R d starting in x at time r. The operator V[ is defined 
for r < t as the time-inhomogeneous generalization of the non-linear semigroup 
associated with the super-Brownian motion via its Laplace functional, cf. [-Dy2, 
D]:  

(3.9) 

Proof 

8 1 ~ l ~ 2 
~Tr vtr f =  --2 AVt f + 2 -(V~ f )  ' V,' f = f  

1 
(3.10) En[ef(Xt)lX~=#]=#(h(r) ) E[Xt(h(t))ef(Xt)[X,=#]. 

The second factor on the right-hand sight is computed by differentiation as 
#(U[ f )  e -u(vr:), where 

(3.11) 

is the solution of 

U[ f ,=~--~ V:( f  + 2h(t)) x=o 

8 i 
a~ U[f= -~AUtr f+(v t r f )  . U[ f  U:f=h.  

The Feynman-Kac  formula [Fr, p. 148] yields 

r 

(Since E [X~(h (t)) e-x~(:)lX ~ = #] < E [X~(h (t)) I X~ = #] = #(h (r)) < o% 
interchance differentiation and integration.) []  

By differentiation, we get 

we may 
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Corollary 3.7 The intensity measure of X~ under pH is computed as follows: 

E n [X , ( f )  IX, = #] 

_ 1 i #(~" [h(s, ~)~,r  [f(r [f(~t)]). 
#(h(r)) , " 

3.4 Conditioning and Palm measures 

Now we want to express the Laplace functional of an additive H-transform 
by the Palm measures of the super-Brownian motion. The Palm measures 
(Qy)y~d of a random measure Q over IR d are defined as the components of 
the desintegration of the Campbell measure CQ, i.e., 

C o [A, B] = ~ v(B) Q [dv] = ~ ~ Qy [dv] Co- [M, dy], 
A B A 

AmN(M), BEN(IRe), [K, Sect. 10]. The measure Co.[M, dy] on IR d is the inten- 
sity measure of the random measure Q. 

Lemma 3.8 Let v6M, f g(t , . )6C 2, x~IR ~ and 0 < r < t .  The Campbell measure 
Cr,t, v of P[Xt~ ' IXr--V] ,  the distribution of the super-Brownian motion at time 
t starting in v at time r, is characterized by 

g(t, x) e:(#) Cr,t,~[d #, dx] 
M x ~ d  

For v = 6x, let ((Rr, t,x)y)yep.a be the collection of the corresponding Palm measures 
on M. These have the Laplace functionals 

Proof. The formula for the Campbell measures follows by differentiation as 
in the proof of Theorem 3.6. The Laplace functional of the Palm measure is 
e.g. given in [D, 11.61. 

Lemma 3.8 combined with Theorem 3.6 yields 

Corollary 3.9 Let P~ be the additive H-transform of super-Brownian motion with 
a space-time harmonic function h of Brownian motion. Let v~,r. t be the distribution 
of it under ~h.x, the h-transform of Brownian motion, i.e., vhr: is the normal 
distribution N(x  + a, t -  r) if h = h ~ is extremal. Then 

(3.13) E H [e:(X~)lXr = 6~] = ~ (Rr,t,~), [e:] v~,~:(dy). 
N.d 

The Palm measure at y can be viewed as the distribution of the random measure 
given that y is in the support of X, cf. e.g. [K, Sect. 10.21. Hence Corollary 
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3.9 suggests that Pn  is the super-Brownian motion conditioned on the event 
"there exists a moving particle it  in the support of the super-Brownian motion 

such that ~ a  as t--* o% i.e., ~ t ~ a  in the Martin topology of Brownian 
motion",  t 

This suggestion is justified in the following Theorem 3.10. We use the embed- 
ding of the Campbell measure of super-Brownian motion in a dynamical struc- 
ture, which is based on a representation of conditioned superprocesses by S.N. 
Evans [E]. Theorem 3.10 generalizes this representation to all additive H-trans- 
forms. 

According to [E] there exists a M x lid-valued Markov process (Y, (t) with 
transition funct ion/7 defined by 

(3.14) S [el(a) g(y)] II(r,(v, x), t, (dl~, dy)) 
M x~ ,a  

for f, ge  C 2. The process (Yt) is a super-Brownian motion conditioned on survival 
and is distributed as a sum Yt = Yt' + X ' ,  where X' is a super-Brownian motion 
independent of (Y/, (t)t >__ o. For  a fixed path (~s)= (zs), the random measure Yt' 
has the Laplace functional 

(3.15) exp ( - !  VtSf(z~)ds). 

This is the Laplace functional of the random measure 

i S  vNz(ds, dv), 
r M 

where % is a Poisson random measure with intensity measure 

$2 

Is1, sz) x A --* S Df(z(s), A) ds 
81 

r < s l < s 2 < t .  

The measure D] is connected with super-Brownian motion by the representation 
of a superprocess as an infinitely divisible measure: 

P [ey (Xt) I Xr = #3 = exp ( - p (~ (1 - ey (v)) D~ (., d v))). 

The process Y' is therefore interpreted as an "immortal  particle that moves 
around as a Brownian motion and throws off pieces of mass, which then proceed 
to evolve as super-Brownian motions".  A similar description is given in [CRW, 
GRW] for the Palm measures of branching diffusions. 

With this preparation we can state the dynamical version of Corollary 3.9. 

Theorem 3.10 Let (Y,  (t) be the continuous Markov process on M x]R a with 
transition function 17[ starting from (go, 0). Let Q be the distribution of  this process 
and let h a be an extremal space-time harmonic function of  the Brownian motion. 
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1. The function lH(s,(#, x)).- h~ x) is space-time harmonic for Q and the IH- 
transform QH of Q is the limit of 

Q [ ' l ( t= xt] as t ~ oc and xt - - - - - + a .  

t 

2. The measure pH arises as the limit of 

X t (Q[.l~,=x,])opt as t--+oo and - - ~ a  
t 

t . __  where p ((#~)~_<,, (x~)~_<t).-(/z~)~__<t is the projection onto the first coordinate. 

3. The measure pn  is also the distribution of the projection of Q~ onto the first 
coordinate. The measure QrI is the distribution of a Markov process (X't+ Y/, 
~)t>=o where the process X'  is a super-Brownian motion and the distribution O, 
of (Yt', (t) is independent of X '  and determined by 

t 

for f, g~C~. The random measure Y' can be viewed as an immortal particle moving 
as an h"-transform of the Brownian motion, i.e., a Brownian motion with drift 
a. This immortal particle produces at random times mass which evolves as a super- 
Brownian motion. The measure Yt' is the sum of all these super-Brownian motions 
at time t. 

Proof Setting f = 0  and g( t ,x)=h"( t ,x)  in (3.14) we derive the harmonic i ty  of  
I-I. Next  we show that  

Q['IG] --Qr 

where Q~,t is the distr ibution of  a M a r k o v  process on the time interval [-0, t] 
with transit ion function 11 x't which is determined by 

(3.16) 5 ef(#s) g(x,) IIX"(r,(#,, x,), s, (d#,, dx,)) 
M x N d  

[(f ) ]  = e x p ( -  " ~ VY "~" ~. x't - #A s Y)) .... exp V~f (G)dr  g(r 

0 < r < s < t. The measure ~ is the distr ibution of the Brownian  bridge f rom 
xr to x in the time interval Jr, t]. We introduce the no ta t ion  /~,=(#, x) for an 
element in M x IR d. For  nota t ional  simplicity we set Fi(p)=ey~(l~)gdx), i= 1, 
2 and show for s l < s 2 < t :  

(3.17) Q[Qr162 
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The Markov property and (3.16) implies that the left-hand sight of (3.17) is 
equal to 

(3.18) exp(-Vf(fl+V~f2))).~o,~[gl(~jg2(~2) 

�9 exp - V~](fx+V~f2)((,)d'c - V,~f2(~) g(~t) , 
$1 

which equals the right-hand sight of (3.17) by definition of Q and H. Considering 
the finite dimensional distributions of Qt,~ we see by the usual arguments in 
the Martin boundary theory of Brownian motion (cf. [Fol ,  Fo2]), that Q~ .. . .  

converges iff t, ~ oo and X"~a as n--+ ~ ,  for some aelR a. The limit exhibits 
tn 

the transition function H" determined by 

(3.19) ~ e~(#s) g(x,) H"(r,(#,, x,.), (d#~, dx,)) 
M x~a 

= exp (-- #r (V~ f))  ~,h~ [exp (- -  / V~f(r 

The measure ~h- is the h~-transform of Brownian motion. The tightness of 
{Qt . . . .  }, follows by a slight modification of criteria given in [EK, Chap. 3] 
from the investigation of 

Qt .... [(es (Yt) g ( ( t ) -  es (Y~) g(~s))2 ] ~ 3  �9 

This proves assertion 1. Assertions 2 and 3 follow in the same way as in [E, 
Theorem 2.7] by the definition o f / / .  

Remark. Theorem 3.10 for superprocesses has the following analogue for the 
critical binary branching Brownian motion IP. The Campbell measure can be 
identified as (cf. [CRW, (2.1), (2.2)]) 

(3.20) lEt, u [X,(g) el(X,)] 

=#(~,.tg(~t)e-f(r VtS(1-e-Y)(~,)ds)]E~,u-a[ey(Xt)]). 

This yields for the corresponding Palm measure that 

(3.21) (~.r,t, ax)y[e f ] = ~,~ [exp (j VtS(1- e- f)(~s) d s) {t = y] e - y(y). 

Formulas (3.20) and (3.21) imply for an additive H-transform IP H that 

(3.22) 
1 

]E~ax [ef(Xt)] = h(r, x) [" ORr't'ax)Y[ef] vh'"~(dY)" 
R a  
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In analogy to (3.14)let us define the transition function ~ b y  

(3.23) 

L. Overbeck 

Ees(#) g(y)] ~P(r,(v, x), t, (dlA dy)) 
M x N d  

[ (' )] =N,x  g(( t)e-I(e~ ~ V~(1-e-Y)(~,)d s IE,,, ~[ey(X,)].  
~ r  

Thereby, a process is given which is associated with a critical binary branching 
Brownian motion in the same way as Q is associated with super-Brownian 
motion. 

4 A p p r o x i m a t i o n  of  H- trans forms  

As announced in the introduction we deal with H-transforms satisfying condi- 
tions (1.2) and (1.11). In Sect. 3 we chose the approximating particle systems 
as H-transforms of the rescaled branching Brownian motion. In the general 
case this is not possible because there is no obvious relation between space-time 
harmonic functions of branching Brownian motion and those of super-Brownian 

motion. Instead we plug in the additional term H'~(s, lz) in the branching law H(s,#) 
of the branching Brownian motion. Because additive H-transforms also satisfy 
(1.12) and (1.11) we have a second sequence of approximating particle systems. 

4.1 Construction of interacting branching Brownian motion 

Def ini t ion .  An interacting branching Brownian motion X ~ with interacting 
branching intensities {fl(s, x, #) pi(s, x,/~)}i=o, 2 is a point measure process derived 
from a particle system. Every particle diffuses as a Brownian motion, dies with 
death rate fi(s, x, #), and gives then rise to 2 or 0 offsprings with probability 
p2(s, X, ~), po(S, X,/~), respectively. It has the defining property that for all F e ~ , ~  
the processes 

t 

 41, ~ 

are local martingales, where 

(4.2) (s, ~):=~s ~ (s, ~(f(s))) d l F  

-~- k~= l Z O(s' f t( f  (s))) # ( 1 d  fk(s)§ ~-~ fk(s)) 

1 m 02 

+ ~ ~=~,_ a xk a x - ~  ~ (s, ~ (f(s))) ~ (I vAI 2 ) 

+ # (fl (s, #) p2 (s, #)(F (s, (# + 6)) -- F (s, #)) 

�9 fi (s,/~) Po (s, #) (F (s, ( # - -  6)) --  F (s, #))). 
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Existence. Given the sequence of interacting branching random walks the proof 
of the existence of an interacting branching Brownian motion is the same as 
in [RR2],  where an interacting branching random walk is constructed for time- 
homogeneous and bounded parameters. 

For our generalization to unbounded and time-inhomogeneous parameters 
we use the theory of multivariate point processes (cf. J. Jacod [J]). Let 

(4.3) A f(x):=7 ~ ( f ( y ) - f ( x ) )n (x ;  dy) 
Na 

be the generator of a jump process in IR d. 

Let ~={cS={t , . ,# , . ) , .~  with O < t l < t z <  .... and #,.~Mo}. We define the 
predictable random measure v p on ~ by 

vv({t,,, #m}m~; ds, dv):=X~_ (7 j6~ _~(dv) ~z(. ;dy) 

+ ~po(s, x, X~_) ~_~(dv)+ Bp~(s, x, X~_) ~ +~(dv)) ds, 

with X~(&):=X~({t,,, #m}~N).'= ~ #,. Let v ( ' , ' ) = ~  8,,,u,('," ) be the canonical 
t n ~ s  n 

random measure on 5. There exists a probability measure P on ~ such that 
the stopped process (W* (v-vP)) t- is a uniformly integrable martingale for every 
n and every predictable W(&, s, #)(- "*"  indicates integration -). For  F ~  
we consider the predictable function W(&, s, #)= F(Xs_ +#)-F(X~_).  Then the 
process M IBRW [F] defined by 

(4.4) M IBRw I-F], .'= F (Xt) - F (Xo) 

- i ds ~ ~ Xs((F(Xs + ~ , -  ~)-  f ( X 3  ~(., dy)) 
0 Na 

+ X~ (fi po (s, X~) F (X~ - 6) + fl p2 (s, X~) F (X s + b) - F (X~)) 

is a local martingale until T.'=sup t,. 
n 

- T - -  For  fipo,2(s,#)=no~ 1 nil[s,  a l l  - - I ,  

\ n i l  
in [J] and by assumption (1.12) that 

it is obvious by the construction of P 

(4.5) P [ T < s l  =< P [Y~ = ool =0,  

where Y=(Ys)s>_o is a one dimensional Poisson point process with intensity 
Ys(gl § 1 + 7 ) + K o  (we add a new particle at every jump, regardless of whether 
it is a "branching" or a "walking" of the process). Therefore P [ T = o o ] = l .  
Hence, if we define P as the distribution of X under P on DM, we get an 
interacting branching random walk. 
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4.2 Properties of the rescaled process, Proof of Theorem B 

The process {Xl'"m}, are defined in the introduction as the interacting branching 
Brownian motion starting from #osM, each particle having mass 1, and with 
branching intensities 

(4.6) nc~. 

We consider the sequence {P"'~},, where p,,u is the distribution of 
X n : = n  - 1 x l , n ,  It. 

The proof of Theorem B is a rerun of the proof of Theorem 3.2. Therefore, 
we only put together the properties of the rescaled process which we used there. 

Lemma 4.1 (i) For all F ~ C 2, f s C 2 w {1} the processes M m" [FJ defined by 

(4.7) Mff'" [F] :=F (X t (f)) - F (Xo (f)) 

- Xs ~ A f  F(Xs(f)) 2n xs ( Iv f l2 )~-~  F(X~(f)) 

+n2aX~(( 1 ~)]H'(s'X~)~(F(Xs(f)-f) -F(X~( f ) ) )  

H'(s, x3 f 
+(1-~ ~ , - X - ) ) ( F ( X ~ ( f ) + n ) - F ( X * ( f ) ) ) ) ] d s  

are local martingales. 

(ii) 

(4.8) sup sup E"'H [Xt(1)] <=(#o(1)+ Ko t o 2e) e2~Iqt~ < oe. 
t<to n 

(4.9) sup sup E "'n [X~(1)] 
t<to n 

<=(#2(1) + to (2et + 4ctKo)(#o(1) + t o 2~ Ko)e 2~:~t~ e4~Kat~ < o0. 

(iii) The process M [ef] is a martingale for every f ~  C~ and the process of the 
total mass X(1) is a submartingale. 

Proof Assertion (i) follows from the martingale properties of X". Assertion (ii) 
follows by (i) and assumption (1.12). Assertion (iii) is a consequence of (i) and 
(ii). [] 

Example. H-transform of product type. The functions H(s, #) = # ( h  I (s)) h 2 (s, #(1)) 
considered in Subsection 2.2.2 (iv) satisfy the condition (1.12) if ~C=h 2 is an 
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extremal space-time ha rmonic  funct ion of  the Feller process condi t ioned on 
non-ext inct ion,  because 

(4.10) 
~ ckxk-1 (~= C k )-~ e-sr  e(s' x)= k.T(W2- f)! k!(k-1)! 

k = l  k 1 

with ce(0, oc), h~ x ) =  1 or  ~~ x)=x-1, cf. [O1]  and (2.8). 

The term 1 could be negative (for example if h I = 1, # ( 1 ) =  1) and 

hence is no t  an intensity. If  # (1 )>  1 then this term is an intensity. This reflects 
that  for superprocesses the probabi l i ty  of  extinction tends to 1 as #(1) to 0, 
whereas for the particle systems the maximal  probabi l i ty  of  extinction in the 
next b ranch  in �89 and is at tained iff #(1) = 1. 

hi(s, x) which satisfies (1.12). Hence we have addi- If  h2-- 1 (4.6) equals 1 #(h 1 (s)) 

t ionally to additive H- t ransforms  of  branching  Brownian  mot ion  a second 
sequence of  approx imat ing  particle systems for additive H-transforms.  The only 
difference is the fact that  in the approx ima t ion  with additive H- t ransforms  of  
branching Brownian  mot ion  there is also an interact ion in the drift of  the one 
particle mo t ion  which, however,  disappears by scaling, cf. R e m a r k  in Sect. 3.2.2. 
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