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Summary. The purpose of this paper is to explore the connection between multi- 
ple space-time scale behaviour for block averages and phase transitions, respec- 
tively formation of clusters, in infinite systems with locally interacting compo- 
nents. The essential object is the associated Markov chain which describes the 
joint distribution of the block averages at different time scales. A fixed-point 
and stability property of a particular dynamical system under a renormalisation 
procedure is used to explain this pattern of cluster formation and the fact that 
the longtime behaviour is universal in entire classes of evolutions. 
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0 Introduction 

It is well-known that infinite systems with locally interacting components, in 
the sense of infinite particle systems or of interacting diffusions exhibit phenomena 
such as phase transition and cluster formation and both these properties are 
expected to be of a similar nature in a whole universality class of evolutions, 
(see [12] ). 

The purpose of this paper is to derive in a simplified situation a scenario 
which explains this behaviour by connecting three phenomena: multiple space- 
time scale behavior, appearance of slowly varying functionals of the process 
and the universality of the long term properties of the system. In particular 
the universality properties are related to a fixed-point property under a renormal- 
isation procedure. The unique evolution corresponding to this fixed-point is 
also distinguished by having a simple dual process so that explicit calculations 
are possible in this case which lead to the determination of the behaviour of 
the system. Unfortunately all this can be done only by simplifying the interaction 
geometry and by passing to the mean-field limit of the interaction which is 
obtained by letting a certain parameter, N, tend to infinity. We shall however 
show in a precise sense that the mean-field limit predictions are correct for 
several aspects of the qualitative behaviour of the real system. Furthermore 
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the models we cover are of interest in genetics [13, 14], in particular the results 
will produce important  tools for the analysis of new types of genetic models 
to be treated in a forthcoming paper. 

Let us give a heuristic preview of the scenario we have in mind. Consider 
the voter model on Z d, that is, the Markov process with state space {0, 1} zd 
where the value of each site flips at a rate proportional  to the number of neigh- 
bouring sites with a different value (see [12] for details). Consider the following 
spatial renormalization procedure. Combine sites (components) in blocks of 
( 2 N +  1)d-components, then group these blocks in groups of ( 2 N +  1) d blocks, 
etc. The state of each block is replaced by the average over the components 
of the block. During the evolution for a certain interval of time depending 
on N the block-average will remain almost constant, and the single components 
of the block will stabilize in some quasi equilibrium. However over larger time 
intervals the blocks will start to interact and only the group average over blocks 
will remain almost constant. On the level of single components a new quasi 
equilibrium, characteristic for the average of the block of size ( 2 N +  1) 2d, will 
develop. Since very large blocks maintain for a long time the initial density 
of l's say 0', we expect that if the influence of components far apart is strong 
enough, or in other words, the influence of the average in large blocks is strong, 
then we shall approach an equilibrium state with density 0'. We call such a 
system stable. If the interaction is weak, then larger and larger blocks will become 
all 0 or all 1 and the whole system will converge weakly to a mixture of 6- 
measures on the two traps, corresponding to all components being 0, or all 
components being 1. This we call clustering. In the simple symmetric voter 
model the two cases correspond to d__> 3 and d = 1, 2, respectively. In the case 
of clustering one has three regimes: large clusters, diffusive clustering and small 
clusters. The first two correspond to the behaviour of the simple symmetric 
voter model in dimension 1 respectively 2. See also [7, 12]. (The third regime 
for the voter model does not arise in the simple symmetric case.) 

This picture of evolution displaying a hierarchy of separated time scales 
for the effective dynamics of averages over blocks on different levels, is in general 
difficult to prove for classes of lattice models and for fixed range of interaction. 
We shall therefore consider hierarchical models with infinitely many components 
in the limit of large interaction range so that we can verify above scenario 
rigorously. 

The scenario we described for the voter model relates the interaction of 
the averages over blocks of sizes growing in time to the existence of a whole 
set of invariant measures. An important aspect of our analysis is that, by passing 
to the limit of large interaction range, we can associate in a rigorous fashion 
with our process a sequence of Markov chains, the so-called interaction chains 
with state space (in our case) [0, 1] (which is related to the conserved quantity). 
This interaction chain describes how larger blocks influence smaller ones and 
the time index of the chain "corresponds" to the block-size and the state to 
the block-average over the components. Stability and clustering properties of 
our process relate to properties of this Markov chain, such as existence of nontri- 
vial entrance laws (stability). In addition the cluster formation and growth of 
clusters can be studied by looking at a scaling (in time) limit of this Markov 
chain. The special role of systems of interacting Fisher-Wright diffusions is then 
reflected by the fact that the associated Markov chains have beta distributions 
as transition kernels. Other situations in which the density over the components 
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is not the only relevant parameter would require an associated chain with a 
more complex state space and transition mechanism. Nevertheless we believe 
the interaction chain provides insight into the longterm behaviour in general. 

The importance of the above scenario also lies in the fact that it is intimately 
related with the universality of the dichotomy between stability versus clustering, 
described above in the case of the voter model, for a whole class of evolutions. 
This universality also holds for such phenomena as cluster formation at various 
scales (as first found in the 2-dimensional voter model), or the invariance princi- 
ple (that is large clusters) found first for cluster formation in the 1-dimensional 
voter model (see Cox and Griffeath [8], Arratia [-2]). 

The idea is the following. Aggregating over more and more components 
and passing to larger and larger time scales will wash out more and more 
the specifics of the local evolution. Suppose now that the evolution of the blocks 
rescaled in time would be the very same at all levels in the case of some particular 
evolution mechanism. In this case we would expect the behaviour of this system 
to predict the behaviour of all systems which "converge" to this "fixed-point" 
evolution after aggregating and rescaling often enough. The analysis of this 
fixed-point evolution turns out to be easier due to the fact that duality relations 
replace asymptotic relations in this case and hierarchies of equations do decouple 
(instead of only in the limit (t -~ oo)). 

We shall establish that it is precisely the systems of interacting hierarchical 
Fisher-Wright diffusions which have this fixed-point property in the mean-field 
limit. Indeed the dichotomy of stability versus clustering and the pattern of 
cluster-formation depend only on the interaction strength and not on any other 
specifics of the evolution, as long as we are in the domain of attraction of 
the fixed-point. 

We treat interacting diffusions rather than infinite particle systems for techni- 
cal reasons which will become apparent in the proofs. One reason is that the 
behaviour of blocks in the voter model in rescaled time leads to Fisher-Wright 
diffusions (see [6]), while the same procedure applied to interacting Fisher- 
Wright diffusions again produces Fisher-Wright diffusions. This hereditary prop- 
erty is of course very useful. 

The organization of the paper is as follows: Section 1 (a) introduces the mod- 
el, 1 (b) formulates the multiple time scale behaviour and the fixed-point property 
of Fisher-Wright systems, 1 (c) states the results on stability and clustering and 
patterns of cluster-formation while 1 (d) states the results on stability and cluster- 
ing without passing to the mean-field limit. The Sects. 2-6 contain the proofs 
of the Theorems 1-7. 

1 The main results 

(a)  The model 

(i) We begin by defining the hierarchical group, which will play the role which 
Z d plays for interacting particle systems or interacting diffusions indexed by 
lattice sites. This is a much more natural setup for genetics models, but the 
reader should keep in mind that our model is also designed to provide a good 
caricature of lattice models on Z z. (To develop the analogy, think of Z 2 divided 
into squares of size N, groups of squares of size N etc. Every point could then 
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be localized by a sequence of squares in which it is conta ined plus the final 
informat ion where it is sitting in the N x N square.) In this spirit we define 
for every N = 2 ,  3, 4 ... (denoting with N =  {0, 1, 2, ...}): 

(1.1) f2N={(~k):keN,  ~keN, O<~k<N--l,~j=OVj>=k o f o r s o m e  koeN}.  

(1.2) f2 ~176 = ~ g2 N. 
N 

The set f2 N furnished with the additive structure defined by componentwise  
addi t ion modulo  N forms a countable  abelian group,  f2 ~176 is a countable  abelian 
group  with componentwise  addition. 

Remark. Every element in ~2 N is conta ined in f2 N+k for k =  1, 2, ... and in f2 ~~ 

In the sequel we denote  by ~'= (0, 0 , . . . )  the canonical  tagged site (analogous 
to choice of the site 0 in Z d as the natura l  reference point). On the set f2 ~176 
(and by restrict ion on  g2 N) we define a metric d({, {'), 

(1.3) d ({, {') = min (k [{j = {) Vj __> k). 

The next  object we shall need is the block of size r containing a given site {: 

(1.4) {N(r)={{'ef2N: d({, { ' )<r}  (~(0)= 0 .  

(ii) Fo r  every fixed value of N > 2  we define a stochastic process XN(t) 
= {xe, k(t), ~ e f2 N, k e N }  with values in [-0, 1] aN• N by the following infinite system 
of stochastic differential equat ions  and relations: 

(1.5) dxe, o(t)= Ck-1 (X~, k (t) -- Xg, 0 (t)) d t + / 2  g (xg, o (t)) d w~ (t) 
k 

x~,k(t) = ~  ( y, x~,, o(t)), k = 1, 2,... 
~'egMk) 

s ((xr o ( 0 ) ) r  = p, with # homogeneous  p roduc t  measure and E (x~, o (0)) = 0'. 

The  three ingredients w~(t), g( .  ), (Ck)k~N are as follows: 

(a) {(w~(t))t~R+}~a~ is an i.i.d, collection of s tandard  Wiener  processes. 
(b) g: [-0, 1] -+ R + is Lipschitz cont inuous,  g (x )>  0 for xe(0 ,  1) and g(0)-= g(1)=  0. 
(c) The  c k are strictly positive numbers  with ~Ck N - k <  00. 

k 

Using a result of Shiga [14] it follows that  the system (1.5) has a unique 
strong solution. 

Remark. As initial distr ibution we could consider in our  setting any homoge-  
neous ergodic measure on [0, lJ ~ ' ,  say/*N. In order  to be able to discuss the 
case N - +  0% we then need pN=:>#, with p homogeneous  ergodic on [0, 1) ~ .  
To  keep no ta t ion  to a min imum we restrict our  a t tent ion to the case of p roduc t  
measure.  

Two further  remarks  are included to ment ion  some applicat ions and extensions 
of this model :  
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Remark. In population genetics hierarchical systems arise naturally. For  example, 
4 could represent an individual, 4(1) it's family, 4(2) it's clan, 4(3) it's village 
..., etc. The functions g of interest in modelling the evolution of gene frequencies 
in time are g(x) = const, x(1 - x) (resampling) and g(x) = (x(1 - x)) 2 (random 
selection). The Ck represent the intensity of emigration - immigration. For  such 
applications compare [13]. 

Remark. If in the first line of (1.5) we take Ck=N ~k with ~ = d - 1 ,  with e + 0 

we obtain the caricature of a e-stable d-dimensional lattice system. In particular 
if d = 1 or 2 then the system we consider is a caricature of systems with motion 
mechanism on the borderline of recurrence and transience. Depending on 
(e > 0, < 0, respectively) we are in one of these regimes. 

(b) Multiple time scale behaviour, renormalisation, fixed-point analysis 

In this subsection we shall formulate in steps (i) and (ii) the multiple time scale 
behavior of our system. This will provide a setting for a the next step (iii) 
in which we introduce a renormalization procedure whose unique fixed point 
is determined and analysed from the point of view of stability. 
(i) In the case of hierarchical systems in the limit where the range of interaction 
tends to infinity (i.e. mean-field limit, N --, oe), we are able to analyse rigorously 
in what time scales the averages over the different sized blocks fluctuate and 
what limiting evolutions arise. In the case of systems with N fixed or in lattice 
systems, it is more difficult to formulate rigorously the scenario given in the 
introduction since the time scales for the different levels do not separate, that 
is they are of comparable orders of magnitude. 

We begin by introducing the ingredients necessary to formulate the state- 
ments on multiple time scale behaviour and which are central notions for the 
whole paper. 

In particular it will turn out in Theorem 1 that the longterm behaviour 
of the system in the mean-field limit N ~ oe can be described in terms of the 
properties of Markov chains (Z~)k= o ..... j with state space [0, 1], see III and 
IV below. We believe that these Markov chains are the central objects in develop- 
ing an understanding of  the longterm behaviour of  large interacting systems. One 
special feature of our model is that the associated Markov chain has a simple 
state space. 

The necessary ingredients are the following: 

I. Time scales flk(N)= N k, k= 1, 2, ... 
II. The quasi-equilibrium on level k, F0k,, the associated diffusion in eqilibrium 
on level, k, k,O" (Zt )t~R+, and finally the diffusion function in equilibrium F k which 
governs the fluctuation of averages on the level k: 

(1.6) F0k,( �9 ) is the unique equilibrium of the diffusion (Z~'~ keN ,  O'e[O, 1], 

(1.7) dZf '~176176 0'e [-0, 13, 

with ~ (Zko ' 0,) = Fog,. Write 2~' o, if Z~" o, = 0'. 

(1.8) Fo(x)=g(x), Fk+l(x)=Er~(Fk(')), xe[0 ,  1], keN.  
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III. Time-inhomogeneous Markov chains (Z~),= 1 ..... j with state space [-0, 1] 
and transition kernel Fx~-"(dy) at time n - 1 ,  starting in 0' at time n = -  1. We 
call (Z~),=_ 1 . . . . .  j the interaction chain corresponding to level j. 
IV. The one dimensional marginals {#~:r-k(')}k= o ..... r of the interaction chain 
(Z~)k=-i ..... 2 are of particular importance. They are given by FoJ;(-) for k = 0  
and for 1 < k < j  by: 

(1.9) #Jo'J-k(')= ~ ... ~ Fo~(dOj)For162 [] 
[ 0 , 1 ]  [0 ,11 

The significance of III, IV will become clear in subsection 1 (c). 

(ii) Recall that the initial distribution # of XU(t) has density O' and for notational 
convenience we do not display the dependence on N for the components Xck(t). 
By ~(Y,)=:~ 5r as n ~ oo we denote weak convergence of random variables 
with values in R, by 5~ 5r as n ~ oo weak convergence in 
the path space C([0,~)) ,  see [10]. 

Next we formulate the multiple time scale phenomenon in the mean-field limit 
N ~ ~ .  This will imply in particular that the qualitative behaviour of our system 
can be read off from the marginals of  the interaction chains, { {#~;k}, j, k E N, j > k}, 
alone. 

Theorem 1 (Multiple time scale behaviour) Let j, k~N .  Then in the three possible 
cases k=j ,  k>j ,  k < j  we have the following behaviour for XN(t) 
= {xck(t)l~ef2N, keN} (here R + =(0, oo)): 

(1.10) 5q((xcj(sflj(N)))~,+) ~ ~((2~,~ ). 
N--* oo 

For all k > j :  

(1.11) ~((Xck(Sflr(N)))~x+) ~ b[r,=_o,i. 
N ~ oo 

For all k <j  the following two relations hold: 

Z k,  o* (1.12) ~((Xr ~ 5Y(( t )t~.+), 
N ~ c o  

where O* is independent of  w (t) driving zkt ' o* and 5~ (0") = #2o;J- k + 1 (.).  

(1.13) L~ ([-xr k(s flr(N ) + t fik(N)))t~+] I x~,k +1 (stir(N)) = 0, O~k+l (~, S, N)) 

where 4 + 1 (4, s, N) is the a-algebra generated by { x ~,, o ( S fi j( N) ), d ( ~, ~') > k }. 

Remark. This result is interpreted as follows: In the time scale fir(N) the averages 
over blocks ~N(m) (with re>j) of volume bigger than N J remain constant and 
equal to the initial density 0', while the block ~(j) has an average which fluctuates 
in the time scale fit(N) as a diffusion in external field with force cj(O'-x) .  The 
averages of smaller blocks can only fluctuate on smaller time scales namely 
flk (N) and the corresponding equilibrium distributions are given by the marginals 
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of the interaction chain (Z~)k =- 1 ..... j with Z j_ ~ = 0'. (Everything is understood 
to be in the limit N ~ oe of course.) This means that the interaction chain 
(Z~)k=-1 ..... j describes, in the time scale flj(N), the joint distribution of the block 

averages {xr ~ Skflk(N))l=j+l,j ..... O} of the system for every 
k = O  

vector g=(So, ..., sj) with si>O , sk>=O, k=O ..... j - l ,  s(N)-* Go and s(N)/N-*O 
(in the limit N ~ c~). In precise mathematical language: 

For  every fixed 0'~(0, 1), let {Z~(N, S)}k=O ..... j be defined by 

~'~( (ZJ-k(  N ,  S ) ) k : j , j - 1  . . . . .  0 I z J - 1  = 0 ' ) =  

~ (Xr (S(N) NJ +l~kS~ fil(N))k:j,j-1 ..... o xr ~ (s(N) N2)=O')" 

Then 

( Z  j (NT~,l,, ~oJ] k = _ i ,  0 ..... J :=~ 1"TJ,~kJk = - 1 , 0  . . . . .  j ,  inlaw. 

Thus the whole point in taking the mean-field limit N ~ oo is, that instead 
of the space-time picture given by the stochastic processes (Z~(N, S))k= o ..... j which 
are non-Markovian,  we obtain Markov chains in the limit, namely the interac- 
tion chains which are independent of ~. 

(iii) In this paragraph we introduce a renormalisation procedure into the analysis. 
First we observe that the dynamics of {X~,k('), ~ef2N}, k e N  is determined in 
the time scale fig(N) and the mean-field limit N ~ oe by the sequences (Co, ca . . . .  ) 
and (Fo, Fa, F2 . . . .  ). By absorbing Ck as well in the time scales fig(N) by passing 

to c[ a ilk(N) and by replacing Fk by Fk with Pk+a=Er~(l~pk(')~'- Fo(X) 
\Ck + 1 / 

--Co ag(x) we get a description completely in terms of the sequence of functions 
(Pk)k N. 

We can go further. In [-9, Theorem 2] it was shown that for g (x)= d(x ( 1 -  x)) 
and Co = ca = 1 we have the following fixed-point property: 

Fa(X)=l~(X(1-x)), 

so that in this case we can reduce the description by the functions (Pk)k~N to 
that by a sequence ak defined by Fk(X)=ak(X(1--X)). Therefore in this situation 
(i.e. g(x)=const.x(1-x)) important  properties of the system can be described 
by a sequence of numbers rather than by a sequence of funct ions/~.  However 
one expects this to be also (approximately) true for g for which the iterated 
application of the map g = Fo ~ Pl ~ F2 ~ ..- brings the normalised image close 
to c o n s t - x ( 1 - x )  in a suitable sense. That  is, for large k the Fk will tend to 
look like akX(1--X) SO that properties involving the longterm behaviour on 
a spatially macroscopic level remain the same as for the system with g(x)= const. 
x ( 1 - x ) .  For  this very reason we shall now investigate the fixed-point properties 
of the Fisher-Wright diffusions (i.e. g(x)= c o n s t - x ( 1 - x ) )  further. Ideally one 
would like to prove that x (1 - x )  is the unique fixed point of this renormalization 
procedure and that the a [ a F  k will produce something close for k ~  oe. The 
proof  of global convergence involves a serious piece of nonlinear analysis, there- 
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fore in this paper we establish only that x ( 1 - x )  is the unique fixed point is 
also locally stable and a weak form of convergence takes place. The desired 
strong results are in Baillon et al. [-3]. To make our description precise we 
have to introduce the maps/?  and F* below. (Later we shall use a whole sequence 
of these maps, belonging to the various values of the parameters (ck).) 

Define the following maps F,, F* acting on the function g: 

F* (g)(x) = j" F~ ~ (d y) g (y) 

(1.14) P ( g ) ( x ) = S F ~  -1 with a sup ( g ( Y ) ~  '=.(o, y)]" 
Then according to [-9, Theorem 2]: 

( 1 . 1 5 )  - x ) )  ( y )  = y ( 1  - y ) ,  

that is x(1 - x )  is a fixed-point of the map/~ This m a p / ?  is of course nonlinear 
since F ~ in (1.14) does depend on g! As mentioned above we expect that the 
iteration of the procedure in (1.14) will produce functions looking more and 
more like multiples of x (1 -x ) .  For a computer simulation see Fig. 1. Mathemati- 
cally we capture this by investigating stability properties of F around this fixed- 
point and by proving a convergence result. First note that using the  explicit 
form of the density of F~ (see (3.15)) we can define the map F, F* for all 
positive continuous functions g. We introduce the following normed space: 

[ Ih(x)l \ oe}c~C([O, 1]) (1.16) l l = { h :  [0, 1]-* Ill S y o P l ) k ~ )  < 

H + = {heHlh(x)> 0 for xe(O, 1), h is Lipschitz continuous} 

I[hl[= sup ([h(x)l  '~ 
1)\x(1 -x)]" 

The space H is in fact a Banach space. H + is the domain of the map F, F*. 
Both maps are continuous since F~ �9 ) is a continuous function of x and F* 
does not increase the Lipschitz constant [-9, Lemma 2.2]. 

For he l l  + the map /7 admits a tangential map Dr(h)(.) (not necessarily 
linear!) such that for all f e l l  (for proofs see Sect. 3) 

(1.17) [1 [- 0e (h + e f ) -  F(h) -  sDp(h)(f)] I[ = o (~)]l f [l- 

For an operator A: H ~ H ,  define ]JAIl =sup(llA(x)][ IIx]l-a, xeH\{0}) .  

Theorem 2 (Uniqueness, stability and convergence to the fixed-point) Functions 
of the form g (x )=dx(1 -x )  are the only functions in H + satisfying: there exists 
a function L(e), such that F*(cg)=L(e) g for all c e R  +. 

For any d > 0  the function g (x )=dx(1 -x )  is a fixed-point o f f  in H +, and 
if Co = 1, then 

1 
(1.18) HDf(dx(1 -x))l] = ~ <  1. 
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For every g ~ H  + with F*" denoting the n-fold iteration of the function F*: 

n 
(1.18') --(F*")(g)(x) converges to x(1 - -x) for  all x e  [0, 1]. 

Co 

This means that x(1--x) a locally stable fixed-point of P and if we apply F* 
n-times then after normalisation it converges pointwise to x (1 -x ) .  

In the sequel we shall need a sequence of compositions of maps associated 
with (Ck) where in particular the sequence (Ck) is an arbitrary sequence in R +. 
Define the following generalized version of (1.14): 

P"~(g)~ = ds ~ F.(x), 
where 

Fo (x) = g (x) 

F.+ I (x)= ~ r"(dy) F.(y) 

dn cn 
and d,+ a - c, + d. '  do= IlgN. 

Corollary. Assume Ck=C, then g ( x ) = x ( 1 - x )  is the unique joint fixed-point of 
the maps pk, k e N  in H + and no other function g ~ H  + can have the property 
Fk(g) = bk g for all k. Furthermore 

(1.19) IlOp,k, ll < 1. 

Now we discuss the case of varying (Ck). This case is more complicated 
and in general (1.18') will not hold; for example if the ck grow sufficiently rapidly, 
then the ffk(g) will not change much in shape for large k. Furthermore, the 
proof of (1.18) will reveal that 

[[D~,.~[I , 1  if a k ~ O  
n ~ c~ C k  

where ak = HF(k)rl. We shall see later on that this is the case when lim sup Ck>O. 
Therefore, even for the linearization of/?("), it is not always true that 

IlDp(,~(x(1-x))th)H~o as n ~ o e .  

Therefore we don't expect exponentially fast convergence. The asymptotic prop- 
erties will depend on (Ck). 

Later on we shall use the following sets of functions, which are the candidates 
for natural universality classes. For a fixed sequence (Ck) define: 

(1.20) ~-o = {geH+[ lim JlF(")(g)-x(1 -x)][ o~ =0}, 
n ~ o o  

~1 = {g~H + [sup I[ff(")(g)--x(1 -- x)N < 1}, 
n 

~-2 = {g e l l+  I lira [[ F(") (g) - x (1 -x)H =0}. 
n ~ o 9  

The question whether 4 ,  i=  1, 2 contains a full neighbourhood of x(1 - x )  for 
particular (Ck)k~N involves of course an analysis of the second order approxima- 
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Fig. 1. Numerical simulation. Ck = 1 Vk. a g, b pzo 

tion of the map  t e which turns out to be quite involved and we defer this 
to a paper  dealing with the study of the nonlinear map F.. In fact we believe 
more to be true and in a forthcoming paper  by Baillon et al. [-3] will establish 
the following: 

Conjecture. 
(a) If ~ c [  1 = 0 0 ,  then ~o ~- H +. 

i x ( l - x )  (b) If ~" 4-1 = + o% d x < oo then g E~,~2. 
o g(x) 

(c) I f ~ c k - l < o O ,  Fk(g) 5g x(1- -x)  but ~'I~H +. 
k k -~oo  

Remark. From Dawson and Greven [9] we know that if g ( x ) ~ x  = for x -+0 ,  
and g ( x ) ~ ( 1 - x )  = for x--+ 1 with e > 2  then in fact P ( g ) ( x ) ~ x  = as x + 0  (similarly 
for x ~ 1). That  means that [[F(k)(g)-- x(1 --x)H > 1 Vk. We still have in this regime 
that I[F(k)(g)--x(1-x)Ho~ -+0 as k--+ oo. 

(c  ) Phase-transition and cluster-formation in the mean-field limit 

We shall now investigate the qualitative behaviour of our mean-field hierarchical 
system for interaction with long range (N--+ oo) and in very large time scales, 
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that is, for times >N R but o(N R+I) for arbitrary values of R. According to 
(1.12) we know that the behaviour of the k-th order average at time sfij(N) 
+tfik(N) with j > k  is described by #~;k(recall >>N j means s--+oo). Since we 
are interested primarily in the components of the system we shall focus in this 
section on j = R, k = 0 and study the behaviour of #R, 0 for R --+ oe. 

In subsection (c)(i) we are concerned with the dichotomy stability versus 
clustering. We shall make precise the idea that if the Ck remain big enough 
for large k, then the system should preserve it's initial density 0' even in the 
limit of infinite times and have a nontrivial limiting state for each value 0'E(0, 1). 
On the other hand, if the interaction is too weak, that is, the (Ck) are too small 
for large values of k, then the system should eventually end up locally in one 
of the traps X, ,o=0 or X~,o-1 V~Et2 ~176 since the large blocks are not able to 
force the smaller blocks back to an average value 0' over the block. In the 
subsequent subsections we study for the latter case the way in which clustering 
occurs in more detail. Namely in the subsection (c)(ii) we shall investigate self- 
similar cases and in (c)(iii) cases where we see clusters of 0 or l's grow on 
a variety of scales, a phenomenon first observed by Cox and Griffeath [8] 
for the 2-dimensional (simple) voter model. 

(i) We start by introducing the notion stability and clustering. In this discussion 
we take the function g in (1.5) to be fixed and the sequence (Ck) to be a free 
parameter. We call the evolution associated with the (Ck) stable in the mean-field 
limit iff 

(1.21) #R, 0( . )  ~ #~,(.), with #~,((0,1))=1 V0'E(0,1). 
R ~ o o  

We say the system clusters in the mean-field limit iff 

(1.22) #g ,o( . )  ~ 0,t51+(l_0,)tSo" 
R ~ o o  

Theorem 3 (Stability versus clustering) Assume that g ( x ) = d x ( 1 - x ) f o r  some 
de(O, oo). Then 

1 
(1.23) The system is stable in the mean-field limit if ~ - - <  oe. 

T Ck 

k•l + ~ .  (1.24) The system clusters in the mean-field limit if Ck 

Corollary (Universality) The dichotomy in (1.23), (1.24) holds for all gEH +. 

(ii) We now turn to a further analysis of the evolutions which cluster in the 
mean-field limit and consider self-similarity and clustering on different time 
scales. We begin with the case in which such large clusters form (growth like 
range of a symmetric walk) that we can even have self-similarity. This case 
corresponds to the one-dimensional simple voter model, compare Arratia [2], 
where in the space-time scaling limit we get clusters of 0 and 1 whose boundaries 
form a system of annihilating brownian motions. We introduce first some termi- 
nology. Again g is considered fixed and (Ck) the free parameter. 
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The system is called self-similar in the mean-field limit iff 

(1.25) #~;k(.)=#~+e,k+t(.) Vk<j,d=O, 1, ... 

The system is said to be in the domain of attraction of self-similarity in the 
mean-field limit iff 

(1.26) #~+e,k+t(.) ~ /~:k(.) and /~+r162 Vk<j, ieN. 
d---~ c~ 

Theorem4 (Self-similarity) I f  g(x)=x(1-x) ,  the system is self-similar in the 
mean-field limit iff 

(1.27) ck=Co(Cl+co) k 

and in the domain of attraction~of self-similarity iff the c k satisfy for some p s(0, 1) 
the relation 

(1.28) Ck=Copkbk with bk+l/bk~l as k--*oo. 

Corollary (Universality) The assertion (1.28) holds for all g ~ - 2 .  

(iii) Next we develop a detailed quantitative analysis of cluster-formation. Two 
types of behaviour are known from studies of the voter model. One case is 
analogue to the above one, that in which there are large clusters and by rescaling 
time and space using a fixed scaling relation, we can describe the formation 
of clusters. The one-dimensional voter model is the typical example, rescaling 
time by 1/e and space by (~/e)-1 gives for e ~ 0  an invariance principle for 
the right (left) border of the cluster containing 0. The second possibility is that 
clusters are smaller and grow at different time scales, for example this is the 
case in the 2-dimensional voter model in which clusters grow at rate t ~/2, at(0,  1] 
with c< a random variable. 

Note that in our hierarchical case and N--+ oo this behaviour is reflected 
in the behaviour of the rescaled interaction chain Z J ( k)k:o ..... i" W e  focus  on  
the second case discussed above. Under a proper simultaneous rescaling of 
n a n d j  we obtain a nontrivial limit process which hits 0 or 1 with nondegenerate 
probability, the value of the latter depending on how many levels starting from 
j we look down. In other words clusters of 0 and 1 's form at different (random) 
time scales or at given time scale clusters of different (random) orders of magnitude 
form. This suggests the following: 

Definition. If there exists a set {f~(')}~<o, 1~ of functions N ~ R + which satisfy: 
f~(k) is increasing in c~ for all k, fo(k)>O, f l (k )=k  and the following property 
holds 

(1.29) k f ( (zEs . (~n) .<o ,  ~1) ~ ~e((z . ) .<o, ,~) ,  

then we call s  ) a set of cluster scales and Z~ the cluster process. 

This means that f~(k) describes the blocksize such that at time N k the proba- 
bility of having a block with N rs~k)j components e-close to all 0 or all 1 is 
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given in the limit N ~ oe by the probability of Z~ being e-close to 0 or 1 for 
every e > O. 

One can give now a more systematic account of the formation of clusters 
than in the case of the voter model. 

We can distinguish three regimes in the cluster-formation (by a cluster we 
always mean something expanding, in particular small, large, etc. refers to the 
speed of that expansion): 

f~(k)/k ,0  V c~ small clusters, 
k - ~  o~ 

f~(k)/k , ~ ~' o~ diffusive clustering, 
k - +  o~ 

f~(k)/k ,1 Ve large clusters. 
k ~  oo 

At time N k, in the first regime clusters are smaller than (Nk) p for all fl > 0 while 
still growing to oo as time goes on, in the second regime they have size (Nk) ~ 
with ~ a random variable with values in [0, 1] provided 5r is nondegenerate, 
while in the third regime they are of order N k. In the case of the simple voter 
model only analogues of the last two cases appear (in dimension 2, dimension 1, 
respectively). 

In the first and third case above it is of interest to study the correction 
terms and write for some h sublinear 

f~ (k) = h (k ") 

f~(k) = k -  (1 - cO h(k) 

(small clusters) 

(large clusters). 

This allows us to determine what range occurs for the size of clusters on a 
finer scale. In order to find h define 

and 

Ix] d Ck dk do = 1 
~(X)= l ~ k  k' dk+l=ck+d k' 

h(k) =/~- 1(log k) 

h(k) =/~- 1 (log log k) 

in case of large clusters 

in case of small clusters. 

Theorem 5 (Pattern of cluster-formation) Assume that g(x) = dx(1 - x). The sys- 
tem has for the three cases below, sets of cluster scales and a cluster process. 
The cluster process is given in all cases by 

(1.30) Z~----Y(log]_~), where Y(t) istheFisher-Wrightdiffusion 

on [0, 1] which is generated by 1/2 (x (1 - x)) and starts at 0', 

and the sets of cluster scales are given by: 
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Case 1 (diffusive clustering) 

(1.31) f~(k)=~k if Ck ~ C > O  as k--*oo. 

Case 2 (large clusters) 

(1.32) f ~ ( k ) = k - ( 1 - e ) h ( k )  } if 3f l>0  lim ckk~<oe. 
with h(k)/k ~ 0 as k --* oo k-~ o~ 

Case 3 (small clusters) 

f~(k)=h(k')  
(1.33) and h(k)= o(k)j if Ck >> C, Ck ~ k log(k)) a for fl <= 1. 

There exist sequences Ck converging to 0 but with the Ansatz from (1.32) h(k)/k ~ 1 
as k ~ o% and consequently f~(k)/k ~ c~. 

Corollary (Universality) The relations (1.31)-(1.33) hold for all g6Wz(X(1-x)). 

(Refer to (1.20) for the definition of ~-2 and for the conjecture following that 
relation.) 

Remark. The first interesting consequence of the corollary to Theorem 5 is the 
fact that the properties of the process in which clusters grow is universal in 
a whole class of evolutions, namely for all gS~-z(X(1-x)), we obtain the behav- 
iour displayed in (1.30)-(1.33). This universality is related to the fact that x ( 1 -  x) 
is a f ixed point under the map /~ This fact is what makes it interesting to 
study the questions, answered for 2-dimensional voter model by Cox and Grif- 
feath [8] and the 1-dimensional voter model Arratia [21 here in this paper 
for a mean-field limit of a hierarchical model. 

The second consequence is that we get the whole continuum of possible 
behaviour ranging from stability Ck > k(log k) s, with s > 1, certain type (see (1.33)) 
small clusters ck ~ k (log k) s with s __< 1 ; diffusive clustering Ck ~ const, large clusters 

( Co ~ -k 
Ck = k-a( f l> 0) and self-similarity ck= co \ 1 + co] . This raises the question as 

to how to prove the analogous picture for the voter model considering general 
kernels p (x, y) for picking the neighbour whose opinion one adopts. 

(d)  Hierarchical systems for f ixed N 

(i) In this section we shall address the question as to how closely the mean-field 
prediction describes the hierarchical system for f ixed N. In systems with g(x) 
= x ( 1 - x )  this investigation can be based on the duality relations involving 
systems of coalescing walks on the hierarchical structure. However in view of 
recent results of Cox and Greven [7] the duality relations are not essential 
for the conclusion we are after here. 

When we do not let N ~ o% serious problems arise when considering the 
multiple time-scale behaviour and the fixed-point analysis of Theorem 1, respec- 
tively Theorem 2. We shall not investigate the first more involved problem in 
this paper but focus on the analog of Theorem 3 on stability versus clustering 
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and sketch some ideas on the fixed-point problem. We shall see in this subsection 
that the mean-field limit prediction of Theorem 3 is very good. The fixed-point 
property of Fisher-Wright systems is discussed in part (ii) of this subsection. 

We shall need the two transformed sequences (Ck), ak derived from (Ok): 

(1.35) gm= ~ Ck N-a(k-m). 
k = m  

(1.36) Cm= ~ Ck N-(k-m). 
k = m  

One important aspect of the proof of the theorem below is the fact that we 
can apply Fourier analysis to study the random walk on (2 N due to the group 
structure of this hierarchical set. This idea has previously been exploited by 
Sawyer and Felsenstein [13]. 

Theorem 6 (Behaviour for N fixed) (a) The system {Xr has a set of 
extremal invariant measures which are homogeneous (under the group action in- 
duced by addtion in f2 Iv) and which are given as the weak limit of 
~e ((x~, o (t))~ [ x~, o (0) = 0, ~ ~ t?N). 

1 
Case 1 ~ C~- < ~"  

(1.37) {Vo}o~Eo, a] with EV~162 o) = O, Vo is mixing. 

1 
Case2 ~ = + o o  

(1.38) {6(x~,o =- 1~, 6(xr ~_ o~}. 

(b) For every homogeneous initial distribution # which is shift-ergodic and has 
the property EU(x~, o) = 0 we have 

(1.39) ze((X~,o(t))r ~ {Vo 
t-~ ~ 0 6(x~,o -= 1~ + (1 - 0) 6(x~,o _= o) 

/f Z Cml<  O0 
if 2 c~=oo. 

m 

We should now like to compare the relation between the conditions 

~ 1 {<oo 1 ( < o o  
k ~-k =00 and ~ - k ( = o o .  

By explicit calculation one checks that for c k such that 

k 
lim ( ~ )  < N 
k-+ao 
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we have 

(1.40) 
~---00 k = 0 0 .  

Therefore in all cases of interest the mean-field prediction gives the correct 
k 

answer. Only in the case where lim ( ~ ) >  N (but ~Ck N - k <  oC by assumption 
k ~ o ~  

on the model !) we may have different behaviour. 
Obviously the critical range of growth is Ck,.~k(logk) S since for s > l  the 

sum over c~ 1 exists and for s <_- 1 diverges. 
Therefore we have 

Corollary (of Theorems 3 and 6) (a) I f  lim inf Ck/k (log k) s > 0 for some s > 1, then 
k ~ c o  

the system is stable in the mean-field limit and for the hierarchical system with 
parameter N we are in case 1 (1.37). 
(b) I f  lim sup Ck/k(log k)< ~ ,  the system clusters in the mean-field limit and also 

k ~ o o  

for every hierarchical system with parameter N we are in case 2 (1.38). 

(ii) The above discussion raises the question whether the whole scenario pre- 
sented in the introduction can also be verified in the case of N fixed. The first 
point is to explain the universality via the existence of the multiple time scale 
picture and the corresponding fixed-point property of the systems of interacting 
Fisher-Wright diffusions. The second point is to express the dichotomy stability 
versus clustering, and the pattern of cluster formation, via the interaction chain. 
For that purpose we modify the system (1.5) in a way analogous to passing 
from interacting systems with components indexed by Z d to those indexed by 
the d-dimensional torus (compare [6]). 

Define 

QN'k= {~e~NId(~, ~')__< k} 

and modify the definition of xe, j in (1.5) for j > k  by the convention xe, j=xr 
Then consider the system of stochastic differential equations given by (1.5) but 
replacing the index set f~N by 0 N'k and using above convention on the xr 
for j > k. We denote the resulting system by {(2r o(t)), ~ 6 f2 N' k} that is we supress 
the dependence of the dynamic on k! 

To define the fixed-point property we introduce the process 

(1.41) Ok( t ) :=~(  ~ 2r 
~;d(~,~)-<k 

for some scale function/~k to be specified later on. 
Suppose now that the following two relations hold: 

(1.42) ~Lf((Ok(t))~t , )  ~ ~~ ) 
k ~ o o  
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where (0t) is a martingale and a diffusion on [-0,1] with generator 

(1.43) ug(x) ~ . 

It is not within the scope of the methods of this paper to verify the above 
relations, which amounts to proving that the finite system scheme in the sense 
of Cox and Greven [6] holds for hierarchical models. This will be treated in 
a forthcoming paper of Cox, Greven and Shiga. 

Theorem 7 (Fixed-point property for N fixed) Assume that N is f ixed and > 2 
and that g ( x ) = x ( 1 - x ) .  

I f  (1.42) and (1.43) hold, then we have 

(1.44) ux(1 - x)(Y) = const y(1 - y ) .  

Remark. This means that even in the case in which we do not pass to the 
mean-field limit N ~ oo the function g (x)= x (1 - x )  does have a fixed-point prop- 
erty. The time scales are given simply by ilk(N) if ~ C 2 , 1 < o o .  In the case 

Cs 1 = oo thing are more subtle due to the fact that the asymptotics of hitting 
n 

k ~  times for random walks on the set g2~_ f2~r where all sequences became 0 after 
the index k does depend on the decay of the ck, in the latter case. 

So far we have shown that the mean-field prediction is good as far as the 
stability-clustering dichotomy goes. Naturally we would like to show that Theo- 
rems 2-5 can be proved as well for a wide class of diffusion coefficients g, namely 
those which are in the domain of attraction of the Fisher-Wright interacting 
diffusions, which is also a "fixed-point" for the transformation described in 
(1.41)-(1.43) without passing to the mean-field limit. It seems very well within 
reach of the present methodology to prove that these results hold for 
g ( x ) = x ( 1 - x ) ,  but the problem is to show the stability of the fixed-point and 
to prove then, that this implies that the results hold for all g in the domain 
of attraction. However hierarchical models are the best candidates to try such 
a program. 

2 Proof  of Theorem 1 

For  the most part this section will consist in reducing everything to the theorems 
proved in [9] about hierarchical one or two level systems, that is, systems with 
a finite number of components in the limit of the number of components going 
to infinity. 

(i) The first step in the proof consists in showing (1.11), that is, in the time 
scale flj(N) the average on the levels l> j  remain constant and are equal to 
0'. We begin by rewriting the equations defining the system {Xr ~f2N}. 
For  this purpose, recall that the dependence on N is not displayed in the 
notation for the components of XN(t). Note that Y({wr 

=&~162 ), ~Eg2N}). Hence the law of {xr is given by the following 
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system of stochastic differential equations, which is derived from (1.5) and where 
we write as l = j  + k with k > 1 : 

(2.1)  dxr 

1 ( , .~+lcJ+ . , -  " = ~  = t -Nmlk-t (Xr fit(N)) -xr dt 

+ ~ 1  ( I~ r  l//2g(xe',o(tflj(N))dwr �9 

We analyze first the drift term in the expression above. By the summability 
assumption on the (Ck) we have that there exists a K=K(j ,  k) so that for all 
N e N :  

~+ 1 xr flj(N)) ) m= lCj+m-t ~ ( X r  <K<oo. 

Furthermore we can bound the martingale term on the rhs of (2.1) by observing 
that 

/ 
~'e~(j+k) t e R +  

is a martingale with mean quadratic variation bounded by C t + const, indepen- 
dent of N. 

Combining the above two facts and using Chebychev's inequality and a 
standard martingale inequality [10, (2.56)] we obtain for every k >  I and fixed 
TeR + : 

(2.2) 
1 Const Prob(sup ]x~d+k(t flj(N))-- Xr > ~) < = - - - - .  

t<= T ~ V / N  

On the other hand by the law of large numbers we know that 

Xr ,0', #-- a.s. 
N ---~ oo 

Therefore (2.2) implies 

Prob (sup ]x~, ~ + k (t flj (N)) -- 0'1 > e) 
t ~ T  N~oo 

,0  Va>O. 

Therefore we have proved that for all k > 1 

(2.3) ~({x~,j+k(t/~j(N))},~R+) ~ ~{z~0,~, 
N "-* oo 

which completes the proof of (1.11). 
(ii) The next step is to study x~,j(tflj(N)) and prove (1.10). The basic tool here 
is to reduce things to the situation in which we can apply the results obtained 
in I-9] on finite systems when the system size tends to infinity. We introduce 
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the abbreviation ~2r162 Then we obtain, using again the scaling 
property of brownian motion, that the law of {~r 4~f2 N} is determined 
by the following system of differential equations: 

1 
(2.4) dX6j(t)=cj(Xr162 ~ ~ ~f2g(Yr162 

] /N  J r162 

1 0~ 1 

The next observation is that by (2.3) we can replace 2r 1 (t) uniformly in t__< T 
by 0'. The third term in (2.4) is O(N-1). Thus for N ~  oe we can replace this 
equation uniformly in t___ T by the system of equations giving in the limit the 
same law as ~({2r 4~Y2N}) 

1 
(2.5) d2r ( • /2g(Xr 

~'~(j) 

The next goal is to replace the second term on the right side of (2.5) by 
[/2Fj(~r dwr This again is understood in the sense of equality in law 
of the solution for the resulting equation in the limit N ~ oo, with the given 
equation. The proof proceeds by induction over j using Theorem 4 in [9] which 
dealt with systems with a hierarchy of two levels instead of the countably many 
we have here. 

Introduce for that purpose the map 4 ~ 4' which consists of dropping the 
coordinates 40, 41 . . . .  , 4 j -2 .  Define 

2r 0 (t) = 2r j_ a ( tNj-  1). 

By the induction hypotheses about  the system (2.5) we can replace the system 
of stochastic differential equations for {xcd-l(t)}r in the time scale tN J-1 in 
the limit N ~ Go by 

d ~ ,  0 (t) = c j ( 0 ' -  ~ ,  o (t)) d t + l / r j _ l  (~r o ( ~  d we, (t). 

Therefore instead of (2r162 the object in question is now {2r162 
To the latter system we apply Proposition 2 in [9] to obtain the assertion for 
j. This theorem also contains the case j =  1, so that we can start the induction. 

Combining the last steps implies that in the limit N ~ oo our Eq. (2.5) can 
be replaced by (in the sense of weak convergence of processes): 

(2.6) d 2r j(t) = cj (0' - 2r j(t)) d t + ~ d we (t) 
(~r = ~0, 

which proves (1.10). 
(iii) It remains to prove relations (1.12) and (1.13). The proof of (1.12) will be 
based on (1.13). The relation (1.13) however is, using the technique in (2.4), 
an immediate consequence of Theorem 4 (1.27) in [9]. 

The relation (1.12) follows for k = j - 1  from combining (1.13) with (1.10) 
and (1.11). For j - 2 , j - 3  etc. simply observe that according to (1.11), xr 
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does not change in time scale ilk(N) if m > k once N ~ 0% and that furthermore 
F0m(') is continuous in 0 for every meN.  Then use (1.13) successively, from 
the bot tom to the top. 

3 Proof  of  Theorem 2 

The proof of Theorem 2 and its corollary proceeds in two steps. First we show 
the uniqueness of the fixed point for F* and the convergence result then in 
a second step we investigate local properties of i0 around that fixed point. 

(i) We want to prove F*(cg)=L(c)g VceR+ for some function L implies g(x) 
=cons tx (1 - -x ) .  The convergence result will be a by product. In order derive 
this uniqueness of the fixed point, we work with the following relation between 
the (FR) (Ck) and E(Zi)2: 

(3.1) 
J 

We shall prove this equation below and now continue with the proof. 
Suppose we have a function g e H  + such that the following holds: 

(3.2) ~FoC'g(dx)g(x)=L(c)g(O) forsome L(c)eR +, Vc>0,  

where F0c'g( �9 ) is the equilibrium distribution of the Markov process x~ defined 
by 

(3.3) dxt=c(O-xt)dt+2l/~t)dw~, w(t) is standard brownian motion. 

Define numbers/~J) recursively IJJ)g =L(@IJJ-1))8,/2~ =L(co)8.  We can then 
rewrite (3.1) as follows: 

J 

In Sect. 4 we will show that ~ c ~  ~--- +0% implies that ~e(Z~) =~ 061+ 
k j--, ov 

(1 - 0) 6o. Then for such a sequence Ck this together with (3.4) implies that: 

(3.5) 0 (1- -0)=  Ck -1 /Y) g(O)+o(1) as j ~ o e .  

Hence (3.5) implies that Ck -1 /3 j) converges as j ~ o o  to say c*>0.  But 
k now (3.5) becomes 

(3.6) O(1-O)=c*g(O)+o(1) as j - - .oo 

or in other words 

(3.7) g(0) = (c*)- 10(1 - 0). qed 
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Applying this to the sequence Ck=Co>O gk implies in particular that (1.18') 
holds. 

Finally we prove the relation (3.1). Consider the following stochastic differen- 
tial equation 

(3.8) dxt = c(O-xt) dt+ 2 ~ t )  dw(t) 

whose equilibrium distribution F0c'g( �9 ) defines the transitions of the chain 
3 (Zk)k= ~ ..... ~ (e, g run through Ck and Fk, compare Sect. 2). 

By Ito's formula we can get a differential equation for EX~ and derive 

(3.9) S x 2 roC,.(dx) = ~ ~ roC'~(dx) + 0 2. 

By the definition of Fk this means (recall (1.8)): 

FI (0) 
(3.10) j'x ~ ro ~o,*(dx) = + 0 ~. 

Co 

Hence iteration gives the claimed identity (3.1). 

(ii) The second step is now to analyse the local properties o f /7  around the 
fixed-point. The map /7 can be written in the form /7(g)=F*(g)G(g) with 

f*(g)  (0)= gr~ �9 )), G(g)(0)=-{ c [I g/I ~-1 We start by simply representing the 
\c+llgll]  " 

Frechet derivative of F* denoted D~,(x(1-x))( . )  in terms of a kernel acting 
on functions. The norm we use on H, suggests writing functions hsH in the 
form h(x )=x(1 -x ) f ( x )  (recall (1.16) here). 

c 
Lemma3.1 Let h (x )=x(1 -x ) f ( x )  with h~H and let p= l + c "  

1 --p is abbreviated by y and B(a, b) is the Beta-function (see [1] ). 
P 

Furthermore, 

(3.11) pDF,(X(1 -- X))(h)~ [B(O/7, (1 -- 0)/y)] - 2 

o 7y(1--y) 

+ [B( O/y, (1-- O)/7) ~ x(~ l (1-- x)~ -~ I oi ( O-- y) f y)) dy] 

+ [B ((0/y) + 1, ((1 - 0)/7) + 1) ~f(x) x (~ 1 (1 - x) (1 - 0)/~)- 1 dx]}. 

The second and important step is now to show that the right hand side of 
(3.11) can be simplified quite a bit. DF,(x(1--X))(h) is a linear operator on H, 
which we write as DF,(x (1 --X))(h)[" ]. For the function G we can find a tangential 
(nonlinear) map in h, of a very simple form which we call Da(x(1--X))~h ~. (See 
(1.17) for terminology). 
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Lemma 3.2 With the same notation as in Lemma 3.1 we have: 

0(_1-0) f xO/~(1 _x)~-o~/~ 
(3.12) De*(x(1--x))~h)(O)= 1+7 ~B(0/7+1,((1--0)/7)+1) f ( x ) d x  

DG(x(1 -- x))(f)(O) ---- -- 1 ]1 f L100. 

From this point it is easy to finish the proof of the Theorem 2. Note that 
by the definition of the Beta-function, 

x ~ (1 - -  x) ( t - o)1~ 
K(O, d x ) -  B(O/? + 1, ((1 - 0 ) / 7 ) +  1) dx  

is a probability transition kernel. Define D~=Dv. G + FDG, then F and Dp are 
tangential. Therefore (3.2) implies after some calculation that for 
h(x) = x(1 - x)f(x)  with hsH: 

(3.13) I[Dp(x(1-x))(h)[']ll = 7 + 1  [] f [[~ = I[hll. 

/IA(x)II 
For A: H---rH let I[AI] denote the operator norm, namely, I[A]h = s u p - -  
Then (3.13) can be rewritten as x,o IIxll 

1 
(3.14) IIDp(x(l-x))l[--<-1 < 1. qed 

+7  

It therefore remains to verify the relations (3.11) and (3.12) to finish the proof 
of Theorem 2. 

Proof of Lemma 3.1 and 3.2 In order to show that the operator F is Frechet- 
differentiable at the point x(1 - x )  it suffices to show that the Gateaux-derivative 
exists in a neighbourhood of this point and is continuous there. The continuity 
is obvious from the expression we get for the Gateaux-derivative (which then 
equals of course the Frechet derivative), compare (3.11). 

Define 

c(e, O) ( f  7(y(1-y))[l+ef(y)]O-Y ) (3.15) F~(O, d X ) = x ( l _ x ) [ l + a f ( x )  ] exp dy dx 

where c(e, 0) is the normalising factor turning F~(0, �9 ) into a probability measure. 
Then we have to compute 

( d  ~x( l -x) [ -1  +s f (x)] F~(O, dx)) ~=o. 

This expression equals 

([ ,1 [B(0/~,(1_0)/7)]_ 2 _B(O/~,(l_O)/7)Sxo/,(l_xp_O~/, ~ (0-y)f(y)d 
o 7y(1-y) 

+ [B ((0/7) + 1, ((1 - 0)/7) + 1) I x(~ (1 - x) ((1 - o)/~)-1 x (0 - y ) f ( f )  d ] 
'1 
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which proves Lemma 3.1. 

Remark. If we put F(x)= i (O-y)f(y)Ty(1 - y )  

so that we can use -- i (O-y) f (y)dy .  
x 7 y ( 1 - y )  

Let 

Bx(O/7, (1 - -  0)/7 = i yO/~- 1 (1 - -  y)((1 -o)/~)- 1 d y 
0 

= Ix(O~7, (1 -- 0)/7) B(O/y, (1 -- 0)/y). 

dy then F(x)+ const gives the same result 

This means that we can eliminate the end terms in the integration by parts. 
Therefore 

G(O)/(1 + 7)= -- [B(O/7, (1 -- 0)/7)] -1 

1+,  

We get 

(3.16) 

o 1 o 

xV (1 - x )~-  
G(O) = ~ B ( ~ ,  ( 1 ~ 2 )  f (x)  dx. 

The derivation uses the following facts (compare [1]): 

Z W  
B(z + 1, w+ 1)= B(z, w) 

(z +w)(z +w+ l) 

Ix(a+ l,b)=Ix(a,b) F(a+b) x . ( l _ x ) b  
r(a + 1) r(b) 

(a+b) Ix(a, b)-alx(a+ 1, b) 
Ix(a, b + 1)= 

Ix(a+ l ,b+ l)= (a + bl + b) { i  x (a, b) F(a+b) x " ( l - x )  b} 
r(a + 1) F(b) 

F(a + b) a 1 X b 
r(a+T)~(b) x ( - ) a+b I {Ix(a, b) 

F(a + 1 - b) xa + l b ) 

This finishes the proof of Lemma 3.2. 
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4 P roo f  of Theorem 3 

(a) The  starting point  is the following. 

L e m m a  4.1 The sequence #~,o(. ) of measures converges weakly for R---, oo for 
every 0e l0 ,  1], to a probability measure #~(.  ) on [0, 1]. 

Proof. There  are two cases to distinguish, namely ~ c ~  -1--  ~ ,  < oo. We first 
consider the case ~ck- t < oo. By the relat ion (3.1) 

J 

and consequent ly  

J J 

Var(Zj-k)=Fa+x(O) ~ c -1 I[g[Ioo cz-  IIg[Ioo cU 
l=k  l=k  l=k  

Hence 

(4.1) sup(Var Zi_k) , O. 
j > k  k ~  

Note  that  by const ruct ion  for every S>R,  with R, S e N ,  0~[0,  1]: 

~e ((Z~)s = o ..... , [Z"-1 = 8) = • ((Z~)j = s -  ~, s -  ~ +~ ..... sl Z~_ R_I = 8). 

Fur thermore ,  given any Lipschitz funct ion f on [-0, 1], 0--* ~ f (y)  FJo(dy) also 
[o, 1] 

has Lipschitz constant  at most  L i p ( f )  (cf. [9,(2.58)]).  Therefore  for j > k  we 
have 

s \�89 
(4.2) I ~ f(Y)#Se'~ ~ f(Y);~'~ Hgl[~176 Ec;-1}'=k / 

[o, 1] [o,1] 

We can conclude from (4.2) that  we have for every ~e[0 ,  1], 

(4.3) #~, o = 5e (Z~) converges weakly as j  ~ oo. 

This finishes the p roof  in the case ~c / -1  <o% the case ~c / -1  = + oo is t reated 
in (4.22)-(4.24). 

It will turn  out  below that  there is a simple test to determine whether  the 
system is stable or clusters in the mean-field limit. 

L e m m a  4.2 The system is stable, respectively clusters, iff 

> 0  for 0'~(0, 1) 
(4.4) ~#~, (d 8) 8(1 - 8) 

- -0  for 0'~(0, 1). 

To  see this, note  that  E ~ (x) = 0 implies that  in the second case not  only #~ ( - )  
has suppor t  on {0, 1} but  also that  # ~ ( - ) = 0 3 1  + ( 1 - 8 ) 6  o by conservat ion of 
the mean,  finishing case 2. Fu r the rmore  in the first case we know that  #~ ((0, 1)) 
> 0  if 0e(0, 1). It suffices therefore to show that  #~({0, 1}) is either 0 or 1. 
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This last fact is now proved. Consider for every k the inhomogeneous Markov 
chain (X~)k, X~)k+~, ...,  X(o k)) with transition kernels F0k('), F0k-1( �9 ), ...,F0~ 
starting in 0' at time - - k - 1 .  Since the transition kernels for the last, say m, 
time steps are the same for the processes X (k) with k = m +  1, m+2,  ..., the pro- 
cesses will converge if some marginal at some time point converges as k ~ oe. 
However, for each k the chain is a martingale since Er~o(x)=O for every k. 
Then by the backward martingale convergence theorem and by the previous 
observation we see that this reversed martingale tv(k)~ converges in ~ x x  - -  j l j  = 0 . . . . .  k 

distribution to a reversed martingale (X(_~))k~. It remains to show that 
#~, (d 0) 0(1 - 0) > 0 implies Prob (X~ e { 0, 1}) = 0. 

First observe to this end that since {0, 1} are absorbing points and since 
F~((0, 1)) = 1 Vk, 0e(0, 1) we have 

Prob(X~ e{0, 1})=Prob(X~ke{0, 1}) Vk~N. 

However for every 0 < 6 < m i n ( 1 - 0 ' , 0 ' )  we can find e > 0  with e~10'-61A 
[1-(0'+6)[.  Then with zJ_~ =0 '  

Prob (Z i_ k ~ [ 1 -- e, 13 W EO, ~3 ) 5 Prob (IZj_ k - 0'1 = ~) 
1 . 1 

<= ~2 V a r ( Z } _ k ) _ ~  sup Var(Zi_k) , Vj>=k. 
j>=k 

Hence in order to conclude that Prob(X;~ 1})=0 it suffices to  prove that 
sup Var(Zi_k) converges to 0 as k ~ oe. 
j>=k 

From (3.1) we know 

~X2 flJo'J-l~(dx)=Fj+ l (O) ~_kCZ1)"~-02 

or rephrased 

Var(ZJ-k)=Fj+l( 0 c] -a ~Hg[l~ ~ cZi '<llgll~c c~ -1. 
d = k  g = k  

oo 

If ~#~ (dO)0(1-  0)> 0, then F~(0')= E(g(ZJo)) cannot converge to 0 hence ~c~ -1 

< oo due to Var(Zj_k)< 1 Vj, k. k 
oo 

If ~ c7 1 < 0% then apparently above inequality gives the wanted 
o 

sup Var(Zj_k) , O. 
j > = k  k ~  

(b) In order to decide which of the cases in (4.4) occurs for a given sequence 
(Ok) we shall first consider the case g ( x ) = x ( 1 - x )  where we can perform an 
explicit calculation giving us a quite enlightening direct proof. (The general 
case is obtained via indirect proof.) 

Assume that g(x)= x ( 1 - x )  and introduce 

(4.5) aR (0') = ~ p~' 0 (d O) (0 (1 -- 0)). 



460 D.A. Dawson and A. Greven 

Note that ( 1 / 4 - 0 ( 1 - 8 ) )  is continuous and bounded so that by Lemma4.1,  
aR(O') converges as R ~ oo for every 0'~ [0, 1]. Therefore (4.4) can be rephrased 
as follows 

(4.6) aR(O) ---*0 
R ---~ oo 

aR(O ) ,G(0 )>0  
R ~ o o  

VO'eEO, 1] *~ clustering, 

VOe(O, 1) <=> stability. 

In order to calculate aR+ 1(8) from aR(O ) w e  use the fact proved in [9], that 
for F k (x) = d k (x (1 - x)) 

(4.7) e o ( x ( 1  - x ) )  = 0 ( 1  - 8). 

This means (by iteration) in combination with the recursion formula for dk 
(see [9, Theorem 2]): 

(4.8) a R ( O ' ) = ~ l + . k  ] dk+, dk+Ck" 

\ Ok~ 

Combining (4.8) with (4.6), taking logarithms in (4.8) and then using log(x + 1)< x 
respectively log (1 + x) ~ x for Ix[ --, 0 allows us to conclude that: 

Lemma 4.3 

(4.9) 

( 4 . 1 0 )  

clustering in the mean-field limit <=> ~ d(~)= + oo 
k 

stability in the mean-field limit<:~ ~, ( dk ] < GO. 
k \Ck/ 

We will also prove the following. 

Lemma 4.4 

(4.11) 
k Ck k Ck 

Assume Lemma 4.3 for the moment. The combination of (4.9), (4.10) with (4.11) 
would prove the assertion of the theorem for the case g (x)= c x ( 1 -  x). Therefore 
the task remains to prove Lemma 4.4. We define Yk = dk/Ck " Then the relation 
dk + 1 = Ck dk/(Ck + dk) can be rewritten as 

Ck ~k 
( 4 . 1 2 )  ~k + 1 

Ck+ 1 ~kd- l "  
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This implies in particular 

N 
(4.13) YN < [ I  Ck _ Cl , 

k = l  Ck+l CN+I 

so that 

(4.14) i ])k <Cl i 1 
k = l  k = l  Ck 

Next write bk =(ck)-1 and rewrite (4.12): 

h , ,  ])k+l (4.15) (1 + ~ ) =  -~zt 
Yk Ok 

orin other words 

(4.16) 

= ])u+l ]-[ (l+])k bl < ])u+l (l+Tk 
L 71 f21 

so that using log(1 + x)< x for x > 0  we obtain: 

(4.17) i l < b l  exp('~, ])k ])k- 
k=l Ck ])1 \k=l k=l 

Combining (4.14) and (4.17) proves immediately Lemma 4.4. This completes the 
proof of Theorem 3 for g(x)=const x(1 -x) .  

(c) In the case where g(x) does not have the special form g ( x ) = d x ( 1 - x )  
we will use a different type of argument, namely proof by contradiction. The 
starting point of the proof is the following expression for the second moment 
of the interaction chain, which we derived in Sect. 3 Eq. (3.5): 

(4.18) ~o(zj)2= k2 c; 1 Fj+I(0)+0 2. 

First we show that ~ c f  1 < oe implies stability. Here we proceed by contra- 
k 

diction. By Lemma 4.1 and Lemma 4.2, we then need to show that the following 
assumption leads to a contradiction: 

(4.19) ~ c ~ - l < o e  and /t~ ,~ =*- 0 6 1 + ( 1 - 0 ) ( 3 o .  
k j ~ c o  

The relation (4.19) implies if we insert it in the lhs of (4.18), that 

(4.20) Eo(Z}) 2 , 0  
j ~ a e  



462 D.A. Dawson and A. Greven 

and if we insert it in the rhs of (4.18) 

(4.21) Fj(O)-=Eo(g(Zi) ) , O. 
j ~ o 9  

Combining (4.20) and (4.21) gives 0 2= 0 or 0 = 0  or i, which contradicts 0e(0, 1). 
Hence ~ cs 1 < oo implies stability. 

k 
The second step of the proof  is to show that ~ c~- 1 = + oo implies clustering. 

First note that (4.18) implies k 

(4.22) Fj(0) ,0  V0e(0, 1). 
j--* oo 

On the other hand by the definition of F k(. ) it can be represented as 

(4.23) F k (0) = E o (g (zk)). 

Since g(x)>O for xe(O, 1), and g(O)=g(1)=O we conclude by combining (4.22) 
and (4.23) and the fact that (zk)~= 1 ..... k is a bounded martingale, that 

(4.27) ~(Z~) ~ 0~ 1 + ( 1 - 0 )  6o 
k--+ QO 

or in other words #~((0, 1))=0 which contradicts our assumption. Hence if 
~, cE 1 = + oo the system clusters. This completes the proof  for general g. 

5 Proof of Theorem 4 and 5 

(a )  Proof  of  Theorem 4 

In order to have self-similarity in the mean-field limit we need that F0 k 
=F0 k+l V k = 0  . . . . .  This is equivalent to (g(x)=do x ( 1 - x )  here!) 

dk + 1 dk 
(5.1) . . . .  ~ VkeN. 

Ck + 1 Ck 

Inserting again the recursion formula for dk+ 1 (see [9, formula (1.13)] we obtain 

d k 1 d k c k c k o~ 
(5.2) - -  r - -  = 

Ck+ 1 Ck'-~-d k Ck+ 1 l-[-O~ Ck 

so that 

Ck - l + a  (5.3) 
Ck+ 1 
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o r  

(5.4) - -  k - l ~ C o  
Ck=Co Co l + d o  \do+co] ' 

\ C o /  

which proves (1.28). 
The next step is to determine the domain of attraction of self-similarity. 
First observe that if Ck+l/Ck=pe(O, 1) for all keN, then formula (5.2) reads 

with 7k :=dk/Ck 

(5.5)  k+l-p 

The function R + ~ R  + defined by x ~ p  -1 x is monotone,  concave and 
l + x  

has derivative p-1 in x = 0  and tends to 1 as x ~  oe. Therefore the equa- 
tion x = p - ~ x ( l + x )  -1 has a positive root  x* such that for x > x *  we have 
x > p - l x ( l + x )  - t  and for 0 < x < x *  we have x < p - l x ( l + x )  -1. Since 71>0 
it is straightforward to show 

1 
(5.6) 7k--'X* as k ~ o e ,  x * = - - ~ - l .  

P 

This proves that the (Ck) given in (1.29) with bk+l/bk--1 are in the domain 
of attraction of self-similarity. It is easy to adapt the argument to the case 
that bk+ 1/bk ~ 1 SO that "p"  depends on k but converges as k ~ oe. 

It remains to show that (1.29) gives all (ck) which are in the domain of 
self-similarity. We have the relation 7k + 1 = 7k (1 + 7k) - ~ Ck/Ck + 1. Attraction to self- 
similarity implies that 7k~C~ as k--*oo. This forces Ck+~/Ck to converge to 
(1 + e)-  1, which completes the proof. 

(b)  Proof  of Theorem 5 

Case 1 Let us assume for the moment  Ck--C > O. 

DefineNk(fl)= k . ZtBk I We first establish in part (i) tightness of s ' 11), 
second we show in part (ii) that every weak limit point is the Fisher-Wright 
diffusion and thereby finish the proof. 

Z k (i) The starting point is the following embedding of the processes ( j)j= o ..... k 
in a brownian motion. 

Lemma 5.1 There exists a brownian motion W(t) (independent of everything else) 
and a sequence {Sk(fl)}p~tO, ll of  nondecreasing processes such that {Sk(fl) 
< t} ea({W(s)}s<_t) and 

(5.7) &o ((2k (fl)a ~ tO., ~) = ~a ((W(Sk (fl)))p ~ to, 11)" 
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Proof Since (Z~), = _ 1,0 . . . . .  ; is a martingale for every j, for every bounded convex 
function f the sequence ~(#Jo4-k,f) is nondecreasing in k. A theorem by H. 
Rost (see Chacon and Walsh [5]) applied to brownian motion on [0, 1] with 
absorption in 0 and 1 says the following: 

Let v, # be two probability measures on [0, 1] such that 

( v , f )  < (# , f )  for every f bounded and subharmonic. 

Furthermore let W*(t) be brownian motion with initial distribution v (and 
absorption in {0, 1}). Then there exists a stopping time T of W* (t) such that 

# = ~,r (T)). 

It is easy to prove that for brownian motion on [0, 1] with absorption at 0 
and 1: 

f bounded and subharmonic<=>f bounded and convex. 

By successively applying the above quoted theorem and using the fact that 
W*(t) is a strong Markov process with independent increments we obtain (5.7), 
since we can construct the desired process Sk(fl) as the sum of those stopping 
times Tj with j <  [flk]. This finishes the proof  of Lemma 5.1. 

In view of (5.7) we must now consider (Sk(fl))p~[O, 11 and prove: 

Lemma 5.2 5r 1]) is weakly relatively compact in the space of probabili- 
ty measures on Oto" 11( [0, 1] ). 

(For notation compare Ethier and Kurtz rl0].) 

Proof First observe that with H=inf(t]W*(t)e{O, 1}) we have 

(5.8) Sk(/~)<H<oo forall  f l~[0,1]  a.s. 

Therefore we can and shall supress the . .  Furthermore for a stopping time 
T of a brownian motion with 5r  5~(W(0))=v we have E(T) 
=Sx2d#(x)-~x2dv(x). Recall also that the successive stopping times 
T1, T2 . . . .  , T k defining the embedding of (Z~)j__ ~ ..... k in the brownian motion 
W(t) have the property that Tj+ 1 does depend only on Z~. By combining the 
last two facts it is a tedious but straightforward exercise to derive the following 
estimate: Let (x(s) be a function [0, 1] --* R and define 

with 

Then 

w'(x, 6, T)= sup ([x(t2)-x(t)[)A(Ix(ti)-x(t)l) 
(r, ,  t, rz)~g-  

J -  = {(t~, t, t2) I tx _-< t < t2, t 2 -  t ,  _<_,~}. 

(5.9) P(w'(Sk(fl) ), 6, T)> x) < x-  2(sup S [(Fko;k-t(~+~)kl(dO)-- F~'k-t~k~(dO)) 02]) 2. 
r O' 

To see this (recall that X(fl)=Sk(fl) is nondecreasing) consider in [ t l ,  t2] the 
point t', the smallest t value in t~, t2 where x(t)--x(tl)>x. Then it suffices to 
study the event {[x(t')-x(ti)l/x Ix(tz)-x(tOl>x}, whose probability can now 
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be estimated using the independence of the increments, and bounding E[x(t') 
- x (t,)[ __< E [x (t2) - x (tl)] with Chebyshev's inequality. 

Using the fact that 2p .is a martingale we can rewrite the relation (5.9) as 
follows (replacing 02 by 0 ( 1 -  0)): 

(5.10) P(w'(Sk(fl)),6, T)>=x) 
< x - a (sup ~ (1 #~: k - [(~ + ~)kl (d 0) -- #o k' k - [(~)k] (d 0)) (0 (1 - 0))1)z. 

~,/9" 

We shall prove below that the following monotone increasing functions of/3 

{I #0 - (d 0) 0 (1 - 0)} 

satisfy uniformly in 0': 

(5.11) ~#~'k-[~kl(dO)(O(1--O)) ' 1--fl,  
k ~ oo 

(dO) (O(1 0 ' ( 1 - 0 ' ) .  [1~0,  - - 1 ~ 0  , 

The relations (5.8), (5.10) and (5.11) can now be used to verify the assumptions 
in Theorem 15.6 in [4, p. 128] (with e =  1, 7= 1, F linear) to prove that the 
family 5~((Sk(fl))~[o, 11) is relatively weakly compact. The details are standard 
and omitted. 

We shall abbreviate the sequence of functions on the lhs of (5.11) by 
{FO,,k(fl)}k~N. In order to verify (5.11) the next step is to calculate Fo,,k(fl). The 
formula (5.2) becomes with the abbreviation 7k=dk/Ck in the case where c k = ca 
simply 7k+ 1 = 7k( 1 -t '-7k)-1. This recursive relation has the unique solution 

1 C 1 
(5.12) 7k=~  and consequently dk=~- .  

This implies in particular (using (1.9) and (4.7)) that 

(5.13) I#Jo'k(dO) 0(1 - -0)= 1 0'(1-- 0'). 

Next observe that for k=f l l  ~,J=fl2 ~' for #---, 0% 

, Pl// 2 (5.14) H x-, 
k 

which is easily seen by taking logarithms and using log 1 + ~ as k ~ oe. 

The relation (5.14), (5.13) allows us to verify the supposition (5.11). This completes 
the proof of Lemma 5.2. 

We continue the proof of Theorem 5, in the case g (x)= x (1 - x ) ,  Ck =--C. Lemma 
5.2 allows us to pick now a subsequence (k~)~_N such that 
~((W(t)) t__>o,  S k j ( f i ) f l s [ o ,  1]) converges weakly as j r  oe. We denote the limit pro- 
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cess by ((W(t))t>o, S~(fl)p~to, l~), and note that the process $00 has continuous 
paths by (5.11) and Theorem 12.4 in [4]. A weakly convergent sequence of 
cfidlfig random processes converging to a continuous limit can be constructed 
on a common probability space converging there in the supremum norm a.s. 
Since W(t)  has continuous paths we obtain that 

(5.15) &a((W(Skj(fl)))a~to, 11) ~ L~((W(So~(fl)))p~to, tl)- 
j ~ 0 0  

Our task in the next subsection will be to prove that W(S00 (.)) has properties 
which determine this process uniquely, so that as a consequence 
~((W(Sk(fl)))t3~m,11) converges. Furthermore if we have shown that the time 
change of Fisher-Wright diffusion has these properties we have finished the 
proof  of (1.30), (1.31) in the case g(x)= x(1 - x ) .  

(ii) The main properties of W(S00 ( ' ) )  are summarized in the Lemma 5.3 below. 

Lemma 5.3 The process W(S00 ( ' ) )  has the following properties: 

(5.16) W(S00 ( . ) )  has continuous paths, 

(5.17) W(S00 ( ' ) )  is a martingale, 

(5.18) E~ (fl)) (1 - W(S00 (fl)))) = 0(1 - 0) (1 - fi). 

Proof  Using the construction of $00 as the a.s. limit of Sk on a big probability 
space it can easily be verified that $00 (fl)a~to, 11 is an increasing family of stopping 
times with respect to a filtration ~ for which W is an ~r martingale. Therefore 
by the optional sampling theorem it follows that W(S00(. ) )  is a martingale. 
The continuity of paths follows from the continuity of S~ (-), (which followed 
easily from the estimates in (5.10) combined with the relation (5.11) and Proposi- 
tion 10.3 in [10]). Altogether this proves (5.16) and (5.17). 

Finally the relation (5.18) is an immediate consequence of the relations (5.14) 
and (5.13) once we write the rhs of (5.18) as 0 ( 1 - 0 ) ( 1 - f l ) .  

This finishes the proof  of Lemma 5.3. 
Note that the process W(S00(fl)) is not time-homogeneous as it stands and 

the question is whether this can be fixed by passing to a different time scale. 
The next step is therefore to introduce the following one to one transformation 
of the time fl+--~s given by 

(5.19) fl = 1 - e  -s 

mapping [0, 1) onto [0, ~) .  In this time scale the structure of the process simpli- 
fies and we have: 

Lemma 5.4 Let  2 ~ (fl) = W(S00 (fl)). Then the process (200 (1 - e -  s))s~to, 00) is a con- 
tinuous martingale which satisfies 

(5.20) E ~ (2  00 (1 -- e - ~) (1 -- 2 00 (1 -- e - ~))) = e -s 0 (1 -- 0). 

Moreover  the process (2  ~ ( 1 -  e-~))s~m, oo) is a time homogeneous Markov  process, 

namely, the Fisher-Wright diffusion which is generated by i x ( 1 - x )  ~-x " 
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Proof The first statement follows immediately from Lemma 5.3. In order to 
prove that the transformed process is a Fisher-Wright diffusion we will show 
that it satisfies the appropriate martingale problem and then use the standard 
result that this martingale problem has a unique solution. 

We begin by considering the mean square displacement of zk(fi) between 
time ~1 and ~2 given that 2k(~1)= 0. For that purpose observe first that (using 
(5.12)) 

(5.21) ~" -'s = 1 --, (log ~ 2  k--log al k) = log . 
[al k] Cj [0:1 k] J k oo 

Set ~2=~1+A~,  then the rhs becomes l o g ( l +  A ~ - ] / e \  Therefore for ~ 2  

= e S +as, 0~ 1 = e S this reads log(1 + e ~S- 1) = A s. - ~ 1  ] "  

An elementary calculation using (5.13) combined with (5.20) and the fact 
above proves that the infinitesimal square displacement in s of W(S~(1-e-S))  
is independent of s, and furthermore that on the event W(S~(1-e -S) )=0  the 
infinitesimal square displacement is equal to 

(5.22) 0(1 - 0). 

Therefore combining (5.16) and (5.22) we have the two facts: 

(2'~( 1 -e-~)) 2 -  i 2 * ( 1 - e - 9 ( 1 - 2 ~ ( 1 - e - ' ) )  dt 
0 

~o~ (1 -- e -S) is a martingale 

is a martingale, 

which together comprise the martingale problem. But it is well-known (cf. Ethier 
and Kurtz [10, Chap. 4, Problem 24]), that this martingale problem has a unique 
solution, namely, the Fisher-Wright diffusion. Note that this process is also 
given by the unique solution of the stochastic differential equation 

(5.23) dZ (s) = (Z (s) (1 - Z (s))) ~ d W(s) 

where W is a standard Brownian motion. 

Cases 2, 3 Literally the same arguments apply in these cases once we have 
replaced (5.12)-(5.14) and (5.21). But note that h(k) has been chosen exactly 
in such a way that the rest of the calculation carries through. 

(c) Proof of corollary to Theorem 5 

The first step is to show that the results hold for all gE~,~2(x(1-x)). For that 

note that SUpxlFk(x)/dkX(1--X)--l]=ek with e,=o(--l/  by assumption. purpose 
\n/  
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Since we have an explicit formula for F0k(') (the ~ indicates that we use a 
specific g not equal to x(1-x)) ,  namely (see [9], formula 2.3): 

(5.24) --k __ const exp { ~ 0-- y (dx)- Fk(~ d yj dx, 
\~ Fk(y) 

we are able to explicitly bound the effects, on the expectation of x (1 -x ) ,  caused 
by replacing Fk(X) by dk x(1--x) in (5.24). 

Denote by /~k(.) the equilibrium for g(x)=x(1-x) respectively with /~,k 
the corresponding marginals then we shall prove below that 

(5.25/ II(~, ~(d x ) -  d~, ~(d x)) x(1 -x ) l  jg~,~(ax) x(1 - x )  , o, 
k = j I  k 1 

jl=O~lh(n) jz=o~zh(n), jl,j2~[O,n] 

n --~ 00  

as long as h(n) --* oo as n ~ oe. This then proves the results for general diffusion 
coefficient, since we can use (5.25) to repeat for any geY2 the proof we have 
outlined in the case 7, = 1/n for the diffusion coefficient g(x)= x (1 -x ) .  (See (5.9)- 
(5.11)). 

In order to obtain (5.25) above, we exploit the property g ~ ( x ( 1 - x ) ) .  
Abbreviate 

(5.26) a R ( 0 9 , = S ~ '  o (d 0) 0(1 - 0) 

(5.27) aR(O )'=j #o, ~ 0 ( 1 -  0). 

We shall establish below the inequalities 

(5.28) 

with 

(1 - ~.) dR (0') _-< aR C0') _-< (1 + ~R) dR (0) 

~. ,= II P"(g)~x~- x (1 - x)ll. 

Since g~ ~2 (x (1 -x) )  we know that e, = o (1) and therefore (5.25) holds. 
The proof of (5.28) uses again that (recall (3.1)) 

(5.29) x2#~,'~ cf 1 +02, 
0 j= 

which implies 

(5.30) xO--x)u~,~ c; ~ . 
o j 
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This gives 

(5.31) i k x (1 -- x) (/2~' o (d x) - #~, o (d x)) = I Fk (0) --/~ (0) 1 ~ Cj -1  
j=o 

k 
=l~(O)-dkO(1-O)l Y', C j  1 

j=0 
k 

k 

1 
=~k I x ( 1 - x ) ~ o ' ~  �9 

0 

The last relation implies now (5.28) via the monotonicity in k. 

6 Proof of Theorem 6 and 7 

(a) Proof of Theorem 6 

The basic fact behind Theorem 6 is, that the criterion for stability or clustering 
of the process XN(t) on O u for N fixed can be formulated in terms of the 
dichotomy transience versus recurrence of a particular random walk. 

We shall start by introducing this random walk (Y,),~N. First let Yt be a 
continuous time random walk on the group ~?N with jump rates 

/Ck\ 1 
(6.1) ~--*~'" Z ~ ) ~ -  where j=d(~,~') .  

k = j  X / 

It is convenient to write this rate in the form 

1 ~o 
(6.2) ~ Ck N -  2(k-j) 

N - 2 J  
k = j  

and to introduce 

(6.3) ~j= ~ ck N -2(k-j). 
k = j  

Now let (Y,),~N denote the jump chain of the process (Yt)~l~+. Then Y, is a 
discrete time random walk on the group ~N. Denote its transition kernel by 
a(~, 4') and note that this is symmetric. 

Then the following holds: (See Cox and Greven [7], Theorem 1 and Theo- 
rem 2). 
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Proposition 6.1 I f  (Y,),~N is transient then there exists a set { V o } o~r o ' l j of invariant 
measures with the properties (1.37), while in the case where (Y,),~N is recurrent 
the only extremal homogeneous invariant measures are given by 6(~,o=~ and 
6(~,o=_O~. In both cases relation (1.39) holds. 

We are therefore left with the task of determining the transience, respectively 
recurrence, properties in terms of the coefficients (Ck)k~U alone. For this purpose 
we use Fourier-analysis and a result by Sawyer and Felsenstein [13] for symmet- 
ric random walks on the group (2 u. 

Lemma 6.1 The random walk (Y,),~N is 

(6.4) transient if ~ 1 - -  O0 
j=l CJ "< 

(6.5) recurrent if ~ 1 
j=l C J =  ~-oo, 

where 

(6.6) Cj= ~ gk N-(k-J). 
k=j 

Proof. Note that the number Rk of 4' with d(~, ~')=k is Nk--N(1--gk(O)) for 
every ~eO N. Therefore the jump rate of (Yt) can be written as Const R~I(gk/N k) 
and consequently the jump chain has a transition kernel of the form 

(6.7) 
(1 

Const ~ for the transition ~ ' ,  if d(~,~')=k. 

In order to apply Sawyer's result on recurrence, respectively transience, for 
random-walks on f2 u, we translate as follows: 

(6.8) r = N 

R k = N g - N (1 - 6k (0)) 

Ck 
P k = ~ V  

fk = PO +Pl  +--.  +Pk-1 --(pk/r-- 1). 

Then recurrence (transience) of ~', is equivalent to (Sect. (3.4) in Sawyer and 
Felsenstein [13] ): 

(6.9) 
r 2 

1 r j f j  /(1 +fj) (1 - f j )  = ~ ( < ~).  

Rewriting this gives the simpler condition (fj ~ 1 as j--* oo) 

1 
(6.10) ~ r -(j-  1) = ~ ( <  oo). 

j=l 1--f j  
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Since 

(6.11) 

we have 

1 --fk = (Pk +1 + . . . )  + Pk / r -  1 

1 { ~  ~-k-1)~.{ ~ ] 
- - N k + l  \ =kA.. + 8 jN-  j 1 ] - \ N k ( N  - 1)] 

1 oo N - U - k - l )  ) 
! 

1 --fk < N -U-k) . 
j= 

We rewrite (6.10) using the estimates above to get: 

1 (__~2~ '  1 _~1 1 (6.12) ~ r j-1 < N  2 ~ r ~-1 --fj_->Nj 
j=l 1 - f J  = j j=l 1 ~ "  

This means the criterion (6.10) boils down to the condition 

~o 1 
(6.13) ~--1Cs oe (< oo), 

which proves the Lemma 6.1. 
Clearly Proposition 6.1 and Lemma 6.1 combined prove the Theorem 6(a), 

(b). 

(b)  Proof of Theorem 7 

In order to prove Theorem 7, we will need the following duality relation between 
interacting Fisher-Wright diffusions and coalescing random walk system t h. 

Here are the duality relations (see Shiga [14]): 

(6.14) E~( 1-I X~, o(t))=EA( I] x~',0(0)) "~'(') 
~ ' s A  r N 

where t/(t)= {~/r162 has the evolution (here qr is interpreted as the number 
of particles at ~ at time t) given by the following two rules: 
(i) Each particle moves indepencent of every other particle according to the 
random walk with jump rate for the jump r ~ ~' given by 

09 

~2k with j=d(~,  ~'). 
k=j 

(ii) Each pair of particles at the same site has an exponential clock with rate 
do and when the clock rings the two particles coalesce. 

In the proof of Lemma 5.4 (see in particular (5.22)-(5.23)) we saw that it 
suffices to prove that the mean-square displacement of (Ot)t~g+ is given by 
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const (0(1-0))  if we are at the point 0. This is true by explicit calculation. Use 
the abbreviation "{= t + A s fi(k) to calculate 

(6.15) E((Ok(t + (A s) fi (k))) 210t k = 0 ) -  [E(Ok(t + A sfi(k))10~ = 0)3 2 

with ~=(0, 0, ...), Mk = {~2Nld(~' ,  ~)< k}, E - - E ( "  10~=0) 

= ( ~  ~ E(xr162 2 as k ~ .  
r r 

d(~, ~') = k 

To continue we shall use the duality relation with coalescing random walk. 
Define (see sequel of (6.14) for notation) 

qf(~, ~')= Prob(]t/(~)l = 11 ~(0) - -~("  )+  6~(" )). 

If we prove that for ~, 4' with d(~, ~ ' )=k and "{=Asfi(k) we have 

(6.16) q~(~,~') )qAs with q~=qAs+o(As),  
k ~ o ~  

then we can continue (6.15) by calculating the terms in the sum via (6.14): 

(6.17) 
((0 k(t + (A s)/~(k)))21 0f = 0 ) -  [E(0 k(t + A s/~(k))l 0f = 0)]2 ' qas 0 ( 1 - 0 ) .  

Next using q~s=qA s+o(A s) we obtain, that the infinitesimal mean square dis- 
placement of Ot is given by 

const. 0(1 -- 0), 

which finishes the proof. 
It remains to verify (6.16). The key to this result is the fact that f2 N'k forms 

an abelian group. Another  way to view f2 N'k is as a k-dimensional torus of 
size N intersected with Zk. The task is then to study the hitting times of points 
of a random walk on this object. Since rather different tools are used for this 
we refer to a forthcoming study of hierarchical systems without taking meanfield 
limits in Fleischmann and Greven, where hitting times for random walks on 
O N are studied. The required result (6.16) is established there. 

Acknowledgement. We are indebted to E den Hollander pointing out an error in the calculation 
leading to the uniqueness of the fixed point. The presentation benefits from the comments 
of an anonymous referee. 
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