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1 Introduction and statement of results 

Consider a random walk (Sn),~No on 7Z, starting at 0, with i.i.d, and bounded 
increments. Let the steps be given by 

Sn+l-Sn=ke{- t -1  . . . . .  -}-r} withprobabil i ty plklehk/Zh 

for n e N o ,  where Zh= ~ Plkl ehk is a normalization constant, r e N  an increment 
[kl=l 

bound, Pl . . . .  , Pr are positive numbers and he[0,  oo) is a drift parameter. The 
associated path measure and expectation are denoted by Ph and Eh, respectively. 

d 
We assume that Zo = 1. Under  Ph the steps have mean ~ log Zh, which is positive 
if and only if h is. 

Let 
T := in f{neN:  S k = S  n for some ke{0, 1, ..., n - l } }  

be the first time of a self-intersection of the path. The purpose of this paper 
is to prove that, conditioned on the event { T > n}, the path approaches a straight 
line for large n, and to characterize its slope. (Of course, this is trivial in the 
nearest-neighbour case r = 1.) Using linear scaling, we formulate our first main 
result in the context of the function space C [0, 1], endowed with the Borel 
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a-field generated by the supremum norm. For n s N ,  let S("): [0, 1] ~ [ - r ,  r] 
be the random continuous function defined by 

S(.)(k) Sk (k=0, 1,...,n) 

and linear interpolation. Define a probability measure ~ on C [0, 1] by 

�9 2(A)=Ph(S(")~AIT>n) for Borel subsets A of C[-0, 13. 

Put to(X):=Ox for 0elR, x~[0, 1], and let cSg be the Dirac measure on geC[0,  1]. 
We state our law of large numbers for (F,h)n~: 

Theorem 1.1 There exists a real-analytic and strictly increasing function 0 from 
[0, oo) into [1, r] such that 

lPh - :" [�89 +6,_o,o, ) /f h=0.  

I f  r >=2, then O(h)~(1, r)for every he[O, oe), and lim O(h)=r. 
h$ oo 

We call this number O (h) the effective drift of the self-avoiding walk. Theo- 
rem 1.1 implies the conjecture (7.6) in [1]. Clearly, O(h)<Eh(SI[SI>O), but 
a proof for the rather natural conjecture that O(h)>Eh(S1) (which is obvious 
from Theorem 1.1 only for small h) seems to be very hard to derive. 

The main work in the proof consists of analyzing the functions Jh, ~: [0, r] 
---, [ -  o% 0] defined by 

(1.2) Jh(O)= lim _1 logph(T>n ' S,=LOnJ), 
n--+ oo n 

(1.3) .~(0)= lim 1 logPh(T>n, Sn=[OnJ, 
ii~co n 

81 ,  S 2 . . . . .  S n _ l  e l 1 ,  L0 h A -  1]). 

(Here and in the sequel [xJ:=max{kE2g: k<x}.) The existence of these limits 
will be shown in Proposition 2.9 and 4.1, respectively. Note the obvious facts 
that Jh = -- OO on [0, 1) and that Jh(O) > -- oO for every 0~(0, r] if r > 2. For  proving 
Theorem 1.1, we need that Jh has a strict maximum at O(h). This is established 
in Sect. 4. In order to study the function Jh, we need an analysis of the function 
~ ,  which is given in Sects. 2 and 3. In fact, O(h) is introduced as the strict 
maximum point of ~ and we show in Sect. 4 that ~(O(h))= ~(O(h)). 

In Sect. 2 we derive a variational formula for Jh(O) in the case 0~(1, r), h>0 .  
The main tool is an expression of the local times of (S,),~No as a two-block 
functional of a certain Markov chain. We analyze this variational formula in 
Sect. 3 and obtain a characterization of the function ~ and its strict maximum 
point O(h) in terms of the Frobenius eigenvalue 2h(b) of a certain primitive 
matrix A b (with b~lR), which is our second main result: 
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Theorem 1.4 For h > 0 there exists a real-analytic, strictly incresing, and strictly 
log-convex function 2h: IR ~ (0, oo) such that, for 0e(1, r), 

(1.5) Jh (0) = 0 log 28 (bh (0)) -- bh (0), 

(0) ---- log 2h (bh (0)), 

b'h(O) _,, 

where bh: (1, r)--+F,~ denotes the inverse function of  2h/2'h. In particular, 

1 
(1.6) O(h) = 2~0~_ 1 (1)) for h>0.  

We emphasize that the Markov chain introduced at the beginning of Sect. 2 
is suited for dealing with any functional of the local times of a random walk 
on 7l having bounded and nonzero increments and positive drift. We will use 
this chain in a forthcoming paper to prove the following. Let 

X,:=~{( i , j )~{O,  1 . . . .  ,n}21i<j  and Si=Sj} 

be the number of self-intersections up to time n. If we replace the density 
l~r > ~I/Ph (T > n) of IP2 by ( 1 -  c~)X~/Eh((1- a)x~) for a fixed a ~ (0, 1), then we obtain 
a probability measure P2'~ which suppresses, but not neglects paths having 
self-intersections before time n. This polymer measure is a model for a self- 
repellent random walk with repulsion strength ~. In [7] we will prove a result 
for (IP~'~), which is analogous to Theorems 1.1 and 1.4. 

We close this section by mentioning some mathematical works on self-repel- 
lent or self-avoiding random walks on the integers (An overview on polymers 
from a more physical and chemical point of view is-given in [5]). The analogous 
self-repellent model for Brownian motion is considered in [11] and [8], and 
the long-time behaviour of the endpoint of the path is shown to be linear. 
In [1] the sequence of successive times of self-intersections of a walk with 
bounded increments is shown to possess a limit law as the maximal step size 
tends to infinity. Using variational techniques, upper and lower bounds for 
the long-time behaviour of a self-repellent walk are derived in [2]. Here no 
restriction is made concerning the size of the steps, but the method of this 
paper only works for small repulsion strength. The nearest-neighbour case is 
investigated in [6] using an approach which is analogous to the one in the 
present paper. In that work a quite explicit representation of the effective drift 
of the self-repellent walk is derived. 

2 A variational formula for Jh 

Let h>0 ,  r>2 ,  and 0~(1, r) be fixed during this section. We regard Ph as a 
probability measure on 

(co,),e7Z~~ COo=0, [CO,-con_l] .~{1, ..., r} for all n ~ N  and lim co,= +oo} 
n ~ o o  

with the relative a-field induced by the sequence (Sn),. 



524 W. K6nig 

2.1 Local times 

The random walk is transient, so the local time 

/(x)-'= # {keNo: Sk=X} (X~Z) 

is finite. In order to study self-avoiding walks, we must obtain some information 
about the distribution of the sequence of local times. Our first aim is to express 
the local times l(x) for x e N  as a two-block functional of a Markov chain. 
The idea is to count the excursions above the line between x and x + 1 with 
given positions at the beginning and at the end of the excursion and to register 
the position after the last jump over this line. Let 

(2.1) E:=N~) • x {1, ..., r}, 

~l~,k(x) := =~ {(m, n)eN2: m < n, Sin- a <= x, Sm = x +j, 

Sin+ 1 . . . . .  S n _  1 > x ,  S n =  x-Jv 1 - k } ,  

r(x)..=max {neN: S,-1  < x < S , } ,  

q(x),=S~(x)-x, 

for x ~ N  0 and j, ke{1, ..., r}. Then we have 

Lemma 2.2 The process (A(x))x~No:=((qj, k(X))j,k= 1 ....... q(x))~No is a homogeneous 
Markov chain on E. 

Proof. Fix x e N  during the proof. The two intuitive ideas behind the Markov 
property are: (1) every excursion above x +  1 occurs during an excursion above 
x or between the times z(x) and z ( x+  1), and (2) the excursions above x with 
fixed starting and ending points and the path (S~(~) . . . . .  S~(~+ 1)) are conditionally 
independent of the parts between them given their number and S~(x). 

Define the beginning and ending times of the excursions above x with param- 
eters j, k~{1, r} by ~(~ and, for i~N, �9 "" ~ ~j ,k  "-- 

z}2~ ) :=inf{n > z}z~- 2): there exists me {z}z~- 2) . . . . .  n} such that 

Sm~X, Sm+ l = x +j, S,~+ 2, ..., S , -1  > x, S , = x  + l - k }  

(by convention, inf0 = oo) and 

z(zi-j,k 1) ,={max {m < ~},2~)(x): Sm_ 1 ~X, Sm= x -~-j} else.if "c},2~ ' < o% 

~ ( 2 i - -  1) Then ~i,k~ot~(0~ is increasing, z (2~ is a stopping time, but oj, k not (if r > 2). 
Furthermore, define for i e N  and j, k e { 1, ..., r}, 

[(S~!~ ,) . . . .  , S ~ )  if z}i,)k < 0% 
Yj!~,={(S~,,~ ~) . . . . .  S~(x)) if zjq,~ 1)< oe =z}i,)k, 

I t(S~(~ ) . . . .  , S~(~ + 1)) else. 

So Y),]), yj!4), ..., yj(~,~,~(~)) are the excursions above x with parameters j, k, start- 
ing in x + j  and ending in x + l - k .  For every j, ke{1, . . . ,r},  the variables 
A(O), ..., A ( x -  1) are a(y),~-1): ieN)-measurable and q(x+ 1) is 
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a(Yj~, 2"~.~(*)+ 2))-measurable. For  y e N ,  j, ke { 1 . . . .  , r} and s, t e n  satisfying s < t, 
let 

N~r k, s, t):= 4+ {(m, n)e{s,  ..., t } 2 l m < n  and Sin_ 1 ~ y ,  

S m = y + j ,  Sm+l >Y, ... ,  S , - 1  >y ,  S , = y +  l - k }  

be the number of excursions above y with parameters j, k during the time 
interval {s, ..., t}, then we have, fory, ~e{1, ..., r}, 

j , k = l  i = i  

+Nex~(X + 1,f, ~', z(x), ~(x+ 1)). 

" (~ t~r(21-- 1). We will prove that a(Yj~,2~ ieJN-) and atx3, ~ . i eN)  are independent 
J, k =  l ~,/r 

under Pn(" I A(x)). (The Markov property of (A(y)) r follows from this indepen- 
dence since N~xc(x+l, j, ~', z(Zi-1)j,k , z~2~ )) is a(Yjt2i))-measurable for every 
j, k, f, ~'ce{1, . . . , r} and ie{1, . . . , tlj ,  k(X)} (because of $ 6 5 ~ - , _ 1 < x  ) and since 

(~ ~ ( 2 i -  I) 
atxg,~ : i e N )  contains a(A(0) . . . . .  A ( x - 1 ) )  (see above).) To show this 

),~=i 
independence, it suffices to show that (yjr yjr . . . . .  yj(,~j.~(~)+2)) and (Yj~), 
vr . y..t2~j.~r i)~ are independent under P~('IA(x)) for every j, k e { l ,  ..., r), l j ,  k , �9 " ~ j.~.tr ] 

since, for (], k)#:(j, k) and ieN,  the variable Y~r a(Yj~2i- 1): ~'eN)-measurable. 
For that, it is enough to show that, for ~/eNo and qe{1 . . . .  , r}, the variables 
yj(~) y/!2) . . . . .  yjt,2,+2) are independent under 

P"'q :=Ph('l~lj,k(X) = t h q(x) = q). 

For i=1 ,  ..., 2 q + 2  let ~iesupp(P "'q Yi(,~ -1) (this set is countable) be a path 
in 7Z with length n~eN 0. Write a - y  for the path a which is vertically shifted 
by yeTZ, and aft  for the path which arises if the paths ~ and fl are put together. 
Then we have for t /> 1, by using the strong Markov property at the times 
T(2) ,.r (4) ,r(2 t/). 

j , k ,  ~ j , k ,  " " ~  ~ j , k  " 

Ph (rlj, k (X) = r h q (x) = q) 

= Ph(rlj, k(X)> 1) Ph(rb, k(k--  1) > 1) "-1 Ph (r/j,k (k-- 1)= O, q ( k -  1)= q) 

and, for i = 2 . . . . .  t/, 

= ( Z 2 i - - l '  a j ,  k - -  ~ ' 2 i ,  t l  j ,  k ( X ) =  ?l, q(x) = q) 

= i -  1)  P h ( ( S o  . . . . .  s . . . . .  = 1 -k)) 

�9 Pn(t/j,k(k-- 1)=r/-- i, q(k- -  1)=q) 

and analogous formulae for i e {1, t/+ 1}. So one can easily derive that the pairs 
(v{2i-1) yj!]o) (for i=  1, ., t /+ 1) are independent under ptt,q. �9 j , k  ~ , " �9 

The last step in this proof is to show the independence of "j, kV(2i-1) and .t j ,  kV (2 i )  

under P"'q for every ie{1 . . . . .  ~/+1}. We will do this for i=1  (the other cases 
are similar). 
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Write Cj, k=Ph(~n~N:  S1, Sz . . . . .  S , -1  > - j ,  S , = - j +  1-k)~(0,  1) and d/,k 
=Ph(q/,k(k--1)=~/--1, q(k - -1 )=q) ,  then we derive from the Markov property 
at time nx that 

and 

p~ ty(1) ht /,k = e l ,  r//,k(X)=r/, q(x)=q)=Ph((So,  ..., S,~)=el)C/,kdj, k 

Ph (Y),])= a2, r//,k(X) = rl, q (x )= q) 

= Z e~((So . . . .  , s ~  
~tl ~supp(p~,qy( j }  ~ - 1) 

�9 P( (So , . . . ,  S,:) = ~2 --(x  +j)) dj, k 

- c  -1 P((So ..., S ,~ )=e2- - ( x  +j) )dj  k, - -  / , k  , 

since PtY(1)=~0=Ph((S0, S~I)=~I)C/, k for ~lesupp(P"'q Y).~)-I). The inde- ~h~ j , k  " � 9 1 4 9  

pendence of .j, kV(I) and Yj(2k) under P"'q easily follows from this, so the Markov 
property of (A (x))~No is proved. The homogeneity of this chain follows from 
the assumption that every step S . + ~ - S .  does nor depend on the time n~No 
neither on the site S.~7Z. [] 

We denote the transition kernel of (A(x) )~N o by Qh: E x E--* [0, 1]. Define 
g: E x E-+No by 

r 

(2.3) g(A, _d)= ~ r/1,k+l~=~+ ~ 0j, X 
k = l  1 = 1  

for A = ((r//,g)j,k, q) and A = ((0j, k)j,k, q) e E. Then we have, for x e N, 

l (x)--  # {jumps from below to x} + # {jumps from above to x} 

= g (A (x -- 1), A (x)), 

so our first aim is attained�9 
Note that, for A = ((r//,k)j,k, q) and A = ((O/,k)j,k, q)~ E, we have 

j = l  j = l  

for every k = l ,  ..., r -  1 and 
(2.4) Qh(A, 71) > 0 ~ , 

~ 0~,k+ l~=j_-__ i ./+l,k+ lq=/+l 
k = l  k = l  

for every j = 1 . . . . .  r -  1 

since Qh(A, 71) is positive if and only if Ph(A(0)=A, A(1)=.4) is .positive (note 

that Ph(A(0)=A)>0 for every ACE), and ~ tl/,k(x ) is the number of jumps from 
j = l  

{ x + l ,  . . . , x + m }  to x + l - k  and t//,k(x)+lq(x)= / is the number of jumps 
k = l  

from {x+ 1--r . . . . .  x} to x + j  for x ~ N  and j, ke{1, ..., r}, respectively. 
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For paths without any self-intersection we have A (x)~/~ for all x, where 

(2.5) E,={A~E[Ph(A(O)=A, l(x)< 1 for x =  1 - r ,  2 - r ,  ..., r)>0}. 

Note that/~ is finite and that g(A, .3)< 2 for A, .3~/~. We prove now an irreduci- 
bility property of (A (x))x~o on/~ which will be important in Sect. 3 : 

Lemma2.6  For every pair (A, Yl)cE z there are A1 . . . .  ,A3~_IEff, such that 
Qh (A~_ 1, Ai) > 0 and g(Ai_ l, Ai) < 1 for i= t, ..., 3 r, where we put A o :=A and 
A3r:=.3. 

Proof Given A _a,(i)~ q(~ (for ie{0,3r}), we construct two paths i - -  \ \ q  j ,  k l j , k ,  

S i= (S~) . . . .  , Sik) (with suited ko, k 3 ~  iN) without self-intersection, running within 
{1- r . . . .  , r}, performing exactly q~i,)k excursions with parameters j, k~{1, ..., r} 
over the line between 0 and 1, and ending in q(0. Now lengthen S ~ by adding 
three jumps of height r +  1-q(i), r - 1 ,  r (in this order) and put the lengthened 
path S 3~ (after lifting by 3r  sites) on the end of the lengthened path S o to 
obtain a path of length k o + k3~ + 6 without self-intersections, ending in 6 r, per- 
forming exactly q(1)k excursions with parameters j, k~ {1, , r} on the lines be- j ,  * ' '  

tween i and i+1  (for i t{0, 3r}) and the last jump over this line ending in 
i+  q(0. So we see that 

Ph(A (0) =Ao,  A(3 r)=A~r, l(x)<= 1 for x = 1 - r  . . . .  ,3  r) 

is positive, which implies the assertion. []  

2.2 Formulation of the variational formula 

Now we formulate the main result of this section. The set of probability measures 
on an at most countable set X is denoted by ~//{t (X). Let 

(2.7) Mo:=tvcJ//l (ff~ • ff~) A,~dg(A, ~l) v(A, .3)= ~ , 

v(A, .3)= 2 v(.3, A) for Ae/~, 

and v (A, A) = 0 if g (A, A) > 2} ,  

v(A, .3) 
(2.8) Ih(V).'= Z v(A, .3) log 

~(A) Qh(A, .3) 
A , J I ~ E  

for v~dgl(E • E) satisfying ~ v(A, 1,])= ~ v(.3, A)=." ~(A) for every AcE. (Define 
JIEE A~E 

Ih(V) to be +oe  if there is some (fl, A) satisfying Qh(A, . 3 )=0<v(A,  4).) View 
Mo as a subset of ~/~ (E x E). Then we have 
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Proposition 2.9 The limit (1.3) exists, and 

(2.10) ~(0) = - 0 inf Ih(V ). 
veMo 

The proof of this proposition requires several steps. 

W. K6nig 

2.3 Reformulation in terms of the Markov chain 

Define, for n, kEN, 

(2.11) V(n, k)={T>n, S,=k, S~>k for i>n, 

Sit[l, k -  1] for i=  1 . . . . .  n -  1}, 

so we have, if we define ~(0) to be the limit superior in (1.3) instead of the 
limit, 

(2.12) ~(0) = lim sup 1 log Ph(V(n, [0 n/)), 
n-+co n 

since escaping to the right has positive probability. Let, for n, kEN, 

(n, k):= {(A o . . . . .  A k - 1 ) ~/~k A o = ((0), r), A k - 1 = ((0), 1), V 

g(A~,_~,Ax)__<l for x = l , . . . , k  and y ' g ( A ~ _ I , A ~ ) =  , 
x = l  

where (0) denotes the r x r-matrix consisting of zeros and Ak:=Ao. So we have, 
by inserting the Markov property in (2.12), 

1 l o,J 
(2.13) ~ (0 )= l im sup - - log  • ~ Qh(Ax-1, Ax) 

n->oo n 
(Ao ..... ALonj_ De~(n,l_Onj) x= 1 

(always ALo,j .-=Ao). 

(Paths in {(A(0), ..., A([OnJ--1))~ ~'(n, L0nJ)} are allowed to spend some time 
in - N o  before they jump from 0 to r and stay in {1 . . . .  , [On]} for n successive 
times. This little manipulation causes a factor which vanishes on the exponential 
scale.) 

2.4 Empirical pair measures and large deviations 

Next, we will write this expression in terms of empirical pair distributions which 
are driven by an independent uniformly on /~ distributed sequence (A,,),~No: 
Define a random probability measure v, on/~ x/~ by 

1 In - -1  
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With the denotations ~'(n, k)= M~ (for k, h e N )  and 

(2.14) 

we have 

(2.15) 

Q(v)= ~ v(A, 71) log Qh(A, 7 1 ) e [ -  0% 0] for veJ/gl(/~ 2) 

.~(0) = 0 log #/~ + lim sup 1 log E,(eL~ ~ l{vLO.jS~-(n ' L0nJ)}), 
n~oo n 
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where E, denotes expectation with respect to (A,),. The key point leading to 
this latter reformulation is the fact that we have Vkef/(n, k) if and only if 
(Ao . . . . .  Ak_OeV(n,k), if we assume that Ao=((0),r), Ak_l=((0) , l ) ,  and 
Q(vk)eP.. 

The sequence (v,), obeys a large deviation principle on/7 with rate function 
I', given by 

v(A, 3 ) ~  
I'(v).'= ~ v(A, 71) log ~(A) 

A,54eg 

for veM,={#edg,(E x E)I ~ p(A, 71)= ~" #(71, A)for  A e/~} (Th. IX.4.3 in [4]). 
h e ~  2 e ~  For small e > O, the set 

M~o == U Mo+a 
101__<e 

is compact, and we have ~'(n, [0 n J) c M~ for large neN.  

2.5 Approximative variational formula 

We prove first that we have in fact 

1 
(2.16) - - l o g E ,  treL~176 l(~Lo.j~Mo}1~ " ~  ' Osup(Q(v)-'[(v)). 

n veM$ 

From Lemma 2.1.8 in [3] it follows that the limit superior of the 1.h.s. is not 
bigger than the r.h.s. It is a little bit care needed to conclude the remaining 
part of(2.16), since M~ has no interior in M. For removing this technical problem, 
we will construct a Markov chain on 

where 

Z':= U {A} x E A 
A ~  

EA'={71~/~: Qh(A, A ) > 0  and g(A, 71)__< 1}. 
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We write a=(o  41), 0 "(2)) for elements a of S. Define a transition probability func- 
t i o n / 7 : 2  x X -+ [0, 1] by 

, f l / # E , m  if 0"(2)=1: (1) 
H(0", z)"=~0 else. 

From Lemma 2.6 it follows that H is irreducible, so it satisfies condition (U) 
in [3, p. 100]. For o-sS, let P~J / / I (Z  N~ be the distribution of a Markov chain 
(a,),~o with transition kernel H and starting in 0-. Then Theorem 4.1.43 in 

[3] states that the distributions of the empirical measures L,..= 6~ under 
/'/ 

k=O 

P~ satisfy a large deviation principle for every 0-~S with good rate function 
J~: d/l 1 (X) ~ IR, given by 

Jn(v) = sup { -~xv  ( a ) l o g . ~  u: S ~ [1,oo)} 

(here/7u(a)= ~u(z)H(a, z)). Now define Q, F: J/ll (2) ~ IR by 

and 

(}(v) = ~, v(a)log Qh(a), 

F (v) = ~ v (a) log ~ E~,~, 
ffe~ 

~x 0 + e '  0 - e  " 

By translation into terms of the Markov chain (a,), we conclude that the 1.h.s. 
of (2.16) is, for every 0-e2, equal to 

0 log #/~ + o (1) + 1 log Ep~ (e L~ "J (~ + F)(L[o n j) 1 {LLon]~/V/'~}). 

(Here little changes have been made concerning the values of A o, A a and A Lo,j_ ~. 
Their influence vanishes in the limit for n to infinity.) Since (~ and F are continu- 
ous and bounded on J / l (S)  and since M~ is equal to its interior's closure in 
~gl(S), we arrived in a setting where standard large deviation arguments can 
be applied to deduce that the limit inferior of the last display is not smaller 
than 

Olog~/~+O sup (Q+F- -Jn ) ( v )  
vE(Mg) ~ 

=>01ogr inf sup ~, v(A,A) log 7~u(A'Yl)x ~ 
Qh(A, A')" v~ u M~, , < 1 , o ~ :  ~,~,a~ m z. ,  u v ~ ,  

6<e A'eE~, 
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Using the marginal property of v, one sees that u1(.4).'= ~ u(A, A') can be 
A'eE~,  

replaced by u 1 (A) in this last display. Since (~(A) u(A, 71)/Ua (A))(a,~)~,r is a proba- 
bility measure, an application of Jensen's inequality shows that this supremum 
is not bigger than Ih(V), and by the continuity of Ih, (2.16) follows. 

2.6 Finish of  the proof and perturbation invariance 

Since the r.h.s, of (2.16) equals - 0  inf Ih(v)--Olog:~E, the proof of Proposi- 
wM~ 

tion 2.9 will follow at once from the following statements: 

(2.17) 

and 

(2.18) 

lim lim 1 log ~ gokOndQ(vto @ 1 ~ ~ I - -  L'u~'C •176 I 
[~kOnJQ(vton j) I ^ ~1 

$0  n ~ m  n L, u l ~  *{VLO~jeV(n, LOnJ)})l 

lim inf Ih (V) = inf I h (v). 
e$O v~M~ v e M o  

= 0  

(Note that every reformulation step until yet did not affect the existence or 
the value of the limit (1.3).) The proof of (2.18) is easy and left to the reader. 
We prove now the first assertion. For large h e N  the following implications 
hold: 

VLOnJE U V(n+i,  [0nJ) ~ Vkonj~M~o ~ VLonJElil<U V(n+i  [0 nJ). 
Ii] --<-2(~n e) 

So it suffices to show that there is a function f :  (0, co)--+ (0, m) satisfying f(e)~ 0 
(for e.L 0) and 

(2.19) 
log ~ f~176 1 ~ "~1 a-~uk~ *{VlOnleV (n + en,LOn])}! [ < s  ( n ~  E f~176176 1 - ~ I=nJ 'G  

u~, ~ {vto~jeV(n,LOnJ)}! I 

for small e > 0  and every sequence (e,), in 2~ satisfying [e,[ < e n. Let such e, 
(e,), be given. Assume that e , > 0  (the other case is similar). Remember that 
our manipulations of path classes to get from the r.h.s, to the reformulation 
in (2.19) essentially consist of forcing the path to stay above t on i  after time 
n and to allow him to stay some time in - N  o before running within 
{1, . . . , /0n]} .  So we may handle this problem in terms of self-avoiding walks 
instead of empirical pair distributions and will construct two maps F: 
V(n, L0nJ)~ V(n+e, ,  L0nJ) and/~:  V(n+e, ,  L0nJ)-~ V(n, [0nJ) having not too 
much entropy, i.e. satisfying 

1 
(2.20) lim lim -- log sup 4b F -  1 (S*)  = 0 

e$O n ~ m  n S*EV(n+en,LOnj)  

and 

(2.21) lim lira 1 log sup # /~ -  1(S.)=0, 
e l O  n ~ m  n s * e v ( n ,  Lonj) 
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respectively. Then (2.19) will follow from the facts 

sup Ph(S) <e.O(~ ) and sup Ph(S) <e.O(~ ) 
~.,Lo.j~ ~(r(S))= ~.~.+,.,Lo.j} ~(r(s))= 

which we also will show. 

Construction of F. Let a path S=(Sk)keV(n, [On]) be given and consider the 
times 1 < t x < t 2 < . . .  < t,._< n -  1 (with some n* < n -  1) such that St~ > St,_ 1 and 
k~,=@{xe{S~,_~+l . . . . .  S~,-1}: /(x)=0} is not zero for i = 1 , 2 ,  . . . ,n*.  Now 
delete the t~-th step of the path and replace it by k~ + 1 suited connecting upward 
steps such that the new path hits every site in {St~-~ + 1 . . . .  , Sty-1}. Perform 
this procedure for i=  1, 2 . . . .  , i~ until the length of the path is increased by 
exactly e, steps (the new path needs not hit every site in {St a + 1 . . . .  , St,,}). 
The local times of the arising path F(S)e V(n + e,, [0 nJ) satisfy '~(x, F(S))> l(x, S) 

for every x e Z .  There are less than (n+e,] sites x l ,  x2, ..., x~ e{r + 1 . . . .  , [OnJ 
\ e. / 

--r} such that some path SeV(n,  L0nJ) exists satisfying F(S)=F(S) and 
l(xi, F(S))=l>l(xi , 'd)  for i=1  . . . .  ,e, .  For  a given choice of Xa, . . . ,x~.,  this 
path S is uniquely determined. Now Stirling's formula yields (2.20). Since F 
removes at least e,/r steps and creates at last 2e, steps, we obtain a bound 
~(S)/~(F(S)) . . . .  /~ -2~~ <=Zh P m a x P m i n  , which is not bigger than e "~162 (Here Pmax and 
Pmi. denote the maximal and minimal value in {p~, ..., p~}, respectively.) 

Construction of F. Consider a path S~176 ., [0nJ). We are going 
to describe an algorithm such that the j-th step produces a path SJeV(n+e,  
- j ,  [0 n]). Afterwards we put/~(S~ '-. For  j =  1, ..., e, we perform the follow- 
ing procedure. If there is a smallest x e { r + l  . . . .  , [OnJ-r}  such that there is 
some k e n  satisfying x=S~ -1 <min{S~2~, i - t  Sk+ 1}, then replace the k-th and the 
(k+ l ) - th  step by one connecting step and call the resulting path SJ=(S~)k~N. 
If there is no such x, then S j -  1 is strictly increasing up to time n + e , - j .  In 
this case choose the smallest ke{2, .... n + e , - j - 1 }  such that Sk+J-ll --Sk-J-l--<rl - -  

and again replace the k-th and (k+ 1)-th step by one suited jump such that 
the resulting path S j is in V(n+e,-- j ,  [0 n J). If there is no such k, then choose 
the smallest k satisfying S~-+;2-S~2~<2r (or, next, S~+~-S~2]____3r, S~;}~ 
-S~2~ <__4r and so on) and replace the three steps k, k +  1, k + 2  (or the four 
steps k, ..., k + 3, respectively, and so on) by two (or three, or four, respectively) 
suited connecting upward steps. 

The ~,-th step of this algorithm replaces c(S) jumps by c (S ) -  1 jumps, where 
c(S)e{2, 3 . . . .  , [r/(r--O)J} is a suitable constant. (If c(S) would be larger than 
Co:=Lr/(r-O)J, then we would have Ok+co_qen-1 1--Sk-~n-l>(c01 -- 1)r for every 
k = 1 . . . . .  n -  Co, and it would follow that S"#- 1 > L0 nJ.) 

We may write F = F~ o o F~ o_ 1 . . . . .  /~, where F1 replaces (zero or several times) 
two certain steps by one jump and, for i > 2, the map F~ replaces (zero or several 
times) certain i upward steps by suited i -  1 upward steps. For  every i=  1 . . . . .  Co 

( n ) s u b s e t s { y ~ , . . . , y l } o f { r + l , . .  LOnJ-r} there are less than (c o -  1) e, (c ~  1) e, " 
(L0.j) 

(with l<(c o 1)e,) and less than Coe . subsets {Xl , . . . ,Xk}  of 
\Cot , /  
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~n 

{r+ 1 . . . . .  IOn J-r}  (with k<coe,) such that there is a path Sin  U V(n+?, [On]) 
7 = 1  

satisfying ~(S)=~( /~_I( . . . (~(S~ and l (x , ,S)=O<l=l(x , ,~(S)) ( for  
7=1  . . . .  , k) and l(y~, S ) = l > 0 = / ( y ~ , ~ ( ~ ) ( f o r  7 = 1  . . . .  ,/). If k, l, {Xl . . . .  ,Xk} 
and {yl, ..., y~} are given with this property, then the path S is uniquely deter- 
mined since the algorithm ~ works in a strictly increasing way and can be 
followed back. Now (2.21) is obvious by using Stirling's formula. The fact t ha t  
/~ changes the probability not too much is analogous to this property of F. []  

The claim (2.19) implies the invariance of the limit (2.15) under perturbations 
of size o(n) in the first argument of V. A similar proof applies to the perturbation 
invariance in the second argument. Since the manipulations which we performed 
to get from (1.3) to the reformulation (2.15) do not affect this invariance, we 
can state, for future reference, the following corollary. 

Remark 2.22 The limits (1.3), (2.12) and (2.15) are invariant under perturbations 
of size o(n) in n and IOnJ. In particular, for sequences (e,), and (3,), in ;g which 
are o(n), for every h>0 ,  c > 0  and OE[c, rcJ, we have: 

c~ (O) =lim l n 

0 < S  1 . . . . .  S[cnj+6n-1 <Skcnj+~.=lOnJ-l-en). 

3 Analysis of the variational formula 

Let further on h>0 ,  r > 2  and 0E(1, r) be fixed. We will show in this section 
that the infimum in (2.10) is a uniquely attained minimum, and we will analyze 
the minimizer v~ by variational techniques. This will lead to a characteriza- 
tion of ~ (0) in terms of the Frobenius eigenvalue 2h (b) of a certain one-parameter 
family of non-negative primitive matrices A b which we will introduce now. Recall 
the definitions (2.3) and (2.5). 

3.1 Eigenvalue properties 

For bElR and A, A t e  define 

(3.1) Ab(A, .4 )=~ Qh(A' 
4) ebg(A,ft) 

W 
if g (A, .d) < 1, 
else. 

The matrix Ab:=(AD(A, A))A,f4~E has non-negative components and is primitive 
by Lemma 2.6. By 2h(b) we denote the Frobenius eigenvalue of Ab, i.e. the only 
eigenvalue with positive left and fight eigenvcctors which we denote by r~, 
v~E(0, oo) ~, respectively, and we assume them to be normed, i.e. ( ~ ,  z ~ ) = l  
(where < . , .  ) denotes the standard inner product on N~:). Since the representation 

(3.2) 2h(b ) = lim (A~(A, A)) 1/" (bElR) 
n~oo  
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holds independently of Ar ([9, p. 200-201]; note that A b is aperiodic since 
it is primitive), the function )'h is analytic in a neighbourhood of ]R (use Vitali's 
theorem). The eigenvectors ~ and z~ are unique if we determine some fixed 
z~(A) to be 1. Their coefficients are differentiable with respect to the variable 
b as can be derived from elementary considerations. 

We compute the derivation 2; of 2h: For br we have 

2'h(b) = ~ ~--~ (z~(A) Ab(A, 71) z~b(Tl)) 

A,AeE 

A e E  

= <z~, A; "c[,> + 2h(b) ~ b  <'ct' r~'> 

where the matrix A; is given by 

A)"=d-db Ab(A' 71)=fAb(A' ~) if g(A, 4 ) =  i, A'b(A, "to if g(A, 4)~{0, 2}. 

By [9, Ex. 1.11], 2h is strictly increasing with 

(3.3) lira 2h(b ) = + o% lim 2h(b)< 1. 
b ~ + ~  b ~ - o ~  

We will show now the log-convexity of 2 h, i.e. the monotonicity of 2~/2h: Because 
of (3.2), it suffices to show the convexity of the mapping b~--~logA~(A, A) for 
every A~/~ and nEN. The second derivative of this map is easily seen to be 
positive by writing out the n-fold matrix product and symmetrizing the sum 
which arises. We will see in the sequel that 2~/2h is not constant, and, by analyti- 
city, the strictness of the monotonicity will follow. 

3.2 Minimizer and positivity 

Since Ih is finite and continuous on the compact set 

Meo :={v~Mo] Qh(A, 5 ) = 0  =~ v(A, 4)=0},  

the existence of a minimizer in (2.10) is obvious. Note that lh = + oe on Mo\M~ 
For applying variational techniques to any such minimizer, the following is 
important: 

Lemma 3.4 Every minimizer v~ of Ih on Mo has the following property: 
For every (A, 471) in ~z satisfying Qh(A, 4 ) > 0  and g(A, A)=< 1 it holds v~ 4)>0.  
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Proof We write v instead of v ~ The 1emma will follow by induction from the 
following fact which we will prove now: For every A1, A2, 81, 82e/72 satisfying 
v(A~, ~1) Qh(Az, 8a) Qh(A1,82)>0, g(A2, 81)<=1, and g(A~, 82)<1 it holds 
v(A2, A I ) > 0  and v(A1, A2) >0. 

Let A1, 81, Az, A2 be given as above, and we assume that 
v(A1, A2) v(A2, 81)=0.  We will construct a function t:/~2 ~ R  such that 

(3.5) ~ t(A, 8 ) = 0 =  ~ g(A, A) t(A, 8), 
A , A ~ E  A , J I e E  

(3.6) ~ t(A, 8 ) =  ~ t(8, A) for every Ae/~, 

(3.7) t(A, 8 ) > 0  =~ (Qh(A, 8 ) > 0  and g(A, 8)<= 1), 

(3.8) t(A, 8 ) < 0  ~ v(A, 8 ) > 0 ,  

(3.9) t(A~,82)>0 and t(A 2,81)>0. 

Then, for small e>0,  the measure v~:=v+et is in Mo and satisfies 
v~(A1,82) v~(A2, 81)>0  and Ih(v~)<Ih(v), as we will see now. We write f(x) 
= x log x and use the inequalities (x - y) ( 1 + log y) < f (x) - f  (y) < (x - y) (1 + log x) 
for 0 < y < x .  For sufficiently small e > 0  it holds with suitable constants 
q ,  c2, c3, c4, cs ~]R (without loss of generality we assume v(A1,82)= 0): 

Ih(v~)--Ih(v)= --~ ~ t(A, 2) log Qh(A, 8) 
A,]I 

+ ~ I f  ((v + e t) (A, 871)) - f  (v (A, 871)) 
A, Jl :v(A,A_) > 0 

i 

-- ( f  ((~ + e t) (A)) - - f  (~(A)))] 

+ ~ (f(e t(A, 8))--f(e t-(A))) 
A,~l :  ~(A) = 0 

+ ~ [f(e t(A, .3))--f (07 + e t) (A)) + f  (g(A))] 
A, ~1 : g(A) > 0 = v(A, A) 

5F'C1-[-~C2-[- t3C3"]-I~C4-]-  E f(et(A, 8)) 
A, A:  g(A)  > 0 = ~,(A, ~1) 

<e(c 1 +C2+C3-1-C4)+C5~10g~ 
<0. 

(Note that c 5 is positive since {(A, 8): f (A)> 0 = v (A, 8)} is not empty.) 

Construction of t. First we show that there are n e N  and A* . . . . .  A*e/~ satisfying 
v(A*,A*+I)>O for i=1,  n, where we put * . -  * �9 .., Ai ---A,mod,) for i~Z. Take some 
pair (#1, #z)~/~2 such that v(/~l,/~2)>0. If p~ . . . . .  #i are already constructed, 
then choose #i+1~/~ such that v(#~,#~+1)>0 (this is possible since 0<,7(#~) 
= ~ v(p~, #)). Continue until some p~ is repeated in the j-th step. Then (#~ . . . . .  pj) 

has the demanded property. 
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It is important noting that ~ g(A*, A*+ 1) is positive. This follows from the 
i=1 

fact that Qh(A*, A*+ 1)> 0 (otherwise/h(V) = q- ~ )  which leads, by (2.4), to 

and 

q j ,  k + 1 . ~ -  �9 �9 �9 

j=l j=t 

~ ~,(i+ 1 3 .  ~ ~(i) .a_ lq(o = j+  1 q j , k  "-r lqti+ 1)=j ~ q j + l , k  ~ 

k=l  k= l  
( j = l  . . . .  , r - l )  

if A * -  r qr --((qj, k)j,k=l ....... In the case g(A*, A*+0=0 for all i we would get, 
by induction, ~ ( 0 - n  for all j, k =  1, r and ir and then a contradiction q j ,  k - - ~  . . . ,  

would follow by considering q(~). 
Next, by Lemma 2.6, we may choose A~, i �9 .... A~_1r for i=1,  2 such 

that Qh(A~, A ~+ 0>0  and i i g(Ak, Ak+O<l for k=0 ,  1 . . . .  , 3 r - 1  where we put 
A~,=A2, A~:=A1, A2:=.41, and AZr:=A2 . Now take positive numbers a, b, 
and c and define 

-a=t (A* ,  A*+I) (i= 1, ..., n), 

b=t(A~, A~+I) (i=0, ..., 3r, where A3~r+ 1 :=Ao ~) 

c=t(A{, A2+O (i=0, ..., 3 r, where A~r+l :=A~). 

(If t(A, A) is doubly defined for some (A, ~)~/~2, then this is to be understood 
to add up as often as it is defined.) 

For every other pair (A, ~)z/~2 set t(A, A)=0. The conditions (3.6) through 
(3.9) are satisfied automatically, and condition (3.5) reads as follows: 

an=(b+c)(3r + l) 
and 

n 3r 3r 
a ~ g(A*, A*+ 1) = b ~ g(A~, A~+ a) + c ~ g(A 2, A2+ 0. 

i=1 i=0 i=0 

Of course, we can choose A1 . . . .  , A~r-1 and A 2, ..., A2r_l in such a manner 
that the coefficients for b and e in the second equation are different. So it 
is possible to fulfil condition (3.5) by choosing suitable a, b, c > 0. [] 

3.3 Variations and identification of the minimizer 

Now we can apply variational techniques to any minimizer v ~ of I h on Mo: 
Let telR ~ satisfy the conditions 

(3.10) t(A,.~)=O if (Qh(A, 4 ) = 0  or g(A,A)>2),  

(3.11) t s  t3-g, t3-B A (Aeff~), 

where 3_ refers to the standard inner product <'1"> on IR ~2, l elR ~2 denotes 
the constant function a n d  BA~]R ~2 is defined by BA(A1, AZ)=6AAI--OAA2 for 
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A1, A2G/~. For such a function t the measure v~,=v~ is in M o for e e ~  
with small [~l, and it follows 

where 

(3.12) 

t v ~ 71) log F0(A ) Qh(A, 71) 
u(A, A)'=t0 

if Qh (A, 71) > 0 

else. 

Hence, there exist constants a, b, c A (for AE/~) such that 

i.e. 

(3.13) 

u = a + b g +  ~ r 
A e i ~  

u(A, 71) = a + b g(A, 7 1 )  -~- C A - -  C 54 - 

for all A, 71e/75 satisfying Qh(A, 71)>0 and g(A, 71)< 1 

or, equivalently, 

v~ 71)=~~ Ab(A, 71)e-C~e a for all A, 71e/~. 

The conditions ~ v~ A)=~~ ~ v(A, 71) for Ae/~ mean that 

"cl'.=(v-O(A)eCa)A~ and rr:=(e-CA)a~ 

are positive left and right eigenvectors of the matrix A b belonging to the eigen- 
value e-", respectively. By the fact v~ they are normed, i.e. {~, z r} = 1. 
So we have a = - l o g  2h(b ) and can assume zi= z~ and zr= z~. 

1 
The condition ~ g(A, 71) v~ 71)=-~ reads as 

(3.14) 
o -  <z~, &,~ , )  ,~(b) " 

So we see that the increasing and analytic function 2~/2h is not constant, hence 
it is strictly increasing, i.e. the function 2h is strictly log-convex. The last display 
determines a strictly decreasing function 

()~s 1 2~, 1 
(3.15) be ,=  ,~h - . (1, r ) - - ,~ , ,  T~ (b~(O))=~.  

(Now it is clear that the minimizer is unique.) From (3.12) and (3.13) one deduces 
easily that (1.5) holds. In particular, ~ is strictly concave and analytic. Since 
the r.h.s, of (1.6) exists in (1, r) by (3.3) and since it is obviously a zero of 
.~', the strict maximum point O(h) of ~ in (1, r) satisfies (1.6). As can be seen 
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from the definition (1.3), it is maximal for ~ on the whole interval [-0, r]. From 
the fact 

(3.16) ~,(O)=Jo(O)+hO--logZh (h>O, 0~[0, r]), 

which is implied by our choose of step distribution of the path, it follows that 
Jo is analytic and strictly concave, too. The equation ,7;(0)=0 has a solution 
0=O(0)  in (1, r) as can be derived from (3.16) and the second line of (1.5) using 
the fact that 2~<2h. Furthermore, O: [-0, oe)~(1,  r) is strictly increasing and 
analytic, as is seen from the representation 

(3.1 7) O (h) = (J~)- t ( _ h) (h ____ 0). 

From this last display it also follows the fact that lim O(h)= r. (Note that, in 
h t o e  

particular, it follows limJ~(0)= - ~ . )  So we proved Theorem 1.4 if we define 
0 ] ' r  

O (h) to be the maximum point of ~.  

4 Proof of Theorem 1.1 

In this section we will prove 

Proposition 4.1 For h>=O, OE[O, r] the limit (1.2) exists and for e > 0  it holds 
max {Jh (0): ] 0 -  O (h) l > e} < ~, (O (h)). 

During the proof, it will become clear that the limit (1.2) is invariant under 
perturbations of size o(n), like the limit (1.3). So it follows 

Corollary 4.2 For h > 0 it holds 

lira 1 log Ph(T > n) 
n ~ o 9  n 

= sup Jh(O)=Jh(O(h)) 
0 e [ O , r l  

(=  -2~l(1)  for h > 0  by (1.5)). 

Theorem 1.1 is implied as follows. For  e > 0  and h > 0  one obtains from scaling 
arguments like those which are performed in the end of the proof of Proposi- 
tion 4.1 that 

lira -1 log Ph T > n, max -- O (h) > 
n ~ o o  /r/ k =  1 

<sup{cJh(O)+(1--C) ~(O(h)): c~[e/(r-O(h)), 1-1, IO-O(h)l>e}, 

which is strictly smaller than Jh(O(h)) by Proposition 4.1. So we see that 
IP, h({f~ C [0, 11 [ II f -  tO<h) LI ~ > ~}) decays exponentially fast towards zero for 
n--+ov. Taking the symmetry of IP ~ into account, we see that the same fact 
is true for lP~ C [0, 1-1 [ ] I f -  to(o)[[ 00 + I [ f -  t-o(o)[I ~o >e}), and this implies The- 
orem 1.1. 
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Proof of Proposition 4.1 The notion path is used in the sequel for any random 
or nonrandom, finite or infinite sequence in Z with increments in { _+ 1, ..., _+ r}, 
not necessarily starting in 0. Where no ambiguity is possible, we use also the 
symbol (So, ..., S,) for a nonrandom path. 

We will clap parts of self-avoiding paths which arrive at [OnJ at time n 
in such a way that the clapped path runs within a box and that we can control 
the size of this box. 

Because of (3.16) (which is, of course, valid for Jh, too), it suffices to handle 
only the symmetric case, i.e. we assume h=0 .  The first step is to show that 
the main contribution to the self-avoiding paths (S O . . . .  , S,) satisfying S o = 0  
and S , = [ 0 n ]  comes from those paths which cross the two lines between 0 
and 1 and [0 n J -  1 and [0 nJ, respectively, exactly once. 

Lemma 4.3 For O~ [0, r] and every two sequences (~,), and (e,), in 7Z which are 
o (n) it holds 

Po(T>n+6, ,  S,+a.=[OnJ+e,) =e~ Po U(n+6,+i,  [OnJ+e,) , 
i=O  

where, for n, k~lN, 

U(n, k):={T>n, 3 nl, nze{1, ..., n}: S a . . . . .  S.,_ 1 <0,  

S , , , S , , + I  . . . .  , S n 2 E { 1  . . . .  , k} ,  S n z + l ,  . . .  , S , _  l > S " = k } .  

Proof We perform the proof only for 6 , = e . = O ;  it is clear that the insertion 
of the perturbations changes nothing. For  a self-avoiding path (S o . . . . .  S,) satisfy- 
ing So = 0 and S, = [0 n] we consider the times 

a o = O < z l < a l < ~ < a E < . . . < z k < n  withsome k~{1 . . . .  , r - l } ,  

satisfying S~i_~ < 0 < S~i and S~,_ 1 > 0 => S~,. We will construct a path (So . . . . .  S,) 
or (So . . . .  ,S ,+ l )  by reorganizing the order of the 2 k - 1  parts 
(S . . . . . .  , S~,21_0(i=0 . . . . .  k - l )  and (S . . . . . .  , S ~ , _ 0 ( i = I  . . . .  , k - - l ) :  We delete 
the connecting steps between these 2 k parts (i,e. including the last part), bring 
the 2 k - 1  parts mentioned above into a new order (first the excursions below 
0, then the excursions above 0) and insert new connecting steps. In case k => 3 
it is possible to leave the length n of the new part unchanged by choosing 
a suitable order, in case k = 2  the length perhaps must be increased by one 
by inserting two suitable steps between (S . . . . . .  , S~_ 1) and (S . . . . . .  , S~1 _ a)- 

An analogous procedure is performed on the line between [ 0 n J - 1  and 
2 

[OnJ, so it arises a path S*~ U U(n+i, [0nJ). Of course, the probabilities of 

(So, ..., S,) and (S*, * .... S,+~) (with i=0 ,  1, 2, respectively) are equal on the 
exponential scale, and the number of paths which can be mapped onto a given 

2 

S* ~ Q) U(n + i, [0 n]) is of polynomial order in n. [~ 
i = 0  

For  n, k e n  define 

n 
W(n,k )={T>n,  S1 . . . . .  S n _ l < O ( S n ,  and m i n S i = - k  }. 

i = 1  
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Then the first part of a path lying in U(n, [On]) looks like the beginning of 
a path from W(~, k) with suitable ~, ~. We introduce the function 

(4.4) R: 0, ~ [ - o v ,  0], R(0)..=lim 1--1ogPo(W(n,]_OnJ) ), 
n--+ ao n 

and it will become clear along the way that this limit superior is a limit indead 
and unchanged by inserting perturbations of size o(n) in the two arguments 
of W. The intuitive idea for realizing the fact that R(O)<]o(20) is the following: 
If you clap down the first part of a path being in W(n, [0n]) (more exactly: 
the part between time 0 and the minimal point), then you obtain (after suitable 
lifting) a path lying in V(n, [20nJ+o(n)). Note that this treatment does not 
change the path's probability under Po- Since the clapped part of the path avoides 
the rest of the path, one can expect that this clapping-lifting map is far from 
being surjective, so we should get a strict estimation (Note that both R and 

take the value - ~ on [-0, 1)): 

Lemma4.5  We have R(O)<Jo(20) for Oe[2 ~) 

Proof Let S=(Sk)k~o be in W(n, [On]) and k 'e{1 ,  ..., n} be the index with 

Sk, = min S k = --[0 n]. We first assume that k*=  and explain the general case 
k=l 

later. The paths (S~, 1 �9 .., S,-L,/@"=(Sk,--Sk,, Sk,+I--Sk,, ..., S,-Sk,)  and 
.... Sk,/zj)=(Sk,--Sk,, Sk,-1--Sk . . . . . .  So-Sk*) can be seen as elements of 

\ 

V([~l+o(n), [0 n J + o ( n ) ) a n d  have the same probabilities as (Sk . . . . . .  S,) and 
/ 

(So, ..., Sk,), respectively. By regarding these paths as two copies of one random 
walk, we will derive a variational formula for 

R1/2(O),=lim -1 logPo W(n, [0n])c~ SL,/2j=minS 
n~oo rt t i=1 3 /  

which acts on/~2 x ~2 rather than on/~ x/~. Let, for n, k e N ,  

V| k)..={((S1)~, (S2),)eV(n, k)2[SI#S 2 for i , j= l  . . . .  , n - l }  
1 . . . . .  Ak- i), ( A2 . . . . .  A 2- 1))e F/(n, k)2l 

g(A~_ ~, A~)+ z A2)=< 1,. n-- l} ,  g(A~_ 1, 1 for x . . . .  
mo ~  := {f e~/gl (/~2 x/~2) [ 9(1)~M20 , "~(2) ffm20 , 

Z ~(Y, ~')= }-', t~(Y,, Y) for Ye/~ 2, 

9((A 1, Az), (~1, ~2)) = 0  if g(A 1, ~1) +g(A2, A2)_-> 2}, 
where 

r A1, 81) := 2 v(( At, A2), (~1, .~2)), 
A 2 , y I 2 S E  

ca)(A2 ' ~2)..= Z ')(( A1, A2), (~1, ~2)), 

and 
,)((A 1, A2), (~1, ~2)) 

[h(~) '= Z Q((A 1, A2), (~1, ~2)) log ~(A1 ' A2 ) Qh(A1,/~1) Qh(A 2, ~2) �9 
A I , ~ I 2 , A Z , j I 2 ~ E  
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So we can perform the same procedure as in the second section and obtain 
(recall definition (2.14) and compare (2.12), (2.13), (2.15), and (2.10); take a fixed 
h>0): 

R1/2 (0) = - 2 0 h + log Zh + lim I log Ph | Ph(V | 2 ([n/2J, [0 n J)) 
n ---~ oo 

= - - 2 0 h + l o g Z h +  lim 11og ~ e Q(A')+Q(A2) 
n--*oo rl (A1,A2)~| 

= - - 2 0 h + l o g Z h - - O  inf Ih(f). 
~ M o  ~ z  

(The first two terms in the last line stem from inserting the drift and clapping 
the first part of the path.) So we see in particular that the limit superior in 
the definition of R1/2(0 ) is a limit. An application of Jensen's inequality to the 
function x ~ x  log x shows 

(4.6) > - ^ ( 1 )  Ih(f)=Ihtv )+Ih0  9(2)) for "0eM0 @2 

with equality if and only if 

-2 r A~, 21) r A2, 22) ~(A ~, A 2) 
(4.7) f((A *, A2), (22, A ))= ~ r ~  ~rZ~(A2 ) 

for every A 1, 21, A 2, 22e/~. Because of the continuity of [h on the compact 
set Mo ~ 2 n {~)][h (')) < oe } there is some % e Mo ~ z satisfying Ih (%) = inf Ih 0)). We 

~ E M ~  2 

will show now that either the inequality (4.6) is strict for % or that r 1) or 
r 2) are different from v 2~ the unique minimizer of Ih on M2o. (Then Lemma 4.5 
follows via (3.16) from the estimation 

R,/2 (0) < - 2 0 h + log Zh-- 0 (Ih (')(O 1)) + Ih (r 

< - - 2 0 h + l o g Z h + J h ( 2 0  ) 

= Yo (2 0).) 

For every 9~M0 Q2 it holds 

(4.8) 0 =  ~" O((A ~, A2), (21, 22)) g(A 1, 21 ) g(A 2, 22). 
A 1 , j I 1 , A 2 , ] I  2 

If v 2~ v0 - v0 and if we would have equality in (4.6) for %, then, by (4.7) 
and (4.8), we would get 

( vZ~ Z g ( A 2 , ~ 2 )  ~2O(A2 ) ] 
0=A~.A2Z g(Al 'Aa) f2~ ] -7~2 

But, by Lemma 3.4, the two terms in the brackets are positive for every A 1 
and A 2, respectively, which is a contradiction. 
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Fnl 
Now we remove the assumption k * = 1 2 / i n  the beginning of the proof. In 

the same way as above, one derives a variational formula for 

Re(0).-= lim,~o~ -nl l~ P~ (W(n' [OnJ)~ ~Stc"j=m]n ~= ~ 

for c~[O/r, 1-O/r]. This limit is unchanged under perturbations of size o(n) 
in [cnJ and [OnJ as can be shown by adapting the proof of (2.19). So it follows, 
by estimating the arising variational formula in the same way as above, 

R(O)<= sup Re(0)< max (c Jo (O) + (1 -- c) ~ ( 1 ~ _  c) ) ,  
c E  [O/r ,  1 - O/r] c �9 [O/r ,  1 - O/r]  

which is not bigger than Jo(2 0) by concavity. Lemma 4.5 is proved now. [] 

We finish now the proof of Proposition 4.1. 
Let two sequences (3,), and (e,), in 2g be given which are o(n) and let (Sk)k~No 

be a path in U (n + 6,, [0 n] + e,). Then, up to lifting and lengthening by a suited 
infinite path, the parts (So, ...,Sk,) and ( - S k  . . . . .  , - S , + ~ , )  are elements of 
W(kl, [0~)kl]) and W(k2, [O(2")kzJ), respectively, and the part (Ski,--., Sk2) is 
an element of V(k2-kl, [OnJ+o(n)) with suitable kl, k2E{1 .... , n+6,} and 

0(,) a(,)=[a r ]  By passing to a subsequence, we may assume that ki = [ci nJ + o(n) 
1 'v2 " t" '  21" 

( i=1,2)  for suitable cl,  Cze[0, 1] with c 1 + c 2 < 1 - 0 / r  and 01") ---, 0ie]0, ; I (i 
k ~ 

= 1, 2). Using the invariance of the limits (4.4) and (1.3) under o(n)-perturbations, 
these considerations imply that 

1 
lim 2_ logPo(U(n+6, ,  [OnJ+e,)) 

. ---~ O0 n 

<--max@lR(O~i+(1-cl-c2)J~ -c~0 ]+c2R(0c~22)-c2/ 

c2~[0, 1], cl+c2<=l--O/r, Oi~[ci, clr/2] (i=1, 2)~, Cl, 
J 

where we define 0 R [ ; )  to be zero. The r.h.s, of the last display is not bigger 

than lim 1 log Po(U(n+6,, DOn] +e,)), since this maximum ranges over the ex- 
n - * o o  n 

ponential rates of the Po-probability of certain path classes which are included 
in U(n+6,, LOnJ+e,). Using Lemma4.3, the existence of the limit (1.2) and 
its invariance under perturbations of size o (n) are proved and its value is shown 
to be the r.h.s, of the last display. The strict estimate in Proposition 4.1 follows 
from this using Lemma 4.5 and the strict concavity of Jo. [] 
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