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Summary.  For  a realization of length n from a covariance stationary discrete 
time process with spectral density which behaves like 21-2~ as 2 - -*0+ 
for �89 < H < 1 (apart from a slowly varying factor which may be of unknown 
form), we consider a discrete average of the per iodogram across the frequen- 
cies 2rcj/n,j=l, ...,m, where m ~ o o  and m/n-~O as n--+ oo. We study the 
rate of convergence of an analogue of the mean squared error of smooth 
spectral density estimates, and deduce an optimal choice of m. 
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I Introduction 

This paper  derives convergence rates and formulae for optimal bandwidths 
in nonparametr ic  spectral analysis of time series with long range depen- 
dence. Let {x,; t =  1,2 . . . .  } be a covariance stationary stochastic process 
having power spectrum f ( 2 ) , - r c < 2 < r c ,  and lag-j autocovariance 7j 

=E(xz -EXl ) (X l+j -Ex l )=  i v c o s ( j 2 ) f ( Z ) d 2 .  On the basis of observa- 

tions at t = 1, .. . ,  n, define the per iodogram and discretely averaged periodo- 
gram 

(1.1) 
1 n 2 2zc [;~n/2x] 

I (2 )=  27nn ~=1 x, e it~ , P(,~) = ~ -  jL=~ i(,~j), 

where 2j = 2rcj/n and [ . ]  here means "integer part" .  Consider an integer- 
valued "bandwid th"  sequence m = m, satisfying 

Assumption 1 m = m, ~ o% m = o (n), as n ~ oo. 
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When 0 < f ( 0 ) <  0% which can be viewed as a symptom of weak dependence 
in xt,/?(2,,)/2,~ is consistent for f (0)  under mild additional conditions. When 
f(2)  is smooth at 2 = 0, formulae for "opt imal"  m asymptotically minimizing 
the mean squared error (MSE) 

(1.2) E {/? (2,.)/2 ~ - f  (0) } 2 

are long-established (see e.g. Grenander and Rosenblatt  [7, pp. 153-155]). 
Processes for which f ( 0 ) =  oo are of increasing practical and theoretical 
interest; they are often said to exhibit " long range dependence". Many 
are covered by the assumption that f varies regularly at 2 = 0. 

Assumption 2 As 2 ~ 0 +,  

def / 1  x 
= 

where " ~ "  means that the ratio of left- and right-hand sides tends to 
1, and L(2) is a function of slow variation at infinity, i.e. 

L(t ;O 
(1.3) - - - ~ i ,  as 2 - * ~ ,  forall  t>0 .  L(,~) 

Assumption 2 covers many parametric models for long range dependence 
such as fractional autoregressive integrated moving average (ARIMA) and 
fractional noise models (see e.g. Fox and Taqqu [5]). Because it makes 
no parametric assumptions about medium- or short-run behaviour of x~, 
it is of wide practical applicability, 
In case Assumption 2 holds we introduce the scaled MSE 

(1.4) MSEm = E{B(2m)} 2 , 

2 

where B (2) = P(2)/G (2 ) -  1 and G (2) = ~ g (2) d 2. The case 0 < f (0) < oe corre- 
0 

sponds to H = l / 2  and L(2)-=f(0), when (1.4) reduces to (1.2) divided by 
f(O) z. For  1 / 2 < H < 1 ,  Robinson [12] gave conditions for consistency of 
/ t  = 1 - log {P(q 2m)/F(2~)}/(210g q) where 0 < q < 1 (allowing L in Assump- 
tion 2 to be of unknown form). The choice of m is of interest here. Applying 
(2.7) belo w , / t  - H = {B (2,.) - B (q)~m)}/(2 log q) + O e (B 2 ()~m) + B 2 (q 2,.)) + o (1), 
as n ~ 0% under Assumption 1. Results below indicate that the "Op" term 
is suitably small and assuming that the "o(1)" term is suitably small (it 
is zero when L is constant) it follows that we can consider as an "asymptotic 
MSE"  of/~,  E[{B()~,.)--B(q2,,)}/2 logq] 2, whose study (including optimal 
bandwidth choice) will benefit from information about (1.4). Other uses 
of/~ in case 1 / 2 < H <  1 were also explored in [12]. It is also possible that 
~e(2,.) will be computed in the hope of estimating a finite f (0)  in a situation 
where long range dependence cannot be entirely ruled out a priori, so we 
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would like to know how the optimal m differs between the finite f(0) case 
and Assumption 2. Study of (1.4) when 1/2 < H < 1 also represents an exten- 
sion of the classical analysis of (1.2) in the smooth spectral density case. 

To describe the bias component in (1.4), strengthen Assumption 2 to 

Assumption 3 For some E~u 4= 0 and 0 < e < 2, 

(1.5) f(2) . ~ ~+o(2~), as 2--+0+ g(2--) = t + L~u z 

Assumption 3 is equivalent to taking f (2)=h(2)  g(2) where h (0)= l  and 
h is in Lip(a) for 0 < e < l ,  or is differentiable with derivative in L i p ( a - l )  
for , 1< e < 2 .  When 0 < f ( 0 ) < o %  it corresponds to the usual smoothness 
condition imposed on f ( 2 ) =  h(2)f(0) (the cases e =  1 and e = 2 are stressed 
in much of the literature). In general we allow E=~ to depend on H as 
well as e, because h()0 can depend on H, as in the fractional ARIMA 
c a s e .  

When 1/2< H <  3/4 we find that the leading terms in MSE m are fortu- 
nately invariant to the form of the slowly varying function L, as is the 
optimal bandwidth m, and that while they differ from corresponding quanti- 
ties in the case 0 < f ( 0 ) < ~ ,  their rates are the same. For example, the 
optimal m is of form A(H, e) n 2e / (2a+  1), SO the rate is free of H, which affects 
only the scale factor A (H, e); the latter is an increasing function of H. 

When 3/4 < H < 1 a different type of result emerges, as might be expected 
because f is square integrable in a neighbourhood of the origin when 1/2 
< H < 3/4, but not when 3/4 < H < 1. The rates of MgEm and the optimal 
m now differ from those when 0 < f ( 0 ) <  oe. For  example, the optimal m 
is of form A(H,e )n  ~/(~+2-2u). Thus the rate depends on H, tending to n 
as H ~ 1, and suggesting that a strong degree of long range dependence 
calls for a substantially larger bandwidth. Another interesting aspect of 
the case 3 / 4 < H < 1  is that the MSE and optimal bandwidth for F(2,,) 
differ from those for the continuously averaged periodogram when the mean 
EXl is known, namely 

0 

(1.6) 

where 

?(2) = (x t -  E x 1) ei'* . 
t - -  

Most experience in frequency domain time series analysis suggests that 
continuous and discrete averaging of periodograms makes no difference 
to basic asymptotic properties. This experience covers 17 and P under weak 
dependence, averaged periodogram (c.f. F) and weighted autocovariance 
(c.f. F) spectral density estimates (see e.g. Brillinger [2, Chap. 7], Hannan 
[9, Chap. 5]), as well as Gaussian estimates of parametric time series models 
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under both weak and long range dependence (see e.g. Hannan [10], Fox 
and Taqqu [5], Dahlhaus [3], Giraitis and Surgailis [6]). When 3/4 < H < 1, 
however, the optimal m for (1.6) (apart from a possible factor involving 
L) is of form A'(H, c 0 rt ~/(~+2-2//) where A'(H, ~) can be larger or smaller 
than A(H, 0 O, and the minimized MSE m can be larger or smaller than the 
minimized 

M~Em = E {fi(2~)/G (2~) -- 1} 2. 

The regularity conditions for the case 1/2 < H < 3/4 are strictly weaker than 
those for the case 3 / 4 < H <  1. While we obtain optimal rates of increase 
of m as a function of n, all rate results for MSE and technical lemmas 
in the paper assume only the minimal Assumption 1 on m. Our results 
can be straightforwardly generalized to cover elaborations on i e or ie which 
involve the sorts of non-uniform weighting or tapering which have often 
been found useful in spectral analysis (cf. Brillinger [2, Chapters 3 and 7], 
Hannan [9, Chapter 5], Dahlhaus [4], Zurbenko [16]), and to averaged 
periodograms around a given non-zero-frequency singularity in f 

We discuss the cases 1/2 < H < 3/4 and 3/4 < H < 1 separately in the next 
two sections. It is convenient to assume Gaussianity of xt in Sect. 2 and 
3, so that complications arising from non-zero fourth cumulants are avoided. 
In Sect. 4 we give a condition under which the results of these Sections 
are robust to non-Gaussianity. 

We briefly mention some additional slightly related references. [13] de- 
rived limit distribution theory for discrete Fourier transforms of processes 
with long range dependence; [4] studied spectral analysis of processes with 
spectral peaks which increase in magnitude with sample size; [8] and [11] 
studied rates of convergence and optimal bandwidth in kernel probability 
density and derivative-of-probability-density estimates based on data with 
long range dependence. 

2 M S E  when 112<H<314 

Throughout the paper we make use of the following fundamental properties 
of slowly varying functions (see e.g. Bingham et al. [1, pp. 26, 27, 58]): for 
all /3>0, as 2 ~ 0 +  : 

1 p 
(i) oSUpoL(~)#  ~ L ( 1 )  2', 

(2.1) 

(ii) supu>__)~ L(1]\l~/I~-~L(2) 2-~' 

o 

(2.2) 
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where (2.2) (ii) assumes L()0 is locally bounded on [l/A, ~). 
We introduce two further assumptions. 

Assumption 4 For any fie(0, 1), De(l,  Go), as 2--*0+ 

(2.3) sup I f ( Z ) - f ( 2 - # ) [  = O ( 1 ) .  
-D~=<u_<_a~. I#[ g(l#l) 

Assumption 5 xt is a Gaussian process. 

A sufficient condition for Assumption 4 is that f(2) is differentiable in a 
neighbourhood (0, e) of the origin, with derivative f'(2) satisfying 

(2.4) f ' (2 )=O(~2~) ,  as 2 ~ 0 + ,  

because the left hand side of (2.3) is then 

O(  1 sup ]f ' (#) l)=O(~),  as 2 ~ 0 + ,  
g(-2) (1 -o) 2~/~<(1 +D)2 

noting that for all t > 0  g(2)/g(t2)~t 2n-1 as 2 - * 0 +  from (1.3). [3], [5] 
and [6] employed conditions similar to (2.4) in their study of asymptotic 
inference in parametric models for long range dependence, the most popular 
of which, fractional ARIMA and fractional noise models, satisfy this condi- 
tion. Another sufficient condition for Assumption 4 will be presented in 
Sect. 3. Assumption 5 could be relaxed to the requirement that xt have 
zero fourth-order cumulants and cross-cumulants. 

Introduce the Dirichlet and Fej6r kernels D(2)= i e itz, K(2) 
t = l  

=(2~n)-~ ID()0I z, respectively. We repeatedly use the properties (see e.g. 
Zygmund [17, pp. 49-51, 88]) 

(2.5) ID(2)l<2n/(1 +nu) ,0<2<rc ;  f K(2) d2=l;K(2)iseven. 

Theorem 1 Under Assumptions I, 3, 4 and 5 and 1/2 < H < 3/4, as n ~ 

MgEm~4(1-H)2[-(3 1H) m F(2__2H+o, 

Theorem 1 holds for all m satisfying Assumption 1, but when the m-1 
and (m/n) 2~ terms do not balance the smaller one, as n ~ 0% is not necessarily 
the second term in an asymptotic expansion, without a suitable extension 
of Assumption 1. 
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An identical result holds for F(2,,) and also for 

~,rn 

F(2,,)= S /(2)d2, 
0 

where 

I-(2) = ~ 1  n t~=l(xt-'Y)eit't2 

and if= n-1 (xl + . . .  + x,). The proofs are very similar to that of Theorem 1, 
indeed somewhat simpler because Lemma 4 below is not required, if(2,,) 
can only be computed when Ex  1 is known, and Monte Carlo simulations 
suggest that F(2,,) is inferior to/?(2,,) for small or moderate-sized n, owing 
apparently to the slow convergence of 2 when H > 1/2. 
A trivial consequence of Theorem 1 is: 

Corollary 1 A bandwidth rh which minimizes M~Em as n --+ oo is 

2 1 r~=,y ( 2 - - 2 H + ~ )  ;2=+1 2a n 2 a + l  
(2~E2~(2~)2~(3 - -4H)J  

Thus the minimized MSE,, converges to zero at rate n - 2 ~ / ( 2 a +  1). The factor 
(2--2H+cO2/(3-4H) increases in H for given e, tending to infinity as H 

3/4. On the other hand, putting H =  i/2 and e =2  in the formula gives 
tfi = {9/4E2,1/2 (2~) 4} 1/s n4/5, which corresponds, as expected, to the optimal 
bandwidth formula in Hannan [9, p. 286] for the Daniell estimate when 
f has bounded second derivative at 2 = 0 (Hannan's M is n/2 m). 

Proof of Theorem 1 

(2.6) BOO = 

E/~(2)--F(2) . (F(2)  1 ) ,  

2 

where F(2)= S f(2) d2, 0<2<re .  Thus 
0 

G (2,,) 2 ( G  (2m) - 112 = O (r (2m)), 
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where, by elementary inequalities, 

r(2) = ~ [I~P(~)-~P(,Z)I {IEP(;0- EP (;0I + iF(2)- G (2)i } 

+ lEft (2)- F(2)I {IEF (2) - F(2)I + IF(k)-- G(2)I} 3. 

From (2.2) (i) 

1) 2 (1-//) 
(2.7) G()O..,L 2 ( l - H ) '  as 2 ~ 0 + ,  

so it suffices to prove that as n --* oo 

F (2") 2 (1 - H) 2~, 
(2.8) - - -  1 ~ E~// 

G(2") 2(1 - -H)+~ '  

(2.9) r (2,,) = o ( l ) ,  

(2.10) V(P(2"))~m \2,,! 3--4H" 

We establish these properties via a series of lemmas. 
First (2.8) is proved by 

Lemma 1 Under Assumptions 2 and 3, as 2 ~ 0 + 

F(2) 2 (1-H)  2 = 
- - - -  1 ~ E ~ / /  
G(2) 2(1 -H)+o~ 

Proof From (1.5), 

F(2)-G(2)--E~H Jo L #~-2U+~dlx=o(2~G(2)), 

then apply (2.7) and another consequence of (2.2)(i), 

i ( 1 ) (1) 22(1 -//)+~ 
o L kt l -2n+~d#~L 2 ( 1 - H ) + ~ '  as 2--+0+. [~ 

449 

(2.11) 

(2.12) 

~ P  (2") - F (2") = 0 ( g @ ) ) ,  

[ [ 1 \  2(//-- 

Now (2.9) is a consequence of Assumption 1, (2.7), (2.8) and two further 
results to be established, namely 
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as n--+ 0% for 0< t /<  3 /2 -2H.  
To derive (2.11), we introduce first a representation for the bias EF (2)--F (2). 

Lemma 2 For all 2e(0, rcJ, 

Eft (2)-  F (2) = f K (#) {Jx (#)-  F(2)} d#, 

where 

Jz(#)=2F(u)-F(2u+#-2),  - - n < # < 2 - u ,  

= F(2-- #), 
= - F ( #  - ,~), 

Proof Direct calculation gives 

E{(~(~)} = 

2 - ~ < # ~ 2 ,  

0 

K(#) {J~(#)-- F(#)} d# 

~r 

+ ~ K(#){Jz(#)+F(#)} d# 
0 

where F ( - # ) =  F(#), # > 0. Apply evenness of K and (2.5). [] 

Lemma 3 Under Assumptions 2 and 4,for all n, 

( 2 . 1 3 )  n[E{FOo)}--F()O]=O(g(2)), as 2 ~ 0 + .  

Proof On application of Lemma 2, the left-hand side of (2.13) is dominated 
in absolute value by A 1 +. . .  + A 7, where 

=n ;42 d#,  AI I K(#I{F(2--#)--F(2)} 
- 2/2 

A2=2F(2)n f K(#)d#, 
2/2 

A3=n ~ K(#)F(2--#)d#, 
2/2 

A4 =n f K(#) F(#-2) d#, 
2 

2/2 
As=n i K(#)F(2-#)d#, 

- ~ / 2  

A 6 = n ~ K(I2) Jx(#) d# ,  

- e / 2  

AT=n f K(#)J;.(#)d#, 
- T r  
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for 2 < e < r c - - 2 .  Now 

3. 

F(2)-F(2--p)--#f(2)= S {f(O)-f(2)}dO, [~I<1/2A, 

so by evenness of K, (2.5) and Assumption 4 

4 / 2  

]All<n ~ K(#)[/~l max f (2) - f (2-O)  du 
- ,W2  Ol =<_ lul 

- 2 / 2  

as 2 ~ 0 +.  Throughout, let C be a generic finite, positive constant. Because 
F is increasing and F(2)=  O(G(2)) as 2--, 0 + ,  

:g 

A4+A5=O ~ 5 - d #  + I F(3#)]  

after choosing e so small that F(~) < CG(#) < CL(1/p) #2(1 -m) for p < 2e, 
and L(2) is locally bounded on [l/e, ~ ]  (see e.g. [1, p. 13]. Finally 

A6q-AT~O(~e d~-) =0(8-1)" []  

Thus (2.11) is proved. Now consider (2.12), the discrepancy between the 
expectations of the discretely and continuously-averaged periodograms. 

Lemma 4 Under Assumptions 1, 2 and 4, as n ~ o% for any r/>0, 

(2.14) E { ff ( 2m)- ff O~,~) } = O [L(~)  m~ n2(~ l )]. 

Proof. Let S t = [2j_ 1, 2~], j = 1, ..., m, and define 

0 

Pj(q, 0 )=sup  ~ K(#)f(2--#) dp. 
2 ~ S j  
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Note that I(2j)=T(2j) for j=l,...,m<n/2. Choose e so small that f(2) 
<Cg(2)  and the left side of (2.3) is bounded by C/2 for 0 < 2 < e ,  then 
n so large that 2 2,. < e. The left side of (2.14) is dominated by 

(2.15) 4~z ~ {Pj(e, rc)+Pj(32j/2, e)+Pj(2j/2, 32j/2) 
n j = l  

+ Pj(- ~, -,~j/2) + Pj(- ~, -~)} 

4re 
+ - -  ~' Pj(-2j/2,21/2 ) 

n j = l  

.~j/2 

+ ~ y y K(#)lf(kj-p)-f(2-#)ldpd2. 
j = 3 S j  -2 j /2  

Pj(e, Tr)+Pj(-~z,-e)  is easily seen to be O(n -1) from (2.5) and Ex2<oo, 
whereas, as n ~ oo 

P~(32/2, e)<4 sup sup g ( # - 2 )  f d# 
2~Sj 32j/2<,u<e ~j El# 2 

with the same bound for Pj(-e ,  - 2 / 2 ) ,  and 

\ n2 j ]  \ j / 

The contribution of the above terms to (2.14) is of order n-1 times 

1 ,~)-2H-.j- 1) 
j = l  

as n ~  oo. For j =  1, 2, 

2 ).j 

ej(-,t/2, ~/2)_<2n I f(;O dZ=O(L(n),,"-l/ 
0 
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as n ~ oo. For j > 3, the double integral in (2.15) is bounded by 2 ~z/n times 

sup sup [ f ( 2 j - u ) - f ( 2 - u ) D  sup (2 j -2 )  g ( 2 j - 2 )  

=o(L(n) ":'~- 1 ) j 

as n ~ o% from Assumption 4, (2.1)(i) and (2.5). But 

L(n) n 2H- 1 ~ j -  1 = O(L(n) n 2~I- 1 log m) 
j = l  

as n ~  o% because L(n)=O(m"L(1/2m)) from (2.1)0). [] 

The proof of (2.12), and thus (2.9), is complete. It remains to prove 
(2.10). For  this purpose it is useful to first establish the following result, 
which is well known with m replaced by n (see e.g. [-17, p. 67]); we need 
m rather than n on the right-hand side of (2.16) below in order to avoid 
any strengthening of Assumption 1 in Theorem 1. 

Lemma 5 Under Assumption 1, 

"~rn 9 
(2.16) S LD(u)]du~"--logm, as n-~oo. 

0 

Proof The left side of (2.16) is 

i" sin(nu/2) �9 ,, 2m sin(nu/2) 

o au=  ! 
du+O(1),  

because cosec (u ) -u -1  is bounded on (0, 1/2~). Now 

i i sin (n u/2) d u = ~ u + Aj d u 
U j=O 

= ~sin u du 

0 U 

+ ~ sin (n u/2) d u. 
0 k j = l  

The term in braces is lower- and upper-bounded by ~ (j21) -1 and 
j = 2  

(]21) -1, and thus equals ( logm+O(1)) /2t ,  whereas sin(u)/u du<oo,  
j = l  0 
2a 

sin(nu/2) du=4/n .  [] 
0 
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Now define R(2, 0)= J D(u) D(2+O--u){f(2--u)--f(2)} du. The following 

technical lemma will be helpful. 

Lemma 6 Under Assumptions I, 2 and 4, 

Ig(zj, +Aj)I 
(2.17) lim (logm) -1 max - <0% 

n ~ oo 1 < j <= m g ( / ~ ) / 2 j  

(2.18) lira (log m) -1 max [R(2;, 2g)[ + ]R(2k, 21)[ < 0% 

I R ( ; , ~ ,  - ;~k)l 
(2.19) lira (log m)- ~ max < 0% 

. - ~  ~ ~ <i_-< m g( ,~k) / ( ,~ j -  ;~) 

[R(,~;, -,~)1 
(2.20) lim (log m)- a max < 0% 

n~ oo k<j<=2k<=m g(2;--2k)/2k 
- -  [R(2; ,  - ; k ) [  

(2.21) lira (log m)- 1 max < o% 

IR(22, --2k)l 
(2.22) lim (log m)- 1 max < ~ .  

n ~ oo j < k < 2 j <_ m g (;k -- 2j)/).j 

Proof Consider first (2.19) and (2.20), so j > k. Define 

b 
S (a, b) = ~ O (u) O ( 2 ; -  2 k - u) { f  ( 2 j -  u ) - - f  (2j)} d u, 

a 

I f  ( ) v ) - f  ( 2 j -  u)[ 
Tj(a, b)= sup 

a<~u<b lU[ g ( l u l )  

Choose e>32,~ as in the proof  of Lemma 4. Using (2.5), integrability of 
f ,  Assumptions 1, 2 and 4, and Lemma 5, as n --+ oe : 

4 = 
S ( - n, - e) <= ~ ! { f (2j + u) + f (2j)} d u = O (1 + g (2j)); 

- 2 j  d u  

S(- -c , - - )v j )~4  sup {f(2;--u)+f(2i)} 

~,j \ ;; / 

S(--2~,()~j--;Ok/2))=O(~-~j-~k,/2, I f(;Q-f(2j-u)[ du) 

=o ~._--1 T;(-;~;,;/2) o ~ g(u)du =0\,~;_,~ I 
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or, forj<2k, 

S( - 2;, (2k -- 2:/)2) = 0 [Tj( -- 2j, (2j-- 2k)/2) g(2~-- 2k) log m] 

= o(-g(2~. 2k)log m) 

and 

s ((2, - ~)/2,  ( 2 j -  2~)/2) 

= 0 Tj( - 2/2, 2j/2) 

S (()~:- 2k)/2, 2j-- 2k/2) 
1 sup 

= 0  2 j ~  2 k (.Zj--Zk)I2<=U<Xj--akl2 

2j - X k \ 

I g(u)du ) 
0 

or, for k>=j/2, 
S ((2j- 2k)/2), 2 : -  2k/2) = O (Tj (0, 2j-- 2k/2) log m) 

= O [(-g (2J--2k 2k) log m); 

O ( 1 ~+2~k 
S (2j -- 2k/2, )~: + 2 2k) = \(2S-- 2~j2) 2k S 

zj  - ~k/2 

S(2j+ 22k, 32j)= 

{f(2: -  u) + f  (2j)} log m) 

{ f  ()~s-u)+ f (2:)} du) 

0(~1{ sup< {f(2~-u)+f(2:)))logm) 
\ / ~ j  ,~j+ 2 2 k = u =  32 j  

0 (g(2k) log m~; 
\ 2j / 
/ du 3 s(32..)=o1 s.p {f(2:-.)+f(2:)} 

=o/g(x,)]; 
\ 2 j /  

S(e, re): 0 ( 1 {{f(2,-ul+f(2:)}du] ~-_~ 

= o(1 + g(2)).  
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Thus (2.19) and (2.20) are proved. Now consider (2.21) and (2.22). Split 
the range of integration at the points - e ,  -22k ,  (2j--2k)/2, 2j/2, 22j, 
22k, e. The details are then much the same as before and we only discuss 
the contributions from (--22k, (2;--2k)/2) and ((2j--2k)/2, 2;/2). We have, 
a s  /1 ~ 00 ,  

1 sup {f(2j-u)+f(2j)}logm) o ;,,-xi 

= O / g(2;) log m), 
\ 2k - 2~ 

or, forj>k/2 

S ( -  2 2k, (2j-- 2k)/2) = O (T; ( -- 2 2j, (2j-- 2k)/2) g (2k -- 22) 

= 0 (.g(2k--2;) log m); 

O(  1 sup {f(;j)+f(22--u)}logm) S ((2;-- 2k)/2, 2;/2) = 2k L 2; (Z j -  ~)/2 <= u <= ~.;/2 

=o{ logm], 
\ 2k - ;~; / 

or, for j _> 1/2 k, 

S((2; - 2k)/2, (2k -- 2;)/2) 

= 0 Tj((2j-- 2k)/2, (2k -- 2;)/2) I g(u) du 
( -~ i  - , ~ k ) / 2  

\ ~.; / 

and 

S((2k-- 2j)/2, 2j/2)=O ( Tj((2k-- 2i)/2, ).j/2) g()ok-- 2j) log m) 

= 0 ( g(2k- 2j) log m). 
\ 2j 

The remaining contributions are of order g(2j)(log m)/2k, to give (2.21) and 
(2.22). The proof for R(2j,--)Lj) in (2.17) is simpler and rather similar to 
that of Lemma 3; we omit the details but mention that one can split [ -  re, rcJ 
at - e ,  -2; /2 ,  2j2, 22j, e. For  j, k >  1, R(2;,2k) is easier to handle than 
R (2j, -2a), (2.17) for R (2j, 2;) and (2.18) resulting without any need to distin- 
guish 1/2j < k <j or 1/2 k < j  < k or to use Assumption 4. The details repeat 
parts of the proof for R(2;, --2k),j>k, above so we merely hint that the 
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reader partition [ - r c ,= ]  at - e ,  - 2 , ,  2j2,  2j--2k/2, '~j+2k/2, 32j, e for 
j > k ;  at - e ,  --22k, 2j2, 32j2,  2j+2k/2, 32k, e for j < k ;  and at - e ,  - ,~ j2 ,  
2j2, 32j2,  32j, e f o r j = k .  []  

We are now able to establish (2.10). 

Lemma 7 Under Assumptions 1, 2, 4 and 5 and 1/2 < H < 3/4, as n --+ oo 

V ( p ( 2 ~ ) ) ~ ~  L ~ -m . 
m 3 - 4 H  

Proof By Assumption 5 

= ~ Z~E {o(2j, - ~)  q (~ ,  - 2,)+ e(2~, 2,) O ( -  2,, - 20}, V(ff(2m)) j,k~l 
where Q (2, 0) = ~ D (u) D (2 + 0 -  u) f ( 2 -  u) d u. Because i D (u) D (2 - u) d u 

- / g  - ~  

= 2=D(2) and D (2j--2k)= n,j = k, mod(n); =0,  otherwise, it follows that for 
j, k =  1, ..., m, Q(2j, --2k)=R(2a, - -20+2nna~kf(Xj) ,  Q(2j, 2k)=R(2j, 20, 
Q( -2 , , - -2k )=R( - -2 j , - -2k ) ,  where ajk is the Kronecker delta. Thus 
V(P(2.,)) is 

4,~ ~ ~ f(2j)~ 4,~ ~ f(2jlR(2j,-2,) (2.23) ~ -  ~= 1 + n-5- j=,  

1 ~ {R(2j, -2j)E+IR(2j ,  2i)1 z} 

1 " 
-~- ~- j--~l'= k>jZ {R (2j, -- 2k) R (2k, -- 2~) + R (2k, 2j) R (2~, 2k) }, 

noting that R(--2, - 0 ) =  R (2, 0). It follows from Proposition 1 of [12] that 
under Assumptions 1 and 2 and using (2.2)(i), 

4=z ~ ~ i  m ~ L 2 ( ~ , , )  ~3-4n 
n 2 f(2,) 2 ~ f (2 )2d2~  "',, 

j=l o 3 - -4H 

as n ~ ~ .  Set q--(3-4/-/) /2.  By Assumptions 1, 2 and (2.1)(i) and Lemma 6, 
as n ~ oo the second term in (2.23) is 

(2.24) O l - ~ - a = ,  ~ J - s  ] 

logm oo - 4 n - , )  =O(.474H~rI{1g2PmL2(~j) 2Y}j~1 jl 
/(l~ 2 / 1 \ \  t 4H 4-+ 2/  1\2~-4./-/" ~ =OI-  ~ L | - - I | = O | ( l o g m ) m  - ~L I - -~  
\ n -  \ , W ]  \ \;~,.] } 
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Proceeding similarly, as n ~ oo the third term in (2.23) is 

/(log m) 2 m" 
o (2.25) \ n4 j=l  /~j } 

while 

(2.26) 

(2.27) 

m 

~1 ~ R (2j, -- 2k) R (2k, -- 2j) 
~ j= k>j 

= o{(logm)2~ ~ J = l k  k=J ~ ' + 1 ~  ~min(2j, m) g20~k__~j )~2 
+ ~ ~(~'>~/ 

j=l  k 

= 0 [_ n2 g2 (j~j) 
j=l  =j 

l~176 ml~ ~ g~(~,>l, 
:~ n+ j+,~U-+~ J 

n~ ~, R (2k, 2+) R (2j, 2k) 
j= lk>j  

( ( logy)  2 
=0\ n+ 

{0og+l  2 =O\ n+ 

- -  ~ ~ ~ ~) 
j : l  k>j / 

- -  ~ ~I~t~, 

and it is easily seen that (2.24)-(2.27) are o(m-119(1/2,~) ~4-4tt~ ~rn b []  

3 MSE when 3[4 < h < 1 

When 3/4 < H <  1, f(2)  is no longer square-integrable on a neighbourhood 
of the origin and different results and theory apply. We introduce 

Assumption 6 The 7j are quasi-monotonically convergent to zero, that is, 
7j --* 0 as j ~ oo and there exists J < oo and B < oo such that for all j____ J 

Yj+ l <)~j (1 + ~ .  ) - 



Optimal spectral bandwidth for long range dependence 459 

Assumption 6 is implied if the 7j are eventually monotonically decreasing. 
Under Assumption 6, it follows from Yong [15, Theorem lII-12] that 
Assumption 2 is equivalent to 

(3.1) 7j~DHL(j)j  2~-2, as j--.oo, 

where D H = 2 F(2 (1 -  H)) cos ((1- H)rt), so that, for example, 7j is eventually 
positive. Assumption 6 implies also that for large enough J 

2BTj 
( 3 . 2 )  [~)j--~j+ml~Tj--~j+l ~ , all j>J ,  

J 

and thus 

(3.3) [Tj--Tj+t[<TJ+ 2B ~ -7~= O(7,) 
j=s j=s J 

as J --+ oo. Assumption 6 is strictly stronger than Assumption 4, as the fol- 
lowing Lemma indicates�9 The lemma is doubtless known, but we have failed 
to locate a reference. 

Lemma 8 Under Assumptions 2 and 6, 

min(2, I2-t-zDIf(~.)-f(R-l~)l=O(lker g(j/zl)), as ll~l-+0, 

uniformly in )~e(O, n). 

Proof For 2<2/~ the result is obvious. For 2/~<,~<rc, rEIf(2)--f(,~--#) ] is 
bounded by 

(3.4) P ~))} + ~ cos(j;o) ,=Z1 ~, {cos (j ~ ) -  cos(j(,~- ,=~+ , , ,  

The first term of (3.4) is twice 

(3.5) ~ 7j sin (j (2 - #/2)) sin(j/~/2) 
j = l  

oo 

+ j=~+ 1 yj cos(j(;~-u)). 

= j =~1 {])j+ 1 sin((j+l)#/2)--Tj(sin(]l~/2))} ~'=1 s i n ( f ( 2 - - # / 2 ) )  

�9 [PP\ A sin(C(2--#/2)) - -  yp sin 1 - -  ! 2 . ,  
\ 2 / e = t  
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by summation by parts, where the factor in braces is bounded in absolute 
value by ]#l (J I~j - ?j + a l + 17j + ~])- Thus (3.5) is 

( t#1 L(p) p2~- l )  ot l _#/21 

as p ~  ~ ,  using Lemma 1-16 of 1-15], (2.5), (3.1) and (3.2), where the order 
is uniform in 2e(0, zc). On the other hand, using (3.3), 

cos(e; ) 
j = p + l  j = p + l  d = p + l  

as p ~ ~ ,  uniformly in 2e(0, u), and likewise ~ 7i cos( j (2-#))  
=O(L(p)p2~t-2/[)~-#l ). Now choose p,,~]#[-1. [] j=p+l 

In view of Lemma 8, Assumption 6 implies a global restriction on f(2) 
beyond the mere integrability imposed in Sect. 2: f (2)  now satisfies an 
approximate L i p ( 2 - 2 H )  condition outside a neighbourhood of the origin, 
thereby ruling out long-memory behaviour at non-zero frequencies. 

Theorem 2 Under Assumptions 1, 2, 3, 5 and 6, and 3/4 < H < 1, as n ~ oo 

(3.6) M~E,,,~A 1 L(n)Z (2rcm)4n-4 

L(n) (2urn) 2n-2+~ 
+ A  2 

where 

2{ 1 
At=2D~(1- -H)  ( 4 H - - 3 ) ( 2 H - 1 )  t -2H2(2H-1)2  

1 4F(2H--  1)z~ 
HZ(4H-- 1) ~ -f' 

4Do E ~ ( 1  --H) 2 4E~Zn (1 --H) 2 
A2 = H ( 2 H _ I ) ( 2 _ 2 H + c  O, A 3 -  ( 2 _ 2 H + c 0 2 .  
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Corollary 2 A bandwidth rh which minimizes MSE,. as n ~ 0o is 

L - -  2-2_i/+~1 n2_2/-/+~t ( D n ( 2 _ 2 H + o  0 
(3.7) �9 f f ,  t 

\ L(n) ] 2~z I -4-~ 

�9 [ 2H--2+r  . 1 f ( 2 - 2 H + a )  2 
L E ~ - ~ f f - ~ )  f - ~  el.Hi ( 2 H -  1)2 

( + 1 6 ~ ( 1 - H )  ( 4 H - 3 ) ( Z H - 1 )  H 2 ( 4 H - 1 )  

4 F 2 ( 2 H _ l )  1/2 -2-2/~+= ]) 
When L(n)/L(1/2m)~ 1 as n-~ 0% the formulae in Theorem 2 and Corol- 
la ry2  simplify, and indicate that MSE,, is of the form B l m  4n-4  
+B2 mZn-2+~n-~+B3 m2~n -2~, that minimized MSEm converges to zero 
at rate n(4n-4)~/c2- 2H +~), and that ~"~ B4 n ~/~2- 2n +,), for constant 
B 1, ..., B 4. L(n)/L(1/2m)~ 1 as n--* oo if, for example, L is asymptotically 
constant, or L(2) = Ilog 21 and m ~ n ~ 0 < ~ < 1 (but not m ~ n/log n). 

By way of contrast the corresponding results for the continuously aver- 
aged periodogram (1.6) (which assumes Ex 1 is given) are: 

Theorem 3 Under Assumptions 1, 2, 3, 5 and 6, and 3/4 < H < 1, as n ~* ov 

MgE,.'--'A'I L(n)Z(2rcn)4n-4L(~) 2 l-A3 ( ~ _ ) 2 ~  

where 

2D2(1 - H )  2 

A'I ( 4 H - 3 ) ( Z H -  1) 

Corollary 3 A bandwidth ga which minimizes MgE,, as n ~ oe satisfies 

(3.8) 
2--2H+a.~ n2-2H+a 

\ L(n) / 2~ 
[ D  2 (2-- 2 H  + c02 (1--H)]4_4-~+2~, 

" LE~ ,  ~ ) ~ - -  1) ] " 

It is easily seen that A 1 "< A'~, that a sufficient condition for MSE m < MSE m 
is E~n<O, and that a sufficient condition for rh<n~ is ( 2 H - 2 + c O E ,  n<O. 
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The rates of minimized MSEm and r~ are the same as those of minimized 
MSE,, and rh respectively. 

Because the proofs of Theorem 3 and Corollary 3 are similar to, but 
simpler than, those of Theorem 2 and Corollary 2, we give only the latter. 

Proof of Theorem 2 Commencing again from (2.6), Lemmas 1 and 3, and 
Lemmas 9 and 10 below, give 

MSE m ~ G ()~)- 2 [V(ff()~m))+ {Eff()~m)- Eft (.~,,)} 2 

--2 {Eff(~m) --Eff(]Lm) } {F(A~)- G (2~)} + {F(2~)- G ()~m)} 23 

and thence (3.6). [] 

Lemma 4 is not useful when H > 3/4. In this case the effect of replacing 
EP(2~) by E/?(2,,) affects MSE,, non-negligibly, and we require the more 
delicate 

Lemma 9 Under Assumptions 1, 2 and 6, as n ~ 

(3.9) E {ff(2m)-- ff(2~)} ~ 7(Y)/2 ..~ 
Dn L(n) n 2z-  2 

2 H ( 2 H - I )  

Proof For re<n, r(2j)=I(2j) , j= 1, ..., m, and ff(2,~)=(2zE/n) ~ r(2i). Now 
27c n j = l  

S I()o)d2=(2u/n) ~ I'(2j), and because I ' (2 )=r (2u-2) ,  
0 j = l  

2~  

r(~) d ~ = 2 j" r(~) d,~, 
0 0 

E "I(~J)-b( '~--ExI) 2' 
n j = l  j = l  

4 ~  n/2 _ 2 ~  

= - -  ~ I ( ; 9 - - - I ( ~ ) + ( f - E x O  2, 
n j = l  n 

n odd, 

n even. 

It follows that, with Sj defined as in Lemma 4's proof, the left side of 
(3.9) is 

(3.1o) v(x)/2- ~ Er(;o)d;o+ 
~(1 -.b 
(n-  1)/2 

+ Z ~ E{r(,~jl-r(,~)} d~, 
j=m+ 1 Sj 

n/2 

n j=m+ 1 sj 

n odd, 

n even. 
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By Lemma 3.1 of Taqqu [14], V(Y)~D u L(n)n2H-2/H(2H - 1), as n ~ oe. 
Because E/(2) is the Cesaro sum of the Fourier series of f(2), which is 
bounded outside a neighbourhood of the origin in view of Lemma 8, we 
have sup EI'(2) < o% and thus the middle terms in (3.10) and (3.11) 

r e ( l - n -  1)_-<~-~ 

are both O(n-1). It remains to show that the final terms of (3.10) and 
(3.11) are negligible relative to V(2), and it suffices to consider the one 
in (3.11), which can be rewritten as the negative of 

1 n ~ l  ( ~ ) ~  :~ n/2 1 
e~ 7t 1-- I c~ d Z - 2 r e  E cos(~Zj) . 

=1 ] ~'~'m ~'~ j =  tit q- i 

The factor in braces is 

re sin((m + 2/2) (3.12) 
n sin (2~/2) 

sin(m2t) re ( -  1) t 
E n 

2 sin(2ff4) cos((m + 1/4) 2e 

rc sin((m+ l/2) 2e) { n } 
(3.13) -~ n~ sin (2ff2) # -  sin (2/2) 

(3.14) re(-  1) t. 
n 

The contribution of each of the three terms on the right will be estimated 
separately. First consider the one in (3.12). By summation by parts, 

(3.15) ~ 1 - sin(2ff4) cos((m + 1/4) 2e) 

n - 2  

= X 
e= 1 n ( n - -  1) 

where 

A e = T t ( l - ~ ) ~  -7~Yt+l (1-#n+l ) '  

d 

P~= ~ sin(2k/4 ) cos((m+ 1/4) Zk). 
k = l  

Now Pe=O(min(f/m, dZ/n)) uniformly, because Isinxl<[x] 
= 0 (d2/n) and summation by parts gives 

d - I  k 

P~= ~ (sin(2k/4)--sin(Zk+ 1/4)) 2 cos((m+ 1/4) 2s) 
k = l  s = l  

+ sin(2ff4) ~, cos((m + 1/4) 2,) = O 
s = l  

implies Pt 
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using also Isin(x+y)-sinxl<=ly[ and (2.5). For all ~, IAt[< oo. For n and 
then f < n - 1  chosen large enough, it is easily seen that A~ = O ([7tl/2). Thus 
for n and then J < n/m large enough, (3.15) is 

/1  1 t"/.L~] 1 . - 1  ,;e +Lv__\,,~,,i 
o1-+- L I~1+-- Y. E nm) \ n  /'/ t ~ = J +  1 m g=[n/m] 

/1 [n/m] 1 L ) =o(-  Z L(~) ~'~-~+- L(~) ~'~'-~ 
xn g=l m y=[n/m] 

=o( 1 
\n \m/ kin/ / 

because of Assumptions 1 and 2, because of Lemma 1 16 of [15], and be- 
cause (2.1) (ii) implies L(n/m) m i - 2 H = O ( L ( Y l ) ) .  To deal with the contribution 
from (3.13), note that 

sin ((m + 1/2)/~k) k - -  sin (2k/2) 
K = I  

k 

~- 1 [ n  sin(2~/2))- 1~ ~ sin((m + 1/2) 2~) =k=~, ~[~(sin(Zk + 1/2)-- 
d S = l  

- E -  sin(2J2) 2 sin((m+l/2)2s) 
/ s = l  

uniformly for ~ < n - 1 ,  because of (2.5), [sinx-x[<x3/6 and Isin(x+y) 
- s i n x -  y[ < (x + y)2 y for x, y > 0. Now 

sin (2e/2) (f  + 1) sinn (2 e + 1/2) 

(3.16) 

1-Y/n ~oe+l/ 1 - ~ / n  1 - ( f + l ) / n )  

+7e+~(1--(#+l)/n)(1 ~+1_ 1). 
sxn (Ze + 1/2) 

Treating the cases f < n/2 and # >  n/2 separately and using (sinx)/x > 2/~ 
for 0 < x < z/2 and sinx = sin (re- x) gives 

1 - ~ / n  n 
=2~'<-- 1_<~<n--2,  
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and using also ]sinx- sin(x + y)[ < [Yl and I(d/d x)(x/sinx)l -<_ x3/3 (sinx) 2 
< ~2 x/12 for 0 < x < 7z/2 gives, after some calculation, 

1--d/n 1--(d+l)/n < ~n 
sin(2~/2) sin(2t+l/2) = 2d 2 , 1 <-dK-n-2. 

It follows that (3.16) is bounded in absolute value by 3(n/d2)(17e-?t+l[ 
+ [7~+ ll/d). Applying Assumption 6, for d sufficiently large 

~ n - - 1  

n e__~e 7e (1 - ~) sin((m +)  2~/2) sin(2J2)} 

\n nm 2 I ~ l + l ~  
o"= , /+1  

n2H-2\ 

as n ~ c~. Finally the contribution from (3.14) is 

zc f n - 2  f 
~ le__~l (7~'--'e+ 1) k=~l (1 -- k) (- 1)k -b 0 (1)} 

L e m m a  10 

(3.17) 

L(n)2 ~(4H-- 1 1 
(3'18) ~ D 2 ~  2--~ff 3 ) ( 4 H -  2) 2HZ(4H-- 1) 

Under Assumptions 1, 2 and 6 and 3/4 < H < 1, as n ~ oo 

V (ff ( 2m) ) - VI ~-- ~ t~l (x t -  9~)21 

2 F ( 2 H -  1)2"~ 

F(4H) J" 

Proof. From the first part of the proof of Lemma 9, 

^ 1 " ~ (.-1)/2 
F()Lm)_=~r~=l(Xt__~)2__Y~ ~ I()~j), n odd 

-- j = m + l  

1 " 2re ./e 
=21 }2 I'('~) ~ -  = - - -  + - 1 (~), 2nn~_ (x '-x)~ n j :~+ l  n n even. 
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By Assumption 5 

( 1  ~ / ~125f " ~(=~1 ) V ~n t (x,_yc) z = E E  7zt._,__2 7t-,~ 2 
] Zg/ {-t,s=l n t=l  s 

2 2 7 , - s  �9 
\ t , s= l 

As n ~ o o  

~,~=1 s 7,- ~DgL(n)  2n4n-4 [ x - y [2n -2dy  dx 

2D 2 ( 1 F(2H) 2) -"  '2 4H-4 
, 

and applying also Lemma 3.1 of 1-14], after rearrangement the right side 
of (3.17) is seen to be approximated by (3.18). By Assumptions 2 and 6, 
(K/n) T(rc) has variance 

1 { n-1 }2 ( 1  { 1 ~ n ~2) 
2n 4 =~_ (n--lul)(--1)"Tu = 0  nZ n [Tu--Yu+ll+~JY,,I 

u n l J / 

as n --, o% and it then suffices to show that, for n even, 

j=m+l j ,k=m+ l 

= o (L(n) z n 4n- 4) as g / ~  (30, 

where Ujk= Wa, k_ j Wk0-k + Wj,-j-k Wk,j+~, with 

n--1 
Wa, k= ~ 7,.,ei"tJSk(U), 

u = l - n  

min(n,u+n) 
Sk (U) = Z eit 2k" 

t =max(1,u 4- 1) 

For 0 < k < 1/2 n, summation by parts gives 

(3.19) 
p - 1  

]Wk,o[<-nyo+2 n ~ [Y,] 
1 

4n n-2 4n +--& Y.. 1~~ +~-17.-,I 



Optimal spectral bandwidth for long range dependence 467 

for any integer pe[2 ,  n - 2 ] .  We can pick e > 0  such that for 1 <_k<_en, L(n) 
< C L  (n/k)k 2-zH by (2.1)(i), and 

[n/k] [ n ~  11"1\ 2 H -  1 

1 

n /n \ [ r l \2n_  2 

[n/k] 

by Assumptions 2 and 6, (2.2)(i), (2.2)(ii), and [15, p. 30]. It follows that 
uniformly in such k and sufficiently large n, (3.19) __< Cng()@ On the other 
hand (3.19)< Cn by Assumptions 2 and 6 uniformly in e n < k <_ n. It follows 
that f i  m,_~ ~ max {IWk, ol/(ng(2k))} < oO. For 0< j ,  k<n/2  a n d j + k ,  

rn<k<n/2 

2 p-1 n--2 
]W~,j-kl<= 12j_2k I l~_plYu['t- ~ [%,--Y.+ lllejk(p,u)l 

+ 17.- 11 [Rjk(P, n-- 1)1, 

where 

Rjk (P , U)= e ivx~ e itO'j- xk) 
V~p  ~ V+I 

tl--V )~ 
+ e - l V A k  E e i t ( 2 J - x k  

1 

v ~ p  

so that [Rjk(p, u)[ < 4 IRj-- 2kl- 1 (,~; 1 + 2i- 1). By an argument similar to that 
f o r j = k ,  

lim max {IWk,j-kli2j--2kl/g(()~fl+2~l)-l)} <~ 
n--' oe m<j,k<=n/2 

j # k  

Clearly the same results hold for Wj, k_j, so 

hi2 

j , k = m + l  

= 0  n2 ~+1 ~ g2(;~J)+ ~"~g2((2f  l + )~;1)- l IXjZ'~kl 
j<k 

= 0  n4n  2-4H+ 2-4H (j_k)2 
m m k > j  
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for 3 / 4 < H < 1 ,  applying (2.1)(ii). Next note that W_k..=W_k,O=Wk, O, 
whereas W_~,./2 = 0. By proceeding much as before we can deduce that 

lim max {IW-k,j+d ]sin((2j+2k/2))l/g((2f ~ + 2 ;  ~)- ~)} < oe, 
n ~  ~ m<j,k<=n/2 

j , k~-n /2 ,k  

with the same result for Wj,_ j_~. Now 1/]sin((2j + 2~/2))1 is of order 1/(2j + 2k) 
forj+k<n/2, and of order 1 / (2~-2~-2~)  for n/2<j+k<n. By proceeding 
in much the same way as before we deduce that 

n/2 

E2 
j , k = m + l  

Wj,-j-k W-k,j+~ = o (L 2 (n) n 4u) as n--> ~ .  [ ]  

Proof of Corollary 2 L(2),~L1(2) as 2 ~ oo for a slowly varying function 
L 1 (2) which is differentiable for all sufficiently large 2 (see [1, p. 14]). Thus 
for large enough n the right hand side of (3.6) has dominant term with 
derivative 

(3.20) 

(3.21) 

4 ( H -  1) A~ ~L(n)2- r 4"- s 

L(n) 
+ ( 2 H - 2  + ~) A: 

r 2 H - 3 + a  2c~A 3 r 2 ~ - 1  

1,/~ n 2~ 

+2A1 nL(n)e \r! r4n_6+Ae nL(n) 

where r=2nm and El()O=(d/d2) L1(2), But 2E1()~)/L(2)--*0 as 2---, oo [1, 
p. 14], so that (3.21) is dominated by (3.20) as n ~ oe. Thus we can take 
~=2nth to be a zero of 

2aA3 2 ( 2 H _ 2 + c 0  A2 
n2 ~ r 2-2u+ + n ~ r 2-2H+~ + 4 ( H -  1) A1, 

and the remainder of the proof  is routine. [] 

4 Robustness to non-Gauss ianity  

When xt is non-Gaussian, the MSE contains an additional term depending 
on fourth cumulants and lagged fourth cumulants. Nevertheless this term 
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may make a negligible contribution to the MSE, in which case the results 
of Sect. 2 and 3 continue to hold. Three different sorts of analysis of term 
are possible. The first recognizes that long range dependence can simulta- 
neously be present in second cumulants but absent from fourth eumulants, 
as is true in the Gaussian case. "Weak dependence" conditions on fourth 
cumulants similar to those of [2, Chap. 2J, [9, Chap. 5J in the smooth 
spectrum case can thus be employed, though the rate of convergence 
required will be different. The second approach would allow for long memo- 
ry behaviour in lagged cumulants or cumulant spectra. A definitive treat- 
ment of this case would likely be complicated and lengthy. The third type 
of approach, which we employ, generalizes the Gaussian assumption in 
such a way that x~ satisfies a relatively general form of linear process. The 
moving average weights influence not only second cumulant structure but 
also fourth cumulant structure. We allow the moving average weights to 
decay in a manner consistent with the long range dependence in power 
spectra or autocovariances discussed in Sects. 2 and 3, and this implies 
a form of long range dependence in second and fourth cumulants. 

Assumption 7 xt = E x l  + ~ Oj et-j, where, for t = 0 ,  + 1, . . . ,  et satisfies 
j = O  

E(et) =0, V (eO = 1, E(e t es)=0, t , s ,  

r  (8 r ,  g t ,  ~s ,  ~u) = K u ,  r = t = S = u ,  

= O, otherwise, 

and 

max IK,[<o% 
-- oo < u . <  oo 

while the Oj satisfy 

(4.1) l0 t - -  0 j  + 1  [ "~  B 10jl  
J 

for all j > J and some J < oe, B < o% and 

(4.2) 0 ~ 0 j  or 0 j~-~0j  as j ~ o %  

where 

(pj-= 1/2F(3/2-H) cos((1-H)rc)L1/2(j)j ~-3/2, 1 /2<H< 1. 

(4.1) of Assumption 7 is stronger than quasi-monotonic convergence of 
the 0j to zero (cf. Assumption 4 and (3.2)). 
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Theorem 4 Under Assumptions 1, 3 and 7 the results of Theorems 1-3 hold. 

Corollary 4 The results of Corollaries 1-3 hold. 

We need only give the 

Proof of Theorem 4 We first need 

Lemma 11 Assumption 7 implies Assumptions 2 and 6. 

Proof Assumption 7 indicates that f(2) can be written f(2)=[O(2)[z/2rc, 

where 0(2)= ~ 0ie i~. Assumption 7 parts (4.1) and (4.2) with Theorems 
j = 0  

III-11 and III-12 of [15] give 

3 H rc 

as 2 ~ 0 +,  noting that (4.1) and (4.2) also imply the 0j have bounded varia- 

tion, that is ~ 10~-0j+ 11 < oo. Thus Assumptions 2 is implied. For s >0, 
j = 0  

L = O~ O~ + ~. As s ~ 0o 
u = O  

s) 
O.(O,,+s+l-O.~)=o(a Y~ IO.I = o  , 

u=O \ S  u = l  

) 
u = s + l  \ S  u = s + l  

U = s  

using Lemma 1-16 of [15], Assumption 7 and (2.2). Thus the 7~ are quasi- 
monotonically convergent to zero and Assumption 6 is implied. [] 

Lemma 8 has already established that Assumption 6 implies Assumption 4. 
Thus Theorems 1 and 2 continue to hold with M~E,, replaced by MSEm 
- / ~ m / G  (2m) 2, where 

A 1 m n 

(4.3) Km = ~-  2 ~  2 ~  cum {Xq, xr, xs, xt} e itq-r)~j-i(s-t)ak 
j , k =  = q , r , s , t =  l 

can be non-zero due to the absence of Assumption 5. Likewise Theorem 3 
continues to hold with MSEm replaced by MSE,,-/s 2, where /s 
has integrals in place of the sums overj and k in (4.3). The proof is completed 
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by the following Lemma, and an analogous result for/~,,  whose statement 
and very similar proof we omit. [] 

Lemma 12 Under Assumptions 1 and 7, 

/ ( , , = O ( ~ ) ,  as n~oo. 

Proof. By the first part of Assumption 7, 

I~,~=~g ~ ~ s  ~ K. Oq_uOr_,Os_,Ot_uei(q-r)ZJ -i's-tIzk, 
j , k = l  q , r , s , t = l  u = - o o  

with the convention that Ot = 0, t < 0. Thus 

=~_ Ot+u  e~t'tJ . (4.4) Ig,.l_-< {-~o<,<~omax [GI} ~ - ,  n j t 

First consider u ~ [ -  n, - 1]. Then 

n--1 
Ot+.eit'~=e -i"'~ ~ Otdt.()o), 

t = l  t = 0  

where 

dtu(2)=e itz,t<_n+u;=O,t>n+u. 

Then from (2.5), for 2~(0, re) 

n [ l /k ]  

(4.5) ,~=10,d,.(,~) < ~:o y~ 10,1 

2 2 c  ( n - 2  t + -  ~ 10t- + 11 ~[1/2]+ 1 O t + l l  IOn -  " 

It easily follows from Assumptions 1 and 7 that 

and thus 

n - 1  

,~o 0, d,.(2j) 
lim max max ,o ,  < 0% 

. ~ c o  - n < - u < _ - I  l <=j<m gl/21Aj|. . 

Y, 0 = o  n g ( ~  
u = - - n  j t j = l  

= o (n 3 G(L.)2), 
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as n ~ oo. Nex t ,  for  u e [ 0 ,  n -  1], 

Ot+ueit~ 
t = l  

t : n + u + l  t : O  

Ot e it;" I t  is eas i ly  seen  t h a t  has  the  b o u n d  in (4.5), a n d  so 
t = 0  

n - - l (  m u 2 )  2 

u~=O ki~=l~ t=02 Oteir;~J .,~ -=-O(n3 G(2m)2), as n - - , o o .  

Nex t ,  

n - - l . ~  m 2 2 

a n d  b e c a u s e  

oo e i t2  ~ ,  +Z 0, <2 10,-0,+~l 
1 ~'~/% t = n  + t = n + u + l  

P.M. Robinson 

a s  n---~ o0~ 

it  fo l lows  t h a t  as n --, oo 

~,, Ore it;~J =-0 nO 4 )~j- 
u = 0  j t = n  + 1  \ V = I  

= 0 (L 2 (n) n 4 n -  1) = o (n 3 a e (2m)), 

us ing  (2.1)0). F i n a l l y  the  c o n t r i b u t i o n  to  the  b o u n d  in (4.4) f r o m  u => n is 

<---4~{j~= 2~2(i~=110,+,--0t+~+11+[0,+,[)2}2 

= n 4 = n)  n 4 ~ - 1 ) ,  a s  n - - , o o .  [ ]  
x u ~ n  . 
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