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1 Introduction 

Sobolev spaces on the Wiener space are well-developed and play an impor- 
tant role in the Malliavin calculus. In the Malliavin calculus, we treated 
only Hilbert-valued functions. 

Recently, some researchers have begun to discuss Banach-valued func- 
tions in the framework of the Malliavin calculus. For  example, Ren [-9] 
proved that a solution to a stochastic differential equation has continuous 
paths quasi surely, (i.e. except for a set of zero capacity). Further  Feyel-de La 
Pradelle [3] introduced a Sobolev space of Banach-valued functions on 
the Wiener space by using derivatives (see also Malliavin-Nualart [8]). 

In the paper we attempt to define a Sobolev space in a different way. 
Our method is based on the Markov property of the semigroup. So we 
can develop it for a general Markov process. We use the fact that the 
semigroup acts on not only scalar valued functions but also Banach-valued 
functions. Moreover  it defines a strongly continuous contraction semigroup 
on the space of all Banach-valued Borel functions u such that I[ull p is integr- 
able. 

The organization of this paper is as follows. In Sect. 2, we define the 
Sobolev spaces. The gamma transformation is used in an essential way. 
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Next we show the existence of a quasi-continuous modification in Sect. 3. 
Lastly, we discuss some examples in Sect. 4. We show that the solution 
to a stochastic differential equation has a quasi-continuous modification. 

2 Sobolev spaces of Banach valued functions 

Let X be a separable metric space. We denote the Borel o--field by N(X). 
Let m be a Borel probability measure on X. Suppose that a homogeneous 
Markov process on X is given. We denote its transition probability by 
p(t, x, d y). So p(t, x, d y) satisfies following conditions: 

(2.1) p(O, x, dy)=6:r 

(2.2) p(t+s, x, dy)= ~ p(t, x, dz) p(s, z, dy) 
X 

(2.3) p(t, x, X)<__ 1. 

Here 6x denotes the Dirac measure at x. 
Then the semigroup { T~} is defined by 

(2.4) T~f(x) = S f (Y) p(t, x, d y). 
X 

The above expression is well-defined for feNb(X), where Nb(X) is the set 
of all bounded Borel functions on X. We assume that, for all t > 0, 

(2.5) S Ttf(x)m(dx)<__ ~ f (x)m(dx)  f~Nb(X), f>O. 
X X 

By this inequality, it is easy to extend Tt to L~(X, m). Now we can define 
a contraction semigroup on LP(X, m) by (2.4). 

Further we assume that 

(A.1) {Tt} forms a strongly continuous semigroup on LP(X, m). 

The above semigroup acts on scalar functions, but we want to consider 
Banach valued functions. Let B be a real separable Banach space. We denote 
by LP(X, m; B) the space of all B-valued measurable functions u satisfying 

(2.6) rlullp..={ ~ Iru(x)llf~ m(dx)}l/P< oQ. 
X 

As usual, we identify two functions which are equal to each other m-a.e. 
For u~LP(X, m; B), we set 

(2.7) Tt u(x)= ~ uiy) p(t, x, d y). 
X 
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Here the integral on the right is the Bochner integral. By noting that 

[I T~ull~<- - S { S liu(Y)l[, p(t, x, dy)} v m(dx) 
X X 

< ~ ~ I[u(Y)llg p(t, x, dy) m(dx) 
X X 

< ~ Hu(x)lif~ m(dx) 
X 

= IlulL~ 

Ttu(x ) can be defined for m-a.e, x, and {Tt} is a contraction semigroup, 
Further {T t} is strongly continuous. To see this, recall that functions u 
of the form 

n 

(2.8) u= ~,f~bi fi~Lv(X, m), bi~B 
i = 1  

are dense in LP(X, m; B). It is easy to see that lim IlTtu-uNp=O for u as 
t+o 

in (2.8), since {Tt} is strongly continuous on LP(X, m). Then it easily follows 
that {T~} is strongly continuous on LP(X, m; B). 

Let us denote the generator by A. Now for r > 0 we can define (1 - A )  -~/2 
by the following gamma transformation: 

1 
(2.9) (1 - A) -~/2 - ~ if~2 - 1 e-t Tt d t. 

F(r/2) o 

( 1 - A )  -~/2 is a contraction operator, since {Tr} is a contraction semigroup. 
We set 

(2.10) ~ , p  (B) :=(1 -- A)- r/2 (L p (X, m; B)). 

We call ~,v(B) the Sobolev space with degree r and integrability index 
p. 

We have the following proposition, by the same proof as in [7, Proposi- 
tion 2.3]. 

Proposition 2.1 (1 - A) -~/2 is injective and ~,v(B) is dense in Lv(X, m; B). 

For v=(1--A)-~/2u, ueLP(X, m; B), define a norm Ih" ]lr, p by 

(2.11) II v L,p. '= l l u l l p  �9 

Then (~.v(B), I1" L,~) forms a Banach space. In particular, the case of B = R  
has been studied by many people, and we can use a general theory of 
(r, p)-capacity. We simply denote ~ ,p(R)  by ~.p" 



428 I. Shigekawa 

Next proposition gives a criterion whether v is in ~,p(B), by reduction 
to the scalar case. 

Proposition 2.2 Take any wLP(X, m; B). Then vc~,p(B) if and only if there 
exists a u~LP(X, m; B) such that for any q~eB*, 

(2.12) (q~, v)eJ~,p and (l-A)r/2(qg, v)=( fp ,  u). 

Moreover, under the above condition, (1 - A )  ~/2 v = u. 

Proof The necessity is trivial. We prove the sufficiency. It is enough to 
show ( l - -A)  -~/2 u=v. Since B is separable, we can take a countable family 
{~0n}_CB* such that x = 0  if and only if (x, (p~)=0, i=1 ,  2, . . . .  We claim 
that for all i, 

(9i, (1 - A)-r/2 u)  = (q~i, v) m-a.e. 

To see this, using the assumption, we have 

(q9 i, (1 --A) -r/2 u - - v )  = ~oi, F(r/2) o 

_ 1 ;t~/a_le_,Tt(c#i,u) dt_Qpz, v ) 
F(r/2) o 

=(1-A)-r/2 (qgi, u) - (cpi  , V) 

= 0  

as desired. []  

For a Banach space B and deN,  C([0, 1 ]d~B)  (the set of all B-valued 
contionuous functions on [0, 1] d) is again a Banach space with a norm 

II~rlc = sup I]~IPB. 
te[0,  1] a 

The C([0, 1]d~B)-valued function ~ on X can be regarded as a family 
of B-valued functions with a parameter te l0 ,  lie: ~ =(~t)t~ro.ljd. Then the 
following criterion is useful for applications. 

Corollary 2.3 Take any ~LP(X,  m; C([0, 1-I a --. B)). Then ~ , p ( C ( [ 0 ,  1] d 
~B)) if and only if there exists an rlsLP(X,m; C([0, 1]d~B)),  such that 
for any re[0, 1] a, 

(2.13) ~t~ ,p (B)  and (1-A)~/2r 

Moreover, under the above condition, ( 1 -  A) r/2 ~ = ~/. 
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Proof The proof is similar to that of Proposition 2.2. We show the suffi- 
ciency. By the assumption, for any tel-0, 1] d, 

((1 --A) -r/2 ~)t--th=(1--A) -~/2 ~ t -  t / ,=0 m-a.e. 

Hence by the continuity, 

(1 - A)- ~/2 ~ = i,/ m-a.e., 

as required. [] 

We use the above corollary as follows: If ( (1 -  A) r/2 ~t)t~to, 11d admits a version 
(t/t) which is continuous in t m-a.e, and 

j" sup IIt/tllf~m(dx)<ov, 
X r e [ O ,  1 ] a  

then ~ = (~t)teo~,,(C([O, 1] d ~ B)). 

3 Quas i -cont inuous  modi f icat ions  

In this section we discuss the connection to the (r, p)-capacity. In particular, 
we show the existence of a quasi-continuous modification of an element 
of o~,p(B). 

First a quick review of the (r, p)-capacity. For details, see [5, 3] and 
[7]. For  [0, oe]-valued lower semicontinuous (t.s.c.) functions h, define 
C~,p(h) by 

C~,v(h):=inf { llull~,p; ue~,~.p, u >=h, m-a.e.}, 

and for an arbitrary [ -  o% oe]-valued function f (not assumed to be mea- 
surable), 

Cr,p(f) =inf{Cr,p(h); h is 1.s.c. and h(x) ~ If(x) l, V x eX}. 

Here and in the sequel we use the convention inf q~ = oe. 
Then the following properties hold. For any functions f, f l ,  f2, ---, and 

2>0 ,  

(3.1) 

(3.2) 

(3.3) 

C,,p(2f) = 2 p Cr,p(f), 

IA(x)l~lfa(x)l VxeX ~Cr,p(fl)~C,,p(f2), 

C~,p(sup IL I)_-_ ~ c,,~(f.), 
?1 n 

(3.4) c~.,(Efo) ~/" <= E c~,~(L) ~/', 
rl n 

(3.5) C~,,({xeX ; f  (x)>=2})<= 1 C,,,(f).  
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For a set B, we define 

Cr,p(B)-- C~,p(ln). 

Here 1B denotes the indicator function of B. 
We say that a property holds quasi-everywhere (q.e.), if it holds except 

on a set of capacity 0. To get a regularity of capacity, we assume the 
following: 

(A.2) ffr, p("3Cb(X) is dense in ~ , p  and l ~ r ,  p. 

Then the capacity satisfies 

(3.6) O< f t  < fn < ,.. ~ f ~ C~,p(f)=sup C,. p(f,). 
n 

Further, for any function f ~ . p ,  there exists a quasi-continuous function 
g such that f =  g m-a.e. Here a function g is said to be quasi-continuous, 
if there exists a sequence of increasing closed sets {F~}, such that 
C~,p(X\F,) ~ 0 and g IF, is continuous. The above quasi-continuous function 
g is called a quasi-continuous modification off .  We usually denote it by 

Now we proceed to B-valued functions. 

Proposition 3.1 Jr, p(B) (5 Cb(X ~ B) is dense in ~ ,p(B) .  

Proof. Since functions u of the form 

n 

u= ~ f i b i ,  fi~LP(X,m), bi~B 
i = 1  

are dense in LP(X, m; B), the functions 

n 

(1 - A )  -'12 u= ~, (2 -A) - ' /2 f ib i  
i = 1  

are dense in ~,p(B). We may assume that Ilbilin<l. By the assumption 
(A.2), for any e > 0, there exist g ~ , p  c~ C b (X) such that 

I[(1-A)-r/2f~-gill,.,p_-< ~/n. 
Therefore we have 

n ~ bi r,p ~t(1 - A) - r / :A  b , -  g, 
i i = l  

< 

< 

< 

_< 

n n -- A) "/2 gi bl p 

i "= 

~, II(f/- ( 1 - A f / 2  gi) bi]lp 
i = 1  

~. IIA-(1 -- A) ~/2 g, ltp 
i = 1  

11(2 - ' / :  - A )  f , - g ,  llr,p 
i = 1  

g. 
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It is clear that ~' gi bi~.~,p(B) ~ Cb(X ~ B) and the assertion follows. []  

Next we show that any element of o~.p(B) admits a quasi-continuous modifi- 
cation. Before proving this, we recall that f~J~,p satisfies 

C~,p (J~) < [If IL~,,, 

(see, e.g. [-7, Proposition 5.2]). We will extend this inequality to B-valued 
functions. First we have the following: 

Proposition 3.2 For any ve~,p(B) c~ Cb(X --* B), 

c,,,(llvl[~) < IlvllF,~. 

Proof From the definition, there exists a ueLP(X, m; B), such that v =  
(1 - A )  -~/2 u, i.e., 

1 ~U2_~e_~Su(y)p(t ,x ,  dy)dt.  
v(x) = r(r /2~ ~ x 

Hence, 
1 

y) dt 
0 X 

which implies 

[Iv[[,<(I-A) -r/z rluNe m-a.e. 

On the other hand, since I lul l~eg~(x,  m), (1 - A )  -~/2 Llulh~e~,~, and therefore 
( l - A )  -~/2 ihull~ admits a quasi-continuous modification, which we denote 
by ( (1 -A)  -~/2 IlUlIB) ~. We have 

[]V]IB~((1--A) -r/2 ILuHn) ~ m-a.e. 

The above functions are both quasi-continuous, and we have 

[[vH.<((1-A) -r/z HuH~)~ q.e. 

Thus we obtain 

Cr,p( lllJl[B) ~ Or,p(((1 -- A)  -r/2 [I!gHB) ~) 

< I 1 ( 1 - ~ ) - r / 2  Iiull~ll~,p 

= II IluN~ll~ 

= Ilull~ 

-- Ilvll~,~ 
as desired. []  

Now we can state the main theorem of this section. 
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Theorem 3.3 Any ve~ .p (B)  admits a quasi-continuous modification. Further, 
denoting it by ~, we have 

(3.7) C~,v(I[glIB)_ -< Ilvl[~,v. 

Proof Take {v,} ~_ ~,~,v (B) c~ Cb (X ~ B) such that II v - v, II ~,v ~ 0, Then by 
(3.5) and Proposition 3.2, 

Now by a standard argument (see e.g. [4]), we can take a subsequence 
{v,s} such that {v,j} converges q.e. and the limit is quasi continuous. The 
limit is the quasi-continuous modification of v. 

To show the inequality (3.7), we note that there exists some 
ueLP(X, m; B) such that v = ( 1 - A ) - r / 2 u .  Then 

]IVI[B<=(1--A) -r/2 Ilull B a.e. 

and hence 

(llvPIB) ~__<((I-A) -~/2 Ilul[B)~ q.e. 

where ~ denotes the quasi-continuous modification. But pJ g][B = (][ V JIB) ~, and 
we have 

Cr,v(llg[l~)__--- Or,p(((1 - A )  -~/2 Ilu/I,) ~) 

5 I1(1-A) -~/2 IlulP,ll~,~ 

= II IlullBIl~ 

-- Ilull~ 

= Ifv[l~,p 
which is (3.7). []  

By combining (3.7) with (3.5), we have the following Chebyshev type inequal- 
ity: 

Cr,~(ll~ll _-> ;0_-< ~; Ilvll[, �9 

As an application, we give a capacity version of Kolmogorov's criterion 
for path continuity. It was proved by Ren [9] for real valued processes. 

Theorem 3.4 Let ~=(~)  be a B-valued process with a parameter t~[0, 1] d. 
Suppose that ~ t ~ , v ( B )  for any t. Further suppose that there exist constants 
fl > 0, c > 0 such that 

(3.8) H~t-~srlp, p<=e I t - s [  d+~. 
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Then ~ admits a quasi-continuous modification ~ as a C([O, 1 ]d~  B)-valued 
function, such that 

(3.9) 
" \ , , t  I t -s]  v ] 

for every 0<7<f l / p .  In particular, the paths of (~t) are H61der continuous 
of order ? q.e. 

Proof The proof is just a repetition of the measure case. But we give a 
proof  for completeness. 

From the assumption we have 

E [ II ( I  - A) r/z ~ -  ( I  - -  A) ~/2 ~ IIfd = II (1 - A) ~/~ i t -  (1 - A) ~12 ~ll~ 

<=c l t - s t  a+a. 

Here E denotes integration with respect to m. Noting that ( l - A )  -~/2 is 
Markovian, we have similarly 

g [-IL ~ , -  ~llg] =EEl l0  - A)-'/2 ((1 - A )  "/2 i t - ( 1  - A )  r/2 ~s)ll fJ 

<E[II(1 - A )  "/z ~t- (1  - A )  "/2 ~(Ig] 

<c l t - s l  a+a. 

Hence, by Kolmogorov's  criterion, we may assume that (~r and ((1 - A) r/z ~) 
are continuous in t m-a.e, and 

E [  sup H~,[lg]<oo, 
tm[0,11 a 

EE sup /I(1-A) r/2 ~,llf~]<oo. 
r e [ 0 ,  11 a 

By Corollary 2.3, we obtain ~e~ .p(C([0 ,  1] a ~B)).  Then, by Theorem 3.3, 
admits a quasi continuous modification ~ as a C([0, 1] ~- ,  B)-valued func- 

tion. 
Now we borrow the argument of [11, Theorem 1.2.1]. As a convention, 

we use the norm of the parameter te[0,  1] a defined by JtJ=max[t i l .  Let 
i 

D,, be the set of all points in [0, 1] a whose components are all equal to 
i2 -'~ for some integer i, and set D =  ~ D,~. Let further A,, be the set of 

m 
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pairs (s, t)eD m xD,,, such that [ t - s l = 2  -m. Finally set Ki= max II~-~'slIB. 
(s,t)eAm 

Then by the assumption, there exists a constant J > 0 such that 

C ,v(KO< c ,,(IIL-LII ) 
(s,t)ezll 

( s , t ) e A i  

< d 2 - f , .  

For a point s in D, there exists an increasing sequence (sin) such that S m e D  m 

and s,, < s and s,, = s from some m on. Moreover we may choose a similar 
sequence (tin) for teD. If Is - - t [<2-% then either s,,=t,, or (sin, t,,)eA,,, 
and in either case 

~=rn i = m  

It follows that 

i = m + l  i=m 

Consequently, setting M7 = sup {I] ~'s- ~t I[~/It- s I~; s, t e D, s :t: t}, 

M~<sup{2 (m+ 1)~ sup [[~t- ~IIB; s, teD, s # t }  
m 2 - m - l < l t - s l < 2 - m  

{ <sup  2"2 ( m + l ) ~ K i  
i = m  .~  

< 2  ~+1 ~ 2i7Ki. 
i = O  

Now by (3.4), we get with J '  = 2 ~ + 1 j ,  

Cr,p(M~)l/P ~ J  ' 2 i~ Cr,p(Ki)t/P~J' ~ 2i(v-~/P) < o(3 
i = 0  i = O  

which shows (3.9). [] 

4 The Ornstein-Uhlenbeck semigroup on Wiener space 

In this section, we discuss the Ornstein-Uhlcnbeck semigroup on the classi- 
cal Wiener space as a typical example. Let (W a, pW) be the d-dimensional 
Wiener space, i.e., W d= Co([0, 1] --, R d) is the set of all Ra-valued continuous 
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paths on the interval [0, 1] starting at 0, and pW is the Wiener measure. 
As usual, W e is a Banach space with the supremum norm, and we denote 
an element of W e by w. Let ~- be the Borel a-field on W e, and define 
a filtration (~-~) by 

o5= 

The Ornstein-Uhlenbeck semigroup {Tt} is defined as follows: 

Tt f (x)= ~ f (e-tx+~l~eZe-Zty)  pW(dy). 
Wa 

In this case, we denote the associated Sobolev space by wr'p(B) in place 
of ~,p(B). If B is a Hilbert space, W~'P(B) is already defined in the Malliavin 
calculus and agrees with our definition. 

We take C([0, 1] ~R" )  as our Banaeh space B. Let X = ( X 3  be an 
Re-valued process with a parameter te [-0, 1]. We assume that (Xt) is continu- 
ous in t a.e. and further that 

E [ sup I Xt]P] < oo. 
o < t < l  

This means that XeLP(We, pW; C([0, 1] ~Re)). Then Corollary 2.3 states 
that, if {(1-L)~/2X,}t~[o,1] has a version which is continuous in t pW-a.e. 
and 

El- sup I(1 --g)r/2 xtlP] < o0, 
0<t__<l 

then X = (Xt)e W~'P(C([O, 1] ~ R")). Moreover, applying Theorem 3.3, we 
have that (X,) admits a quasi-continuous modification (J?~) as a C([0, 1] 

R")-valued function with 

C~,p( sup [)7,[)<E[ sup I(1-L)'/aX, I p] 
O_<t_<l O_<t_<l 

or for 2>0 ,  

< 1  
C~,p( sup 12t]>)0___~ E[  sup I(1-L)r/2X, l q .  

O-<t--<l O~t=<l 

Next, let us consider a martingale. Suppose that (Ms) is an (~)-martingale 
and M1 e W r'p. Here we take p > 1. Then (Ms) has a quasi-continuous modifi- 
cation ()~r) as a C([0, 1] ~ R)-valued function, and 

C~,p( sup IMt[>_2)< []Mlllff, p. 
O_<t_<l 
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To see this, it is enough to notice that 

(1  - -  L) ~/a M t  = (1  - L) ~/2 E [M~ 1 ~ 1  = E [ ( 1  - -  L) ~/2 M1 l Ytl 

which implies that ( (1 -L)  r/2 Mr) has a continuous version with 

E [  sup [(1 --L)r/2MtlPl < CO. 
O_<t_<l 

The above Doob  type inequality was remarked first in [101 in the framework 
of smooth martingales. 

Now we proceed to stochastic differential equations. We consider the 
following stochastic differential equation: 

(4.1) d X i =  i o ~ i a~(Xr) dwt +ao(Xt) dt, 

X~ = X i . 

Here a~=(ai), ao=(aio)eC~(Ra-+Rn| where C~ denotes the space of 
all bounded C~176 with bounded derivatives of all order. Further, 
following the custom, we omit the summation sign for repeated indices. 
Then the existence and the uniqueness of the solution to (4.1) are well- 
known. We show the following: 

Theorem 4.1 The solution (X,) to (4.1) belongs to W~'P(C([O, 1] ~R~)) and 
therefore admits a quasi-continuous modification as a C([0, 11 ~R")-valued 
function. 

Proof. We will prove that, for any meN,  (LmX,),~ro. ll has a continuous 
version with 

(4.2) E [" s u p  [ g  m X t IPl < oo, 
O__<t<l 

by showing that (L" Xt)tE[O ' 1] satisfies a stochastic differential equation. 
In the case of m = 1, it is well-known that 

(4.3) dLXI = {Oj a~(Xt) J ~ LXt+O~zai(Xt) kl i at --a~(Xt)} odwt 

0kl ao(X~) at } dt. +{#jaio(Xt)LXJt+ 2 i g, 

0 
ar . - (DXt ,  DXJt)u,, DX~ being the H-derivative of X~. Here 0 j = 0 x  J and o'._ i 

This matrix at=(o-~ j) is called the Malliavin covariance matrix of Xr. ~rr 
satisfies the following stochastic differential equation (see, e.g. [-121). 

(4.4) d a~ j = i {Ok a~(Xt) a,kJ---I- atlk Ok a~(Xt)}odwO/ 

+ {Ok a~ (Xt) kj ik ~ i at +~r, Ok ao(X,)+a~(Xr) a~(Xt)} dt. 
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For simplicity, we write the above equation in matrix notation as follows: 

d a t = {0 a~(Xt) at + at ~? a~(Xt)}o d w~ 

+ {~? ao (Xt) at + at (] ao (Xt) + a~ (Xt) | a~ (Xt)} d t, 

d LXt  = {(? a~ (Xt) LX~ + tr (02 a~ (Xt) a~)- a~ (X~)} o d w~ 

+ {0 ao(Xt) L X t +  tr(02 ao(Xt) at)} dt. 

By the uniqueness of the solution, (LXt) is uniquely determined and continu- 
ous in t a.e. Further we have for any p > 1, 

E [ sup ]LX tip] < o0. 
O_<t_<l 

This proves the first order case. 
Next we show the second order case. Set X}l' l)=at,  X~t '2)=LXt.  Here 

we regard all vectors as column vectors. Then the above equation can 
be written in the following form: 

(4.5) dX~Lt)={E~l'l)(XOX~a'~)+O~a'l)(Xt)}odwr 

+ {E~o 1' ~) (x,) x~ 1 '"  + G~o ~, "(X,)} d t, 

d Xl 1, 2) = {E~I,2)(X~) Xl~, ~) + v~i,2)(XO X~l,~) + 6~, ~)(X,)} o d w; 

+ {E(J,~)(x,) x l  1,~) + F(ol,~)(X,) X} 1," + 6(o1,~)(X,)} d t. 

Here E(~ Lk), F~ (l'k), e = 0 ,  1 . . . .  , d, k =  1, 2, are matrix valued functions, and 
G~ Lk) are vector valued functions. Further ,~,~'(~'k)~ roo=~b and .,F (~'k), ,,_,at'2~(l'k)=/~~176 
where C~ denotes the space of functions whose derivatives of all order 

have polynomial growth. Finally we set x}l)=/x}l'l)/" ~ 
[xf~,~)]  

To prove (4.2), we show that the processes 

X}2,1) = (DX~I, 1), DXt)u,,  

X}2, e) = (DXI L ~), DX} 1,1))it, , 

X(2,3) _ [ n V ( 1 , 2 )  D X t ) I ~ , ,  t - -~,x" 'xxt  , 

X}2,4) = (DX}a, 2), DX}I, 1))//,, 

X~2, s) _ (DX~I, z), DXii,  2))H, , 

X~2,6) = LX~I, 1) 

XI:" 7) = LX~I, 2), 
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satisfy the following stochastic differential equations 

(4.6) dx}Z'I)={E(~2'I)(Xt)X~2'I)+G(~Z'I)(xt, Xll))}odw~ 
+ {E(o 2,1)(Xt) X}2,1) + G(o 2,1)(X" X~l))} d t, 

dX~ 2 '2)= {E(2'2)(Xt)~-tY(2'2)~aA-L:'(2'2)(Yk~-t, X~l)) X~2,1) 

+ 6(2, 2 ) (x .  x~')}  o d w~ 
+ {E(o 2, 2) (X,, Xl 1)) Xf 2,~) + Fg,~)(X,, Xl 1)) XV'"  
+ G(o~,2)(X,, XT))} dr, 

dX?,~)={E(~2,7)(X~)V(2,7)~-~(~,~)cv.., _ . a  , . . , , X } ' )  ' 

kX~2,6)l 
(2,7) ~x "Jr- Go~ (Xt, xl l ) )}  odw t 

+{E(o2,7)(Xt, Y(1)] y (z ,7)•  l:(2,7)tv V(1)] �9 21 t 12~ t ma 0 ~,2xt~ x~ t ] 
LXI2,6)A 

+ G~,7)(x. x~' )}  d t. 

Here E(~2'k)e C7, F~ (2'k), G(~Z'k)e C~. 
First we investigate XI 2' 1)= (DX~I, 1), DX~)n.. Recalling (4.4), we have 

d(VXiX, 1), DXr)n. 
= [-{a E(I, 1)(Xt) X~l, 1)+ ~ a(1,1)(Xt) } (DXt, DXt).. 

27 E(1,1)(Xt)(nxli ,  1), DXt)H, 27 ( n X l l ,  1) DXt)H, ~ aa(Xt)]o d w t 

27 [{a E(1,1) (Xt) x} l ,  1)27 (~ G(1,1) (Xt) } ( n x t  ' ~)Xt)H * 

27 E(ol'I)(X,) (D XI I" 1), D Xt).. + (D X~ i' i), D Xt)u. (~ ao (XO 
+ (E(~ l'l)(Xt) XI 1'~)+ Gi 1' 1) (X,)) | G} dt. 

The above equation is linear in (DX} l' t), DXz).. and its coefficients depend 
only on Xt and belong to C~. In addition, X~ 2,k), k= 2 . . . .  ,7 do not appear. 
Similarly we have 

d(D XI1, i), D X~i, 1))U * 
= [-{agO, 1)(Xt) X}l, 1).j_ a a (1' 1)(Xt) } (DX,, DX~ l' 1))n. 

+ E(1, i)(Xt)(DX}i, i), DXil, 1)).. 
+(DX~I , I ) ,  (1 1) (1 1) (t DXt)H.{3E~' (Xt)Xt '  -~-(~aa'l)(xt)} 
+ (D Xl 1' 1) D XI 1' 1))H, E (1 ' 1) (Xt)] o d w r 

.j_ ~{a E(0 1 , 1)(Xt ) X~1,1) Av ~ G(1,1)(X~)} (DXt ' DXl i ,  i))n * 

+ E(o 1,1)(Xt)(DX~I, 1) DX~I, 1))., 

+ (DX}~, 1), nx t ) . .  {SE(o i' i)(xt) X~ ~" 1)+ a G(o 1' ~) (X,)} 
+ (DX~I, 1) DX}I, 1))n * E(1,1)(Xt) 
-~- (E (1 ' 1) (Xt) X~ 1'1)-[- G (1' 1) (Xt)) | (E (1' 1) (Xt) X~ 1'1)+ G (1' 1) (Xt))] d t 
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and 

d(DX~ 1'2), DXt)n. 

= [{OE(1,2)(Xt) X}1,2) _}_ (~ F(1,2)(Xt) X}l, 1).4_ (~ G(1,2)(Xt)} (DX.  DXt).. 

q- E (1'2) (Xt)(D XI 1"2), D X,)n. + F(~ 1 '2)(Xt)(D X~I" l), D Xt)H, 

+ (DX~ 1' 2), DXt)n. 0 a~ (Xt)-] o d w~ 

+ [{0 E(o 1, 2) (Xt) X}l,z)+ OF(ol,2)(Xt) X~I, 1)+ ~ G(o~,2)(Xt)} (nxt ,  nxt)n. 

..[_ E(oi,2)(Xt)(n x~t,2), D Xt)H. § F(ol,2)(Xt)(n x~l, 1), D X,)H. 

-{-(DX~ 1'2), D Xt)H, (~ ao(X 0 

_~_ (E(1,2)(Xt) x l l ,  2)2V F(1,2)(Xt ) X~l, 1)+  G(1,2)) @ aa(Xt))] d t. 

We can get similar stochastic differential equations for (DX} 1'2), DX~ 1' 1))/t, 
and (DX} 1'2), DX}I'2))u,. 

Further we have 

dLXll,t) (1,1) (1 =(L(E a (Xt))Xt 'I)~-E(I"I)(Xt)LX~ 1"1) 

_k(~E(1,1)(XO(DXt, (1,1) (1 DXt )H.+L(G~ 'l)(Xt)) 

- -  { E ( l " l ) ( x t )  X l 1'1) -]- G (1'1) ( X t ) }  o d w~ 

+ { L (E(ol'I)(X,)) X} 1'~) § E(ol'l)(Xt) L X~ 1'1) 

+ aE~o 1' a)(Xt)(DX,, DX~ 1' 1))H. + C(G(o 1' 1)(Xt))} d t 

and 

dLX} 1,2) = .f[.(ls~(1,2)tY "1"1 y(1 ,2)  A- LT( 1, 2 ){y  "1 lY(1 ,2 )  

-]- ~ E (1,2)(xt)(o x t ,  D X I I ' 2 ) ) H ,  

+ C(F(I, ~)(X,)) X~I, ~)+ F(1,~)(XO LX~i, 1) 

-4- ~ F (1,2)(Xt)(OX,, OX} 1,1))H , -4c L(O(1,2)(Xt)) 

_ E( t ,  2 ) ( X , )  ~-tv(l' 2) _ *~F(I' 2)~,~-t!(Y ] ~tY(l'l ) _ a (1 ,2 )  (St)}  o d wr 

+ {L(E(o,, 2)(X,)) X~ ~' 2) + E(o 1, 2)(X,) LX~ 1" z) 

+ c3E(ol'Z)(x,)(DXt, DX}I'2))H, 

-t- L(F (1' 2)(St) ) X~I, 1) ~_ Fo(1,2)(X,) LXJ j" 1) 

+ aF(ol'2)(Xt)(DX,, DXI 1' 1)),~. + L(G(01' 2)(X,))} d t. 

Thus we have (4.4). The Eq. (4.4) can be solved recursively, and we have 
for k = l ,  ..., 7, 

E [  sup ]X}2'k)] p-] < oo. 
0 < t < l  

In particular, noting that X~2"7)=L2Xt, w e  have proved the second order 
case. 



440 I. Shigekawa 

In  the th i rd  o r d e r  case, we have a sys tem of  s tochas t ic  differential  equa-  
t ions of  the form:  

dY(3,k)--fP(3,k)[Y'iY(a,k)-I-Ig(3,k)ty X~I) X} 2)) 

LX~3,k- 1) 3 

+ G~'~)(X~, ~,'~, X~))} o d w~ 

+ {E(3"k)(x,)X}3,k)-I-F(03,k)(xt, X} 1), X} 2)) �9 
LX}3,k- 1) I 

2,'] 
Here X}Z'=[ ! / a n d  ~(3'k)~'~,~ =,~b, -,V(3'k), G~3'k~C~ �9 

LX~2,7)A 

By induc t ion  we can  see tha t  (4.2) ho lds  for any  m. [ ]  

F ina l ly  we r e m a r k  that ,  by  the above  proof ,  we can p rove  the quas i -every-  

where  existence of  s tochas t ic  flows. 
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