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Summary. We introduce nonparametric estimators of the autocovariance 
of a stationary random field. One of our estimators has the property that 
it is itself an autocovariance. This feature enables the estimator to be used 
as the basis of simulation studies such as those which are necessary when 
constructing bootstrap confidence intervals for unknown parameters. Unlike 
estimators proposed recently by other authors, our own do not require 
assumptions such as isotropy or monotonicity. Indeed, like nonparametric 
function estimators considered more widely in the context of curve estima- 
tion, our approach demands only smoothness and tail conditions on the 
underlying curve or surface (here, the autocovariance), and moment  and 
mixing conditions on the random field. We show that by imposing the 
condition that the estimator be a covariance function we actually reduce 
the numerical value of integrated squared error. 

Mathematics Subject Classification (1991): 62G05, 62G20 

1 Introduction 

The covariance function of a stationary random field in the plane may 
be regarded as a surface whose height above the plane at the point 
t = ( t  (1), t (2)) equals the covariance between values of the process at points 
lagged by an amount  t. This paper was motivated by the problem of con- 
structing a "confidence sandwich" for the covariance function of a station- 
ary random field. That  is to say, we wished to construct two surfaces, one 
above the other, between which the true covariance function (over a specified 
region of the plane, for example a disc centred at the origin) lay with a 
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certain preassigned probability, such as 0.95. The confdence sandwich had 
to be constructed for the most part nonparametrically, at least in terms 
of the marginal distribution of the process and the strengths of long- and 
short-range association. The work described in the present paper develops 
theory behind one part of the overall algorithm for constructing a nonpara- 
metric confidence sandwich for a covariance function. 

The full algorithm involves three steps, which we now describe. (i) Model 
the random process by a function, g say, of a Gaussian random field. The 
requisite function is estimated by the obvious empirical transformation - 
begin by estimating the first-order marginal distribution of the process, 
then apply this function to the entire process, and following that, apply 
the inverse of the standard normal distribution function. Only if the original 
process is really a function of a Gaussian process will such an approach 
correctly reproduce the marginal distributions in all dimensions. Neverthe- 
less, from the point of view of data analysis this sequence of operations 
would capture a satisfactory proportion of the properties of both long- 
and short-range association, as well as the marginal distribution. (ii) Con- 
struct a nonparametric estimator of the covariance function of the derived 
Gaussian process. Critically, this estimate must itself be a covariance func- 
tion, and that problem motivates this paper. (iii) Simulate from the Gaussian 
process estimated in step (ii), and take the simulated version of the original 
process to be g-1 of the simulated Gaussian process. (iv) Based on these 
simulations, use the percentile bootstrap method to construct the desired 
confidence sandwich. 

We tackle the problem in a little more generality than the two-dimen- 
sional case discussed above. In particular, we assume that the random field 
is indexed in N. d for d >  1, and we do not demand that the process be 
Gaussian. Indeed, we ask only that certain moment and mixing conditions 
be satisfied, and that the tails of the covariance function decay sufficiently 
fast. 

In our analysis of the performance of covariance estimators we have 
employed the L 2 metric throughout, not least because of its technical tracta- 
bility. We have not weighted this error, and could instead have considered 
mean squared error divided by the square of the target covariance function, 
or a similar relative measure of performance. However, while this approach 
is perhaps attractive towards the origin, where covariance can be estimated 
with ease, it is singularly unappealing in the tails, where it diverges without 
bound. Thus, a decision to use weighted L ~ error involves an awkward, 
ad hoc decision about truncation in the tails, which can drive the conclusion 
of the entire analysis. Alternative approaches, based for example on the 
L 1 metric, are not any more appealing for covariance estimation than L 2, 
unless one particularly wishes to downweight larger departures from the 
truth. (They do, however, have greater attraction in the context of density 
estimation, since a density is in the class of L 1 functions; see for example 
Devroye and Gy6rfi (1985).) 
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We develop detailed theory describing the rate of convergence of inte- 
grated squared error (ISE) of our covariance function estimator. In particu- 
lar, we prove that ISE is asymptotic to a small constant multiplied by 
the integral of the square of a certain fixed Gaussian process. The value 
of the constant converges to zero as sample size increases, and the conver- 
gence rate of the constant determines the overall convergence rate of the 
estimator. 

We should stress that we make very few assumptions about the relative 
positions of the "design points" in ~a, at which the process is observed. 
They should be sufficiently closely spaced to permit adequate smoothing, 
but this type of condition is necessary for nonparametric covariance estima- 
tion. In particular we do not ask that the design points be located on 
a grid, or lattice, in IRa. Such assumptions are very common in related 
work on the case d = 1; in fact, they are the rule in that context, and our 
non-lattice approach is a rare exception. However, lattice-valued designs 
are only very rarely encountered in the case of d> 2 dimensions, and so 
it is important that we take the route which we have. 

Our estimators are based on kernel methods, and in this sense they 
have similarities to those encountered in the context of nonparametric den- 
sity and regression estimation; see for example Silverman (1986) and Hfirdle 
(1990). However, a more appropriate analogy is with distribution function 
estimation by integration of a kernel density estimator. In particular, the 
effect of the kernel and bandwidth vanishes entirely from first-order asymp- 
totic theory, and the convergence rate is the analogue of root-n consistency 
in more classical statistical problems. The effects of kernel and bandwidth 
choice emerge only in second-order theory. All these are properties of kernel 
estimation of distribution functions, as is readily deduced after a little analy- 
sis. 

Section 2 introduces our estimators and describes their basic properties. 
In particular, we show there that by insisting that the covariance estimator 
have the positive definiteness of a real covariance function we do reduce 
ISE. Section 3 explores properties in greater mathematical detail. There 
we define the limiting Gaussian process involved in our asymptotic formulae 
for ISE, and state the convergence results under explicit regularity condi- 
tions. All proofs are relegated to Sect. 4. 

The practical problem of estimating a multivariate covariance function 
has been motivated by many authors; see for example Matheron (1971), 
Journel and Huijbregts (1978), Armstrong and Diamond (1984), Christakos 
(1984), Cressie (1991, Chap. 2), Shapiro and Botha (1991) and Sampson 
and Guttorp (1992). However, the estimators treated here are substantially 
different from those which have been considered earlier, in that the latter 
tend to rely either on parametric fitting (e.g. Cressie 1991) or repeated mea- 
surements (e.g. Sampson and Guttorp 1992), and do not always produce 
a covariance function in the continuum (e.g. Shapiro and Botha 1991). Even 
when nonparametric fitting has been contemplated by earlier authors it 
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has often been under rather restrictive constraints, such as monotonicity 
or isotropy (e.g. Sampson and Guttorp 1992). The pointwise (as distinct 
from global, or ISE) properties of a one-dimensional version of our estimator 
have been considered before (Hall et al. 1992), but that work does not antici- 
pate any of the mutivariate, global conclusions drawn in the present paper. 

2 Estimator and its basic properties 

Suppose the stationary random field {X(t), t e n  d} is observed at points 
tl, ..., t,, which are not assumed to be on a grid. We wish to estimate 
the autocovariance, or covariance function, 

p (t) =cov  {x (o), x (0}. 

A kernel estimator is defined by 

(2.1) p(t) = Z K { ( t -  tO/h} x,j] [Z Z K { ( t -  t0/h}] - 1, 
i j i j 

where tij = t i -  t j, X,j = {X ( t 0 -  X} {X (t j) - ) ( }  and X = n-1 ~ X (t~). Here, 
h > 0 is the bandwidth and K is a d-variate symmetric kernel function with 
SK=I .  

It is not difficult to see that if, as n increases, the points t~ become 
increasingly dense in each bounded subset of ]R d, then the bandwidth h 
may be chosen so that p(t)~p(t) as n-~ ~ ,  for each t e n  d. However, for 
a fixed sample {X(t0, ..., X(t,)} the estimator p(t) can become undefined 
as I tl increases. (Here, It[ = I(t(1), ..., f(d))T[ = (  2 t(i)2) 1/2 denotes the usual Eu- 
clidean distance.) For example, if K is compactly supported then for any 
h > 0  and all sufficiently large It], the ratio in (2.1) is of the indeterminate 
form 0/0. More problematically, the estimator ~(t) can be quite accurate 
for small to moderate values of ltl but highly inaccurate, although well- 
defined, for large [t['s. To illustrate this point, Fig. 2.1 depicts ~(t) and 
p(t) when X is a Gaussian process with d= 1 and p(t)=e -It1198, and when 
n=200, tl, ..., t, are uniformly distributed on (0, 40), h=0.4, and K(x) 
= (1 -- Ix 1) I(] x l < 1) is the triangular kernel. It can be seen that ~(t) approxi- 
mates p (t) quite well for 0 < t < 4, but quite poorly for t > 4. 

We would usually only be interested in estimating p for processes that 
exhibit some degree of weak dependence, i.e. p(t)~ 0 as I tl --+ m. The exam- 
ple illustrated in Fig. 2.1 indicates that in such cases, p(t) may actually 
become large as p(t) becomes small. Therefore, performance of ~ may be 
improved by adjoining a suitable symmetric weight function w=  w,, which 
should enjoy the properties sup lw( t ) - l l  ~ 0  as n--+ ~ for each c>0,  and 

Itl<c 
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Fig. 2.1 Graphs of p(t)--e -Itl'9~, and #(t), in the case where X is a Gaussian process 
with d =  1, where n = 2 0 0 ,  h=0.4 ,  K is the triangular kernel, and t~, . . . ,  t, are uniformly 
distributed on (0, 40) 

w(t)--*O as It[ ~ oo for each n > l .  (For example, we might take w(t)=I(lt[ 
< c,) where c, ~ oo as n -~ ~ . )  The new estimator would be 

#(0  = #(t) w(t). 

Note  that, in view of the symmetry of K and w, # ( - t ) =  #(t). 
If w is chosen so that fi is square-integrable then the Fourier transform 

of ~ is well-defined: 

~(O)=Se'~ OMR ~. 

By Bochner's theorem, a necessary and sufficient condition for # to be 
a covariance function is that ~ > 0 .  The latter condition would never be 
satisfied in practice by the particular estimator that we have defined. This 
leads us to suggest an alternative estimator t~, which is defined as that 
function which is closest to t3 in an L 2 sense subject to being a proper 
covariance function. This quantity is given by 

(2.2) f3 (t) = (2 n)-a S cos (O r t) ~(0) d 0, 

where ~ = ~  if ~ > 0 ,  and ~ = 0  otherwise. 
Not  only does # enjoy the covariance property, it is closer to p than 

is ft. To appreciate this point, and the correctness of definition (2.2), note 
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that if/91, /92 are two functions with respective Fourier transforms On, 
~2, then by Parseval's identity, 

1l/9, - p2lrz= ~ (pt - p2)Z=(2 ~)-a ~ (qJ, -~2) z=(2  ~) -a 110,-02112 

(The notation ]l" II denotes the L 2 norm for square-integrable functions on 
lRa.) Taking p1=/5 (and r =~)  we see that IF~'1-~211 (and hence liP1 -/gzll) 
is minimised, subject to ~2 > 0, by choosing r = ~1 I(~1 > 0 ) =  if, i.e./gz =P. 
Furthermore, if ~ denotes the Fourier transform of/9 then, since ~ > 0, 

(2re) d 11r = I1~-~112 = I [ ~ I ( ~ > 0 ) - ~ l l  2 

11~-@112 =(2~c) a Ilk-pit 2, 
so that 

(2.3) II~-pll ~ II~-pll. 

In practice this inequality will generally be strict, owing to the fact that 
< 0 in a place where tk # 0. 

If the points t~ are clustered sufficiently closely together then it is possible 
to estimate p(t) with error Op(2-d/2), where 2 d is proportional to the d- 
dimensional content of the "spread" of the set {ti}. For example, the t~'s 
might be uniformly distributed inside a d-dimensional sphere of radius 2, 
with n >> 2 d. In the coming sections we shall investigate circumstances where 
this is true, and show that the inequality in (2.3) is often very nearly an 
equality, in the sense that 

II~-pll = {1 + op(1)} 11tS-p[I 

as n, 2 ~ o o .  We shall also develop limit theory for 2 d/2 11r proving 
that this quantity has a proper, nondegenerate limiting distribution. 

3 Convergence of integrated squared errors of ~6 and/3 

3.1 Summary 

Let c > O, and define 

Ic= ~ {P(t)-p(t)} zdt.  
Itl<-c 

In subsection 3.2 we show that, for an appropriate sequence of constants 
a, diverging to + oo, a, Ic has a proper, nondegenerate limit distribution. 
This result is exceptional among related work on the integrated squared 
error of curve estimators, where it is typically the case that an appropriate 
scale multiple of integrated squared error converges to a constant, not to 
a nondegenerate weak limit; see for example H/irdle and Marron (1986). 
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Note too that our result implies consistency of/5 in a truncated L 2 metric; 
in fact, it yields a rate of convergence in that context. 

Since Ic is not even well-defined for large c then the results discussed 
above cannot be extended to the case c = oo. Nevertheless, if we modify 
t~ to/5 by adjoining a weight function, as discussed in Sect. 2, then it may 
be feasible to define Io~ and to ask whether the weak convergence result 
continues to hold. In subsection 3.3 we show that it does, under appropriate 
regularity conditions. 

Finally, in subsection 3.4, we show that if ~ is replaced by the positive 
definite version r in the definition of I~  then, under appropriate conditions, 
an identical weak convergence result holds. In this sense, f3 and t~ are first- 
order equivalent. 

3.2 Integrated squared error of ~ over a finite region 

We assume the following conditions on K, on the process generating the 
design points tz, on h and n, and on X. Let r >  1 be an integer, denoting 
the "o rder"  of the kernel K. Of K we ask that this function from IR d to 

be bounded, compactly supported and H61der continuous, and satisfy 

~(uti))JK(u)du=6~o for l < i < d  and O < j < r - 1  

where 6;1j2 is the Kronecker delta. 
We assume that the design points h may be written as t i = 2 ui, where 

2 > 0 is a large constant and u~, u2, ... represents a realization of a sequence 
U~, U2, ... of independent and identically distributed random d-vectors. 
We suppose that the common distribution of the U~'s has a density f which 
is compactly supported and has r bounded derivatives. We regard h and 
2 as functions of n, and ask that for some e > 0, 

(3.1) h + 2 - 1  + h 2 r  ,~d..k(nl-e ha~2 2-d)- 1 -+0 

a s  n--* oo. 

The asymptotic regime described by these conditions corresponds to 
neither "infill" asymptotics, where an increasing number of points is added 
to a single fixed region, nor to "increasing domain"  asymptotics, where 
points separated by a fixed distance are added to successively larger regions. 
In the case of d = 1 dimension, the former type of design is common in 
nonparametric regression (e.g. with t~= t,~= i/n for 1 <-i<-n) and the latter 
type is common in time series analysis (e.g. with ti= i for 1 <iNn). We 
claim that neither of these regimes can produce consistent estimation of 
the covariance function in the setting of the present paper. To appreciate 
why, observe that while the former produces an increasingly dense set of 
design points it does not  permit arbitrary high lags to be observed, because 
no design points are available beyond a certain fixed limit. Therefore, consis- 



406 R Hall, R Patil 

tent estimation of the full covariance function is only possible if that quantity 
vanishes outside a certain radius, which condition we regard as unrealisti- 
cally stringent. On the other hand, the "increasing domain" type of asymp- 
totics for design does not allow differences of design points to be arbitrary 
close to one another, and so does not permit estimation without structural 
assumptions. In particular, nonparametric estimation of the covariance func- 
tion under smoothness conditions alone is not possible. The asymptotic 
regime suggested in this paper is a genuine compromise between these two 
extreme approaches, and captures the main features of both. It is related 
to the continuous observation of a random field over an increasingly large 
region, through the assumption that the design points are increasingly dense 
and are scattered across an increasingly large region. 

The stationary random field X is assumed to be weakly dependent, 
in a sense that we now make precise. Given sets 5~ 5P2~IR d, define the 
distance function 

(~9~t, 5~z) =inf{l t l  --t2l" tieNr i=  1, 2}, 

let X [ ~ ]  denote the o--field generated by the random variables {X(t), t ~ } ,  
and write Y ~ X [ ~ ]  to mean that the random variable Y is measurable 
in X [~] .  Put 

)~(s) = sup sup ]corr(Y1, Y2)I. 
5~ 1,5a2 ~N.as.t. YiEX[SP~], i=l ,2 ,s . t .  

( S, al ,Sa 2) >=s E(YXi ) < o~ 

We ask that 

(3.2) )~(s)~0 as s - * + o o ;  

the rate of convergence in this condition is not critical to our results. 
We further assume that E(X 8) < o% and 

(3.3) sup ... ~ E [{X(0) X(to)-p( to)}  
Ito[ ..... Itpl < f l  

p ] �9 I]  {X(vj) X(vj+tj)--p(t j)}  dl) 1 . . .  d u p . ~  oo  
j = l  

for p = 1, 3 and each c > 0. We also ask that p have r > 1 bounded derivatives, 
and satisfy S ]p I< oe. 

In the case d =  1, and when X is a Gaussian process, condition (3.2) 
is equivalent to strong mixing. See for example Ibragimov and Rozanov 
(1978)�9 In the case of processes related to Gaussian fields it is often straight- 
forward to specify circumstances under which (3.2) and (3.3) hold. For exam- 
ple, both conditions are satisfied if X = g ( Z )  where Z is a Gaussian field 
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and g is a function, satisfying E{g(Z)8}<oo and coy{Z(0), Z ( t )}=0  for 
all sufficiently large It[. 

Let Y denote a (nonstationary) Gaussian random field with zero mean 
and covariance function given by 

cov{ Y(s), Y(t)} = (~f2)- 2 (~f4) ~ e [{X(O) X ( s ) -  p (s)} 

-{X(u) X (u+ t ) -p ( t ) } ]  du. 

Theorem 3.1 Under the conditions imposed above, and for each c>0 ,  the 
random variable 

.f {ff(t)-p(t)} dt 
It[<=c 

converges in distribution to 

as n ~  oo. 

Remark 3.I 

Y(t) 2 d t 
[tl<_c 

The interpretation placed on the role of the ufs in this result 
may be taken to be that the stated convergence occurs for sequences ux, 
u2, ... that arise with probability one as realizations of the independent 
random vectors U1, U2, ... �9 However, our method of proof  allows a more 
general interpretation in terms of triangular arrays, as follows. For  each 
n >  1, let U,1, ..., U,, be independent and identically distributed random 
vectors with the distribution corresponding to density f, and suppose that 
for each n the sequence uz=u,i , l<<_i<_n, arises as a realization of 
U,1, ..., U,,. The convergence stated in Theorem 3.1 is valid for a class 
of triangular arrays {u,i, 1 < i < n < oe } which are generated with probability 
one from triangular arrays {U,i, 1 < i <  n} defined as above, without regard 
to the manner in which the rows of the array might be related. 

We say that an event or a convergence property holds "with U-probabil- 
ity one" if it is valid for a measure-one set of ui= u,~'s generated in this 
manner. 

An alternative version of Theorem 3.1, for which the support of the 
design is a square lattice, may be proved without difficulty. There, in all 
appearances of f in the definition of the limit distribution, f should be 
replaced by the uniform density on its support. However, we have been 
unable to derive, in an economical way, a general version of Theorem 3.1 
which in one stroke contains both the equally-spaced and stochastic design 
cases. The difficulties here are related to those in the better understood, 
and far simpler, context of design in univariate nonparametric regression. 
For  example, even the particularly flexible design conditions allowed by 
Gasser and Mfiller (1979, 1984) and Cheng and Lin (1981) do not apply 
t0 stochastic design as well as deterministic design in the univariate regres- 
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sion setting, on account of the fact that adjacent points in stochastic design 
can be spaced O(n -1 logn) rather than O(n -1) apart. (The latter spacing 
is crucial to Gasser and M/iller's argument.) 

Remark 3.2 The condition that the design density f be compactly supported 
may be relaxed by incorporating a truncation argument into the proof 
in Sect. 4. 

Remark 3.3 Condition (3.1) may be interpreted as asking that there be 
sufficiently many design points, or in other words that the density of design 
points be sufficiently high. Note that any bandwidth h which decreases 
sufficiently slowly to zero as 2 ~ 0% satisfies h +  2 - 1 +  h2r )cd___~ 0; and then, 
provided only that n ~ oe sufficiently rapidly, (3.1) holds. 

Remark 3.4 The ratio (~f2)-2 f f 4  is minimized, subject to f having a given 
support, when f is uniform on that support. Related work on functions 
of random fields in this context has been treated in the Soviet literature; 
see for example Ivanov and Leonenko (1989, Chap. 4) and Kovalchuk 
(1987). While uniform design is a desirable property from the viewpoint 
of optimality, it is our experience that the experimenter is almost never 
able to choose the type of design. Ideally, design would be on a regular 
lattice, as this further improves performance, but we have seen very few 
lattice-supported spatial designs which do not originate in an image proces- 
sing context. 

Remark 3.5 It is not absolutely essential to impose the assumption of r 
derivatives at all places in d-dimensional space. In particular, if the assump- 
tion fails at some point, but nevertheless the total contribution from the 
neighbourhood of that point to integrated squared bias of the estimator 
is of smaller order than 2-e, then the validity of the theorem is not affected. 
In practice the only place where the assumption of r derivatives is likely 
to cause serious problems is at the origin. We pause briefly here to consider 
that situation in the special case d =  r =  2; other cases are similar. 

Suppose that all second derivatives of p at the origin behave like It 1~-2 
as I t [ ~ 0, for some c~ > 1. For example, this would be the case if p (t) were 
equal to Ca e x p ( - C 2  Iris), for l < e < 2 .  Then it may be shown that the 
squared bias of/5 is bounded above by a constant multiple of h 4 ]tl 2~-4, 
and so, since It] 2~-4 is integrable over any neighbourhood of the origin, 
the contribution to the integral of squared bias in any such neighbourhood 
is equal to O(h4), as required. 

The restriction that e be greater than 1 may be relaxed if we strengthen 
(3.1) somewhat. For example, still in the case d = r = 2 ,  suppose p(t) were 
equal to C1 e x p ( - C 2  It] ") for some 0<c~< 1. We claim that if we append 
to (3.1) the condition that 2 e h 2 + 2a-~ ~ 0 for some e > 0, then we may choose 
fis(0, ct) such that the integral of squared bias is of smaller order than 
2 -d, as required. To appreciate why, note that the squared bias of t5 may 
be shown to be bounded above by a constant multiple of h2+ZP [t]2~-2~-, 2, 
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for any 0 < fl < 1, in any neighbourhood of the origin. Taking 0 < fl < ~ we 
ensure that the integral of ltl 2~-2a-2 over any neighbourhood of the origin 
is finite, and that the integral of squared bias is of order h 2+2p. By the 
assumption made earlier, this is of smaller order than 2 -a. 

These remarks are applicable without change to all the results in this 
paper, not just to Theorem 3.1. 

3.3 Integrated squared error of 

We assume that ~ = ~ w, where the weight function w has the properties 
that [w[ < 1 and, for real numbers 0<q~ <q2 < ~ 

w(t)={10 if [ t [~q l  
if [ t[>q2.  

We do allow w to be a function of the data, although we do not permit 
ql or qz to depend on the data. This restriction may be removed at the 
expense of a longer proof  of the theorem below. 

We ask that ql,  q2 ~ o(3 in such a manner that 

(3.4) 2a I P(t) 2-+0, 
]tl>ql 

(3.5) 2-1 q2 = O(n-~) 

for s o m e ,  > 0. We further ask that for some a > d/2 and c > 0, 

(3.6) sup sup [pil...ij(s)[<C(l+]tl)-% 
O<=j<r s:[s-t]< l 

all t E ~  a, where pi~...ij(t) denotes the r-fold derivative of p with respect 
to the components of tl with indices il, ..., is; and that the function 

where 

rl(t , u)= sup It(s, u, t)], 
s:ls--t[<l 

r (s, u, t) = ~ V{X (0) X ( s ) -  p (s)} {X (u) X (u + t ) -  p (t)}], 

be integrable. (Note that condition (3.6) implies the finiteness of the integral 
in (3.4).) 

Define the process Y as in subsection 3.2. 



410 P. Hall, P. Patil 

Theorem 3.2 Assume the conditions imposed in Theorem 3.1, and also those 
stated above. Then ~ E ( Y  2) < 0% implying that ~ y 2 <  oo with probability one; 
and 

fld ~ (~ _ p)2 ~ ~ y2 

in distribution as n ~ oo. 

Remark 3.6 As an example, note that all the conditions on p imposed 
in Theorems 3.1 and 3.2 hold if the process X is Gaussian, with p( t )=0 
for sufficiently large I tl and p having r bounded derivatives. In particular, 
this assumption is sufficient for (3.2), (3.3), (3.4) and (3.6). As noted in 
Remark 3.3, condition (3.1) amounts to an assumption about the density 
of design points; and (3.5) asks only that fi vanish outside a sphere which 
grows no faster than 2 n -e, for an arbitrarily small e > 0. 

3.4 integrated squared error of 

Recall from Sect. 2 that we define ~ to be the Fourier transform of ~, 
to be the positive part of ~, and /3 to be the function whose Fourier 

transform is ~; see (2.2). We showed in Sect. 2 that ~(fi_p)Z<~(~_p)2. 
Our aim in the present subsection is to prove that this inequality is asymp- 
totically an equality, in the sense that 

(3.7) {I(P-p)2}/{I(P-p)2} 1 

in probability. It then follows from Theorem 3.2 that 2d~(C3-p) 2 ~ y2 in 
distribution, so that ~ and t~ share the same first-order asymptotic behav- 
iour. 

Since ~ is defined in terms of an integral of fi, rather than an integral 
of the square of ~, then we shall have to impose versions of conditions 
(3.4) and (3.6) which are appropriate to the L 1 rather than the L z metric. 
Therefore we ask that the numbers ql and q2, introduced in subsection 3.3 
to describe the weight function w, satisfy 

(3.8) 2 el2 [. Ip ( t ) l d t~O,  
Itl>ol 

and for some c~ > d and C > 0, 

(3.9) sup sup ]pil. . . i j(s)[~C(l+ltl-~).  
ONj_-<r s:ls-q_-< 1 

(The latter condition implies (3.6).) Define the process Y as in subsection 3.2. 

Theorem 3.3 Assume the conditions introduced in Theorem 3.1, that ~ van- 
ishes on a set of measure zero, and also that (3.8) and (3.9) hold. Then (3.7) 
holds, and so 2 d S(f3- p)2 ~ S y2 in distribution as n ~ oo. 
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Remark 3.7 We should comment on our assumption that 0 vanishes on 
a set of measure zero. Our proof of Theorem 3.3 relies critically on the 
result that P{~(0)_<0} --.0 for almost all 0, which holds true if and only 
if the set {0: 0(0)=0} is of measure zero. Should the latter condition fail 
then/~ can outperform 15, in the sense of mean squared error. 

4 Proofs 

Proof of Theorem 3.1 

Step (a). Preliminaries. We may assume, and do throughout our proof, that 
E(X) = 0. Define 

01 (0 = Y, ~ K {(~- tij)/h} { x  (t,I x (tjl - p (ti~l}, 
i j 

D 2 (t) = ~ ~ K {(t-- t,j)/h}, 
i j 

03 (0  =- Y~ Y K {(t-  t,j)/h} p ( t& 
i j 

041 (0 = Y~ Y, K {(t-  t,j)/h} x (tit. 
i j 

Let D42 have the same definition as D41 but with X(tj) replacing X(ti) 
in the double series, and put D4 = D41 + D42. In this notation, 

(4.1) t5 =(D~ + D  3 +D2 j~2_ D,2)  D; 1 

Let ~c denote the d-dimensional sphere, of radius c, centred at the origin. 
Given a function g from IR d to 1t, define 

Ilgll'=( S g2)1/2. 

In view of (4.1), 

[ I[~-P[I '-l iD1 o2111'l < 1103021--Pll '-I-X2 V(~c)1/2-t-IJ~[ I[DgD21H ', 

where v(Mc) denotes the content of N~. Therefore, in order to prove the 
theorem it suffices to show that 

(4.2) lira sup 2 a E(XZ) < o% 
2 ~ o 0  
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and as n ~ oe, 

(4.3) E(D~)D; 2 ~0 ,  

(4.4) (D 3 D ;  1 _p)2 = O(2-d), 
.'~c 

(4�9 ~d j" (D 1 D21)2_+ j" y2 
~c ~e 

in distribution. 

Step (b). Proof of (4.2). Observe that 

n -2 ~ ~EEp {2 (U~- Uj)}] =�89 -n-a)~p {2(u-v)}f(u)f(v)du dv 
i<j 

~�89 2-d(~ f2)(~ p)=O(2-a). 

Therefore, if we prove that 

(4.6) A - "  Z Y [p - E p -") 
i<j 

with probability one, it will follow that 

a =- n -z ~ ~ p  {2(u,--uj)} = O(2-a). 
i<j 

From this result, the formula E(XZ)=n -1 p(0)+2a,  and the fact that 
n-a 2 a ~  0, follows the desired result (4.2). 

Result (4.6) may be proved using the martingale argument described 
in Step (d) below, which in fact yields A =o(2 -3d/z) with probability one. 
The context here is analogous to that in (4.10), but with h =  1 and t=0 .  
The argument in Step (d) is rather more complex than would be required 
for the present, simpler case, and so it seems best to illustrate the argument 
there. 

Step (c). Proof of (4.3)�9 In Step (d) we shall derive the second of the following 
two results: 

(4.7) 

(4.8) 

D2 (t)= n ( n -  1)(2 -~ h) a 

�9 {If K (w) f (u) f (u-- 2 - t  t + 2 -1  h w) d u d w + o (2-  a/2)} 

D3 (t) = n(n-- 1)(2-1 h)d 

�9 {p( t ) I~K(w) f (u) f (u-2  -1 t + 2 - '  hw) du dw+o(2-d/2)} 
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uniformly in It I_-__ c. The first of these results may be established similarly, 
although more simply. In view of (4.7), 

E(DI)D;a.~{nZ(2 -1 h)a~fz} -2 ~ E(D~). 

Therefore, it suffices to prove that 

(4.9) E(D20=o(n4 2-Zah2a). 

The case of D42 is similar. 
Observe that 

E(D2 0= E ~, ~. E p( t i l i2 )  
~c 11 Jl i2 J2 

K {(t-- ti~jl)/h } K {( t -  ti2j2)/h } d t 
Itl<=c 

=haEEE~.p( t i , i~ )  
il jl i2 j2 

K(w) K {w+(tqj~-t~2J2)h - t  } dw. 
1t~i.% +hv~ 1 <=c 

Since hj=2(ui-uj), and K is compactly supported, there exists a constant 
c1 > 0  such that 

E (D•,)< (sup K 2) h a ~ ~ ~ ~" ]p {2 (u,, - u~2)} [ 
,@c il Jl i2 J2 

" I ([ui, - -Uj ,  ] ~_~ Cl }~ -1 ,  I(UA -I- Ui2-- Uil)--Uj2[ <=C l )L- l h) 

_< (sup K 2) h a {sup ~ I (I u - ujl I =< cl 2-1)} 
u Jl 

�9 {sup 2I(]u-uj21 <=c t h2- ~)} 2 2 ]P {2(u, , -  u,2)} I 
u J2 i~ i2 

=O {ha.n 2-a.n(h 2-1)a.(n + n2 2-a)} =O(n4 2- 3d h2a). 

This proves (4.9). 

Step (d). Proof of (4.4). Result (4.4) is an immediate consequence of (4.7) 
and (4.8). The latter two formulae may be proved similarly, and so we 
concentrate here on deriving (4.8). 

Define 

(4.10) 
D 31 (t) = n g (t/h) p (0), 

D32 (t) = E E K [{ t  - / ~ ( u  i - Hj)}/h 3 p { ~ ( u i -  u j)}. 
i , j  
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S i n c e  D 3 = D 31 -~ D3  2, a n d  s u p  IDa i I = 0 (n) --- 0 (I"/2 2 - 3 d/2 h a) u n d e r  t h e  c o n d i -  

t i o n s  of the theorem, then it suffices to prove that if each u i is replaced 
by U~, 

(4.11) E{D32(t)} = n ( n -  1)(2 -1 h) a 

�9 {p (t) ~ K (w) f (u) f (u - 2 - 1  t + 2 - 1  h w) d u d w + o (2 - d/z)}, 

and with U-probability one, 

(4.12) D3z(t)-  E {D32(t)} =o(n2 2-  3a/2 ha). 

Both (4.11) and (4.12) must hold uniformly in It I_< c. 
Result (4.11) follows from the identity 

D32(t)=n(n--1)(2 -1 h)a ~ K (w) f (u) f ( u -  2 - ~ t + 2 - ~ hw) p ( t - h w )  dudw,  

after a little Taylor expansion. (Note that hr= O(2-d/2).) It remains to verify 
(4.12). Define 

a(U~, Uj)=K[{t -2(U~-  Uj)}/h] p {2(U~- Uj)}, 

a(Ui)=E{a(Ui, Uj) I U~} (for i<j), c~=E{a(U~)}, 

b(Ui, Uj)=a(Ui, Uj)-a(Ui), b(Ui)=a(Ui) -e ,  

j - 1  

Z j =  Z b(U~, Uj). 
i = l  

In this notation, that part of D32 (t)-- E { U32 (t)} which corresponds to sum- 
ming over i<j in (4.10) is given by 

n - 1  

Zj + ~ (n - i) b (U/). 
j = 2  i=1 

Therefore it suffices to prove that 

(4.13) ~ Zj= o(n 2 2 -3d/2 ha), 
j = 2  

n - 1  
(4.14) ~ (n -- i) b(U~) = o(n 2 2 - 3a/2 h d) 

i=1 

uniformly in [ t] < c. 
Next we outline the method of proof used to derive (4.13) and (4.14). 

Let A=A( t )  denote the left-side of either identity. In view of the H61der 
continuity of K it suffices to prove that for any set ~ , ~ N c ,  containing 
at most O(n M) elements for some M >  0, both (4.13) and (4.14) hold uniformly 
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in t e~ , .  Using the Borel-Cantelli Lemma, and bounding the probability 
that the supremum of [A(t)l over Y-, exceeds a constant, by the sum of 
the probabilities that individual values of [A(t)l exceed the constant, we 
see that it suffices to show that for each N > 0 there exists an integer k > 1, 
chosen sufficiently large, such that 

(4.15) sup E {A(t) 2k} = 0 (n 2 2- ad/2 ha)2k n-N. 
t e ~ c  

When A(t) equals the left-hand side of (4.14), result (4.15) is straightforward 
to prove. There, by Rosenthal's inequality (Hall and Heyde 1980, p. 23), 
and uniformly in t e n t ,  

E{A(t)  2g} = 0 In ak E {b (U1)2} k] = 0 {n3~ ()~ - 1 h)2a,}, 

which, in view of the conditions on n, h and 2, implies (4.15) for sufficiently 
large k. 

Now suppose that A(t) equals the left-hand side of (4.13). Since 
E(Zjl UI, .... U~_0=0 then the Zj's are martingale differences. Hence, by 
Rosenthal's inequality for martingales, and for constants Cj(k) depending 
only on k, 

Z E F (Z) 
\ j  = 2 t_ ~-j = 2 

<=Cx(k)(n k-1 + 1) ~ E(Z~.k), 
j = 2  

E(Z k)=E{E(Z  J 

[ [  }]fk = < 2  2 k - 1 E  E b(U~, Uj)-E{b(U~, 
i 

+ [ ( j -  1) E {b (Ut, Uj)[ U;}] 2k] 

< 2 2a-1 C~(k)(E[( j -  1) var{b(U,, Uj)[ Uj}] k 

+ ( j - l )  E Ib(U1, Uj) -E{b(U, ,  Uj)] Uj}I 2k 

+n 2k E[E{b(U~, Uj)[ Uj}] 2k) 

< C2(k){nk(2 -1 h)dk + n(2 -1 h)d + n2k(2 -1 h)Zak}. 

Therefore, 

E Zj  <--C3(k){rtZk()c-lh)dk-knk+l(2-1h)dh-Uk+nak(2-1h)2ak}, 
\ j =  2 / 

which, in view of the conditions on n, h and 2, implies (4.15). 
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Step (e). Preliminaries for proof of (4.5). In view of (4.7), 

(D 1 D 2 1 ) 2  = {n2 ( 2 - 1  h)a ~ f 2 }  - 2  {1 + op(1)} ~ D 2 . 

Therefore it suffices to prove that 

(4.16) {n2(2-1h)d~f2}-Z2d ~ D~-+ ~ Y~ 
~c ~c 

in distribution. The present step will show that for (4.16), it is enough to 
prove that the finite-dimensional distributions of {nZ(J~ - t h)d~f2}- 1 )d/2 D1 
converge to those of Y. The latter result will be verified in Step (f). 

Let 5~,,= {sl, ..., s,,} denote a set of distinct elements of ~c. Assume 
that the points si are chosen in such a way that as m ~  0% the greatest 
distance between any point in ~c and any point in 5e,, converges to zero. 
Given t e ~ ,  let s(t) denote that element of 5P,, which is nearest to t, with 
ties being broken in an arbitrary manner. Put Ds(t)=D1 {s(t)}. It may be 
proved, straightforwardly but with tedious algebra in the case of the second 
result, that 

s u p  E { D  1 (t)  2 } = 0 (n  4 )[ - 3 d h 2 d), 
t ~ c  

lira lim sup (n 4/l- 3 d h 2 a)-  1 sup  E {D 1 ( t ) -  D s (t)} 2 = 0. 
m - ~ o o  t l ~ o o  t ~ 3  c 

These results, and the fact that 

El I Ol I I E(D,-Ds)2}'/2{( I I 

imply that 

(4.17) lira limsup(n42-3eh2d)-XEI ~ D~-- ~ D~[=O. 

Let L(W~, Wz) denote a metric distance (such as distance in the L6vy metric) 
between the distributions of W 1 and W2. In view of (4.17), (4.16) will follow 
if we prove that 

lim lira sup L[{n2(2 -1 h)alf 2}-2 2e ~ D~, ~ y2] =0. 
m-->~ n--*~ ~c ~c 

A sufficient condition for the latter result is convergence of the finite-dimen- 
sional distributions of {n2(2 - ~ h)aSf 2}-1 2a/2 D~ to those of g 
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Step (f). Convergence of finite-dimensional distributions of D,. We give the 
proof only in outline, beginning with two continuous approximations to 
D~. Put 

D it (t) = n (n-- 1) ~ K [ { t -  2 (u-  v)}/h] IX (2 u) X (2 v) 

- p {2 ( u -  v)} f(u)f(v) d u d v 

= n ( n  - -  1 ) ( ~  - 1  h)d II K (w) {X (2 u) X (2 u - t + h w) 

- p ( t - h w ) }  f ( u ) f ( u - 2  - l  t + 2 -~ hw) dudw 

D12 (t) = n (n - 1)(2-1 h)a ~ {X (2 u) X (2 u -  t) - p (t)} f (u)2 d u. 

It is straightforward, although tedious, to prove that for each fixed t e r  n , 

E {D1(t)-- Dlt (t)} 2 + e {Dtl (t)--D12(t)} 2=o(n~ )~-3a h2a). 

Therefore it suffices to show that the finite-dimensional distributions of 

(n 2 )-3d/2 half2) - 1 D12 

converge to those of Y For the sake of simplicity we confine attention 
to a single dimension. Derivation of convergence in distribution for a multi- 
variate sequence is similar. 

Divide R d into a regular lattice of d-dimensional cubes with edge widths 
~, such that the faces of adjacent cubes are parallel and separated by distance 
ft. Enumerate the cubes, with (gj denoting the j ' th cube and ~ the union 
of all the strips separating the cubes. If ~r denotes either cgj or @, define 
2-1 ~r  {2-1 x: x e d } .  Put 

Zj= I {X0 "u) X ( 2 u - t ) - p ( t ) } f ( u )  2du, 
,~ 1 <r j 

R =  ~ {X(2u) X(2u-t) -p( t )} f (u)2du.  

In this notation, 

(4.18) {n(n--1)(~ -1 h) a}-t D 1 2 = ~ Z j + R .  

The series on the right-hand side of (4.18) may be confined to the sum 
over j e J ,  where J denotes the set of indices j such that 2-1 cgj has nonempty 
intersection with the support of f Let J be the number of elements of 
J.  We assume that fl<cq in which case J<C(2/e) d, where the constant 
C > 0 does not depend on c~, fl or 2. 
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Put fl=)L 1/2 and choose x=x(2)  to increase to +oo as 2--*0% at a 
rate which is sufficiently slow to ensure that x/2~/2~0 and x a Z(fl/2)~0. 
Define c~ = 2Ix, then 

(4.19) 
a j ~ - l + f l ~ - i  =X-l.4_X)-l/2__~0, 

(2/ct) a )~ (fl/2)= x a )~ (/~/2)--, 0. 

The first of these relations implies that the content of the intersection of 
2-1 ~ with the support o f f  converges to zero as 2 ~ o% and so 

E(R2)< J" j" f(u)2f(v) 2 IE[{X(2u) X ( 2 u - t ) - p ( t ) }  
.1-1@ .~- l @ 

�9 {x(;~ v) x(,~v-t)-#(O}]ldu dv 

<2-a(supf2) (  y f 2 ) [ y  ]E[{X(0) X( - t ) - -p ( t )}  
2-lN, Na 

�9 {X (w) X (w-- t) -- p (t)}] I d w3 

=o(,~-~).  

That is, 2 a E(R 2) ~ 0 as ,~--+ oo. Hence, in view of (4.18) the desired conver- 
gence of the distribution of D~2(t) will follow if we show that for each 
st iR,  

(4.20) E [exp {i s 2 a/2 (Sf  z) -1 Z Z j}] ~ E [exp {i s Y(t)}], 

where i = ] / - -  1. 
Put { =.~d/z(If2 ) -  1. Let 6 denote the diameter of the smallest d-dimen- 

sional sphere containing the support of f, and choose 2 so large that 
fi > 2 (6 + 2It  I). Let s MR. If 2U is any subset of J and if jo e oU then 

I E { e x p ( i s ~ Z  ZJ)}--E{exp(isr ~ Zj)) 
jea~ je~\{jo} 

�9 E{exp(is~Zjo)}l<=2g(#-(~-2 Ill). 

Iterating over all Jo e J we deduce that 

] E {exp(is ~ ~ Zj)}-- l-[ E {exp(is ~ Z~)} l < 2 J X ( # - 6 -  2 It[) 
j e J  j e J  

< 2 C (2/e) a 7~ (fi/2) 

0, 

by (4.19). Therefore, (4.20) will follow if we prove that 

I I E  {exp (i s ~ Z~)} ~ E [exp {i s Y(t)}], 
jeJ 
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or equivalently, that if Z), j ~ J ,  are independent random variables with 
the respective distributions of Zj, then 

(4.21) ~ E Z) ~ Y(t) 
j E 3  t 

in distribution. 
To prove (4�9 observe that E(Z))=0, 

and 

E E(z) 2) = Z E(z~) 

= 2 - a E  5 f(u) zdu ~ f(U+'~-lv) 2 
javr L l ~ j  (~j--2bl 

�9 E [{x(0) x ( -  t ) -  p(t)} {x(~) x ( v -  t ) -  p(t)}] d 

~)~-a~( ~ f4)~E[{X(O)X(t)_p(t) } 
j e J  2 -  1 rgj 

�9 { X  (v) X (v + t ) - -  p (t)}] d v 

= 2-  a (6 f4) ~ E [{X (0) X (t) - p (t)} {X (v) X (v + t ) -  p (t)}] d v 

= 4-2 E{Y(t)2}, 

Z E(z?) = Z E (zt) 
jeJ j ~  

=J~-3aE I f (  u)2du ~ f(u-k~-lvl)2dVl 
j e J  2-1c'~j (~j-~.u 

f(u-]-,~-xv2)2dv2 ~ f ( u + 2 - x  v3) 2 
r g j  _ 2 u  r g j  _ ~.u 

�9 ~ [{x(o) x ( - t ) - p ( t ) }  {x(,~0 x(v~- t ) -  p(t)} 

�9 {x(v9 x ( v 2 -  t ) -  p(t)} {x(v3) x ( v 3 -  t ) -  p(t)}] d v3 

< 2-3a (sup f6) ( i f2)  ~IE [{X (0) X ( -  t ) -  p (t)} 

�9 {X(Vl) X(v I - t ) -p( t )}  {X(v2) X(v 2 - t ) -p( t )}  

�9 {X(v3) X(v3-t)-p(t)}]]dvl  dv 2 dv 3 
=0(2-3d). 

Therefore, 

Z E IZ),/{ Z E(ZJ2)}1/214=O{2-3a(A-a)-2}=O(~-a). 
j1~.-r j zEJ  r 

Result (4.21) now follows via Liapunov's central limit theorem�9 
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Proof of Theorem 3.2 We know from Theorem 3.1 and the fact that ql ~ co, 
that for each fixed c > 0 and as n ~ ~ ,  

]t]<=c Itl<=c l t[<c 

the convergence being in distribution. It is straightforward to prove that 
~ E(YZ)< ~, so that 

E{Y(t)2} dtoO 
Itl>~ 

as c ~ oo. Therefore, the proof of Theorem 3.2 will be complete if we show 
that 

lim lim sup)od ~ E{fi(t)_p(t)}2 dt=O. 
c ~ c o  n--, co i t l >  c 

Given 0 < a < b < ~ ,  define M (a, b) = {t ~lRb: a < [ t l < b}. Then 

a t  = 

[tl > c  ~ (c ,  co) 

< 2  ~ ( / ~ - - p ) 2 w 2 - k - 2  ~ p 2 ( w - - 1 )  2 

~ (c ,  co) ~ (c ,  co) 

<2  5 (/~--P) 2+2  5 p2 
~(c ,  q2) ~ ' (ql  �9 co) 

By hypothesis, the last-written integral equals o(2-a), and so it suffices to 
prove that 

(4.22) lim l imsup2 a ~ E(/5--p)2=O. 
c ~ c o  n ~ c o  ~'(c, q2) 

Let D1, ..., D4, D41, D42 be as defined during the proof of Theorem 3.1, 
and recall formula (4.1) describing the decomposition of tS. Arguing in the 
manner there we see that (4.22) will follow if we show that 

(4.23) l im2 -d ~ 1=0,  
n-+co ~(c,q2) 

(4.24) lim limsup ~ E(D])D~ 2=0, 
c~co n~co  ~(c, q2) 

(4.25) lim l imsup2 a ~ (D3D21--p)2D~2=O, 
c~co n~oo  ~3(c,qz) 

(4.26) lim l imsup2 a ~ E(D2)D~Z=O. 
c ~  n ~ o o  ~(c ,q2)  

Formulae (4.24)-(4.26) are of course directly analogous to (4.3)-(4.5). Result 
(4.23) follows from the fact that q2/2 ---> O. 
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The arguments employed in Step (d) of the proof of Theorem 3.1 may 
be modified to show that with U-probability one, 

Dz(t)= {1 + 0(1)} n2(2 -1 h)dlf 2, 

(4.27) D 3 (t) = D 2 (t) {p (t) + 0 ( 2 -  d/2 It I- ~)} 

uniformly in 1 < I t l < q2. Result (4.25) is an immediate consequence of these 
two formulae�9 We may also deduce from (4.27) that (4.24) and (4.26) will 
follow if we prove, respectively, that 

(4.28) lim limsup(n4;~-Zah2a) -~ ~ E(D2)=0, 
c~oo n ~  ~(e, qz) 

(4.29) lim limsup(n4 2-3dhZa) -1 ~ E(D2)=0, 
c-*~ n--, oo ~(c,q2) 

When deriving (4.28) we may confine attention to the case where E(D]) 
on the left-hand side is replaced by E(D]O. This situation may be treated 
by modifying the argument in Step (c) of the proof of Theorem 3.1, along 
the following lines. Since t i j=2(ui-u j) and K is compactly supported then 
there exists ct > 0 such that, for sufficiently large n, 

E ( D I x ) = h a Z Z Z Z p ( t , , i 2  ) ~ K(w) 
~3(c,q2) il j l  i2 J2 c < [ t q j l  +hwl<=q2 

�9 K{w+(ti~j,-ti~j~)h -1} dw 

= (sup K 2) h a ~ ~, ~ ~, I P {R(uh -- u~2)} [ 
i l  J l  12 J2 

"I(luil-ujl[ <-22-1 q2 ,  I ( u h - i - u i 2 - - u i l ) - - u j 2 ] S c l  ) . - 1  h) 
< (sup K 2) h a {sup ~ I(I u - uj~ 1< 2 2 -1 q2)} 

u Jl 

�9 {sup Z I([ u -- uj: I_-< c 12 - t  h)} Z ~ [P {2(uh - ui2)} [ 
u J2 i 1 i2 

=O{ha.n(2 -1 q2)d.n(2 -1 h)d.(n+n2 2-d)n~} 

= 0 (n4 +~ )o- 3a h2a qd2) 

for all c~ > 0. Since q2/2 = 0 (n -z) for some e > 0 then (4.28) is true. 
To derive (4.29), observe that 

(4�9 I E(D2)=hd~E~Zr(ti~j~,ti~j~,ti2J:) 
~(c ,q2)  it  12 Jl  J2 

K(w) K {w+(tilj,-ti2j~)h-'} dw 
C "r [tilJl +hw[ ~q2 

=<(sup K2) ha Z E Z ~ lr(t,,3,, ta3,, ti~j~)l 
i~ iz j~ J2 

�9 I([ti~j~[>�89 [ti~j,--ti2j2l<Zcl h) 
--<(sup K2) he ~, Y'. ~ 2 rl (ti,j,, ti2J,) 

it i2 Jl J2 

"I(1 ti,i, ]>�89 c, [ti,h--ti~j~] <_cl h). 
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If in the latter formula we were to write t l i=2(u l -u j ) ,  then replace each 
ui by the random variable U~, and finally take expectations, we would obtain 
the quantity 

{1 +o(l )} (sup  K2)n4 hd ~ ... ~ r, {2(ul--u2), 2(u3 -u2)}  

�9 I { l u , - u 2 l > � 8 9  - ~ ,  I(ul --U2)--(b/3--u4)[ ~Cl)~,- 1 h} 

"f(Ul) . . . f ( u 4 )  dul  ... gu4 

N {1 + 0(1)} (sup f)(sup K 2) c d n 4 2-a h d 

"I "" ~ r l  {,~,(U,--u2) , }~(U3--U2) } 

�9 1([ Ul - u2 [> l c  2 -  ~)f(uOf(u~)f(u~) d u~ d u2 d u3 

= {1 + o (1)} (sup f)(sup g 2) (~ f 3) n4 2- 3a h2d 

If rl (u1, V2) d/)l dv2" 
[Vll > �89 V2eR d 

Given any e>0, we may ensure that this is less than gn42-3dh 2a for all 
sufficiently large n, simply by choosing c large. Therefore it suffices to show 
that 

(4.31) (n4~)~-Zdhd)-I Z Z 2 Z(rl(tiljl , GJ=)I(IG~II>�89 c, IGj1-Gj21 
il i2 Jl J2 

~C 1 h)--E[rl {)~(U h - -  U/2), J~(U/2 - -  Uj2)} 

-1{2 [U~,- Uj.1 l>�89 2 I(G,- u j ) -  (u~2- uj)[__<cl h}])~ 0 

with U-probability one. This may be done by (a) replacing each tij by 
2 ( G -  Uj), (b) computing the fourth moment of the left-hand side of (4.31), 
and showing that it equals O(n -(~+a)) for some 6>0, and (c) applying the 
Borel-Cantelli lemma and Markov's inequality (for a fourth moment), noting 
that ~ n -(1 +6) < zt3. 

Proof of  Theorem 3.3 It suffices to prove that J[fi-Pll =Op(2-a/2) . Observe 
that by Parseval's identity 

(arc) d/2 IIP-~II = II~I(~_-<0)ll 

< I1(~- ~,) I ( ~ <  O)l/+ II~,I(~<O)ll. 

However, if~=<O then 0 < ~ < ~ , - ~ ,  and so I1~ i(~<o)1/__< I/(~,- ~) I(~<o)11. 
Therefore, 

IltS-Pll <2(2~r) -a/2 11(~-4') I(ff=<O)ll, 

and so it suffices to prove that ,~d/2 [l(~-~)I(~<O)]l ~ 0  in probability. 
For this it is adequate to prove that for each c > O, 

2 ~ ~ E[{~(O)--~,(O)} 2 I{~(O)<O}]dO~O, 
IOl<=c 
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and that  

lim l i m i n f 2  d ~ E { ~ ( O ) - r  2 d O  
c --, oo n -. cc I o L <= c 

> lim 2d(2 ~)a ~ E(fi -- p)Z. 
n---~ oo 

To establish these results it suffices to prove the existence of  a Gauss ian  
r a n d o m  field Z = Z ( O ) ,  with zero mean, such that  2 d/2 { ~ ( 0 ) - r  ~ Z ( O )  

in distribution, for all 0elRd; 2 d/2 E { ~ ( O ) - r  2 ~ E { Z ( O ) }  2 uniformly on 
compac t  sets; and 2 d ~ E ( f i -  p)2 ~ (2 re)- d ~ E Z  2. 

These results m a y  be derived using techniques f rom the proofs of  Theo-  
rems 3.1 and 3.2. Of course, ~ E Z  2 = (2 ~)d ~ E y2. 

Acknowledgements. We are most grateful to two referees for their exceptionally helpful 
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