Asymptotics of the generating function for the volume of the Wiener sausage

Michiel van den Berg ${ }^{1}$, Erwin Bolthausen ${ }^{2}$
${ }^{1}$ Department of Mathematics, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, U.K.
${ }^{2}$ Institut für Angewandte Mathematik, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

Received: 2 February 1993 / In revised form: 3 January 1994

Summary. We consider the generating function $\mathbb{E} \exp \left(\lambda\left|C_{\varepsilon}(t)\right|\right)$ of the volume of the Wiener sausage $C_{\varepsilon}(t)$, which is the ε-neighbourhood of the Wiener path in the time interval $[0, t]$. For $\lambda<0$, the limiting behavior for $t \rightarrow \infty$, up to logarithmic equivalence, had been determined in a celebrated work of Donsker and Varadhan. For $\lambda>0$ it had been investigated by van den Berg and Tóth, but in contrast to the case $\lambda<0$, there is no simple expression for the exponential rate known. We determine the asymptotic behaviour of this rate for small and large λ.

Mathematics Subject Classification (1994): 60J65, 60F10, 60J45

1 Introduction and results

Let P be the Wiener measure on the space Ω of continuous paths w : $[0, \infty)$ $\rightarrow \mathbb{R}^{d}$ satisfying $w(0)=0$, whose generator is the Laplacian Δ (i.e. the covariance matrix of $w(t)$ is $2 t I$, where I is the identity matrix). If $w \in \Omega, \varepsilon>0$, $t>0$ let

$$
\begin{equation*}
C_{\varepsilon}(t, w)=\left\{y \in \mathbb{R}^{d}\left|\inf _{0 \leqq s \leqq t}\right| y-w(s) \mid<\varepsilon\right\} \tag{1.1}
\end{equation*}
$$

be the Wiener sausage for w. We denote its measure by $\left|C_{\varepsilon}(t)\right|$. In [1] it was shown that for $\lambda>0$

$$
\begin{equation*}
S(\lambda, \varepsilon)=\lim _{t \rightarrow \infty} \frac{1}{t} \log \mathbb{E}\left[\exp \left(\lambda\left|C_{\varepsilon}(t)\right|\right)\right] \tag{1.2}
\end{equation*}
$$

exists and is finite. By scaling, one has

$$
\begin{equation*}
S(\lambda, \varepsilon)=\varepsilon^{-2} S\left(\varepsilon^{d} \lambda, 1\right) \tag{1.3}
\end{equation*}
$$

so one needs only to consider $S(\lambda)=S(\lambda, 1)$. It was proved in [1] that for $d=1, S(\lambda)=\lambda^{2}$. Upper and lower bounds for $S(\lambda)$ were obtained for $d=2,3, \ldots$ A closed form expression or a simple variational formula for $S(\lambda)$ probably does not exist. Here we derive the leading asymptotics of $S(\lambda)$ for $\lambda \rightarrow 0$ and for $\lambda \rightarrow \infty$.

The leading asymptotics of $S(\lambda)$ for small λ is directly connected with the behaviour of $\mathbb{E}\left[\left|C_{1}(t)\right|\right]$ for large t. It is well known [2] that

$$
\begin{align*}
\lim _{t \rightarrow \infty}(\log t) \mathbb{E}\left[\left|C_{1}(t)\right|\right] / t=4 \pi, & d=2, \tag{1.4}\\
& \lim _{t \rightarrow \infty} \mathbb{E}\left[\left|C_{1}(t)\right|\right] / t=C(d), \tag{1.5}
\end{align*} \quad d=3,4, \ldots,
$$

where $C(d)$ is the Newtonian capacity of the unit ball in \mathbb{R}^{d} :

$$
\begin{equation*}
C(d)=d(d-2) \omega_{d} \tag{1.6}
\end{equation*}
$$

where ω_{d} is the volume of the unit ball in \mathbb{R}^{d} given by

$$
\begin{equation*}
\omega_{d}=\pi^{d / 2}(\Gamma((d+2) / 2))^{-1} \tag{1.7}
\end{equation*}
$$

Our results are the following.
Theorem 1 In dimension two

$$
\begin{equation*}
\lim _{\lambda \downarrow 0}\left(\log \frac{1}{\lambda}\right) S(\lambda) / \lambda=4 \pi \tag{1.8}
\end{equation*}
$$

and in three or more dimensions

$$
\begin{equation*}
\lim _{\lambda \downarrow 0} S(\lambda) / \lambda=C(d) . \tag{1.9}
\end{equation*}
$$

Theorem 2 In any dimension

$$
\begin{equation*}
\lim _{\lambda \rightarrow \infty} S(\lambda) / \lambda^{2}=\left(\omega_{d-1}\right)^{2} \tag{1.10}
\end{equation*}
$$

2 Proof of the upper bound in Theorem 1

Let $p \geqq 1$. Then

$$
\begin{equation*}
\left|C_{1}(t)\right| \leqq\left|C_{1}(([t / p]+1) p)\right| \leqq \sum_{j=0}^{[z / p]}\left|C_{1}(p) \circ \theta_{j p}\right| \tag{2.1}
\end{equation*}
$$

where θ_{s} is the shift on path space:

$$
\begin{equation*}
\left(\theta_{s}(\omega)\right)(t)=\omega(s+t) \tag{2.2}
\end{equation*}
$$

By the Markov property

$$
\begin{equation*}
\mathbb{E}\left[e^{\lambda\left|C_{1}(t)\right|}\right] \leqq\left\{\mathbb{E}\left[e^{\lambda\left|C_{1}(p)\right|}\right]\right\}^{[t / p]+1} \tag{2.3}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \frac{1}{t} \log \mathbb{E}\left[e^{\lambda\left|C_{1}(t)\right|}\right] \leqq \frac{1}{p} \log \mathbb{E}\left[e^{\lambda\left|C_{1}(p)\right|}\right] . \tag{2.4}
\end{equation*}
$$

Because $e^{x} \leqq 1+x+\left(x^{2} / 2\right) e^{x}$ for $x \geqq 0$ we get
(2.5) $\mathbb{E}\left[e^{\lambda\left|C_{1}(p)\right|}\right] \leqq 1+\lambda \mathbb{E}\left[\left|C_{1}(p)\right|\right]+\frac{\lambda^{2}}{2} \mathbb{E}\left[\left|C_{1}(p)\right|^{2} \exp \left(\lambda\left|C_{1}(p)\right|\right)\right]$.

Since $\log (1+x) \leqq x$ for $x \geqq 0$ we have by (2.4) and (2.5)
(2.6) $\quad \limsup _{t \rightarrow \infty} \frac{1}{t} \log \mathbb{E}\left[e^{\lambda\left|C_{1}(t)\right|}\right] \leqq \frac{\lambda}{p} \mathbb{E}\left[\left|C_{1}(p)\right|\right]$

$$
+\frac{\lambda^{2}}{2 p} \mathbb{E}\left[\left|C_{1}(p)\right|^{2} \exp \left(\lambda\left|C_{1}(p)\right|\right)\right]
$$

By Cauchy-Schwarz

$$
\begin{align*}
& \mathbb{E}\left[\left|C_{1}(p)\right|^{2} \exp \left(\lambda\left|C_{1}(p)\right|\right)\right] \\
& \leqq\left\{\mathbb{E}\left[\left|C_{1}(p)\right|^{4}\right] \mathbb{E}\left[\exp \left(2 \lambda\left|C_{1}(p)\right|\right)\right]\right\}^{1 / 2} \\
& \leqq p^{2}\left\{\mathbb{E}\left[p^{-4}\left|C_{1}(p)\right|^{4} \exp \left(-2 p^{-1}\left|C_{1}(p)\right|\right) \exp \left(2 p^{-1}\left|C_{1}(p)\right|\right)\right]\right. \\
&\left.\cdot \mathbb{E}\left[\exp \left(2 \lambda\left|C_{1}(p)\right|\right)\right]\right\}^{1 / 2} \tag{2.7}\\
& \leqq(2 p / e)^{2}\left\{\mathbb{E}\left[\exp \left(2 p^{-1}\left|C_{1}(p)\right|\right)\right] \mathbb{E}\left[\exp \left(2 \lambda\left|C_{1}(p)\right|\right)\right]\right\}^{1 / 2} \\
& \leqq(2 p / e)^{2} \mathbb{E}\left[\exp \left(2 p^{-1}\left|C_{1}(p)\right|\right)\right]
\end{align*}
$$

provided $p^{-1} \geqq \lambda$. Since $p \geqq 1$ we have by Hölder's inequality

$$
\begin{equation*}
\mathbb{E}\left[\exp \left(2 p^{-1}\left|C_{1}(p)\right|\right)\right] \leqq\left\{\mathbb{E}\left[\exp \left(2\left|C_{1}(p)\right|\right)\right]\right\}^{1 / p} \tag{2.8}
\end{equation*}
$$

We put $\lambda=2$ and transpose t and p in (2.3) and subsequently put $t=1$. This gives

$$
\begin{equation*}
\mathbb{E}\left[\exp \left(2\left|C_{1}(p)\right|\right)\right] \leqq\left\{\mathbb{E}\left[\exp \left(2\left|C_{1}(1)\right|\right)\right]\right\}^{[p]+1} \tag{2.9}
\end{equation*}
$$

From (2.6)-(2.9) we obtain

$$
\begin{align*}
& \limsup _{t \rightarrow \infty} \frac{1}{t} \log \mathbb{E}\left[e^{\lambda\left|C_{1}(t)\right|}\right] \\
& \quad \leqq \frac{\lambda}{p} \mathbb{E}\left[\left|C_{1}(p)\right|\right]+\frac{2 \lambda^{2} p}{e^{2}}\left\{\mathbb{E}\left[e^{2\left|C_{1}(1)\right|}\right]\right\}^{([p]+1) / p} \tag{2.10}\\
& \quad \leqq \frac{\lambda}{p} \mathbb{E}\left[\left|C_{1}(p)\right|\right]+\lambda^{2} p\left\{\mathbb{E}\left[e^{2\left|C_{1}(1)\right|}\right]\right\}^{2}
\end{align*}
$$

Note that $\mathbb{E}\left[\exp \left(2\left|C_{1}(1)\right|\right)\right]<\infty$ by the results of Sect. 5 in [3]. Let $\lambda \in(0,1 / e)$ and choose

$$
\begin{equation*}
p(\lambda)=\lambda^{-1}\left(\log \lambda^{-1}\right)^{-2} . \tag{2.11}
\end{equation*}
$$

Then $p(\lambda) \geqq 1$ and $(p(\lambda))^{-1}>\lambda$. Moreover $\lambda \rightarrow 0$ implies $p(\lambda) \rightarrow \infty$. Consider $d=2$. Then by (1.4)

$$
\begin{equation*}
\frac{\lambda}{p(\lambda)} \mathbb{E}\left[\left|C_{1}(p(\lambda))\right|\right]=\frac{4 \pi \lambda}{\log p(\lambda)}(1+o(1))=\frac{4 \pi \lambda}{\log \frac{1}{\lambda}}(1+o(1)) \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda^{2} p(\lambda)=\frac{\lambda}{\left(\log \frac{1}{\lambda}\right)^{2}} \tag{2.13}
\end{equation*}
$$

Consider $d \geqq 3$. Then by (1.5)

$$
\begin{equation*}
\frac{\lambda}{p(\lambda)} \mathbb{E}\left[\left|C_{1}(p(\lambda))\right|\right]=C(d) \lambda(1+o(1)) \tag{2.14}
\end{equation*}
$$

The upper bound in Theorem 1 follows from (2.10), (2.12)-(2.14).

3 Proof of the lower bound in Theorem 1

For dimension $d \geqq 3$, the lower bound follows directly from Jensen's inequality:

$$
\begin{equation*}
\frac{1}{t} \log \mathbb{E}\left[\exp \left(\lambda\left|C_{1}(t)\right|\right)\right] \geqq \frac{\lambda}{t} \mathbb{E}\left[\left|C_{1}(t)\right|\right] \tag{3.1}
\end{equation*}
$$

which implies $S(\lambda) \geqq C(d) \lambda$ for any $\lambda \geqq 0$ by (1.5).
The case $d=2$ is more subtle. We cannot apply (3.1), because $\mathbb{E}\left[\left|C_{1}(t)\right|\right] / t \rightarrow 0$ as $t \rightarrow \infty$ by (1.4). We consider the law P^{ρ} of the Brownian
motion with drift $\rho>0$ in the direction of the positive x-axis: $P^{\rho}=P \varphi_{\rho}^{-1}$, where $\varphi_{\rho}: \Omega \rightarrow \Omega$ is defined by

$$
\begin{equation*}
\left(\varphi_{\rho}(w)\right)(t)=w(t)+\rho t e \tag{3.2}
\end{equation*}
$$

$e=(1,0)$. The restrictions $P^{t}, P^{\rho, t}$ to the σ-field generated by the evaluation mappings $w \rightarrow w(s)$ for $0 \leqq s \leqq t$, are mutually absolutely continuous, and by the Cameron-Martin formula

$$
\begin{equation*}
\frac{d P^{t}}{d P^{\rho, t}}(w)=\exp \left(-\rho\langle w(t), e\rangle / 2+\rho^{2} t / 4\right) \tag{3.3}
\end{equation*}
$$

Applying this and Jensen's inequality to the integration with respect to $P^{\rho, t}$, we get

$$
\begin{align*}
\frac{1}{t} & \log \mathbb{E}\left[\exp \left(\lambda\left|C_{1}(t)\right|\right)\right] \\
& =\frac{\rho^{2}}{4}+\frac{1}{t} \log \mathbb{E}^{\rho, t}\left[\exp \left(-\rho\langle w(t), e\rangle / 2+\lambda\left|C_{1}(t)\right|\right)\right] \tag{3.4}\\
& \geqq \frac{\rho^{2}}{4}-\frac{\rho}{2 t} \mathbb{E}^{\rho}[\langle w(t), e\rangle]+\frac{\lambda}{t} \mathbb{E}^{\rho}\left[\left|C_{1}(t)\right|\right] \\
& =-\frac{\rho^{2}}{4}+\frac{\lambda}{t} \mathbb{E}^{\rho}\left[\left|C_{1}(t)\right|\right]
\end{align*}
$$

(3.4) implies that for all $\rho>0$

$$
\begin{equation*}
S(\lambda) \geqq-\frac{\rho^{2}}{4}+\lambda \inf _{t>0} \frac{1}{t} \mathbb{E}^{\rho}\left[\left|C_{1}(t)\right|\right] \tag{3.5}
\end{equation*}
$$

Lemma. For all $t>0$ and $\rho \in(0,1]$

$$
\begin{equation*}
\frac{1}{t} \mathbb{E}^{\rho}\left[\left|C_{1}(t)\right|\right] \geqq \frac{4 \pi}{28-\log \rho^{2}} \tag{3.6}
\end{equation*}
$$

Implementing (3.6) in (3.4) and choosing $\rho=\lambda^{\alpha}$, with $\alpha>\frac{1}{2}$ and $\lambda \in(0,1)$ gives

$$
\begin{equation*}
\underset{\lambda \downarrow 0}{\liminf }\left(\log \frac{1}{\lambda}\right) S(\lambda) / \lambda \geqq 2 \pi / \alpha \tag{3.7}
\end{equation*}
$$

The lower bound for (1.8) follows since $\alpha>\frac{1}{2}$ is arbitrary.

Proof of the Lemma. For $y \in \mathbb{R}^{2}$, let P_{y}^{ρ} be the law of the Brownian motion with drift starting at y. We need an upper bound for $\int^{\infty} P_{y}^{\rho}(w(s) \in D) d s$ where D is the unit ball in \mathbb{R}^{2} with center (0,0). Note that ${ }_{0}$

$$
\begin{equation*}
P_{y}^{\rho}(w(s) \in D)=\int_{D} \frac{1}{4 \pi s} \exp \left(-|x-y-\rho s e|^{2} /(4 s)\right) d x . \tag{3.8}
\end{equation*}
$$

We have

$$
\begin{equation*}
\int_{0}^{\infty} P_{y}^{\rho}(w(s) \in D) d s \leqq 1+\int_{1}^{1 / \rho^{2}} P_{y}^{\rho}(w(s) \in D) d s+\int_{1 / \rho^{2}}^{\infty} P_{y}^{\rho}(w(s) \in D) d s . \tag{3.9}
\end{equation*}
$$

Since $|D|=\pi$, we see that

$$
\begin{equation*}
P_{y}^{\rho}(w(s) \in D) \leqq \frac{1}{4 s}, \tag{3.10}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\int_{0}^{\infty} P_{y}^{\rho}(w(s) \in D) d s \leqq 1+\frac{1}{4} \log \frac{1}{\rho^{2}}+\int_{1 / \rho^{2}}^{\infty} P_{y}^{\rho}(w(s) \in D) d s . \tag{3.11}
\end{equation*}
$$

To estimate the last term in (3.11) we observe that for $x, y \in D$

$$
\begin{equation*}
|x-y-\rho s e|^{2} \geqq \frac{1}{2} \rho^{2} s^{2}-|x-y|^{2} \geqq \frac{1}{2} \rho^{2} s^{2}-4, \tag{3.12}
\end{equation*}
$$

and therefore

$$
\begin{align*}
\int_{1 / \rho^{2}}^{\infty} P_{y}^{\rho}(w(s) \in D) d s & \leqq \int_{1 / \rho^{2}}^{\infty} \frac{1}{4 s} e^{-\frac{\rho^{2} s}{8}+\frac{1}{s}} d s \tag{3.13}\\
& \leqq \int_{1}^{\infty} \frac{e}{4 s} e^{-s / 8} d s \leqq 2 e \leqq 6
\end{align*}
$$

Collecting these estimates, we get from (3.11) and (3.13)

$$
\begin{equation*}
\int_{0}^{\infty} P_{y}^{\rho}(w(s) \in D) d s \leqq 7-\frac{1}{4} \log \rho^{2} \tag{3.14}
\end{equation*}
$$

Let $D_{x}=x+D, x \in \mathbb{R}^{2}$, and σ_{x} be the first entrance time into D_{x} :

$$
\begin{equation*}
\sigma_{x}(w)=\inf \left\{t \geqq 0: w(t) \in D_{x}\right\} \tag{3.15}
\end{equation*}
$$

By Fubini's theorem

$$
\begin{align*}
\pi t & =\int_{\mathbb{R}^{2}} d x \int_{0}^{t} d s P^{\rho}\left(w(s) \in D_{x}\right) \\
& \leqq \int_{\mathbb{R}^{2}} d x \mathbb{E}^{\rho}\left[1_{\left\{\sigma_{x} \leqq t\right\}} \int_{\sigma_{x}}^{\infty} 1_{\left\{w(s) \in D_{x}\right\}} d s\right] \tag{3.16}\\
& =\int_{\mathbb{R}^{2}} d x \mathbb{E}^{\rho}\left[1_{\left\{\sigma_{x} \leqq t\right\}} \int_{0}^{\infty} d s P_{w\left(\sigma_{x}\right)}^{\rho}\left(w(s) \in D_{x}\right)\right]
\end{align*}
$$

where we have used the strong Markov property. By (3.14) we have

$$
\begin{equation*}
\int_{0}^{\infty} P_{w\left(\sigma_{x}\right)}^{\rho}\left(w(s) \in D_{x}\right) d s \leqq 7-\frac{1}{4} \log \rho^{2} \tag{3.17}
\end{equation*}
$$

on $\left\{\sigma_{x} \leqq t\right\}$, and therefore

$$
\begin{equation*}
\pi t \leqq\left(7-\frac{1}{4} \log \rho^{2}\right) \int_{\mathbb{R}^{2}} P^{\rho}\left(\sigma_{x} \leqq t\right) d x=\left(7-\frac{1}{4} \log \rho^{2}\right) \mathbb{E}^{\rho}\left[\left|C_{1}(t)\right|\right] \tag{3.18}
\end{equation*}
$$

This proves the Lemma.

4 Proof of Theorem 2

We refer to Sect. 2 in [1] for the proof in the case $d=1$. Let $d=2,3, \ldots$ It follows from Theorem 1 (ii, iii) in [1] that

$$
\begin{equation*}
\liminf _{\lambda \rightarrow \infty} \lambda^{-2} S(\lambda) \geqq \omega_{d-1}^{2} \tag{4.1}
\end{equation*}
$$

Define $h: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$by

$$
\begin{equation*}
h(y)=2 \omega_{d-1}(1+y)^{d} \int_{0}^{y /(2+2 y)}\left(1-z^{2}\right)^{(d-1) / 2} d z \tag{4.2}
\end{equation*}
$$

and ϕ for $p>0$ by

$$
\begin{equation*}
\phi(-p)=-\log \left\{\pi^{-1 / 2}(\Gamma((d-1) / 2))^{-1} \Gamma(d / 2) \int_{0}^{\pi} e^{p^{1 / 2} \cos \theta}(\sin \theta)^{d-2} d \theta\right\} \tag{4.3}
\end{equation*}
$$

Note that ϕ is both continuous and strictly monotone. Then by (4.25) in [1]

$$
\begin{equation*}
S(\lambda) \leqq \inf _{y>0}\left\{-y^{-2} \phi^{-1}(-\lambda h(y))\right\}, \tag{4.4}
\end{equation*}
$$

where $\phi^{-1}: \mathbb{R}^{-} \rightarrow \mathbb{R}^{-}$is the inverse function of ϕ.
Lemma. For $p \geqq 0$

$$
\begin{equation*}
-\phi(-p) \leqq p^{1 / 2} \tag{4.5}
\end{equation*}
$$

and for $p \geqq 1$ and some constant $k(d)$, depending on d,

$$
\begin{equation*}
-\phi(-p) \geqq p^{1 / 2}-4^{-1}(d-1) \log p-k(d) . \tag{4.6}
\end{equation*}
$$

Proof.

$$
\begin{align*}
\int_{0}^{\pi} e^{p^{1 / 2} \cos \theta}(\sin \theta)^{d-2} d \theta & \leqq e^{p^{1 / 2}} \int_{0}^{\pi}(\sin \theta)^{d-2} d \theta \tag{4.7}\\
& =e^{p^{1 / 2}} \pi^{1 / 2} \Gamma((d-1) / 2)(\Gamma(d / 2))^{-1}
\end{align*}
$$

and (4.5) follows from (4.3) and (4.7). Furthermore

$$
\begin{align*}
\int_{0}^{\pi} e^{p^{1 / 2} \cos \theta}(\sin \theta)^{d-2} d \theta & \geqq \int_{0}^{\pi / 2} e^{p^{1 / 2} \cos \theta}(\sin \theta)^{d-2} d \theta \\
& \geqq e^{p^{1 / 2}} \int_{0}^{\pi / 2} e^{-p^{1 / 2} \theta^{2} / 2}(\sin \theta)^{d-2} d \theta \\
& \geqq e^{p^{1 / 2}} \int_{0}^{\pi / 2} e^{-p^{1 / 2} \theta^{2} / 2}(2 \theta / \pi)^{d-2} d \theta \tag{4.8}\\
& \geqq e^{p^{1 / 2}} \int_{0}^{p^{-1 / 4}} e^{-p^{1 / 2} \theta^{2}}(2 \theta / \pi)^{d-2} d \theta \\
& \geqq e^{p^{1 / 2}-1} p^{(1-d) / 4}(2 / \pi)^{d-2}(d-1)^{-1}
\end{align*}
$$

which proves (4.6) with a constant

$$
\begin{equation*}
k(d)=(d-2) \log (\pi / 2)+\log (\pi(d-1))+1 \tag{4.9}
\end{equation*}
$$

By (4.4) we have for $y=\lambda^{-1 / 2}$

$$
\begin{equation*}
\lambda^{-2} S(\lambda) \leqq-\lambda^{-1} \phi^{-1}\left(-\lambda h\left(\lambda^{-1 / 2}\right)\right) \tag{4.10}
\end{equation*}
$$

Define $x: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$by

$$
\begin{equation*}
x(\lambda)=-\phi^{-1}\left(-\lambda h\left(\lambda^{-1 / 2}\right)\right) . \tag{4.11}
\end{equation*}
$$

Then by (4.11)

$$
\begin{equation*}
-\phi(-x(\lambda))=\lambda h\left(\lambda^{-1 / 2}\right) \tag{4.12}
\end{equation*}
$$

and by (4.10), (4.11) and (4.12)

$$
\begin{equation*}
\lambda^{-2} S(\lambda) \leqq x(\lambda)\{-\phi(-x(\lambda))\}^{-2} \lambda\left\{h\left(\lambda^{-1 / 2}\right)\right\}^{2} . \tag{4.13}
\end{equation*}
$$

Since

$$
\begin{equation*}
h(y) \geqq \omega_{d-1} 2^{(1-d) / 2} y \tag{4.14}
\end{equation*}
$$

we have by (4.5), (4.12) and (4.14)

$$
\begin{equation*}
x(\lambda) \geqq \omega_{d-1}^{2} 2^{(1-d)} \lambda . \tag{4.15}
\end{equation*}
$$

Hence $\lambda \rightarrow \infty$ implies $x(\lambda) \rightarrow \infty$ and by (4.13)
(4.16) $\limsup _{\lambda \rightarrow \infty} \lambda^{-2} S(\lambda) \leqq \limsup _{x \rightarrow \infty} x\{-\phi(-x)\}^{-2} \limsup _{\lambda \rightarrow \infty} \lambda\left\{h\left(\lambda^{-1 / 2}\right)\right\}^{2}$.

By (4.2)

$$
\begin{equation*}
\lim _{\lambda \rightarrow \infty} \lambda\left\{h\left(\lambda^{-1 / 2}\right)\right\}^{2}=\omega_{d-1}^{2}, \tag{4.17}
\end{equation*}
$$

and by (4.5) and (4.6)

$$
\begin{equation*}
\lim _{x \rightarrow \infty} x\{-\phi(-x)\}^{-2}=1 \tag{4.18}
\end{equation*}
$$

so that

$$
\begin{equation*}
\limsup _{\lambda \rightarrow \infty} \lambda^{-2} S(\lambda) \leqq \omega_{d-1}^{2} \tag{4.19}
\end{equation*}
$$

which completes the proof of Theorem 2.
Acknowledgement. This research is part of the British/Swiss Joint Research-programme, funded by The Swiss National Science Foundation and The British Council.

References

1. van den Berg, M., Tóth, B.: Exponential estimates for the Wiener sausage. Probab. Theory Relat. Fields 88, 249-259 (1991)
2. Spitzer, F.: Electrostatic capacity, heat flow and Brownian motion. Z. Wahrscheinlichkeitstheor. Verw. Geb. 3, 110-121 (1964)
3. Sznitman, A.S.: Some bounds and limiting results for the measure of Wiener sausage of small radius associated with elliptic diffusions. Stochastic Processes Appl. 25, 1-25 (1987)
