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Mathematics Subject Classification (1991)." 60G55, 50G57, 60G60 

1 Introduction 

We consider a point process �9 on a locally compact second countable 
Hausdorff (LCCB) space X defined on the probability space (f2, ~,, P). Let 
{~(x):  xeX} be a filtration of o--fields which is generated by �9 on certain 
measurable sets F:,~X, satisfying some properties which will be specified 
later. Under  a regularity condition on ~ we will construct unique predictable 
projections of random processes with parameter space X, where predictabi- 
lity is a property of measurability induced by the filtration. The correspond- 
ing dual projection leads to a unique representation of a random measure 
on X as a sum of a predictable random measure and a so-called martingale- 
like measure. 

In such a general point process framework we are only aware of the 
results by van der Hoeven (1982, 1983), which are intimately related to 
the work by Papangelou (1974) and Kallenberg (1978, 1983) on conditional 
intensity measures. Van der Hoeven studied a Gibbs filtration, where F~ 
=X\{x} .  But a historical review should begin with the classical case of 
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stochastic processes with a real parameter (see Dellacherie and Meyer 1978, 
1982), where one considers a right-continuous P-complete filtration 
{ 4 :  teN+}.  The predictable projection of a process {Z(t): t eN+} is a pre- 
dictable version of {E [Z(t) l~_]} .  Uniqueness is guaranteed by the predict- 
able section theorem. 

The situation becomes more difficult in the case of a right-continuous 
filtration { 4 :  x~N~},  n~N. Here right-continuity refers to the natural par- 
tial ordering __< on IR~. Predictability means measurability with respect 
to the ~-field generated by the sets H x (x, y], where H e ~ ,  (x, y] ={z: x 
<z__<y} and the relation < is defined componentwise. Since (R"~, <)  is 
not totally ordered for n >  1, the classical methods for n =  1 do not apply. 
To overcome these difficulties Cairoli and Walsh (1974) introduced a condi- 
tion of conditional independence, called (F4), which unfortunately is very 
restrictive. Under (F4) Merzbach and Zakai (1980) (see also Dol6ans-Dade 
and Meyer, 1979) proved the existence and uniqueness of predictable projec- 
tions and Merzbach and Nualart (1988) derived a martingale representation 
result. Now we consider the more special situation where ~'~x contains the 
information of a point process on IR"+ restricted to the set (0, x] (0 is the 
zero vector). The corresponding proper choice of the sets Fx is F~ = {z: z < x}. 
For this case Buckdahn (1984) solved our problem without further assump- 
tions using explicit expressions for martingales. He also considered the filtra- 
tion under which all the individual points of the point process are stopping 
times. Other relevant references in this context are Mazziotto and Szpirglas 
(1985), Mazziotto and Merzbach (1988) and Arenas (1989). There are also 
partial results for other point process filtrations on N 2. We refer to Dozzi 
(1981) for the case of (F4), to At-Hussaini and Elliott (1985) for a one-point 
process and to Ivanoff and Merzbach (1990). 

Now we return to a point process with a general LCCB phase space. 
Under a regularity condition (X), Papangelou (1974) introduced its condi- 
tional intensity measure by way of a limiting procedure. He already noticed 
that Murali Rao (1969) (see also Dol6ans, 1968) used a similar method 
for the construction of dual predictable projections in the classical case. 
Cairoli (1971) and Dozzi (1981) gave similar results on 1II 2. Kallenberg 
(1978, 1983) was able to dispense with the regularity condition and intro- 
duced the conditional intensity measure (with respect to the point process) 
of an arbitrary random measure. Using a predictable section theorem based 
on stopping times, van der Hoeven (1982, 1983) succeeded in proving the 
existence and uniqueness of predictable projections. The predictable ~r-field 
is generated by the sets H x B, where B is a measurable and bounded subset 
of the phase space and H e ~  is measurable with respect to the restriction 
BC4~ of �9 to the complement B c of B. The corresponding dual projection 
of a random measure coincides with the conditional intensity measure. 

In the present paper we shall define the predictable ~r-field on f2 x X 
to be generated by the mapping (co, x)~-+(Fx ~(co), x). This notion of predicta- 
bility is more general than in all the point process examples above. One 
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can interpret F~ # as the history at point x. In the case of F~= {x} c, for 
example, we are back in the framework of van der Hoeven (1982). We 
have not been able to prove a predictable section theorem based on random 
points as in the latter paper. Therefore we define the predictable projection 
of a process {Y(x): x~X} by a limiting procedure, yielding the result 
E[Y(x)lFx~b] at every point x. The dual predictable projection will turn 
out to be a direct generalization of the conditional intensity measure. The 
uniqueness will be proved with certain absolute continuity relations for 
Campbell measures on f2 x X. However, we will need a regularity condition. 
This condition is satisfied by thinnings or by Gibbsian point processes 
and reduces to Papangelou's condition (Z) in the corresponding special 
case. 

We present our material as follows. After discussing the notion of predic- 
tability in Sect. 2 we will present the projection theorems in Sects. 3 and 
4. For  X=NZ+ and under additional assumptions on the system {Fx: xeX} 
we will demonstrate in Sect. 5 the existence of regular versions of ,certain 
martingales. This establishes the connection with the results in the literature 
cited above. The projection theorems will be proved in Sects. 6 and 7. The 
latter sections are also interesting in themselves, since we will show more 
general results without using a regularity condition on q). Roughly speaking, 
we will prove the existence and uniqueness of projections of random pro- 
cesses and random measures that vanish outside a certain regularity set 
defined by �9 and E 

2 Predictability 

Consider the LCCB space (X, X) and let 5 ~ X  be a DC-semiring of 
bounded sets (we refer to Kallenberg, 1983, for the definitions not given 
here). Let {if(B), ~-(x): B e f ,  x~5  ~} be a filtration in the following sense: 

(2.1) ~(B)~_~(A) if A~_B, A, B e ~  

(2.2) a( U ~(B,))=~(x) if B,,~{x}, d(B,)J,O, 
n > l  

where d is a metric on X generating X and d(B) is the corresponding diame- 
ter of a set B. 

We call the a-field generated by the sets 

H • B, BeS~,  H ~ ( B ) ,  

the predictable a-field ~ consisting of the predictable sets. (A more exact 
notation would refer to the filtration.) A function from ~2 x X into IR is 
called predictable if it is measurable with respect to ~. 
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We will not keep this level of generality and introduce more concrete 
filtrations generated by point processes. We start with a system F 
= {F~, F~: xeX,  BES~} of ~r-measurable sets satisfying 

(2.3) FA~F B if A~_B, A, B~Yf,, 

(2.4) F~]'F~ if B,,~{x} and d(B,)~,O. 

Let �9 be a point process on X satisfying 

(2.5) ~(F~\FB)< oo if x~B~SP 

and put 

(2.6) ~,~(B):=a(FB ~b), 

(2.7) ~-(x) .'= a (Fx ~), 

where A ~  denotes the restriction of �9 onto a set AeY. Then (2.1) and 
(2.2) are easy consequences of (2.3)-(2.5). Next we show how the classical 
examples fit into our model. 

Example 2.1 Let X=(0,  oo) and take 5 e as the set of all intervals (a, b] 
with a < b. Put F~= (0, x) and F(,.b ~ = (0, a]. Then predictability coincides with 
the classical definition (see Dellacherie and Meyer, 1978) given in terms 
of the internal filtration { ~ :  t>0}  generated by ~b. In that case we have 
J ( t ) = ~ _ .  Of course this example can be generalized to multivariate 
(marked) point processes on the real half-line. 

Example 2.2 For  FB = B c = X\B ,  F~ = {x} c our definition of predictability co- 
incides with the definition of visibility (or previsibility) given by van der 
Hoeven (1982) and Kallenberg (1983). 

Below we denote by xi, yi, ... the ith component of vectors x, y . . . .  ~IR 2. 
Also we write x __< y (x < y) if x~ __< Yi (xi < y~) for i = 1, 2. The next two examples 
will be further discussed in Sect. 5. 

Example 2.3 Let X=(0,  oe) 2 and take 5 ~ as the system of all rectangles 
(a, b].'=(a 1, bl] x(a2, b2] where a<b. Put Fx=(0, x).'={y: y<x} and F(a,b 1 
=(0, a], where 0.'=(0, 0) if there is no risk of ambiguity. The predictable 
a-field is then given by the classical definition of Cairoli and Walsh (1975) 
in terms of the filtration ~x ~ :=a {~((0, y ] ) :y  __< x}. 

Example 2.4 Consider the framework and the notation of Example 2.3. For  
s > 0  let ~.~ be the a-field generated by all the ~ ,e  ~,~o (s,t), t > 0  and define 
~ , s  similarly. Based on the filtration ~ , o ~  v ~ , ~ ,  xeX,  one can define 
(see Dozzi, 1981) another predictable a-field which is in our framework 
given by the choice F~={y: ya<xa or y2<x2} and F(,,bl={y: yt<--_aa or 

Y2 ~ b2}- 
There is a general method for constructing systems F needed in our 

definition of predictability. 
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Example 2.5 Let f :  X x X ~ R be measurable and continuous from below 
in its first argument. Then 

(2.8) Fx= {y: f(x, y) >0}, 

(2.9) FB= {y: f(x, y)>0  for all xeB} 

defines a system which satisfies (2.3) and (2.4). The measurability of F~ has 
to be checked in each case. All the examples above fit into this framework. 
For example we have to take f(x, y)=~{x+y} in order to obtain Exam- 
ple 2.2. Other choices are f(x, y)= d(x, y)-r,  f(x, y)= r-d(x,  y), where r > 0 
and, in case of X_IR", neN,  f(x,y)=~{fi(yl)<xi, i=l  . . . . .  n}, where x 
=(xl ,  ..., xn), Y=(Yl . . . . .  yn) and the fi are measurable functions on R.  A 
further example in case of X =~2+ is f(x, Y)=g(y l -x l ,  y2--X2) where g 
is a measurable function on IR 2 which is continuous from below in both 
arguments. The measurability of FB can then be ensured by claiming certain 
monotonicity and continuity properties for g. If, e.g., g is monotone non- 
decreasing in both arguments then F B = {y: g (Yl -  b a, Y2- b2) > 0}. 

In this paper we look also at other filtrations generated by point pro- 
cesses which can distinguish its point. To be more precisely we let x~o be 
a point external to X, X~. '=Xw {x~} and Y'o~ the a-field generated by 
and {xo~}. Let ~=(Zn)n_>_l be a sequence of random elements of Xoo and 
define a random measure on X by 

(2.10) ~b= Z ~{%4xo0}3~ �9 
n > l  

If ~(X)< 1 (one-point process) then �9 and ~ are the same objects. Otherwise 
the latter contains more information. There is no need for q~ to be locally 
bounded. We claim, however, the validity of (2.5). For B e ~  we define 
another sequence B ( =  (z, B) by 

Now we set 
(2.11) 

(2.12) 

zB ={ZX~ ~ if z.eB, 

otherwise. 

~-  (B):= cr (G ~), 

(x) ,= ~ (rx ~), 

to obtain again a filtration in the sense of (2.1) and (2.2). For Example 2.3 
the corresponding predictable a-field has been studied in Buckdahn (1984) 
and Mazziotto and Merzbach (1988). 

The next useful lemma covers both types of filtrations. 

Lemma 2.6 (i) Let fro ~_ 5p be another D C-semiring. Then the predictable a- 
field is generated by the sets 

HxB,  B~ff ~ H ~ ( B ) .  
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(ii) The predictable ~r-field is also generated by the mapping 
(co, x)~--~(F~ ~(co), x) or by the mapping (co, x)~--~(F~ ( (co), x), respectively. 

Proof Since the proof of the second case is similar we deal only with the 
case (2.6), (2.7). Let the measurable space of all possible realizations of 
point processes with the phase space (X, X) be denoted by (N, ~ )  (cf. Kallen- 
berg, 1983). By (2.4) the mapping (co, x) ~--~ (F~ (b (co), x) is ~ | 1 7 4  
measurable. The o--fields which are defined by the claims (i) and (ii) are 
denoted by ~1 and -~z. 

Firstly, we want to show ~a ~-~-~2 and choose Be5 ~ and Ge~#. For (peN 
and xeX we set g((p, x)=~{F~ (peG, xeB}, where C(p is the restriction of 
~0 to a set Ce~.  For xeB we have F~_~Fs (cf. (2.3)) and therefore 

Hence ~1 - ~2- To show the other inclusion we take a continuous function 
g on N x X (the space (N, Jff) is Polish with respect to the vague convergence 
on N) and a null-array ({B,,i: i>1}),~1 of 5~-measurable partitions of X. 
From (2.2) we obtain the vague convergence FB,(P~F~(P if B,~{x} and 
d(B,)~,O. Hence 

g(Fx ~b(co), x)= lim ~ ~{xeB,,,} g(F~,,, ~(co), x) 
n - ~  i > I  

is N~-measurable. Since the continuous functions on N x X generate ~ | Y;, 
the latter conclusion remains true for arbitrary bounded measurable func- 
tions on N x X. Therefore, we have ~2 -~ ~1. 

Finally, we have to show that, for an arbitrary B e 5  ~ and for He~(B) ,  
the set H x B is an element of ~ .  To this end we choose a DC-semiring 
5 p' with 5P'_~5 p and Be5 P'. Then we have just proved that H x Be~2 = ~ l  
and this completes the proof of the lemma. [] 

We conclude this section with the definition of predictability of a random 
measure. Let R be the set of all random measures # on (X, X) that are 
locally integrable, i.e., for which E#(B)< Go if B~X is bounded. We call 
#~R predictable if for any null-array ({B,,i: i>1}),>1 of 5~-measurable 
nested partitions of X 

(2.13) ~ E[#(B.,z~B)I~(B.,O] ~(Ll,c~), #(B), n---~ c~ 
i_>l 

Be {B,,i: n >  1, i>  1}, 

where a sequence 4, ~,, ~2 . . . .  of integrable random variables satisfies 

i n  ty (LI 'L~)  > ( if E r/4, converges to E q ( for all bounded random variables n~oo  
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q. Note that the predictability of a random measure depends on the proba- 
bility measure P. If a random measure # e R  coincides P-almost surely with 
a predictable random measure then it is predictable too. 

3 Predictable projections of random processes 

In this section the filtration is either given by (2.6), (2.7) or by (2.11) and 
(2.12). In the latter case we define �9 by (2.10). Recall the assumption (2.5). 
We introduce now a crucial regularity condition N(F) on ~: 

where 
Z(F): P(~(FB*)=OI~(B))>O P-a.s., 

r.. ,= U 
x ~ B  

Be~ ,  

The set FB* is measurable. Indeed, choosing a null-array ({Bn,i: i>1}).>=1 
of N-measurable nested partitions of X with Be{B1,1, BI, 2 . . . .  } and using 
the relations (2.3) and (2.4) we obtain 

r.*= U r . . , \ r .  
n,i: Bnd ~__B 

Example 3.1 In Example 2.2 we have for B=# {x} the equality FB* = B  and 
Z(F) reduces to the well-known regularity condition (Z) introduced by 
Papangelou (1974). In general F B is contained in the complement of F~*. 
Therefore it is easy to see that (Z) implies Z(F) whenever P(~(Ffl)< Go)= 1. 
It is well-known (see Kallenberg, 1983) that Gibbsian point processes satisfy 
(Z). 

Based on the fact that F* and FB are disjoint sets one can prove the 
following result (see Kallenberg, 1983, for the case of condition (Z)). We 
use the notion of a p-thinning ~ of another such sequence ~'= (z'~) in the 
obvious sense: Zn is taken equal to z'~ with probability p and equal to xo~, 
otherwise. Given ~', these thinnings are conditionally independent for differ- 
ent n. 

Example3.2 Let 0 < p < l  and suppose that �9 (or 0 is a p-thinning of 
another point process 7 ~ (resp. another random sequence ~'= (Cn)) satisfying 
P(gJ(FB*)<oe)=I (resp. card{n: z ' ,sF*}<oo P-a.s.) for all B s ~  Then ~b 
satisfies Z(F). 

Let F be the set of all measurable and bounded real-valued functions 
on (2 x X. For f ~ F  and a random measure #ER we set 

(3.1) <#,f)  = E ~f(x) #(d x). 

The measure C u ..= <#, ~ {. } > on ((2 x X, ~ | Y') is known as the Campbell 
measure or the Doleans measure of #. The equality <#,-> = <v,-> for #, 
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vER implies #=vP-a lmos t  surely. If ( . , f ) = ( - ,  g)  for f, g 6 F  then f and 
g are indistinguishable (with respect to P). This means (see Dellacherie and 
Meyer, 1978) that the universal measurable set {co: there is an x e X  with 
f(co, x)~= g(co, x)} has the measure zero with respect to the universal comple- 
tion of P. We abbreviate this as f - g  and define the relation f'__<g similarly. 

We will suppose the existence of regular conditional probability mea- 
sures given if(B),  BsS,  and that f is countably generated. This is no 
severe restriction of generality since the assumption is satisfied for i = a(~) 
and other suitable restrictions of ~ Conditional expectations are then 
always defined as integrals with respect to the regular conditional probabili- 
ty measures. 

Our main result is as follows. 

Theorem 3.3 Assume X(F) and let f~F.  Then there exists an up to indistingu- 
ishability unique predictable f * E F  which satisfies ( # , f * ) = ( # , f )  for all 
predictable # s R . .  

We refer to f *  as to the predictable projection of f~F.  The next theorem 
lists some properties of the predictable projection. 

Theorem 3.4 Assume Z(F). Then: 
(i) (c f + g)*-  c f *  + g* for all c~IR and f gEF. 

(ii) I f  f, f l ,  f2, ... eF satisfy f ,  ? f, then f *  -~f*+l ~ f *  and lim f *  - f * .  
n ~  oo 

(iii) (fg*)* - f *  g* for all f, geF. 
(iv) For any f ~ F  we have f - f *  iff f is indistinguishable from a predictable 
element of F. In particular, f - O implies f *  - 0 .  
(v) For any null-array ({Bn,i: i>=l})n_>l of Y-measurable nested partitions 

of X and any f ~F we have the pointwise convergence 

(3.2) f * ( x ) -  lim ~ t{x~B, , i}  E[f (x) l i (n , ,~)] .  
n - ~ o ~  i >  l 

The idea of the proof of Theorem 3.3 is to show first the convergence of 
the right-hand side of (3.2) using the martingale convergence theorem on 
~2 x X. In virtue of (2.4) we have 

a( U i ( B ~ ) ) = f ( x )  if B~J,{x}, d(B~)J~O, 
n > l  

and (3.2) implies in particular that 

f *  (x) = E I f  (x) l Y  (x)] P-a.s. 

At this point we note that operators obeying the relations (i)-(iv) of Theo- 
rem 3.4, such as the mapping f~--~f*, have been studied in a very general 
framework by Dynkin (1978) and Kerstan and Wakolbinger (1981). 
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Below we give an alternative expression for the predictable projection 
which avoids limits and which will also be used in Sect. 5. It is based on 
the reduced Palm measures q~( ' lD~),  0~N,  D e ~  conditional on D ~  as 
used in Last (1990). Up to technicalities {q~('lD~b): 0 e N }  can be defined 
as the reduced Palm measures of 45 as introduced on p. 111 of Kallenberg 
(1983) with the original probability measure P replaced by the conditional 
probability measure P(.  I D ~). 

Theorem 3.5 Consider the filtration as given by (2.6) and (2.7) and let 
{B1, B2, ...} be a 5P-measurable partition of X. Let f(x):=g(~, x), x6X, for 
some bounded measurable function g on N x X. Then 

(3.3) f*(x) - ~" 
k 

�9 ~{xeBk} ~g(~o+(r~\ r~ . )~)  ~ { ~ o ( r . \ r , ) = 0 }  q i~ \~ .0 , (dq~l r , .  ) 

qlr~\rB~)e ((P (Fx\FB~) = O IFB~ ~) 

where 0/0.'=0. 

Proof Let {B,,~} be as in Theorem3.4(v) and assume {B1, B2, ...} 
={B1,1, BL2, ...}. Up to indistinguishability the predictable projection of 
f does not depend on the choice of the conditional probabilities 
P(q~e.l~(B,,i) ). Due to Theorem 4.1 in Last (1990) we can therefore assume 
for Bn,i ~ B k 

(3.4) P(~bE'I~(B.,~)) 

2 {go + (FB. ,,\FBk) ~ e ' ,  g0 (FB~ = 0} qlr.., ~\r.k)e (d ~olFB~ ~) 

qlr..,~Xr.k)~ (g~ (Fn.,,\FB~) = O IFB~ ~/i) 

if the denumerator is positive and finite. The other cases have probability 
zero. 

We will prove in Sect. 6 (see Lemma 6.13 and (6.31)) that 

lim ~ ~ {x~B.,~} P(~(F~\F~.,,)=OI~ (B.,i) ) -  1. 
n i 

Using (3.4) we hence get 

lim Z Z ~{xeB.,i} 
n k Bn, i~_Bk 

qlr...,\r.~).(q~(r~\r.k) = 0 I r~ ~) _ 1. 

In view of (2.4) and (2.5) this happens if and only if 

(3.5) ~ 1 {x ~ Bk) qlrx\r.~)~ (~0 (Fx\FBk) = 0IF~ q~) > 0 
k 

up to indistinguishability. Now (3.3) is a quick consequence of (3.2) and 
(3.5). []  
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Theorem 3.5 gives a little bit more insight into the predictable projections. 
If, for example, �9 is almost surely finite on X and satisfies the so-called 
condition 2' (see Kallenberg, 1983, for this and related matters) then we 
may write (3.3) in terms of the Gibbs kernel instead of the (conditional) 
reduced Palm measures. If �9 is a Gibbs process (see also van der Hoeven, 
1983) then the Gibbs kernel can be calculated in terms of a so-called local 
energy or, more specifically, in terms of a pair potential. The Eq. (3.3) then 
reveals the dependence on the filtration in a more explicit form. In Exam- 
ple 3.2 the predictable projection coincides with the original process. In 
a general situation such an equality is rather exceptional. 

4 Dual predictable projections of random measures 

We keep the framework of Sect. 3. In the whole section the condition X(F) 
is in force. 

Theorem 4.1 Let peR. Then there exists a P-almost surely unique predictable 
random measure #*eR satisfying ( # , f ) =  ( # * , f ) ,  for all predictable f eF .  
Given the sets B,,i, n, ieN,  as in Theorem 3.4(v) and given a bounded set 
A eY( the convergence 

(4.1) 
~ -  L1(P) , 

E [tt (B,,,i n B) I5 ~ (B,.i)] ~ # (B) 
i_>l  

takes place uniformly in B c_ A, B e ~. 

We refer to ,u* as to the dual predictable projection of #eR.  We will prove 
in Sect. 7 (see Theorem 7.3) that # is predictable iff # = p *  P-a.s. In fact 
it suffices to consider (2.13) for one null-array of nested partitions in order 
to check the predictability of #. 

Remark 4.2 Let peR.  Then the signed random measure v. ' - -#-#* is a mart- 
ingalelike random measure in the sense that 

( 4 . 2 )  E[v(B)[,~(B)]=O P-a.s., BeS~. 

It is easy to see that # = #* + v is a P-a.s. unique decomposition of # into 
a sum of a predictable random measure and a locally integrable martingale- 
like measure. 

As mentioned in the introduction, van der Hoeven (1982, 1983) proved 
the Theorems 3.3 and 4.1 for Example 2.2 without regularity condition. In 
that case a random measure is predictable if and only if the process of 
its atom sizes is predictable. Thanks to this and other special properties 
of his filtration van der Hoeven derived expressions for the (dual) predictable 
projections which are more explicit than (3.2), (3.3) and (4.1). We can not 
present similar formulas in the general case, where usually F~w {x} is a 
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genuine subset of X. We give, however, an explicit expression for the dual 
predictable projection of a zero-one point process. 

Example 4.3 Let ~b = X 6r, where X and Yare independent random elements 
of {0, 1} or X, respectively, and P(X=I)=p for some p < l .  Define the 
filtration by (2.6) and (2.7) and assume 

(4.3) B C~FB=0, B~5s 

Then the dual predictable projection of �9 is P-almost surely given by 

~ {~(r~)=o} 
(4.4) r (d x ) -  p F (d x), 

1 --pF(rx) 

where F is the distribution of Y 

Proof The point process ~b is a p-thinning of 6r and obeys X(F) according 
to Example 3.2. Since {~(F~)=0} is an atom of i f (B)  we may assume with- 
out loss of generality that 

(4.5) n('lff(B.,i))=n(.leb(F~.)=O) on { �9 (F~..,) --- 0}, 

where the B.,i are as in Theorem 3.4(v) with B~{BI,1, BL2 . . . .  } for some 
arbitrary but fixed B ~  By (4.3) it is obvious that 

(4.6) P(q~(B.,~)=lIg(B..i))=O P-a.s. on {~(FB~ 

From Theorem 4.1 we obtain that ~*(B) is the L a (P)-limit of 

~*(B)..= E P(~(B.,,)=II'~(B.,,)). 
i:Bn,i~B 

The Eqs. (4.5) and (4.6) yield P-almost surely that 

~ * ( S ) =  ~ ll{~b(F~.,,)=0} n(qs(U"'i)=l '  q)(Fn.,)=0) 
,:..._~. P(~(FB..) = 0) 

= E ~{~( re . . )=0}  pF(B.,,) 
i:~.._= ~ (1 - p) +pF((FB,,, y) ' 

where the latter equation follows from a simple calculation. Now we can 
write 

q~*(S)=S ll {xeS} f.(x ) F(dx) P-a.s., 
where 

P 
f"(x)'=~'t{xeU"'i}i ~{~(Y~..,)=0} 1 --pF(Fs.,, ) 

tends to 

P 
~ { ~ ( K ) = 0 }  1 -pV(r~)  
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as n --* oe in virtue of (2.4). Since f ,(x) is bounded by p/(1 - p )  we can conclude 
the assertion (4.4). [ ]  

The expression (4.4) reveals the dependence of a dual predictable projection 
on the filtration. In particular we note: 

Remark 4.4 Consider the framework of Example 4.3 and set ~ = Y if X--- 1 
and ~ = x~ otherwise. Then �9 = ~ {z =4= x~o } 6~ and p F + (1 --p) 6xo~ is the distri- 
bution of z. For  Example 2.1 Eq. (4.4) reduces to the well-known formula 
for the compensator of zero-one point process. In the setting of Example 2.2 
and if F is a diffuse measure, then ~* simplifies to p/(1-p)ll{~(X)=O}F 
(cf. van der Hoeven, 1983). The above calculation goes through for p =  1 
as long as F(F~) is bounded away from 1. If not, then one could take the 
limit of the ~*(B) directly. The point process 6r, however, does in general 
not satisfy our regularity condition, as will easily be seen in Example 7.6. 

In the next section we will specialize our model (2.3), (2.4) in case of 
X =IR 2 and discuss some further properties of predictable projections. Also 
then it seems to be hard to do some calculation being more specific than 
(3.2), (4.1) or (3.3). At least in Example 2.3 one can find some expressions 
for the dual predictable projection of �9 which are similar to Jacod's formula 
for the compensator of point process on IR+ (see Buckdahn, 1984, Mazziotto 
and Merzbach, 1988). 

5 The two-dimensional case 

We consider a point process �9 on X..=(0, oe) 2 and let 5e be the system 
of all rectangles (a, b]. The results of this section can be generalized to 
(0, oe)". In this section we study filtrations of the type (2.6) and (2.7). Let 
F be a system satisfying (2.3)-(2.5). We introduce some further assumption 
on F and begin with the claim 

(5.1) ~a, bl=~, a<b, 

where 

(5.2) / ~ , = 0 F ~ .  
x > a  

We assume further that 

(5.3) F~_~Fy if x<=y 

and 

(5.4) U Fx = Fy. 
x < y  
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Then we have in particular 

(5.5) 

(5.6) 

Let us strengthen (2.5) to 

(5.7) 

Writing (recall (2.7)) 

(5.8) 

we obtain 

<~/]___~ if x < y ,  

FB_=F ~ if x ~ B e ~  

qS(/~\FB) < o9 if x ~ B ~  

,=o-(< a,), U 
y < x  

(5.9) . ~ :  ("],.~(y), f f x _ : f f ( x )  
y > x  

and 

(5.10) ~- = ~- x - -  r if x<y. 

We also have 

y>x 

and therefore 

(5.12) ~ x :  (~ . ~ .  
y>x 

Obviously (5.1) and (5.8) entail that the predictable o--field is given by the 
classical definition 

~ : a ( H  x (a, b]: H ~ ,  a<b). 

Example 5.1 Let h: ]R z -+ F,, be monotone non-increasing in both arguments. 
Assume the right-continuity h(x)= lim h(y) and define h-(x) 

y~x,x<=y 

,= lim h(y). Then the definitions F~..={y: h(y-x)>O}, /~.'={y: h-(y-x)  
y-+X,y<X 

> 0} and (5.1) satisfy the assumptions of this section, i.e. (2.3), (2.4), (5.2)-(5.4). 
The Examples 2.3 and 2.4 are special cases of this model. In the first example 
we have to take h(x)=ll{xl<O, x2<0} and in the second h(x)=~{xl < 0  
or x2 < 0}. 

The next result shows the existence of nice versions of bounded {~-x}- 
and {~-(x)}-martingales. It reveals the connection to the predictable projec- 
tions known from the literature. 
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Theorem 5.2 Assume X(F) and let Y be a bounded random variable. 
(i) There exist versions M(x) of E[YI~x] and M-(x)  of E[YI~(x)]  such 
that 

(5.13) lim M(y)=M-(x), 
y--*x,y<x 

(5.14) lira M-(y)=M-(x), 
y ~ x , y < X  

(5.15) lim M(y)=M(x). 
y~x,x<~y 

The process {M-(x)} is predictable. 
(ii) Let f (x)=ll {x~B} Y for some B6s Then the predictable projection of 
f satisfies 

(5.16) f * ( x ) - ~ { x ~ B }  M-(x). 

Proof. Let Z be a bounded version of E[Y[~]  and write Z=h(4~) for a 
suitable bounded and measurable function h on (N, ~ )  (the space of all 
point process realizations). Let {B1, B2, ...} be a 5P-measurable partition 
of :g and put 

Bk, ~ = F~\FB~, Bk, ~ = ~\FB~. 

We define 

' E (5.17) M(x)=Z~{xeB~} ~h(~+~,~V)~{e(B~,~)=O}q~.~r ~ )  
k q~k ,~ (~o (Bk ,~ )  = 01rB~ ~ )  ' 

(5.18) M-(X)=Z11{XeBk} ~h(~~ q~k'~(dcp[FB~4~) 
k qB~,~ (~0 (Bk,x) = 0]FBk ~) 

where 0/0.'=0. According to Theorem 4.1 of Last (1990) we have for all 
x~X the desired equations M(x)=E[ZI~~]=E[YI~x]  and M-(x)  
=E[YI~(x)]  P-almost surely. Now we take x~X and a sequence x, eX, 
n sN ,  with x , < x  and l i m x , = x .  We may assume that x ,~B k for all n for 
some k. In virtue of (5.4) and (5.5) we have Fx,~F~ and/~,TF~ and therefore 
the monotone non-increasing convergence of {~O(Bk,~ =0  } as well as of 
{q)(Bk, x =0  } towards {~0(Bk,~=0}. On account of assumption (5.7) we find 
an noEN and a O~N such that Bk,x q)=Bk,xga=t) for n>no. A look 
at (5.17) and (5.18) shows that lim M(x,)= M-(x)  if the corresponding denu- 
merator in (5.18) is positive. Hence (3.5) implies (5.13) and the same argu- 
ments demonstrate (5.14). The proof of (5.15) has to be based on (5.11). 
We do not need (3.5) such that (5.15) holds also without N(F). 
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(ii) Take a system {B,,i} as in Theorem 3.4(v) and assume {B1, B2, ...} 
={Bl,l, B1,2 . . . .  }. Let a,,i be the left end-point of B,a. In view of (3.2), 
(5.1) and (3.4) we obtain 

f * ( x ) -  lim ~ ~.{xeB.,ic~B} M(a.,i) 
rt ~ oO i 

and (5.13) implies the assertion (5.16). [] 

In the examples known from the literature the predictable projection of 
a process f as in Theorem 5.2 is a left-continuous version of the martingale 
g [Ylo~(x)] restricted to B. Continuity arguments show that our projections 
are indeed consistent with the classical notions. We need the regularity 
condition S(F). Although the latter is not compatible with the condition 
(F4) of Cairoli and Walsh (1975), it is much less restrictive as is evident 
from the Examples 3.1 and 3.2. (For a point process with exactly one point, 
A1-Hussaini and Elliott, 1981, showed that (F4) is equivalent to the indepen- 
dence of the components of that point.) Once condition 2(F) is accepted, 
our results cover a much more greater variety of models than those pre- 
sented in Example 2.3 (or in Example 2.4). From a probabilistic point of 
view there is no reason to focus on these examples only. The relations 
(5.10) and (5.12) are standard assumptions for stochastic calculus for pro- 
cesses with multidimensional parameter. Satisfying these assumptions and 
being generated by a point process constitute the main properties of the 
filtration studied in this section. 

In Example 2.3 the predictability of a random measure # means, by 
the usual definition, that the process x~--~#(x).'=#((0, x]) is predictable. In 
the general case we can give here no similar characterization. However, 
our notion of predictability generalizes Meyer's definition of a natural 
increasing process. We refer here to Dellacherie and Meyer (1982) and, 
for the two-dimensional case, to Cairoli (1971) and Dozzi (1981). 

Remark 5.3 Assume S(F). A p e R  is predictable iffit is natural in the follow- 
ing sense. For all bounded random variables Y and all BeSf we have 

(5.19) E ( ll_ {xeB} M-  (x) #(dx)= EY p(B), 

where M-(x) is a left-continuous version of the martingale E[YI~(x)]. 
In that case #(z) is P-almost surely ~(z)-measurable for all zeX. 

Proof We will prove in Sect. 7 that # is predictable if # = #* P-a.s. Hence 
the first assertion is an immediate consequence of (5.16) and the fact that 
the processes f as in Theorem 5.2 generate the o--field ~ | Y:. 

Now we assume # to be predictable and fix a zeX. We have to show 
that 

E Y#(z) = EE FYI~(z)] #(z) 
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for all bounded random variables g Let Y= E [ Y I ~  (z)] and define M -  ()~-) 
in terms of Y(Y') as in Theorem 5.2. Since E[YI~(x)] =E[Y' I~(x) ]  P-a.s. 
for x < z we have 11 {x < z} 2~- (x) - 1 {x < z} M -  (x). Therefore we obtain 
from (5.19) 

 (dx) 

as desired. [] 

For the next remark we also refer to Remark 4.2. 

Remark 5.4 Assume S(F). Let t teR and assume #(Z) to be ~-measurable  
for all zeX. Then {tt(z)-#*(z)} is a weak martingale in the sense of Cairoli 
and Walsh (1975). This property uniquely determines #* among all predict- 
able random measures. 

6 Proofs of Theorem 3.4 and Example 3.2 

In the main part of this section we will prove the convergence (3.2) and 
show that the limit satisfies the other assertions of Theorem 3.4. The proof 
is divided into five steps. We start with some preliminary definitions and 
remarks. In the first two steps we need only the properties (2.1) and (2.2) 
of the filtration. 

Step 1 We consider sets M _  R and write f =  g mod M for f, g e F  or, analo- 
gously 

f(co, x)=g(co, x) m-a.e.(co, x) 

i f f = g  Cu-a.e. for all #eM.  For example f - g  i f f f = g  mod R. 
For a non-negative heF and #~R we define a random measure hg  

by h#(dx)=h(x) l~(dx) which satisfies (hl~,f)= <#, h f )  for all feF.  

Lemma 6.1 Let M~_R and suppose that for all non-negative heF and all 
#eR the random measure h# is again in M. Then f = g m o d M  iff 
< # , f )  =<#, g)  for all I~eM with Cu(O x X)= 1. 

Note that f =  g mod M implies f =  g Cu-a.e. for all # e R  with the property 
Cu~ {C~: veM}, where a measure c~ on a measurable space (A, ~ )  satisfies 
c ~ B  for a set B of measures on (A,~r if { C e d :  f l(C)=0 for all f leB}~ 

For the next definition we also refer to Dynkin (1978) and Kerstan 
and Wakolbinger (1981). We call a mapping T: F ~ F  an M-projection if 
the following properties are satisfied: 

( 6 . 1 )  T(cf+g)=cTf+ T g m o d  M, ceN, f g~F, 

( 6 . 2 )  Tf , ' [T fmodM if {f,}~_F with f , ] ' f m o d M ,  
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(where f , < g m o d  m if ~ { f , > g }  = 0 r o o d  M, and f ,  T f m o d  m if L<L+I 
< f  mod M and ~ {lim f ,  # f }  = 0 mod m), 

(6.3) Tf= 1 mod M if f =  1 mod M, 

(6.4) T(f .  Tg) = (Tf)(Tg) rood M, f, geF.  

Let us fix an M-projection T for a moment. Then (6.1) and (6.3) imply 

(6.5) Tf= 0 mod M if f =  0 mod M, 

(6.6) T f = T g m o d m  if f = g m o d M ,  f,g~F. 

The notion of a M-projection is closely related to conditional expectations. 
To make this more precise we define 

~ ( T ) : = { A ~ -  | 5f: T~ a = ~ a  mod M} 

and may derive from (6.1) and (6.4) that ~ ( T )  is a o--field. A function f~F  
is ~(T)-measurable iff Tf=fmod M. If # ~R  satisfies Cu~ {C~: v~M}, then 
A ~ C u T(A):= (#, T~a>, A ~ ~ | ~, defines a measure. Moreover, if in addi- 
tion Cu(O • X) = C~, T(f2 • X) = 1, then 

(6.7) EC.T[fI~(T)] = Tf  C. T-a.s., 

where Ec. r refers to a (conditional) expectation with respect to C u T. 

Step 2 We fix a null-array ~.'=({B.,i: i=>l})n>=l of nested 5e-measurable 
partitions of X as in Theorem 3.4(v). For any f~F, #eR and n e N  we 
define T. f s  F by 

(6.8) T. f  (x) = ~, t {xeB.,i} E [ f  (x) l ~  (B.,i)] 
i 

and # T n ~ R by 

(6.9) # T~(dx)=~ ~ {x~B.,,} E[#(dx)]~(B.,i) 3. 
i 

It can easily be proved that T~# is the P-almost surely unique random 
measure satisfying 

(6.10) (#  T,,f> = (#, T.f>, f6F. 

Also it should be clear that T, is an R-projection and 

(6.11) T, T,,f= Tmi.~m,,~/mod R, f~F. 
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Define 

(6.12) 

(6.13) 

Lemma 6.2 We have 

(6.14) 

(6.15) 

(6.16) 

Proof Clearly 

G. Last 

~,=a(A x Bin4: A~.~(B,,i), B~,j~_B,,.~, m>=n, i,j>= 1), 

o/g.-={Asf~-| f :  11~ =0  mod R}. 

= u : g ) ,  

~ ( r n )  ~ - - ~ ( r n +  1), ~ n ~ + l ,  

U 
n > l  

T~f is ~-measurable for all fsF.  Since A ~ ( T ~ )  implies 
a representation IA- - - -T~+g,  where g - -0modR,  we obtain 

(T~) ___ o-(Nn • .//7). Conversely it is obvious that ~ ___ N(Tn) and the inclusion 
a ( ~  ~ Jg)__ ~(T~) follows easily from the property (6.5) of a projection oper- 
ator. In order to prove the first relation of (6.15) we take an f s F  with 
f =  T~fmod R and obtain from (6.11) 

T~+ 1 f =  T~+ 1 T~f=TJ=fmodR.  

The other relations are obvious from the definitions. [] 

For any f~F we denote 

(6.17) B (f).'= {lira inf T~ f =  lira sup T, f}, 
n--+ co ~ o o  

(6.18) T f,= t~(s) lim inf T~ f 
tl--* oo 

and note that B(f) and Tf  are ~-measurable. Furthermore we denote 

(6.19) R,,={yeR: C , I ~  {Cvr.l~: v~R, n~N}}, 

(6.20) Jg,  ..= {A E ~- | f :  ~A =0  mod R,}, 

where C, ]~  is the restriction of C, onto ~. 
The following result is the first main step towards the proof of Theo- 

rem 3.4. 

Theorem 6.3 The mapping T is an R,-projection and we have 

(6.21) ~(T)  = a (~  w ~ , ) ,  

(6.22) T~Tf=TnfmodR, f~F, n~lN. 

The proof of Theorem 6.3 is based on the following lemma. 
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Lemma 6.4 (i) Let #~R. Then #eR* iff 

(6.23) C.1~ 4. { CvTn[~: veR, neN, Cv(f2 x X)= 1} 

(ii) Let m~N, p~R, f eF  and suppose that C,(P x X) = 1. Then 

(6.24) Ec, Tm[f[~] = T,f C,r -a.s., n>m, 

(6.25) Ec, r,~[fl~] = lira T~f C, Tm-a.s. 
n ~ o o  

Proof of Lemma 6.4 (i) This follows easily from Lemma 6.1. 
(ii) In view of (6.14) it suffices firstly to show that Ec, Tm[f[~(T~)] 
=TJCu-a . s .  for n>m. Take a g e F  with T,g=g.  Then (6.4) and (6.11) 
provide 

Tm(g T~f)= T m T~(g-f) = Tm(gf) modR 

as desired. The second relation is now a consequence of (6.15), (6.16) and 
the martingale convergence theorem. [] 

Proof of Theorem 6.3 It is illustrative enough to prove the properties (6.3) 
and (6.4) of a projection. First we note that on account of Lemma 6.4 

(6.26) JIB(s) = 1 mod R , ,  

(6.27) Tf=Ec, Tm[fl~ ] CuTm-a.e. if C,(O x X)= i. 

Let f eF  satisfies f =  1 mod R . .  In particular, for p e r  and m e n  with C,(Y2 
x X) = 1 we have f =  1 Cur-a.e. and we derive from (6.27) 

Tf=Ec, T,,E1 [~] = 1 C, rm-a.e. 

Since {Tf:# 1} is predictable we obtain from (6.23) the desired relation 
JI {Tf 4= l}=Omod R*. 

For f g e F  and #, m as above we conclude in virtue of (6.27) Curm-a.e. 

r ( f  Tg) = EC~,T,~ [f  Ec, r," [g[~]  [~] 

=Ec, T,~[ f]~] EC,~Tm[g[~-~-[ =(Tf)(Tg). 

The set A:={r(fTg)4=(Tf)(Tg)} is predictable and (6.23) implies JIa 
= 0 mod R*, which was to be shown. 
(ii) Let us assume that f is predictable. Then (6.27) implies Tf=f mod R . ,  
i.e., Tf is N(T)-measurable. Since J / t . _ ~ ( T )  by definition, we have 
o-(~ w Jt.)_c N (T). The converse inclusion follows as in the proof of (6.14). 
(iii) Let f eF and /~eR with C , ( f 2 x X ) = l .  Equation(6.27) implies 
(#T,, Tf)=@T~,f) .  In view of (6.10) we therefore have (#, T~Tf) 
= (#, T~f) and Lemma 6.1 implies the assertion. [] 

Later we will need the following characterization of R*. 
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Lemma 6.5 Let #~R. Then # e R ,  iff lim T , f = f  Cu-a.e. for all predictable 
f~F. ~-,~o 

Proof. The necessity of the stated condition is proved in Theorem 6.3. The 
converse direction follows from (6.23) and bounded convergence. [] 

Step 3 In this and the following steps we will take advantage from the 
discrete nature of our filtrations. In order to handle both cases simultaneous- 
ly we set in case of (2.6) and (2.7) 

~x.'=Fx 4~, ~B.'=F8 4~, x~X, B E ~  

and in case of (2.11) and (2.12) 

~,=r~ ,  ~..=r~, x~x, u ~ .  

For m e n  we define the predictable sets 

(6.28) vm..= {(o~, ~): ~x(~o)= r 

where the set Bin(x) is the unique element of {Bm,j:j= 1, 2, ...} containing 
xeX. Consider a predictable f eF .  In view of Lemma 2.6(ii) it has to be 
of the form f(co, x)=g(~(co), x) for a suitable measurable function g. By 
definition of Ym we have 

(~r,, f)(x) = ~ 11 {x ~ Bin,j} ~ {~x = ~B~,j} g (~ .~ ,  X), 
J 

which is a product of l r ~  with a ~m-measurable function. Therefore we 
can deduce from (6.4) and (6.14): 

Lemma 6.6 For all m e N  and predictable f e F  

(6.29) lly m Tm l]-ymf = ~Ymf  T,, ~r,, mod R. 

In view of (2.4) and (2.5) we have 

(6.30) Y , , T o •  as m--.oe. 

The Lemmata 6.5 and 6.6 motivate the definition 

(6.31) A,  .'= {lim T,, i r ~  = 1}. 

This set characterizes R ,  as can be seen from Lemma 6.5, Lemma 6.6 and 
Eq. (6.38) below. 

Theorem 6.7 Let #eR. Then # e R ,  iff C,(A~,)=0. 

For n > m we define R-measurable sets (cf. (6.13)) 

Ym,n:= U {~B.,i = ~Bm,j} X Bn, i, 
i,j:Bn, i~ Bm,j 
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and note that Yin,, ~ Yin as n ~ oo. 

Lemma 6.8 Let f e F  and m, n ~ N  with n>m. Then 

(6.32) ~r,, T, f=Irm Tin~rm,,f rood R, 
r,, ~r,,,, 

where 0/0 is defined by O. 

Proof Using the separability of ~ and the monotone class theorem, the 
result can easily be derived from a Lemma of Papangelou (1974) which 
states that for B, C E 5 e with B ___ C and for an integrable random variable X 

(6.33) "~ {~B = #c} E [ t  {~B = ~c} X[#~] 

= t { ~ n = ~ c  } E [ ~ { ~ = ~ c }  Xl~c] P-a.s. 
P(~.  =r  ~c) 

We note here that 

(6.34) {#8=~c}-~{P(~n=r P-a.s. [] 

Inserting into (6.32)f= ~r.  or f =  llr, " and taking into account Y,.,. n I1. = Yin 
for m < n we obtain in particular 

(6.35) ~y Tn~lr=]lym Tm~r~ , m o d R ,  n>m 
Tm llrm,. 

Tmllr" modR,  n>m. 
(6.36) t r "  T '~rm=lrm T i n ~ '  

For A, B e ~ | 1 6 3  r we write A c _ B m o d R  if tA__<llBmodR and we write 
A = B m o d R  if A~_BmodR  and B~_AmodR.  With the aid of (6.35) and 
(6.36) it can be shown in a few lines that 

(6.37) A . =  u (~{T,~r  > 0  } m o d R ,  
i n  t l > m  

(6.38) A.  = { lim lim T, llr, " = 1} mod R. 
m - - +  oo n ---~ oo 

Step 4 We denote the class of all null-arrays of nested 5P-measurable parti- 
tions of X by L~" and want to show that the results of the preceding steps 
are essentially independent of ~ ,  which was fixed in Step 2 and Step 3. 
To denote the dependence on N we write T, ~, T ~, R .  ~, A.~ ... instead of 
T., T, R . ,  A . . . .  For M=({B~,~: i->_' 1})~>,e~ e and cg=({C.,~: i>I}).>__~LY 
we denote by NAcK the unique element @=({D.,~: i>I}) .>~6o~ with 
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{D,,~: i>I}={B,,~c~C,,~: i , j>l}. Then it is 
that 

(6.39) T~T~f=Tm~U modR,  n>_m. 

Lemma 6.9 Let ~, cg ~ W. Then 

(6.40) ~ -  A,  - A,  mod R, 

(6.41) ~ -  R, - R , .  

Proof Let ~=({D, , i :  i>  1}),=> I ' = N  A ~. Similarly as in Lemma 6.8 we may 
derive from (6.33) and (6.34) 

(6.42) 

and 

(6.43) 
where 

f ~ , , T ~ r  =f~,, Tmllr~ modR,  n>m, 
T~L,. 

fm,,< t {T~fo,,>O} mod R, 

f..,.,=li{(~o, x): ~,,,.x)(o))=~...(~)(co)}, n>m.  

G. Last 

obvious from the definitions 

Therefore we have 

Ec~ rg [ - f l~]  = T~f  C~, T~-a.s. 

With the help of (6.37) we can now derive ~ A,  = A ,  modR.  Then we have 
also ~ A,  = A ,  mod R and (6.40) follows. The relation (6.41) follows from 
(6.40) and Theorem 6.7. [] 

We may now write R ,  instead of R ,  ~, ~ e Y ' .  

Theorem 6.10 Let ~,  c g ~  and f~F. Then 

(6.44) T~f= T e f  rood R , .  

Proof Again we define ~ as in the proof of Lemma 6.9. Let f, g~F  and 
suppose g to be predictable. Since T g is a R,-projection according to Theo- 
rem 6.3 and (6.41), we conclude from T~g=g rood R ,  

(6.45) g T~ f= T ~ g f  mod R. 

Let #~R with C~(~2 x X)= 1 and take m~iN. Since by definition # T ~ R ,  
=R,, we obtain from (6.39) and (6.45) 

(# Tff , g T~ f ) =(#, Tff T~ g f ) = lim (#, T,, ~ Tff g f ) 
t l  ~ o o  

=<#, Tff g f ) = ( #  Tff , g f ) .  
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On the other hand, by (6.27) 

EC.T~[.FI~] = T~U C. Tff-a.s. 

and, consequently, 

Now (6.23) finally implies 

T~ f = T~ f C. T~-a.s. 

T~f= T~f  mod R , .  

By symmetry this remains true with ~ replaced by cg and (6.44) follows. [] 

In order to summarize our results in Theorem 6.12 below we take some 
(g=({C,,i: i>  1}),~ 1 e l f  and define for f eE  

(6.46) f*  ..= Te l  

We restate the definition of R, in the equivalent form 

R* = {#eR: lim T,e~r = 1 Cu-a.e. } 
n - - +  oo 

and note that Theorem 6.7 implies: 

Lemma6.11 (i) Let Ae~-| Then AeJg,,  (i.e. A = 0 m o d R , )  /ff 
A _ A~ mod R. 
(ii) We have f =  g rood R, for f geF iff ~A,f= ~A, g mod R. 

Theorem 6.12 (i) The mapping f~--~ f*  is an R,-projection. 
(ii) f= f*  rood R* iff there is a predictable ge F with f = g  rood R,,  i.e. ta, f 
= ~ a .  g m o d  R. 
(iii) For any ~=({B, , i ,= i=  1, 2 . . . .  }),_>ae~ 

f*(c~, x)= lim ~ { x e B , , i }  E[f(x)l~(B,a)](~o) R,-a.e.(o, x). 
n'--~ ~  i 

Step 6 All the properties in Theorem 3.4 are implied by Theorem 6.12 and 
the following observation. 

Lemma 6.13 Assume Z(F). Then A, = ~2 x X mod R and, consequently, R 

Proof We define 

Y(B),=(']{~=~.}={~(~F~\FB)=O}, BeS~, 
x e B  x e B  

Y,= ~ {P (Y (B.. i) 1~ (B., i)) > 0}, 
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where ~=({B,,i: i=1, 2 . . . .  }),>__le~. By Z(F) we have P(Y)=I.  
more 

and therefore 

Further- 

i 

>=Z ll-{xeSn,i} P(Y(B,.~)IW(B,.i) 
i 

Yx X__ {T~ 2r~ >0}. 

Since Y• X= f2 x X rood R we obtain the first assertion from (6.37). Theo- 
rem 6.7 yields the second assertion of the lemma. [] 

Proof of Example 3.2 We do the case (2.6), (2.7). The other case can be 
done with obvious changes. 

Let Be5 P and YeY(B)  with P(Y)>0. We have to show that 
P(Yc~{~(FB*)=0})>0. Since P(T(FB*)<oe)=I, we find an integer k with 
P(Yn {T(FB*)= k})>0. Using the fact that FB* �9 and FB~ are conditionally 
independent given T and the definition of a p-thinning we obtain 

P(Yc~ {~(FB*)=O})>=E11{T(FB*)=k } P(Yn {~(FB*)=0} IT) 

=E ~ {T(FB*)=k } P(Y[T) P(T(F~*)=O[T) 

- -E~ {T(FB*)= k} P(Y] T)(I _p)k 

=(1-p)k p(yc-~{T(Fn*)=k})>O. [] 

7 Proof of the Theorems 3.3 and 4.1 

Let N=({B,,i: i>l}) ,=>le~ and recall by a look at (6.46) that f*, feF,  
was defined with the aid of a fixed ~r i = i ,  2 . . . .  }),_>le~. We use 
the notations of the Steps 2 and 3 of Sect. 6, where g was fixed. 

Lemma 7.1 Let FI(~) be the set of all predictable f e F  with values in [0, 1]. 
Let I~eR. and assume Cu(~2 x X)=Eu(X)< oe. Then 

(#, T . f ) ~ ( p , f )  as n~oo,  uniformly in feVl(~) .  

Proof For f e F  1 (~) and meN we have 

Jllrm Tm ~rm f -  Tmf [ <= [llrm Tm Irmf  - llrm T~f [ 

+11 Y.~ Tin f<-- [llr~ Tm ~rmf -- ~r,~ Tm llrmf [ 

-~-~Ym Tm~'l%f'4-~-Y~ Tmf < Tm~'r~ + ~r~ 

and, analogously, 

[llymf T,, l l rm-f  l <= T,~ 2y~ + lly~ . 
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Hence (6.29) yields 

<#, ]f-- Tmf[) < (#, [ f -~rmf  T,,~rm[) 

+ <#, [~rmf Tm~r~-~r , ,  Tmf~rm[) 

+ <#, ]lIrm Tmf~r,.-- Tmf[) 

<2<#,  ~ r~+  T,, ~r~.>. 

T h e  latter term tends to zero in view of (6.30), Theorem 6.7 and (6.31). [] 

Theorem 7.2 Let #eR, .  Then there exists a P-almost surely unique random 
measure #* e R,  which satisfies 

(7.1) <#*,f} = <#,f*} 

as well as the convergence (4.1). 

Proof. By e(A).'=<#, (tA)*} we define a measure e on ~2 x X. Since f2 x B 
is predictable for BEY;, we have in particular 

e(~2 x B ) -  <#, ~,• = E #(B), 

which is finite for bounded B. We can now conclude the existence and 
uniqueness of #* from ~(" x B)~ P and a well-known result on disintegration 
(cf. e.g. Theorem 16.3.3 in Kallenberg, 1983). 

The relation #* e R ,  follows easily from the property (6.5) of a projection 
in connection with Theorem 6.12 and the definition (6.19) of R , .  To prove 
the second assertion of the theorem we choose a bounded set A e f  and 
may assume without loss of generality that # ( - ) = #  (. c~ A) and, consequently, 
Cu(QxX)=E#(A)<oe. We want to apply Lemma7.1 and note that 
{r~rxB: Ye~, B E f }  _~FI(~). Taking into account (6.10), T ~ f = f  * mod R ,  
for f e F  (cf. Theorem 6.10) and (6.22) we obtain 

E :fir # T, (B) = <# T,, ~r • B) = <#, T, ~r x R> 

= <#, T. T ~  r • ~> ~ <#, T t r  • B) 

= <#, (~r • = <#*, ~r  • s> = E tr /~*  (B), 

where the convergence is uniformly in Ye~, ~ and Bz~.  This easily implies 

~ T ~ ( B ) ~ # * ( B )  

uniformly in B e X  and (4.3) follows from the representation (6.9). [] 

We call I~eR, predictable if p = # *  P-almost surely. This is in accordance 
with the definition in Sect. 2 as shown by the next theorem. 

Theorem 7.3 Let geR, .  Then # is predictable iff it satisfies (2.13). 
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Proof Let us assume (2.13) and choose Y s ~  and B~{B,,i: n, i> 1}. Using 
(7.1) and Theorem 6.12(iii) we obtain by dominated convergence 

Cu.(Yx B) = (#, (~r • B)*> 

= ( # ,  lim ~ P(YI~(B.,,))~B..> 
n-*oo i : B n , ~ B  

= lim ~, EP(YIg(B.a)) #(B.,~) 
n ~  i:Bn,  i~_B 

= lim ~ E~r E[#(B~,i)I~(B,,~)] 
n--->co i:Bn, t ~  B 

= E ~ y  #(B)=Cu(Yx B). 

The monotone class theorem implies Cu= Cu, and hence # = g *  P-almost 
surely. The other part of the theorem follows from Theorem 7.2. [] 

In view of Lemma 6.13 the Theorems 3.3 and 4.1 are special cases of the 
next more general result: 

Theorem 7.4 (i) Let fEF. Then f*r  is the mod R, unique predictable ele- 
ment of F satisfying (# , f*>  = ( # , f >  for all predictable #zR, .  
(ii) Let #~R,. Then #* is the P-almost surely unique predictable element 
of R,  satisfying (#* , f>  = (#, f  ) for all predictable f sF. 

Proof (i) Let feF. By (7.1) we have ( # , f * > = ( p , f >  for all predictable 
# e R , .  Assume that an other predictable gsF also satisfies ( # , f >  = (#, g> 
for all predictable # ~ R , .  Then we obtain for an arbitrary vsR,  by Theo- 
rem 7.2 and Theorem 6.12(ii) 

<v,g>=<v*,g>=<v*,f>=(v,f*>. 

This yields g = f *  mod R ,  as desired. 
(ii) Let pER*. Then ( g , f >  = (g* , f>  for all predictable f e F  as noted above. 
In particular we have E11Hp(B)=E11tt#*(B ) for B~5 P and Heo~(B) and 
hence (see also Remark 4.2) 

E [#(B) I ~(B)]  = E [#* (B) I Y(B)] P-a.s. 

Therefore Theorem 7.2 entails the P-almost sure equality (#*)*=/~*, i.e., 
the predictability of #*. 

Let v be another predictable element of R ,  which also satisfies ( # , f >  
= (v , f>  for all predictable f Then we obtain for an arbitrary geF :  

<v,f) = <v*,f> = <v,f*> = <#,f*> = (tz*,f>. 

Hence C~ = Cu, and v = #* P-a.s. follows, [] 
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Remark 7.5 Consider  the assumpt ions  and nota t ions  of Theorem 3.5. It 
can be seen f rom the p roof  of  that  theorem that  

A. = {~1l {X~Bk} qlr~\rBkl,(~o(F~\FB~)=0]Fs~ 4~) > 0} m o d  R. 
k 

The next simple example shows that  A.=Y2 x X m o d  R .  is not  satisfied 
in general. Hence, one has to look  for alternative methods  in order  to 
define the no t ion  of  a predictable project ion also outside of  A . .  

Example 7.6 Consider  the si tuation of  Example  2.2. Let X be a r a n d o m  
element of  X and assume that  ~ ( B ) = ~  {XeB}, B ~ .  Then 

{(co, x): X(co)= x, P(X=x)=O} ~_A, m o d  R. 

Proof The event {4~(B c) =0}  = {XeB} is an ~ ( B ) - a t o m  for all B e ~  There-  
fore we may  assume 

P(. I~(B))- P({XeB} c~ .) on {XeB}. 
P(ZeB) 

It  is easy to verify that  

P (~x = ~B,(x) I if(B,, (x)))(co) = P (X e (B, (x)\ {x})l Y(B, (x)))(co) 

tends to I as n---, oo if X (co)= x and P(X = x)= O. This means  (co, x)e  A , .  [ ]  
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