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1 Introduction 

Regeneration methods have a long history in the study of Markov chains, start- 
ing with Doeblin [D] for chains on countable state spaces. The general state 
space case has received attention in more recent times, with the development 
of regeneration structures for MC's in the setting of Harris and Orey (see Orey's 
book [O], and [A-Ne], [Nul l ) .  One of the limitations of this theory is that 
it requires the existence of so-called C-sets (see [O]) or minorizations, which 
may not always exist, or whose existence may be hard to establish. Since the 
existence of a regeneration automatically provides us with a tool for proving 
limit theorems, it is of interest to develop such constructions for processes not 
known to have reference measures with associated C-sets and minorizations. 

One such process is the infinite memory chain (IMC), namely a sequence 
of random variables {X,;  n=0 ,  1,...}, taking values in a countable set 5 ~ for 
which there is no f ixed  m such that 

P { X , + ~ ' [ X  o, .. . ,  X , } = P { X , + , + ' I X , _ m + ~ ,  ..., X , }  

for all n>m.  Such processes have been extensively studied in earlier works 
going back to [D-Fl  under the name "chains with complete connections". (See 
e.g. [I-G, N, B, L] for further references.) 
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The sequences {X,} will in general be non-Markovian, but will, under some 
hypothesis, admit a regeneration structure. The process {( .... X , _ I , X , ) ;  
n=0,  1 . . . .  } taking values in the sequence space ~ z - ,  ( Z - = {  .... - 2 , - 1 , 0 } )  
will be Markovian, but will not, in general, have a regeneration structure. Both 
processes will be uniquely determined by an initial state in 5 Pz- and the transi- 
tion mechanism described below. We are interested in both these processes 
and in their relationship. 

Our attention was drawn to these chains through an interesting paper by 
Lalley [L], who proved the existence of a regeneration for a class of IMC's. 
Shortly thereafter there was another interesting paper by Berbee [B], which 
did not refer explicitly to regeneration, but used random times and coupling 
in a similar spirit. These authors also pointed out the relevance of IMC's to 
the construction of Gibbs' measures. 

In the present work we only require memory to decay along a single recurrent 
path of observed history of the process. Under various conditions such as conser- 
vativity there will be many recurrent paths, and our theory then gives a decompo- 
sition of these (and their domains of attraction) into ergodic classes, each with 
an associated regeneration structure and an (extremal) invariant measure on 
~ z  (Z = the integers). 

The hypothesis in Lalley's, Berbee's and our papers differ in several respects. 
Lalley works with a finite alphabet, uniform memory loss, and stationary 
sequences. Berbee allows countably infinite alphabet, but requires the transition 
probabilities to be bounded from below by a positive constant, as well as uniform 
memory decay. As indicated above, non-uniform memory decay is allowed in 
our model. Our construction draws on ideas from our earlier work [A-N, Nul l ,  
and is similar in spirit to Lalley's but there are differences in the constructions. 

As with any sequence of r.v.'s { X , ; n =  1, 2 .... }, the IMC induces a measure 
P(.) on 5ez+ ( Z + =  {1, 2,...}) (actually a family of such measures is generated 
depending on initial measures) and the process can then be identified with the 
deterministic shift map on 5 Pz +. 

Section 2 contains notation and definitions. Results are summarized in 
Sect. 3, the proofs are in Sect. 4. 

There are many examples of infinite memory chains and their applications 
in [I-G] and [N]. For an application to number theory, see e.g. [K]. An example 
illustrating our particular set-up is in Sect. 5. 

2 Notation and definitions 

Let 50 be a countable state space, 

x n  ~ - (  X . . . . . .  Xn) , X i E  ~ , - -  O0 <-re<n< oe, 

5~,~= {X'm: X~eZz, i=m,  ..., n}. 

Thus, for example 
~--0oo : {( . . . .  X 2 , N _ I , X O ) }  

= { ( x l ,  x2 . . . .  )}. 

We will sometimes call Y the "alphabet" and x~ a "word".  
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If x=x~ and y=y~, with k < t '  and re<n, write xy=(xk . . . . .  xt, y . . . . .  , y,). 
I f y = x T + l  with E<n,  then xy=x~,. 

The datum of our model is a stochastic transition kernel g: 50~ x 5 P --*I1, 
g(x ~ _ ~, x 0 =  1. We consider a process {X, ; - oo < n <  co} taking values in 

x l e 5  a 

5 P with time homogeneous transition probabilities 

(2.1) P{X,+l=xl lX"_~o=x~176 for all n. 

Intuitively, think of 50~ as the "past".  By iteration g induces 

(2.2) 

Let 

(2.3) 

,+N_ u X"_~ P { X . + l  - x l  I =x~176 

p x ( x 2 + , e . ) = G ( x O _ ~  . ) = p { x ~ + l e .  . _ 0 , ]X-~-x -oo} ,  where x=x~ 

Note that the process { X , ; n = 0 ,  1,...} on 5 e, is not Markovian, but {X"-~o} 
is a Markov chain (MC). 

Definition 1 Call ,=e~ a recurrent point for g, if there exists an 
x=x~176 such that for every m=  1, 2, ... 

(2.4) Px {X,"_ m+ 1 = c~~ m+ ~ for infinitely many n > 0} = 1. 

Let R = the set of recurrent points. If (2.4) holds we will say that x is attracted 
to c~, and define the attraction set of c~ by 

(2.5) B~ = {x = x ~ _ ~ : x is attracted to c~}. 

The situation is quite analogous to the standard setup for Markov chains. The 
kernel g ( ' , ' )  plays the role of the transition function, the point x=x~ is an 
"initial po in t ' ,  and our definition of recurrence is the standard notion of topolog- 
ical recurrence to the neighborhoods of e for the MC {X"_ ~}, with open sets 
being the cylinder sets in 50_0oo. Under  various standard conditions there will 
be lots of recurrent points. For  example if {X"_ ~ } is (topologically) #-conservative 
for some measure /~ on 5P2oo, (in the sense that for open sets (9c5a2oo, one 
has P~{X"_~e(9 i .o .}=l  for /z-a.e. xe(9), then since the base for the topology 
is countable, almost all points in Supp (/~) are recurrent. The B~'s will be the 
analogs of the usual ergodic classes. 

Continuity conditions on g( ' , . )  are expressed in terms of the "m em o ry "  
of the process. Namely, a function f :  5e_~ --. IR is continuous (at yO_ ~) if 

(2.6) sup{lf(x~176176176 as n ~ o o .  

The simplest "loss of memory"  is just the condition that 

(2.7) g(. ,  x0 :  5C~ --, IR is continuous in the sense of(2.6) for each x 1 e 5  #. 

A stronger condition was imposed by Berbee [B]. He lets 

(2.8) e - ' - =  inf f g  (x~ oo,~~ Yl)Xl) : xl_, = y l } ,  
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and requires ~ r,  < oo or ~ exp - ~ r = c~ for var ious  of his results, 
n = l  \ i = 1  

The cont inui ty  condi t ion we will need in the present  work  is defined in 
te rms of the memory of the process  {X,} along the sequence ~=~~ , which 
we quant i fy by 

(2.9) 
N 0 Z N . . . .  f g  (x_~,  ~) 

Ym re) = l m  ~ ~ "  all x ~ oo, yO_ o~ such tha t  

_ o 1, all z~, and  all N = 1, 2 . . . .  ; .  XO--m+ 1 =yO--m+ 1 --O:-m+ 
) 

Definition 2 We will say tha t  g loses memory along ~, or for short ,  satisfies 
condi t ion M(a),  if 

(M(~z)) ym(c~)/~ 1 as m ~ o Q .  

Remark. This is just  equicontinuity of log gN(., Zl N) at e, over  z~ ~ 5r N = 1, 2 . . . .  

3 R e s u l t s  

The  purpose  of  this pape r  is to s tudy regenera t ion  proper t ies  of  the o o - m e m o r y  
chain. 

Definit ion 3 A regeneration structure for {X, ; n = 1, 2,. . .} is a sequence of ran-  
domized  s topping times {T~; i = 0 ,  1 . . . .  } and  a measure  v on 5P~ ~~ such that  
(i) {Ti+ 1 - T/; i = 0 ,  1,...} are i.i.d, r a n d o m  variables,  
(ii) VTo vT1 T2 ~ o , ~ To + ~ , XT, + 1, ... are independent  blocks,  
(iii) P {X~+ 1 e-] T i = n, ~-O"} = v (-) for all i > 0, n >__ 0, where  go" = the a-field genera t -  
ed by (X o . . . .  , X,). 
Call {T~} the regeneration times and v( ' )  the regeneration measure. 

Theorem 1 Let ~ = e ~  be a recurrent point for g, and B~ be its attraction set 
as defined in (2.5). Let u = u ~  Let {X,} be the process generated by g 
and the initial point u. Assume that g satisfies condition M(a). Then there exists 
a regeneration structure for {X,}. 

Remarks about Theorem 1 (i) The  regenera t ion measure  v(.)  is specified in (4.3). 
(ii) The  simplest  examples  of  regenera t ion  s tructures  are the re turn  t imes to 
a fixed reference state for a M a r k o v  chain on a finite or  countab le  state space. 
Clearly regenera t ions  are not  unique. Even  for this simple M C  there will be 
m a n y  different regenera t ions  associa ted with re turn t imes to the var ious  states; 
and  there will in general  be o ther  regenera t ions  not  re lated to par t icular  recur-  
rent  points.  I f  the chain is not  irreducible, there m a y  be several ergodic  classes, 
and these can be associated with recurrent  points.  
(iii) A similar s i tuat ion prevails  here. T h e o r e m  1 is an assert ion abou t  a process  
{X,}. As in the M C  case, there is really a family of processes associated with 
var ious  initial points  in H = (.j B~, or  with measures  on  this space. The  t heo rem 

~ 6 R  

says tha t  there exist regenera t ion  structures for all of  these processes. There  
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is no claim of uniqueness. Even a single process {X,}, stemming from a single 
point u, may have many associated regeneration structures. 
(iv) The regenerations we construct are associated with recurrent points, and 
the recurrent point plays an intimate role in the construction. This will become 
apparent in the proof. We will refer below to regeneration structures and measures 
associated with a recurrent point o~. There is no claim of uniqueness, and there 
may also exist regenerations not associated with any particular recurrence point. 
However, we show in Theorem 2, that regeneration measures associated with 
recurrent points are either singular with respect to each other or are equivalent 
in the sense below. 

Theorem 2 Let  v and v' be regeneration measures associated with recurrent points 
and c( along which there is loss o f  memory. ( I t  may be that ct= ~' or ~=t = eL). 

Let  O ( x ~ ) -  - x 2 ~ denote the shift map on 5:1 ~ , and define the maximal measures 

~ =  ~ 2 - " v o O - "  and 0 ' =  ~ 2 - " v ' o O - " .  
r t=O n = O  

Assume that g satisfies M (c~) and M (e'). Then 
(i) 0 and O' are either equivalent or singular. 
(ii) Either B,  c~ B~, = (a or B~ = B~,. 
(iii) The number o f  attraction classes B~ is countable. 

Remarks  about Theorem 2 (i) The relation between a recurrent point and a 
regeneration structure is established in the definition (4.3) of regeneration mea- 
sure. 
(ii) The decomposition asserted in the theorem depends purely on g. The recur- 
rence points e and the sets B~ are defined in terms of g alone. The measures 
0 and 0'  of course are constructed from processes {X,}, but nothing is assumed 
about  ~ or ~9' other than that they stem from recurrent points e and e'. 
(iii) The assertion that ~ and 0'  are either singular or equivalent is made only 
for measures ~, ~' associated with recurrent points. There may be other regenera- 
tion structures with associated maximal measures, and we do not assert the 
"singular/equivalent" dichotomy for these. In the case of 9-irreducible Markov 
chains, all such maximal measures satisfy this dichotomy, but we leave it as 
an open problem whether this holds for oe-memory chains. 
(iv) It may be that e6B~ and hence that R - - H + O .  Theorem 2 gives a partit ion 
of H into attracting sets. (Recall R = the set of recurrent points and H = Q) B~.) 

~ffR 

Some remarks on invariant measures. The regeneration structure immediately 
yields an invariant measure on Yl ~, under the shift map. Namely, define a 
measure n + on 6~ ~~ by 

To 

~§ 2 1A(x2)dv(x?), 
n = l  

where To is the first regeneration time, v(-) is the regeneration measure, and 
1A(" ) is the indicator function. Then 7~ § is a o--finite measure and rc + = ~ +o 0-  a. 
Via the shift map, extend n + (') to a measure ~z on 5:~0, which will be shift 
invariant on 5P:~, and let n -  be the projection of ~ on 5:_~ Then ~ -  is 
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a o--finite invar iant  measure  for the M a r k o v  chain {X"_ oo}. These facts are t rue 
for any sequence {X,} with a regenera t ion  structure,  and  are not  par t icular  
to our  set up. 

The  quest ion of uniqueness of  invar iant  measures  is m o r e  complicated.  Ber- 

bee [B] has p roved  uniqueness under  his condi t ion exp - r = o% with 

r i defined in (2.8). B ramson  and Ka l ikow [Br -K]  have  shown (by a counter -  
example)  tha t  mere  cont inui ty  of  g in the sense of (2.7) is not  sufficient, even 
when accompan ied  by a s t rong mixing condition.  

In  our  setting, since there m a y  be m a n y  ergodic classes, there is clearly 
no uniqueness.  Any  mixture  of  (mutual ly singular) invar iant  measure  suppor ted  
by different B'~ s will be invariant .  

4 Proofs  

Proof of Theorem 1 There  will be regenera t ion  s tructures  associated with each 
class B~ and each initial poin t  u = u~ ~B~. Fix ~ and u in the following argument. 

F o r  each i, let {7,,,i; m = 1, 2 , . . . )  be a sequence satisfying 

(4.1) 0<7m,~/~1 as m - - * ~ ,  

with 

7,,,o =Tin(e) as in (2.9), 

and the remaining  7,,a's to be specified later. Since ~ is fixed t h roughou t  this 
p roo f  we m a y  not  a lways display it. 

Fix 0 < p < 1/2, and  let 

(4.2) mi=inf{m: 7m,i(a)>2p}.  

Since g loses m e m o r y  a long a, m~ < oo for each i. 
Recal l ing the no ta t ion  in (2.3), let 

(4.3) v ( ' ) = P ( ' [ X ~  = c~~ ~) = P ~ ( ' ) -  G (cq'). 

We  will p rove  tha t  v(-) is a regeneration measure for {X,}. 
Recall  u e B ~ = t h e  a t t rac t ion  set of  ~. The  p roo f  is based  on the fact tha t  

a suitable sequence of measures  on 5~ ~ can be split away  f rom G(u~ x] , . ) .  
Star t ing with the (fixed) initial state u = u ~ ~,  let 

n 0 1 } "  (4.4) to = in f{n :  X,_, ,o + 1 = ~-, ,o+ 

No te  tha t  to < oo a.s. since ~ is a recurrent  point.  Thus  

"z 0 (4.5) X~o- mo+ 1 = s ~ + 1. 

We abbrev ia te  

(4.6) X]  ~ m~176 
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Thus Zo is the first time that the sequence {X]} "sees" the word C~0_mo+,. In 
general, let 

(4.7) zi = inf{n: X."_ m, +, = sO-,,, +, } 

= "the first time that {X]} sees co_,,,+, ,, 

(Again -ci<oo a.s. since c~ is a recurrent point.) Let X ( i ) = X l ' - " ' = t h e  sample 
path of {X,} until zi-m~. Thus 

(4.8) 

Let 

(4.9) 

and 

(4.10) 

"c i _ _  $i - m i  z i 
X 1 - X ,  Xvi_rni+,=x(i)~~ , . 

P(~ 

Q(O) (x] ,-) = p(o) {x~+, e ' lX]  } 
n o = G(u ~ - co X l ,  ). 

Recall ( 4 . 5 ) ,  ( 4 . 6 ) ,  and let 

(4.11) P(1) ( . )=(1-p) -  1 [Q(~176176 

By condition M(c0, for all xgoo, y ] - ' ,  e~ i 

(4.12) 7" G(u~ Y"a-"c~~176 c~~ 1, ") 

<72, 1 G(u~ y"C" c~~ ,,.). 

I n  particular, taking m = t o o ,  n = t o ,  a n d  y ]  - mo = X ( o ) ,  

7mo G(  u~ co X (~ c~~ + , ," ) ~ G(x  ~ oo c~~ + , , ' )  ~ 72,0' G(  u~ co X (~ c~~ + , ,  "), 

and hence by (4.10) 

(4.13) 7,,0 Q(~176 c~~ + 1, ' )~-~ ~ G( a~ ~ , ') 

--<72,0' Q(~176 ~~ 1 , '), 

namely 

Q(~ x(~ ~~ + 1, ' )  < 72'o ~ (4.14) 7"~ v( ' )  

(Note that here we have non-random bounds for the random quantity in the 
middle.) Therefore p(1) is a probability measure on 5~ ~. Similarly, replacing 
mo by arbitrary m and X (~ by y]-," in (4.13), recalling 7,",o = 7,", 

(4.15) %n,o < QtO)(y]-m c~o + 1, ' )  < ,-  1 
= v ( . )  = ~ , . , o .  
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These inequalities will be needed later. In terms of the probabi l i ty  measure 
p(1), define 

Q(1)(X],.)=P(1) {X,~+16 . I x ] } ,  n= 1, 2 , . . . ,  

and 

p(2)(.) =(1 - -p ) -  1 [ Q ( 1 ) ( X ( 1  ) ~O_m 1 + 1, ")-- pv ( ' ) ] .  

(We cannot  yet assert tha t  P(:) is a probabi l i ty  measure.  This will follow from 
the lemma below.) 

We now proceed to define (p(0, Q(i)), i =  1, 2, . . .  inductively. Having defined 
(p(o, Q(i)) let 

(4.17) p(i+ 1)( .)=(1 _ p ) - i  [_Q(1)(x(i) c~o +1 , . )_  p v(-)] ,  

and 

(4.18) Q(~+ 1)(X] , ' )  = P('+ 1){X~+ 1 ~. IX]}.  

The  fact tha t  p(i)(.) are probabi l i ty  measures and the consistency of the above  
definitions follows from Lemma  1 below. 

Definition 4 Call a word y] P(~ if p(o {X] = y~} > 0. 

L e m m a  1 Assume that g satisfies condition M(a). Then for each i = 0 ,  1,2 . . . .  
there exists a (non-random) sequence {0<7,,,~; r e = l ,  2,. . .} ,~ 1 as m ~ oe such 
that for all n > m >__ 1 

(4.19) 7m,~< 

for all P(i)-observable y~-m. 

Q(i ) (y ] - , .  c~o + 1 , ' )  < _ 1 

v ( - )  =Y" '~  

The  p roof  of the lemma is at the end of the p roof  of Theorem 1. 
We have observed that  p(1) is a probabi l i ty  measure.  Proceeding by induction,  

suppose p(0 is a probabi l i ty  measure.  Then  Q(0 is a stochastic kernel, and by 
the lemma P(~+ 1) is a probabi l i ty  measure.  Hence we have 

Corollary 1 For all i = O, 1 . . . . .  p(i) are probability measures and Q(i) are stochastic 
kernels. 

The const ruct ion of the regenerat ion times and regenerat ion measure proceeds 
via a series of "cycles"  consisting of "s tages" .  Regenera t ion  occurs at the end 
of a cycle, after a r andom number  of these stages, s topped when a certain 
ou tcome occurs. A typical cycle is i l lustrated in the flow diagram below. 

Stage 0 Start ing with initial state u ~ ~o = u ~ 5C~ generate (X1, X2 . . . .  ) ~ 5P1 ~ via 
the kernel g (., "). Let  7m, 0 = 7,. (CO as in the theorem, e = eo_~ be the given recurrent  
point,  m o = inf{m: 7,,(e) > 0}, and 

(4.20) z o = inf{n > m o : X~ mo+ 1 = c~~ + 1 }- 

Recall 7,,o(e~ + 1) > 2p (by definition). No te  that  since e is a recurrent  point  

P { r o <  oo} = 1. 
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One cycle in the regeneration construction 

Time 0 
a(,,,. )=p(o)( . ) ~(.) 

511 

Time To 

T i m e  T 1 

or 

~_1r 

p(2}(.) T0-p) 

H(p) ,,(. ) 

Time ~'2 H(p) u(. ) P(~)(- ) T 0 - P )  

Time r 3 

O(o) ~-"%~o o+~,.)[ 

I tart as at time 0 with 
p(o) replaced by u 

H(p) 

t ~,(-) 

H(p) 

]Q(3)(. ,. ) I "(' ) 
f 

e t c .  

Colloquially,  {X"_~} first "sees the word ~~ 1 at t ime % ' .  The  condi t ional  
distr ibution of X~+ 1, given the history up to Zo, is 

- -  ~ x j ( O  _ _  0 ~ r n  - -  m o n - -  m o "*-'-n _ _  0 1 } "  (4.20) P{Xn+ l~ ' [Zo . . . . . . .  ~ - u - ~ , ~ l  = x l  ,~n-mo+l--C~-, ,o+ 

Referring to the diagram, we are now at the point  marked  by a heavy dot  
o.  

By (4.14) 

(4.22) t3(o)ty~o- mo .o  ~ 1  ~-,,o+ 1 , ' ) ~ 2 p v ( ' ) .  

Let  P(a) be as specified in the const ruct ion  of {P(~); i=O, 1, ...}. Namely  

(0) ~o - t o o  0 
(4.23) P(~)(.)= Q (X1 e - " ~  ) 

1 - p  
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By the corollary, p(l) is a probability measure. We may thus "split" 
Q(O) (X]o -,no s o_ ,,o + 1," ) into a mixture of two measures: 

(4.24) f v  (') with probability p, 
/P(1)(.) with probability 1 - p .  

Let us express this in terms of coin tossing and refer to it as 

Stage 1 Toss a coin with Prob (H)= p. 
(a) If (H), distribute X~+I  according to v(.). In this case To =r  o is the first 
regeneration time. Now start again as at time 0, but with the initial measure 
G(u,.) replaced by v. 
(b) If (T) at stage 1 of cycle 1, distribute X~+ 1 according to p~l). The conditional 
distribution of X~+ 1 is Q(1)(X(1)s~ + 1 ,'), where X (1) is the observed sequence 
up to time 771-ml. Now (conditioned on (T) at stage 1 of cycle 1) proceed 
at time "c I to 

Stage 2 Toss a coin with Prob (H)= p. 
(a) If (/-/) distribute X ~~ according to v(.), and we have regeneration at time 
77 1 . 

(b) If (T), distribute X~+ 1 according to pc2). The fact that p(2) is a probability 
(1) (1) o measure, and that Q (X s _ ~ + j , . )  can be split as indicated, follows from 

Lemma 1 and Corollary 1. Define rn 2 and 772 as indicated at the start of this 
section. 

The conditional distribution of X~~ is Q(2)(X(2)s~ Now (condi- 
tioned on (T) at stages 1 and 2), proceed at time % to stage 3. 

Proceeding inductively, suppose that the initial coin tosses at stages 1 . . . . .  i 
all come out (T). Then, defining mi and 77i as before, namely 

- - S  0 
~ i = i n f { n :  X"~-, . ,+ l - -mi+ 1}, 

the conditional distribution of X~+ ~ is 

Q") ( x  (~) s ~ ~,  + 1 , ') .  

One then proceeds to 

Stage i + 1 Toss the p-coin. Distribute X~+ a according to 

(4.25) ~fv(-) if (H), 
[p(i+ 1) if (r).  

(All coin tosses are independent.) If (H), we have regeneration at time "ci; other- 
wise start stage i§  2. 

T O = inf{zi : (H) at time 77i by p-coin}. 

The first cycle ends at To. 
The law of Xr~o+l is v. Now start again (the next cycle) at time To + l ,  

but with the initial measure G(u,.) replaced by v, and generate the next regenera- 
tion time T 1, and inductively To, T1, T2 . . . .  Due to the geometric probabilities 
produced by the independent coint tosses, it is easy to see that P{T~< oo} =1,  
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and the other properties required of a regenerative structure are satisfied by 
construction. 

This proves Theorem 1. [] 

P r o o f  o f  L e m m a  I For i=0,  (4.19) is just (4.15). Proceeding by induction assume 
(4.19) for arbitrary fixed i. By definition of Q(i) 

(4.26) Q(i+l)(y~-,, 0 P(i+l){Y nl-mO~O-m+l(-'~On(~ 
a - - m + 1 , ' )  - p( i+l ){yn l -mr  , 

and by definition of P(~+ 1) this 

o(1)(x(i) o~o ynl-m o~Om+ 1 n n-m 0 US0 (* ) ) - -  P ]~(Yl O~--m+lU) On(')) 

A_ 

Q(i)(X(i) O~_mi+ l ,  y n-m ~_,,+0 1)__pv(y]-m c~O_,,+1) 

c - - d  
a-- b (say). 

By the induction hypothesis (4.19) and the definition of mi 

(4.27) 2p < 
Q(~)(X(~) o 1 0[ m i + l , ' )  ~ _ _  

v(.) = 2 p '  

and hence (noting the factor p in b) 

(4.28) 2 -  a < 1 
- b = 2p 2" 

Remark .  Q(~) (and P(~)) depend on the sample path of the process and are thus 
random quantities. Hence so is a/b. However the 7,,,~ are not random and hence 
the bounds in (4.27) and (4.28) are not random. 

Note that a and b are the probabilities of particular sets, e and d are measures. 
Let Q (x] , ') = v (X2+ 1 ~" IX] = x~). Now by definition of conditional probability 

and 

c_ = Q(i)(x(i) c~o m~ + 1 Y"a- m ~0_ m + 1 , ' )  -- U (say), 
a 

d 
= Q ( y ] -  m ~0_ m + 1 ," ) = / )  (say). 

Thus (4.26) can be rewritten as 

(4.29) 
c - d  a u - b v  

Q( i+l ) (Y] -"  ~ ~  - a - b  " 

Now 

bt 
(4.30) 

V 

Q(i)(xo~ o O~_mi+ l ynl--m o~O_m+ l ,"  ) 
Q(y"l-m c~~ l , .  ) 

=(Q(1)(X(i)e~176176 v (2)  
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Applying the induct ion hypothesis  to the first factor  in (4.30) and applying 
(4.16) to the second we get 

(4.31) 7rn, O 7rn, i =  V ~ Jrn,u "~m,i , 

and hence 

) (; ) 7m,07~,i--1 V 7m,07m, i - -1  -1 -1 
(4.31) < a u - b v  < 

a = a - b  = a 
- - 1  - - 1  
b b 

Abbreviate  
Q~(1)(ynl-m o~Om+ 1' ") 

v(.) 
= R ~  ). 

Thus by (4.29) and the definition of  v 

(4.32) 

a 

~)m,O~m,i-1  O~(ynl-rao~om+l,. ) 

a_ I v(.) 
b 

a -~ ?,~,~-1 Q(y,l_m~o_,.+l,. ) <<_R~+ ,) <__~ 2,~, ~ -1 

a 1 '4") 
b 

and by (4.16) 

a a -1 7,~,i--1 ~'~m, O Tm, i - 1  ~ ?m,O - 1  

(4.33) 7,,,,o < R~ +1)< - - 7m, o. -1 
a a 
- - i  - - i  
b b 

a 
N o w  a/b is a r a n d o m  quanti ty,  but  by (4.28) we have (uniformly) that  2 < ~  < oo. 
Hence a little calculating shows that  

(2 7m,o 7m,*- 1) ~m,o =< Rg + 1)~ E(2 7,7,, g "Ym, i -  1 __ 1 ) -  1 7 m , 0 ]  - 1 

Thus taking ~,.,i + 1 = min {27,., o 7,.,i - 1) 7,., o, (2 ~,~,~ - 1 7m,i - 1)- 1 ~m,o}, and recall- 
ing that  7,.,o ~ 1, 7,.,i s 1 as m ~ o o ,  we can choose m so that  (4.19) holds for 
i + 1 .  [ ]  

Proof  o f  Theorem 2 Part ( i )  Let ~ and c( be recurrent points  for g; let v, 
v' and ~9, ~ '  be regenerat ion and maximal  measures associated with e, c( respec- 
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tively; and let u=u~ u '=(u ' )~  be points in 5~176 attracted to e, ~', and 
too, m; be as defined in (4.1) for e, ~'. Let 

W= {x~'. x,+l"+m~ = ~o o+1 i.o. (n)}, 

with W' defined similarly for e'. By definition of recurrence 

(4.34) G(u, W )=  1. 

Suppose ~_~ ' .  We claim that this implies 

(4.35) G(u', W)= 1, 

and similarly that 

(4.36) G(u, W')= 1. 

Suppose we have (4.35) and (4.36). Let Dc5~ ~ be such that O(D)>0. Then 
by regeneration 

(4.37) v {X~ ~D i.o.} = 1 

and hence 

(4.38) 0 {X. ~ eD i.o.} = 1. 

Let 

D(w' )={x~  �9 k xk-,,;+ 1 = e'O--m;+ 1, X~+,~D for some k, and infinitely many n}, 

i.e. this is the set of sequences in 5P~ that "enter D i.o. after they have seen 
c( , , ;  + a-" Then by (4.36) and (4.38) 

(4.39) G(u, D(w'))= 1. 

,0 Let z=inf{n:  X~-m;+l =e-, , ;+a}" Then 

(4.40) G (uX] 1 -m'o ~,o_,,; +1, {X, ~ ~ D i.o.}) > 0. 

But by M(e'), for any set BcSe~ ~ 

(4.41) G(xT_~o e- , , ;  + 1 , ' ~  B)>O=c,v'(B)>O, 

and applied to (4.40) this 

(4.42) =>v' {X~ eD i.o.} > 0 

~ v '  {X, ~ ~D i.o.} = l ~ O '  (D) > 0. 

Similarly ~k' (D)> 0 implies ~ (D)> 0 and we conclude that ~ ,-~ ~9'. 
It remains to prove that if ~ _ ~ '  then (4.35) also holds. 
Certainly G(u, W) = l=>v(W) > 0 

(4.43) =r = l ~ v o O " ( W ) =  1 

~ 0 ( w ) =  1. 
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N o w  if ~p~_O' then this 

(4.45) ~O'(w)>0 
~v'oO-"(W)>O 

=~v' (W) = 1 

~G(u', W)= 1. 

(trivially) 

(by definition of ~')  

(by regenerat ion)  

(A) > 0=~v {X 2 e A} > 0 for some n 

~ v  {X~ e A  i.o.} = 1 by  regenera t ion  

=~P,{X~eA i.o.} = l ~v ' {X~eA  i.o.} = 1 

~ v '  (X,  ~176 e A} > 0 for some n=:~O' (A) > 0. 

Thus  O-LO', and  by par t  (i) ~ ' .  N o w  suppose  B~c~B~,+c~ and let veB~. 
Then  G(v, {XT,-m+l =cO, ,+1  i.o. (n), for all rn})= 1 and since ~ '  

G(v, {X~-m+ 1 = a'-0m + i i.o. (n) for all m}) = 1, 

i.e. veB:,, and B~=B~,. 

Part (iii) Note  tha t  each class B~ is de te rmined  by a recurrent  poin t  e and  
an too, leading to a regenera t ion  measure  v(.). N a m e l y  we claim tha t  if c~ and  
~' are recurrent  points  a long which g loses m e m o r y  and  if 

0~Omo+l=0(_0rno+l then B~=B~,. 

To see this, let E, F~, be the events 

E = {X~ ~ sees the word  c~~ mo+ 1} 

F~, = {X~ ~ sees all the words  o r e '  i.o.}. 

If ueB~ then G(u,E)=I. :Choose  veB~, and note  that  G(v,E)=I and 
G (v y ao,,o + 1, F~,) = 1 for every y such tha t  G (v, y c~ ~ + 1 5P1 ~176 > 0. By (4.1) and  
(2.9) the measures  G (x ~ oo eo  ,~o + 1, ')  and  G (yO oo c~~ + 1," ) are mutua l ly  absolute-  
ly cont inuous  for any x~ yO oo, and hence the measures  G(vya~ 1,') and 
G(wa~ ~ ,.) are mu tua l ly ' abso lu t e ly  cont inuous  for any  w = W~ Therefore  
G(w~176 1, F~,)= 1 for any  w. In  par t icular  G(uza~ 1, F~,)= 1 for any  z. This  
combined  with G(u, E ) =  1 implies G(u, F~,)= 1, i.e. uEB,,. Since the n u m b e r  of  
finite words  o~ ~ + 1 is countable ,  so are the B,'s. [ ]  

This proves  par t  (i) of  the theorem.  

Part (ii). Next  suppose  u eB~c~ B,, with e~ 1 ~e c(-~ 1- Then  for a process 
initiated at  u~ = u ,  there will be regenera t ion  measures  v and v' associated 
with a and  e'. Hence  for any  A c 5al ~176 

v {X~ e A  i.o.} = l*~v'  {X~ e A  i.o.} = 1. 

We  claim tha t  
tp(A) > 0<=~'(A) > 0. 

To  see this note  that  
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5 Examples 

(i) Here  is a class of  m - m e m o r y  chains where  all points  are recurrent  and  in 
the same a t t rac t ion  set, and  the loss of  m e m o r y  rate  depends  on the point  
c~=e~ The  idea is to m a k e  g( . , - )  so tha t  the m e m o r y  depends  on a pa r t  
of  the his tory going back  a r a n d o m  time, depending  on e. 

Let  5 P = (0, 1 . . . .  , d), d < 0% 

L:Se2, xS" ~lR, ~ L(x~ 
X l e ~  v 

with 

(5.1) O < e < f , ( x ~  for all x1-,. 

F o r  each ~ let L = L ( e )  and  W = W ( c  0 be independent  r.v.'s, with P { L = k }  
= Pk (") = Pk, P { W = k} = Wk(~) = Wk. 

Different e 's  will have  different associa ted L(e) 's and  W(e)'s, which will lead 
to processes  with different m e m o r y  decay. All these processes can be cons t ruc ted  
on the same sample  space, but  there is no o ther  par t icular  relat ion between 
them. F o r  definiteness consider  for example  c~ = s ~ oo = ( . . . .  0, 0), i.e. the sequence 
of all O's. Let  t t ( x ~  x _ ,  . . . . .  x - , + t -  ~ =0}  < oo. = " t h e  mos t  recent  
t ime tha t  a run of f zeros was seen".  Let  tk,t(x ~ co)= k/x te(x ~ ~). Define 

g(x ~ ~, x0  = ~ wk ptf~.,(xo_ ~)(x~ ~), x0  

= Ef~w.~(xO j(x~ ~), xO. 

Note  tha t  (5.1) implies 

(5.2) O < e < g ( x ~  fo ra l l  x1-~. 

Hence  all points  in 5C~ are recurrence points  and  there is one ergodic  class. 
Abbrev ia t e  tk,t(X ~ _ 0o)= t(k, (). Let Am= {(k, Y): t(k, g)__<m} and write g(x ~ oo, x 0  
= Im (X 1 ~) + II,,  (X 1- ~), where 

(5.3) Ira(x1- ~176 = 2 Wk Pef(k,e)(xO-t(k,e) ' Xl) 
A ~  

and 

(5.4) 
Ag, 

Since 0 <e_<__f,(x~ x 0 <  1 for all X1-n 

(5.5) e~m~ IIv~(X1-oo)'< ~m 

where 

(~m= P {t(W, L) > m}. 

Notice  (by the definit ion (5.3)) tha t  

(5.6) lm(X1- oo)= Im(X1-m) 

i im(X1-oo)=i im=~ o wk Pef(k,e)(X-t(k,~), XO. 

for all x ~ _ ~,  
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i.e. it depends only on x[m. Hence 

(5.7) g ( x O  m ,  X l )  = Im(X~-m) + IIm(x 1- 0o) 

where II , , (x ~ oo) satisfies (5.5) uniformly in x~ oo. Now if x~ = yO_,,, then 

(5.8) g(y~ oo, xO=I,,,(y~ X,)+II,n(yO_~ X1) 

= Im(xl--m) q- II,n(xl-m) q- Ilm(y~ m x l ) - -  II,,,(xloo) 

= g ( x  ~ ~, x d  + r"(x*__ o~, yO ~), 

where r,n(X[ ~, yO_ ~o) = IIm(y ~ oo X O-- I lm(xL oo), and 

Irm(XL~,yO_~)l<am forall x[oo,y~ (5.9) 

Thus 

g(yO_ ~o, x~) UrT~l g(yO_ ~o x],  xi+t) 
(5.10) 

g( x~ o0, x~) = ~,=o g(~C2; ~,~ 15 ' 

and if y~176 then yOm X] = X~-,, and hence by (5.8) 

N - l [  / i + 1  0 i + I x  
(5.10)= I-[ ~14 r m + ' t x 7 g ' Y a ~ - x l  -] 

i=o g(x~- ~'  x/+ 0 ]" 

Thus f , (x  ~ ~, xl) > e and (5.9) imply 

(5.11) +~ < 1 -  < g(y~ x~) 
~ 0 N i=o ,=o g(x-~ ,x l )  

<[Izv-1 l + a ' n + i ~ < l q  1+ 
i = 0  i = 0  

Now assume that 

(5.12) Y, 6k< oo. 
k 

Then for sufficiently large m, and some c 

<g(yOoo,x~)<l+ c ~ ai 
(5.13) 1 - c  a~=)(xO_o~, x~) = 

i=m i=m 

o N subject to x~176 Hence uniformly in x~ y_ ~, 

(5.14) ])m(~)~ 1 - c  ~ 6i z 1. 
i=m 

Of course {6i} and hence 7,. depend on c~, and hence so does the memory 
loss. 
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At  the cost  of  some further restriction on the f , ' s  one can also claim an 
upper  b o u n d  for 7m, and hence a true rate. Suppose for example that  there 
exist an x~ yO_~, a e 5~ and  a/~ > 0 such that  

f , ( x _ , , a ) > f , ( y _ , , a ) + #  for n = 0 ,  1 .. . .  (5.15) o o 

Then  by (5.4) 

and 

rm(XOm a, y~ a)< --f16~ 

(5.16) g(yO_ oo, a) rm(x ~ oo a, yO_ oo a) 
g(x ~ a) = 1 2 2, 

<a-/~a,.. 

Taking  a~ = (a . . . .  , a) we have 

(5.17) g ( Y ~ 1 7 6 1 7 6  ~, 6~ f o r s o m e  g > 0 .  
g(x~  a~) = 

Hence 

(5.18) ? m ( C O < l - d  ~, 6,(o0 
i = 1  

and thus 

(5.19) 
i=rn i=ra 

for some 0 < c' < c" < oo. This identifies the rate of  7m (e) "* 1. 
(ii) Here  is a (trivial) example where there exist two a t t rac t ion sets, as defined 
in (2.5), and one transient  class. Take  5 P = {0, 1, . . . ,  9}. Fo r  Xo = 0 or  1, x_  1 = 0 
or  1 define g so that  

g ( x ~  ~o, 0)+g(x~ oo , 1 ) = 1 .  

Fo r  X o = 8  or  9, x - 1  = 8  or  9, take g(x~ ~o, 8 )+g(x~  9 )=  1. Fo r  all o ther  cases 
take g(x ~ _ oo, x 0 > e > 0 .  Then  

C1 = {x ~ ~o : Xo and x_ 1 = 0 or  1} c 5~2oo, and 

C2 = { X0- oo : Xo and x_ 1 = 8 or  9} c 5a_~ o~ 

are closed classes, { x ~  or  1 } = R  1 are recurrent  points  in C1, and 
{x ~ o0 : xl--  8 or  9} = R2 are recurrent  points  in C2. 

C3=5D~ c~C~ is a transient  class. All points  in C~ are a t t racted to 
all points  in R i for i = 1, 2. 
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ly in the proof of Theorem 2. 
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