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Summary. We consider the generating function ]Eexp(2 [C~(t)l) of the vol- 
ume of the Wiener sausage C~ (t), which is the e-neighbourhood of the Wiener 
path in the time interval [0, t]. For 2 < 0, the limiting behavior for t ~ 0% 
up to logarithmic equivalence, had been determined in a celebrated work 
of Donsker and Varadhan. For ,~ > 0 it had been investigated by van den 
Berg and T6th, but in contrast to the case 2 < 0, there is no simple expression 
for the exponential rate known. We determine the asymptotic behaviour 
of this rate for small and large 2. 
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1 Introduction and results 

Let P be the Wiener measure on the space (2 of continuous paths w: [-0, oo) 
lRa satisfying w(0)= 0, whose generator is the Laplacian A (i.e. the covari- 

ance matrix of w(t) is 2tI, where I is the identity matrix). If w~f2, e>0,  
t > 0  let 

(1.1) C~(t, w)= {yelRel inf ly-w(s)l <e} 
O<_s<_t 

be the Wiener sausage for w. We denote its measure by IC~(t)l. In [1] 
it was shown that for 2 > 0 

(1.2) S(A, e)= lira 1 log ~s I C~(t)I)] 
t ~oo  [ 
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exists and is finite. By scaling, one has 

(1.3) S(L e)=e -2 S ( d L  1) 

so one needs only to consider S(2)=S(2, 1). It was proved in [1] that for 
d = l ,  S(2)=2 2. Upper  and lower bounds for S(2) were obtained for 
d=2 ,  3, ... A closed form expression or a simple variational formula for 
S(2) probably does not exist. Here we derive the leading asymptotics of 
S(2) for 2--+0 and for 2--+ oo. 

The leading asymptotics of S(2) for small 2 is directly connected with 
the behaviour of ]EEl C1 (t)[] for large t. It is well known [-2] that 

( 1 . 4 )  l i m ( l o g t ) ~ [ l C l ( t ) [ ] / t = 4 ~ ,  d=2,  
t ~ o O  

(1.5) lim 1E [I C1 (t)[]/t = C(d), d = 3, 4, . . . ,  
t - + 0 9  

where C(d) is the Newtonian capacity of the unit ball in lRa: 

(1.6) C(d) = d ( d -  2) cod, 

where coa is the volume of the unit ball in IRa given by 

(1.7) co d = 7"g all2 (l~((d ~- 2)/2))- ' .  

Our results are the following. 

Theorem 1 In dimension two 

(1.8) ~+o lim (log ~) S(2)/2 = 4  ~, 

and in three or more dimensions 

(1.9) lim S(2)/2 = C(d). 

Theorem 2 In any dimension 

(1.10) lira S(2)/2 2 = (cod_ ,)2. 
~ o O  

2 Proof of the upper bound in Theorem 1 

Let p > 1. Then 

(2.1) 
[~/p] 

IC~(t) l < lCl(O-t /p]  + 1)p)l < Z IC,(p) o ojp I, 
j=O 
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where 0, is the shift on patti space: 

(2.2) (0, (co))(t) = co (s + t). 

By the Markov property 

(2.3) EEe~lC~(,)l] < {iEEeZlC,(p)l-1}t,/p> 1. 

Therefore 

(2.4) 
1 

lim sup t log E[e ;'lclml] < i  log IE[e~lC'~P)l]. 
1"+o0 p 

Because e ~ < 1 + x + (x2/2) e ~ for x > 0 we get 

)~2 
(2.5) lE[e~lCl{p)l] < l + 21E[lCl (p)l] + ~  lE[[Cl (p)lZ exp(2 [Cl (p)l)]. 

Since log(1 +x)<x  for x > 0  we have by (2.4) and (2.5) 

(2.6) lim sup t log IE [e <c~(~ I] < x ]E [1C 1 (P)[] 
~00 p 

22 
"~- ~ ]E [I C1 (P)12 exp(2 I C 1 (p)[)]- 

By Cauchy-Schwarz 

1E [1 C, (p)[ 2 exp (;~ [ Cl (p)I)] 

< {IE [I C1 (/))14] IE [exp (2 21 Cl (P) 1)]} 1/2 

< p2 {IE I-p- 4 ] C1 (P) l 4 exp ( -  2 p-1 [ C1 (P) I) exp (2 p -  11C1 (p)[)] 
(2.7) 

-lE[exp(2X t CI(p)I)]} 1/2 

< (2 p/e) z {E [exp (2 p-1 [ C I (p)I)] IE [exp (2 2 1 C1 (P)I)] } 1/z 

< (2 p/e) 2 IE [exp (2 p-  1 [ C 1 (P) I)], 

provided p-  x > 2. Since p > 1 we have by H61der's inequality 

(2.8) ]E [exp (2 p-1 [ C1 (P) I)] < {IE [exp (21 Ca (p) [)] }l/p, 

We put 2 = 2  and transpose t and p in (2.3) and subsequently put t =  1. 
This gives 

(2.9) IE [exp(2 [Cx (P)])] ~ {IE [exp(21Ca(1)i)-l} Ep~+ 1. 
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From (2.6)-(2.9) we obtain 

(2.10) 

1 2 C  t lim sup -- log E [e I ,( )1] 

2 + 2 22 p {~ [e 2 Ic~(1)l]}([pl + a)/p 
< -  IE[I Ca(p)l]  - ~ -  

P 

2 
__<- EEl c~ (p)[3 + h a P{lF[e21Cl(1)l]} 2. 

P 

Note that E[exp(21C~(1)l)]<oe by the results of Sect. 5 in [31. Let 
2~(0, l/e) and choose 

(2.11) p(2) = 2-  t(log )o- 1)- 2. 

Then p(2) > 1 and (p(2))- 1 > 2. Moreover 2 ~ 0 implies p(2) ~ oe. Consider 
d =  2. Then by (1.4) 

2 4~2 4rc2 
(2.12) p(2~ 1E[ICI(p(2))I] l o g p ( 2 ) ( l + ~ 1 7 6  

log~ 
and 

(2.13) 22 p(2)= 

Consider d >  3. Then by (1.5) 

2 

log ~__)2 

2 
(2.14) 

p(2) 
- -  IE[[ C~ (p(2))[1 = C(d) 2(1 + o(1)). 

The upper bound in Theorem 1 follows from (2.10), (2.12)-(2.14). 

3 P r o o f  of  the lower bound in Theorem 1 

For dimension d > 3, the lower bound follows directly from Jensen's inequal- 
ity: 

(3.1) - > ~ E [ l c l ( t ) l ]  1 log lEFexp(2 ]Ct (t)I)] = t 
t 

which implies S(2) > C(d) 2 for any 2 > 0 by (1.5). 
The case d = 2  is more subtle. We cannot apply (3.1), because 

E[ICl(t) l] / t~O as t---, oo by (1.4). We consider the law po of the Brownian 
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motion with drift p > 0 in the direction of the positive x-axis: PP = P ~o 7 1, 
where %:  f2 --. f2 is defined by 

(3.2) ( %  (w))(t) = w (t) + p t e, 

e=(1, 0). The restrictions U, po,t to the a-field generated by the evaluation 
mappings w--.w(s) for O<s<t ,  are mutually absolutely continuous, and 
by the Cameron-Martin formula 

(3.3) 
d p t 

d np,t (w) = exp ( -  p (w (t), e)/2 + p2 t/4). 

Applying this and Jensen's inequality to the integration with respect to 
pp,t, we get 

1 
- log lE [exp(21 C1 (t) I)] 
t 

(3.4) 

= ~_ + 1 log lEP't [exp ( - p (w (t), e) /2 + 2 I C 1 (t)I)] 

- 4  > p 2 _  P2t IE~ E(w (t), e>] +-2 t lEP El C~ (t)13 

_ p2 ~ - ~ l E P E I C , ( t ) l - I .  
4 t 

(3.4) implies that for all p > 0 

(3.5) 
2 1 

S(2)>_ - P~- + I  inf - EP[I C, (t)l]. 
- -  4 t > o  t 

Lemma. For all t>O and pc(O, 1] 

1 4 ~  
(3.6) - lEo El c~ (t)13 _-> 

t 2 8 - l o g  p2  " 

Implementing (3.6) in (3.4) and choosing p = 2 ~, with e > �89 and 2e(0, 1) gives 

(3.7) lim inf ( l o g z ~ o  1)  S(2)/2>2~/~. 

The lower bound for (1.8) follows since c~ > �89 is arbitrary. 
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Proof of the Lemma. For  yE]R 2, let PyP be the law of the Brownian motion 

with drift starting at y. We need an upper bound for S Pf(w(s)eD)ds where 
D is the unit ball in ] R  2 with center (0, 0). Note that o 

1 
(3.8) Pr~ ~ s  eXp( - l x - y -pse l2 / (4 s ) )dx .  

We have 

oo 

(3.9) P, qw(s)eD)as<__l + 
o 

Since ]D] = n, we see that 

1/p 2 

Pf(w(s)6D)ds+ ~ Pf(w(s)~D)ds. 
i I / p  2 

1 
(3.10) PrP(w(s)~D) < - -  

= 4 s '  

and hence 

(3.11) 
1 

Py~ l + ~  log z s +  ~ Pf(w(s)6D)ds. 
o P 1/p2 

To estimate the last term in (3.11) we observe that for x, yED 

(3.12) 

and therefore 

Ix--y--psel2> �89 p2 s2--]x-- yl2> �89 p2 s2--4, 

(3.13) 1 - - e  8 sds 
t/pz ~/pz 4 s 

e 
- -  e -~/s ds<2e<6.  

1 4 s  - - 

Collecting these estimates, we get from (3.11) and (3.13) 

oo 

(3.14) ~ Pr~ ds<7- �88  2. 
o 

Let Dx = x + D, x~]R 2, and ax be the first entrance time into D x: 

(3.15) a~(w)=inf{t >0 :  w(t)eD~}. 
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By Fubini's theorem 

~zt= ~ dx i dsP~ 
R z  0 

~ 2  a x  

= I dxE" l(~,x<=, I f dsP~x)(w(s)eDx) , 
R 2 0 

where we have used the strong Markov property. By (3.14) we have 

oo 

(3.17) ~ Pw~ ds < 7 - � 8 8  log p2, 
0 

on {ax < t}, and therefore 

(3.18) rct<(7-11og pZ) ~ PP(~r~<=t)dx=(7-11og pZ) lE'[lCl(t),]. 

This proves the Lemma. 
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4 Proof of Theorem 2 

We refer to Sect. 2 in [ t ]  for the proof in the case d= 1. Let d=2 ,  3 . . . .  
It follows from Theorem 1 (ii, iii) in [-1] that 

(4.1) lim inf 2-  2 S (2) = o)2_ 1. 
A--+~ 

Define h: R + -~IR + by 

(4.2) 
y/(2 + 2 y) 

h(y)=2coe_ t (i +y)e S (1 --z2) (e-1)/2 dz. 
0 

and q~ for p > 0 by 

(4.3) ~b(-p)= - l o g  rc-1/2(F((d-1)/2))-i F(d/2) S eV~/2~176176 d-2 d . 
0 
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Note  that  ~b is both cont inuous and strictly monotone.  Then by (4.25) in 
[i] 

(4.4) S(2) < inf { - y -  2 ~b- 1(_  2 h (y))}, 
y > 0  

where ~b - 1 : IR- ~ IR- is the inverse function of ~b. 

Lemma.  For p >_ 0 

(4.5) - O ( - P )  ~pl/2, 

and for p >  1 and some constant k(d), depending on d, 

- ~ b ( -  p)> p a / 2 - 4 - 1 ( d - 1 )  log p - k ( d ) .  

(4.7) epl/2cos0(sin o)d- 2 d 0 <= e pl/2 S (sin O) a- 2 d 0 
0 0 

= e v'/2 rc */2 F((d - 1)/2)(F(d/2))- 1, 

and (4.5) follows from (4.3) and (4.7). Fur thermore  

zr/2 
I ePl/2e~176 dO> ~ epl/2c~176 d-2 dO 
0 0 

~/2 
> e  pl/2 ~ e-P'/2~ dO 

0 

7r/2 
(4.8) >=e p'/2 ~ e-Pl/Z~ dO 

0 

p 1/4 

>e~" S e-~*~~ d-2 dO 
o 

> epl/~- 1 p(1 -d)/4(2/rc)a- 2 ( d -  1)- 1, 

which proves (4.6) with a constant  

(4.9) k(d) = ( d -  2) log (re/2) + log(To(d- 1)) + 1. 

By (4.4) we have for y = 2-1/2 

(4.10) 2 - 2 S ( 2 ) < - - 2  ~ - ~ ( - 2 h ( 2  1/2)). 

Define x: IR + - , R  + b y  

(4.11) x(2)=  _qS- 1 ( _ 2 h ( 2  l/2)). 

(4.6) 

Proof  
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Then by (4.11) 

(4.12) - 0 5 ( - x  (2))= 2 h (2 -  1/2) 

and by (4.10), (4.11) and (4.12) 

~ -  2 S( /~)  ~ x ( ~ )  { - -  0 5 ( - -  x (~))}  - 2 /~  {h(2- 1 /2 )}2 .  (4.13) 

Since 

(4.14) h(y)~coa_ 1 2(1-a)/2 y, 

we have by (4.5), (4.12) and (4.14) 

(4. t 5) x (2) > ~o 2_ ~ 2 (1 - e) L 

Hence 2--+ oe implies x(2)--+ oo and by (4.13) 

(4.16) lim sup 2 -  2 S (2) __< lim sup x { - 4) ( -  x)} - 2 lim sup 2 {h (2 - ~/2)} 2. 
J. --+ o0 X-+oO 2--+00 

By (4.2) 

(4.17) 

and by (4.5) and (4.6) 

(4.18) 

so that  

(4.19) 

lim 2 {h()o-1/1)}2 = (92_ 1, 
.t~oO 

l im x { - 0 5 ( - x ) } - 2  = 1, 

lim sup 2 -2  S ( 2 ) <  co~_ 1, 
.~.--* oo 

which completes the p roo f  of  Theorem 2. 
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