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Summary. Let (X(t), tsS) be a real-valued stochastic process with IP(X(0) 
= 0 ) = 1  and P ( l i m  X ( t ) = o o ) = l .  In this paper  we are interested in the 

t --+ cz3 

reluctance of  such a process to tend to infinity. This entails determining 
the rate of  escape of  the associated process (infX(s), teS), the so-called 
future infima process, s>=t 

Mathematics Subject Classification (1990)" 60J65, 60G17, 60J15, 60F05 

1 Introduction 

Let (X(t), teS) be a real-valued stochastic process with I P ( X ( 0 ) = 0 ) =  1 and 
lP(lim X(t) = oe)=  1, where S m a y  denote  either [-0, ~ )  or  the nonnegat ive  

t ~ o o  

integers. In  this paper, we are interested in the reluctance of  such a process 
to tend to infinity. As a measure of  this reluctance, we int roduce the future 
infima process associated with (X (t), t~S): for teS, let 

d f  

I (t) -- inf X (s), 
s > t  
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we note that (I(t), t~S) is an increasing process which tends to infinity 
as t ~ m. Primarily we are interested in comparing the rates of escape of 
X(t) and I(t); consequently, we study the lim sup behavior of X(t), I(t) 
and X ( t ) - I ( t )  as t ~  ~ .  

The following terminology will be useful. Let ~0: lR + ~P,.+ be nondec- 
teasing. We say that q ~ ( X )  (the upper-class with respect to the process 
(X(t), t~S)) if almost surely X(t)<=cp(t) for all t sufficiently large. We say 
that ~p~5~(X) (the lower class with respect to the process (X(t), teS)) if 
almost surely X(t )> q~ (t) infinitely often as t ~ ~ .  We will denote the upper 
and lower classes with respect to the process (I(t), t~S) by ~r and 5e(I), 
respectively. Whenever possible, we will compare ~//(X) and ~//(I) as well 
as ~ ( X )  and 5~(I). Since l(t)<=X(t), we always have ~#(X)c~( I )  and 

(I) c 5~ (X): we will show that the containments can be proper. 
df  

Throughout,  let L(x)=L~(x)=ln(xve)  and, for k>_2, let Lk(x ) 
df  

= L(Lk- 1 (x)). 

In Sect. 2, we consider lRl-valued random walk with positive drift. Let 
~, ~1, ~2 . . . .  be independent and identically distributed random variables. 

df  

We assume that IP(~ < 0)> 0, ]E(~)> 0 and #( t )= IE(dr the moment generat- 
df 

ing function of r is defined in a neighborhood of the origin. Let Xo = 0 
df  df  

and, for n > l ,  let X , = r  and I , = i n f X j .  In our first theorem, 

we demonstrate that J>=" 

X , -  I ,  1 
(1.1) lira sup - a.s., 

. ~ ~ L ( n )  Irl 

where r is the unique negative solution to #( t )= 1. 
In Sect. 3, we develop related results for Brownian motion with drift. 

Let (B (t), t > 0), denote a standard, one-dimensional Brownian motion and 
let f :  ~ +  ~ ] R  + be nondecreasing with f ( 0 ) = 0 .  Let 

df  d f  

X l ( t ) = B ( t ) + f ( t  ) and I f ( t )=infXl( t ) ,  
s>_t 

for all t > 0. F o r f ( t )  = m tL p (t) with m > 0 and p > 0, we demonstrate that 

(1.2) lim sup X l ( t ) - I I ( t )  1 
- -  a . S .  

t-~ ~ L i -P(t)  2m 

In the case p=0 ,  this is the Brownian analogue to (1.1). 
The relative proximity of Ii(t  ) to Xl ( t  ) implies that (I�92 t>O), suitably 

normalized, inherits all of the classical limit theorems from (Xf(t), t>O). 
In fact we can say more: let ~: N+ ~ I R  + be nondecreasing and let ~p(t) 
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=f(t)+l~ttO(t). By Kolmogorov's  integral test for Brownian motion (see 
It6 and McKean (1965)), one obtains 

~ ( x : )  
oO 

if and only if ~ t -  1 ffJ(t)  exp(-- q/z(t)/2) dt < oo. 
1 

However, with probability one X : ( t ) -  eL 1 - P(t) < I :(t) < X :(t) for t sufficient- 
ly large and c >(2m)-1.  As a consequence, 

~oG~(I:) if and only if ~ t -  1 0(t) e x p ( -  if/2 (t)/2) dr< oo. 
1 

Using the integral test of Feller (see Feller (1970) or Bai (1989)), a similar 
conclusion can be drawn for the random walk examples of Sect. 1. 

In Sect. 4, we consider a transient Bessel process, i.e., one-dimensional 
positive diffusion, (X(t),t >0), determined by the local generator 

df 1 ,, 

where d > 2. For integer d > 3, the radial part of a d-dimensional Brownian 
df 

motion is such a process. Let I ( t )=  inf X(s). Then 
s > t  

X(t)-I(t)  I(t) 
(1.3) l i m ~ p  ~L2(t) lim~sup ~ 1 a.s. 

One consequence of this development is that ( 1 - e ) ~  ln teSe(I)  for 
every e>0.  Moreover, in contrast with the one-dimensional results of 
Sects. 1 and 2, this suggests that (X(t), teS) recovers from large excursions 
from the origin. In the same theorem, we give sufficient conditions (in terms 
of an integral test) for inclusion in ~ (I): in particular, this shows that ~ (X) 
is a proper subset of q/(I). When d = 3, the results of Sect. 4 can be obtained 
from a theorem of J.W. Pitman (see Remark 4.1.1). 

Finally, in Sect. 5, we discuss analogous results for high-dimensional 
2gd-valued random walk (d=3). Let ~1, ~2  . . . .  be independent identically 
distributed Za-valued bounded random variables with zero mean vector 
and identity covariance matrix. Let (S,, n>O) be the associated random 
walk, which we assume is strongly aperiodic. For 0 <  t_< 1, let j,(t) denote 
the element of C([0, 1]) obtained by linearly interpolating the points 

{(kn -1, n 1/2 inflSJ); O<_k<=n}. 
j>=k 
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We demonstrate that j , ( .  ) converges weakly in C([0, 1]) to the stochastic 
process 

(infX~; O__<t=< 1), 
s > t  

where (X(t), t>0 )  is the radial part of a standard d-dimensional Brownian 
motion. It should be noted that this result cannot be obtained directly 
from Donsker's invariance principle. In addition, this section includes laws 
of the iterated logarithm which are analogous to the Brownian motion 
results of Sect. 4. 

2 A transient walk on P~I 

Let 4, 41, 4 2 , - - -  be a sequence of independent and identically distributed 
df 

]Rl-valued random variables with IP(4 < 0)> 0 and IE(4)> 0. Let Xo = 0 and, 
df n 

for all n > 1, let X ,  = ~ ~i. Of course this defines a transient random walk 
i = l  

on IR 1. We define the associated future infima process; that is, for n > 0  
let 

df 
I ,  = inf Xj. 

j>-n 

df t~" 
For t e N ,  let #(t)=]E(e ), the moment  generating function of 4. We will 
assume that # ( . )  is defined in a neighborhood of the origin. We observe 
that #'(0) = E(~) > 0. Since P(4 < fi) > 0 for some ~ < 0, p(t) > e t~ IP(4 < 6) for 
t < 0. Moreover, since t~--,#(t) is convex, it follows that there exists a unique 
negative solution to the equation #( t )=  1, which we will denote by r, i.e., 
r < 0 and # (r) = 1. 

The main result of this section is: 

Theorem 2.1 With probability one, 

X , - - I ,  1 
lim.~sup L(n) Ir[" 

Naturally, the proof of Theorem 2.1 is composed of upper and lower bound 
arguments. The upper bound will follow from a gambler's ruin calculation 
for (X,, n > 1), which is the content of the next lemma. 

Lemma 2.2 For all n>O and b>0 ,  F(Xn-I,>=b)<=e rb. 
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Proof First we make a preliminary calculation. Let fl < 0 and e > O. Define 
stopping times 

df  df  

zp= min{k:Xk<--fl} and z~=min{k :Xk>a} .  

Let z = z~ A z~. 
Since #(r )= 1, (e rx", n >0)  is a mean one, positive martingale. By Doob's  

optional sampling theorem we obtain 

1 = 1E(e rx, I v~ < zp) ~'(~, < ~p) + E(erX~lv# < ~) lP(~ < ~,) 

> lE(e~X~lv ~ < r~) lP(vp < ~). 

Since {zp<z,} implies rX~>rfl,  it follows that E(e'X']z=zB)>e ~. By send- 
ing e to infinity, we obtain 

(2.1) IP(T~ < oo) < e -  ~. 

To finish the proof, observe that 

D 

X, - I ,  = - inf (X j--  X,) = -- I o . 
j>=n 

Consequently, by an application of (2.1), we obtain 

�9 (X.-I.>b)=lP(Io<= --b)=]~('~_bK~)~e rb, 

which proves the 1emma. []  

We will need some additional terminology to prove the lower bound in 
Theorem 2.1. Let Y, I11, Y2 . . . .  be i.i.d, random variables with E ( Y ) = 0  and 

df 
M(t) dfE(e re) defined in a neighborhood of the origin. Let S , =  I11 + ... + Y, 
for all n >  1. Let p(x) denote the Chernoff function associated with - Y ,  
i.e., 

df 
p (x) = inf e- ' : ' lE(e t( - i,)) 

t 

= inf e t~ M (t). 
t 

For  c > 0, let 

df df  

(2.2) a(c)=sup{x: p(x)>=e -1/c} and q)(n)=[cL(n)J 

(where LxJ denotes the integer part of x). Then 

(2.3) lira inf S"+~  a(c) a . s .  



342 D. Khoshnevisan 

This is a modif ica t ion of the celebrated Erd6s-R6nyi  law of large number s  

lim min  S, + ~(,) - S, _ a (c) 
, ~  0 ;k_<,-~o(,) (p(n) 

a . s .  

(see, for example,  T h e o r e m  2.4.3 of  Cs6rg6 and  R6v6sz (1981) and  its proof). 

Proof of Theorem 2.1 To prove  the upper  bound,  let 

Fk = {Xk-- I~ > -- (1 + e) L(k)/r}, 

for e > 0  and k=>l. Then,  by L e m m a  2.2, lP(Fk)<k -(1+~) and ~'  IP(Fk)< oe. 
By the Borel-Cantel l i  l e m m a  ~(Fk, i .o .)=0.  It  follows tha t  k 

l im sup X , -  I, < _ (1 +e)  

. ~ o~ L ( n )  r 
a . s .  

We obta in  the desired upper  b o u n d  u p o n  letting e --* O. 
df df df 

Let  m = l E ( O  and let Y ~ = ~ i - m  for all i > l .  Let  S,= YI +...  + Y, for 

all n >  1. Let  c > O  and let a(c) and q)(n) be as in (2.2) 
Observe  that  

Consequent ly  

I,<= X,+e(,)=S,+~(,) + m(n + ~o(n)). 

X , - - I , >  -(S,+~(,)-  S,)-mqo(n). 

Since q)(n)~ cL(n), by (2.3) we obta in  

lira sup X , - I , >  _ c lira inf S, + ~ ( , ) - S ,  
. ~  ~ L ( n )  . ~ o ~  ~o(n) 

=c(a(c)--m) a.s. 

CD/  

For  the appropr i a t e  choice of  c, we will recover  the desired constant .  
df df 

Let  7 =/~' (r) and  let 2(0 = log(e ~t/~ (t))= - 7  t + log/~(t). Then  2 ( - )  is con- 

vex 
and  2 ' ( 0 = 0 .  Consequent ly ,  2 ( t ) > ) ~ ( r ) = - y r  for all t, which is to say 
inf e -  ~t#(t) = e -  ~r. As a consequence 

t 

p (m--  7) = inf e (m - ~)* IE (e t Y) 
t 

= i n f e - ~ # ( O  
t 

: e  
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Let c=l / (Tr  ). Then it follows that p(m-7)=e-~r=e-1 /c ,  which says that 
a((7 r ) -1 )>  m - ~ .  Hence c(a(e) -m)> 1/[r[. We conclude that 

lim sup X , -  I ,  1 _>-- 
. ~  cO g(n)  - I r l  

a . s .  

which is the desired lower bound. []  

3 One-dimens ional  Brownian mot ion  with positive drift 

Throughout  let (B(t), t>O) denote a standard, one-dimensional Brownian 
motion. Let f :  P,+ ~ I R  + be a nondecreasing function with f ( 0 ) = 0  and 
let X:( t )=B( t )+f ( t ) .  We define the future infima process associated with 
X::  for t > 0, let 

I :  (t) = inf X :  (t) 
S > t  

The main result of this section follows: 

Theorem  3.1 I f  f ( t )=mtLP(t)  for m > 0  and p>O, then 

lim sup X:,t,-I:,t,(}(~ 1 
- -  a . s .  

,-+ cO L 1 -P(t)  2m 

Observe that when p = 0 we obtain the Brownian motion analogue to Theo- 
rem 2.1. Setting p =  1 in Theorem 3.1, we obtain: for f ( t )=mtL( t ) ,  

1 
lim sup(X : ( t ) -  I : ( t ) ) -  2m 

t - + c O  

a . s .  

In this case, no renormalization is necessary. 
When p > 1, X : ( t ) -  I:(t) ~ 0 with probability one as t ~ oe. Theorem 3.1 

gives the rate with which this difference tends to zero" 

1 
lira sup L p- 1 (t) (X f (t)-- I f  (t)) = 2 m  

t ~  CO 

a . s .  

As with Theorem 2.1, the proof  of Theorem 3.1 is composed of upper and 
lower bound arguments. The upper bound will follow quite naturally from 
a gambler's ruin calculation, which is the content of our next lemma. 

Lemma 3.2 Let b > O. I f  f '  > 0 and f "  > 0 eventually, then, for t sufficiently 
large, 

( X  f (t) - -  I s (t) >= a) <= e -  2 S'(t)~. 
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Proof  First  we consider  the case f ( t ) = m t ,  where m > 0 ;  the general  case 
will be ob ta ined  f rom this. 

Observe  that  

X f  (t)  - -  I f  ( t )  - -  - i n f  ( B  (s )  - -  B ( t )  + m (s  - t)) ,  
s > t  

which indicates that  X : ( t ) - I : ( t )  has  the same dis t r ibut ion as - 1 : (0 ) .  By 
I t6 's  formula ,  ( e x p ( - 2 m X : ( t ) ) ,  t>O) is a m e a n  one posit ive mart ingale .  
Consequent ly ,  by a gambler ' s  ruin calculation,  

(3.D �9 (I:(0) < - b) = P ( X : ( "  ) ever hits - b) = e -  2rob, 

which is wha t  we wished to show in the case f ( t ) =  mt. 
In  general, observe  tha t  the eventual  convexi ty  and  mono ton ic i ty  of 

f implies 

f(s)--f( t)>_>_f'( t)(s-t)  with f ' ( t ) > 0  

for all s > t sufficiently large. Thus  

X :  (t) - I :  (t) = - inf (B (s) - B (t) + f (s) - f (t)) 
s > t  

___< -- inf(S (s) - S (t) + f '  (t) (s--  t)). 
s > t  

This last r a n d o m  var iable  is dis t r ibuted as - I g (0 ) ,  where g ( s ) = f '  (t)s. Con-  
sequently,  by  (3.1) 

IP(X:(t)  - I:( t)  > b) < lP(Ig (0) < - b) = e -  2:'(oh, 

which verifies the 1emma in question. [ ]  

To  obta in  the lower b o u n d  in T h e o r e m  3.1, we will use a theorem of H a n s o n  
and  Russo  on the increments  of  the Wiener  process (see T h e o r e m  2.2 of  
H a n s o n  and  Russo  (1983)), which we will briefly describe. 

Let  at be measurab le  with 0 < at < t for all t > 0. Let  

bt = (2 at (log (t/at) + log2 (t)))-1/2. 

Let  s denote  the set of  limit points  of  bt(B(t)--B(t--at)) .  If  at t~--*oo as 
t - ~ o o  for all e > 0 ,  then, by the t heo rem of H a n s o n  and  Russo,  
~'(Sq -- [ -  1, 1] ) = 1. In  part icular ,  

(3.2) l im i n fb t (B( t ) - -B( t - -a t ) )=  -- 1 a.s. 
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Proof  o f  Theorem 3.1 It  is easily checked that f ( t ) = m t L P ( t )  with m > 0  
and p > 0 ,  satisfies the hypothesis of Lemma 3.3. In fact, for t sufficiently 
large, 

f '  (t) = m L  p (t) + m p L v-  1(0. 

d f  

Let tl =1  and, for k > 2 ,  let 

df 1 
tk =tk_ 1-1 Lp+ l(k) .  

Consequently, t k ~ k /L  p + l(k) and f '  ( tk)~ mLP(k) as k ~ oo. As a consequence, 
by the mean value theorem, 

(3.3) 

For  k => 1, let 

f ( t k+ l ) - - f ( t k )=O(1 )  as k--+oo. 

Dk= sup ( B ( t ) - B ( t k ) ) .  
tk<--t<=tk+ 1 

We will show that Dk is small as k ~ oe. 
Let e > 0 be given. Then, by the reflection principle, the Markov  property 

and Brownian scaling we obtain 

]P (D k > e) = 2 ]P (B (tk + 1 - -  tk) > e) 

= 2P(B(1) > e/ t]/~k-- tu+ 1) 
< 2 e -  ~2L~ + '(k)/2 

where we have used the well-known estimate: for x sufficiently large, 
P(B(1) > X) =< e -  x2/2. 

We will need to consider two cases: if p = 0, then 

2 
P(D k > ~) < U~/2. 

Consequently, for ~ > ]/2, we obtain Z IP(Dk > e)< oe. By the Borel-Cantelli 
lemma, it follows that k = 1 

(3.4) lim sup O k ~ 1//2 a.s. 
k-'* az 

If, however, p > 0 ,  then ~ ]P(Ok>8)< oo for all e > 0 ;  consequently, by the 
Borel-Cantelli lemma, k= 1 

(3.5) lim D k = 0 a.s. 
k--+ oo 
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Let  q >  1. By L e m m a  3.3 

lP(X  f(tk) - I :(tk) > q L  1 -P(tk)/2 m) <= e -qL(k)-qp 

1 
~ e - q p _ _  kq , 

which is summab le  by  our  choice of q. F r o m  the Borel-Cantel l i  l emma,  
we obta in  

(3.6) lira sup X I ( t k ) - - I I ( t k )  < 1 a.s. 
k-* 0o L 1 -P(tk) = 2 m  

Finally, for tk <= t <= tk + 1 we have  

x z (t)  - I z (t)  < x z (t)  - I z (tk) 

= (B (t) - B (tk)) + ( f  (t) --  f (tk)) + ( X f  (tk) --  I f  (tk)) 

<= Dk + ( f  (tk + 1) -- f (tk)) + ( X  f(tk) -- I f  (tk)) 

In  conjunct ion  with (3.3) t h rough  (3.6), this demons t ra tes  tha t  

X y ( t ) - I f ( t )  < 1 
lira sup 

t ~  L 1-p(t) = 2 m  
a . s .  

which gives the uppe r  b o u n d  in question.  
T o  ob ta in  the lower bound,  let 

df L1-2p(t)  

at-= 2 m  2 

Since a t is nonnegat ive ,  we obta in  

Ir (t) < X r (t + at) = B (t + at) + f (t + at). 

As a consequence,  

X f (t) - I f  (t) >->_ -- (B ( t + at) -- B (t)) + f (t)--  f (t + at). 

By the mean  value theorem,  we obta in  

1 1 
f ( t ) - - f ( t + a t ) , , , - - - - L - P ( t )  as t-->oo. 

2m 

By (3.2) 

lim inf B (t + a O -  B (t) - 1 
- -  a . s . ,  

t~ oo L ~ - ; ( t )  m 
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(where we have written the increment forward in time). Consequently, we 
see that 

lim sup Xr > 1 
~-,oo L 1-p(t) = 2 m  

a . s .  

which is the lower bound in question. []  

4 High-dimensional Bessel processes 

Throughout let (X(t); t>0)  be a Bessel process of index d>2 ,  i.e., a one- 
dimensional diffusion on [0, ~ )  with local generator 

5r f ( x ) = l  f " ( x ) + @ x l  f ' ( x  ) 

for all f ~  C 2 ( [0, (30)) and d > 2 (see Revuz and Yor (1991), p. 411). For  integer 
d > 3, (X(t), t > 0) can be realized as the radial part of a d-dimensional Brow- 
nian motion. 

As with the previous examples, we consider the future infima process 
associated with (X(t), t >0), i.e., 

df 
I (t) = inf X (s). 

s > t  

It is worth mentioning that I(t) inherits scaling from X(t), i.e., for any 
c > O, (I (t); t => O) and (c- a/21 (c t); t _> O) have the same finite dimensional dis- 
tributions. Concerning the process I(t) we have: 

Theorem 4.1 With probability one: 

I(t) 
(1) limt~osup ~ 1 

X ( t ) - I ( t )  _ 1. 
(2) limt~o~SUp 2 ~ L 2 ( t  ) 

(3)Let (p(t)=]/ttfi(t) be nondecreasing in t>O and assume that t f i ( t ) ~  
as t ~ ~ .  Then 

oo 

~9(t) a-2 t -1 exp(-O2(t) /2)dt  < c~ implies q)(t)eqi(I). 
1 
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Theorem 4.1(3) should be compared with the Kolmogorov and the Dvor- 
etsky-Erd6s integral tests (see, for example, It6 and McKean (1965), 
pp. 161ff.). We shall state the latter below for convenience: 

Theorem A ( K olmogorov-Dvoretsky-ErdOs ) Let ~" N +w-~IR + be nondecreas- 
ing and unbounded as t ~ oo. For all d >= 1, 

if and only if 

lP(X(t)>~tO(t) i .o.)={O 1 

; i ~ ( t ) d  t _ 1 exp(_O2(t)/2)d t { <<_ oo 
1 O0 

Remark 4.1.1 The proof of Theorem 4.1(3) is inspired by the first half of 
Kolmogorov's test (see It6 and McKean (1965), p. 34). In it we exploit 
the analogy between first hitting times of spheres by X(t) and sup X(s), 

$--<t 

and last exit times from spheres by X(t) and the process infX(s). When 

d = 3 much more is true. Indeed, by the celebrated theorem of J.W. Pitman 
(Theorem 3.5, Chap. VI of Revuz and Yor (199I)), the process 
((X(t),I(t)),t>O) has the same finite dimensional distributions as 
((2 sup X (s)-  X (t), sup X (s)), t > 0), where (X (t), t > 0) is a 1-dimensional 

S=<t S~t  

Brownian motion. Indeed if d=3 ,  then X ( t ) - I ( t )  is a Bessel process of 
index one and: Theorem 4.1 (2) follows easily from the law of the iterated 
logarithm. Moreover, Theorem A implies the necessity of Theorem 4.1(3) 
in three dimensions. We do not have a proof for this necessity when d 4: 3. 

From Theorem A and Theorem 4.1 (3) one can easily show that for d > 2, 

X ( t ) > ~ t . ] / 2 L 2 t + ( d + 2 ) L 3 t + 2 L 4 t ,  i.o. 

while for all e > 0 

l ( t )<~t .~ /2L2  t + d L  3 t + (2+e)L4  t, eventually 

with probability one. 
Lim inf results for (1(0) are not interesting; a real variable argument 

shows the following: 

Lemma B Let ~o : lR X+ ~--~ l+ be a function satisfying: ~p(t) J, O and ]/tq~(t)T 
as t -~ ~ .  Then for any continuous function x : lR l+ ~-+]R [ for which lim x (t) = ~ ,  

x(t)<~tt~(t),  i.o. 
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if and only if 

inf x(s)<~t~o(t) i.o. 
s>t 

Hence we need only consult the lim inf results for X(t), (e.g., see Motoo 
(1959), p. 27). A simple consequence of this development is that 

I(t) =0, a.s. 
limt_,ooinf ~ t 

In conjunction with Theorem4.1, this demonstrates that the random 
sequence 

{(2 t L 2 t)- 1/2 1 (t), t > O} 

converges and clusters in [0, 1]. 
The main ingredient in the proof of Theorem 4.1 is the solution to the 

gambler's ruin problem for Bessel processes (see for example It6 and 
McKean (1965) or Revuz and Yor (1991)), 

P ( I ,  >xlX~ =y)=P(X(s )>x  for all s>  1 IX1 = y ) =  1 - ( x / y )  d - 2 .  

For d>0 ,  let 

df 2 
r~- 

F(d/2) 2 a/2" 

It is well known that the density of X1 is given by 

(4.1) 
P(Xl~dX) 

dx 
- Fe x d - 1 exp ( - x2/2) 1 to, oo) (x). 

To derive the integral test (Theorem 4.1 (3)), we will need the distribution 
of the last exit time from a sphere of radius a by a transient Bessel process. 
Let a > 0 and let 

aa=SUp{t>O: X(t)<=a}. 

Lemma 4.2 Let d > 2. 
(1) The density of I 1 is given by 

IP (I1 e d x) _ F~_ 2 x a -  3 e x p  ( - x2 /2 )  1[o, co) (x). 
dx 

(2) The density of a, is given by 

P (oo d t) F ,  E 
Aa. 2 (a/l/7)a- 2 exp ( -- a2/2 t) 1 to, co)(t)- 

dt 
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Remark 4.2.1 Observe that 11 in dimension d >  3 has the same distribution 
as X 1 in dimension d - 2 .  A similar but deeper phenomenon has been 
observed in Ciesielski and Taylor (1962). 

Proof. By (4.1), 

oo 

P(I  1 >=x)=F~ ~ IP(I 1 >=xlX 1 =y)yd-le-r2/2dy.  
x 

Thus, 
~o 

IP(I1 >x)=Fa  ~ (yd-2_xe-2) ye-,2/2dy 
x 

oo 

=(d -2 )Fa  ~ ye-3e-y2/Zdy, 
x 

by an integration by parts. Since (d-2)F~=Fa_2, the density of 11 is as 
stated. 

To verify (2), observe that {o-, < t} = {I(t)> a}, by Lemma 4.3 and scaling 
we have 

P(~a<=t)=~(Ia>-_at-1/2)=Fe-2 ~ yd-ae-r2/Zdy. 
a t  1 / 2  

We obtain the result upon differentiating with respect to t. [] 

Proof of Theorem 4.i Throughout, let F(t)= (2 tL2 (t))- i/2. Recall (see Revuz 
and Yor (1991)) that 

(4.2) lira sup F(t) X( t )= 1, a.s. 
t --* OO 

Fix ee(0, 1/2) and define stopping times as follows: 

d f  

(4.3) U (n) = inf {s > n: F (s) X (s) > (1 -- e)}. 

By (4.2) and (4.3), U(n)>n and is finite, almost surely. Moreover, lim U(n) 
= oo with probability one. 

Let us prove (1) first. By applying the strong Markov property at the 
stopping time, U(n): 

(4.4) ~(F(U(n))Iu(,)>=(1-2e))=IP(Iu(,)>=(1-2~)Xu(,)/(1-~)) 

= ~ P(Iv(,) > (1 - 2~) u/(1 - ~) I Xv(,) = u) ~(Xv(,)~du) 

= ~ IP (Io > (1 - 2 e) u/(1 - e) l Xo = u) IP (X v (.) e d u) 

= ~IP(I o =>(1-2~) u/1 - e) ] Xo =u) ~'(Xv{,)edu) 
( 1 - 2 e )  e-2 

] 
d f  

Ko(~). 
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Since U (n) > n, by definition, 

�9 (F(t) I(t)  > (1 - 2 g) some t > n) > ~'(F(U(n))  Iv(.) > (1 - 20 )  = ~c o (e). 

Therefore  for all ee(0, 1/2), 

IP (lim sup F (t) I (t) > 1 - 2 e) = l i m  ]P ( F  (t) I (t) > (1 - 2 e) s o m e  t > n) 
t ~ o o  n ~ o o  

=~o(0>0. 

By Shiga and  W a t a n a b e  (1973), (X(t))  is the same process  as (tX(1/t)).  There-  
fore, by the Blumentha l  0 - 1  law (see Revuz  and  Y o r  (1991)), the tail a-field 
of  (X(t)) is trivial. Hence  the above  deve lopment  shows tha t  for all ee(0, 1/2), 

l im sup F(t) I(t)  > 1 -- 2e, 
t - + 0 0  

a lmost  surely. Let t ing ~ ~ 0  a long a countab le  sequence we arr ive at the 
lower bound.  The  uppe r  b o u n d  is a consequence of (4.2) and  the fact tha t  
l(t)  < X(t) .  This proves  pa r t  (1). The  p r o o f  of  par t  (2) is similar. Indeed,  

(4.5) IP(F(U (n) ) (XI ( . ) -  Iv(.)) > (1 - 2e)) = lP(Iv(.) <= 2e Xv(.)/(1 - e)) 

= SP( Io  < 2 e u l X  o = u) lP(Xv~,)edu ) 

( 2 e t a - 2  

d f  

---- K 1 ( ~ ) -  

Hence  U (n) > n implies that,  

lP(lim sup F(t) (X( t ) - - I ( t ) )  >= 1 - 2e) 
t--* oO 

= lim ~' (F (t) (X (t) -- I (t)) __> (1 - 2 e) some t > n) 
n --+ oo 

> ~(F(U(n) )  (Xv(,) - I(U(n)))  > (1 - 2s)) 

= K l ( e ) > O .  

Anothe r  appl ica t ion  of the triviality of  the tail a-field of  (X(t)) establishes 
(2). 

Finally,  to p rove  (3), assume tha t  ~o satisfies the hypotheses  of  the theo-  
rem. Let  0 < a < b < oo and  let 

d f  

E = { I ( t ) > ( p ( t )  f o r s o m e  a < t < b } .  

We will es t imate  IP(E). 
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Let  a = r o < tl < . . .  < t,, = b be a par t i t ion  of the interval  [a, b]. Fo r  each 
integer 1 _< k < m, let 

df 
Ea = {I (t) => q~ (t) for some t k_ 1 < t < tk but  

I ( t )<q~( t )  f o ra l l a <_ t<_ t  k 1}" 

(o) Then E = {%(~)-_< a} u E k and 
k 1 

]P(E) = ~(%(~) < a) + ~ ]P(Ek). 
k = l  

However ,  since qo is nondecreasing,  

]V(Ek)  ~ I V ( I r k -  1 < (l)(tk - 1), I tk  ~ ~0 ( tk--  1)) 

: ]P(tk - 1 < O'q~(t k _ 1) ~- tk) 
r _2 

- 2 t~_ ~ , ~ - - , 1  e x p ( - - c P 2 ( t k - l ) / Z u ) - -  
d u  

bl 

where this last equali ty is f rom L e m m a  4.5. We  also have  

F d _ 2  a~o 2(a) 
g'(%(a) < a ) -  ~ u -d/2 e 1/2Udu. 

2 o 

As the mesh  size of the par t i t ion  tends to zero, we obta in  

a~o - 2(a) 

2 o 
u -d/2 e 1/2, du  

+ ~ -  a \ l / u  j i  e - rp2(u)/2 u u - ' d  u 

Since a~o-2(a)=~k- l (a) - - -*O as a ~  0% the first integral  tends to zero as 
a -* oo. Since 

co 

1 

b 
lim lim ~(~~176 

a--*~ b ~ o o  a 
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Consequently, 

lira lim P(I(t) > ~o (t) for some a_< t < b ) :  0, 
a --+ o0 b--* oo 

and lP(I(t)>= q~(t)i.o.)= O, which demonstrates (b). []  

5 High-dimensional random walk results 

Let 41, ~ 2  . . . .  be independent, identically distributed random vectors in 
2gd(d > 3) with zero mean vector and identity covariance matrix. For simplici- 

ty assume that P ( I ~ I I < M ) = I ,  for some finite constant M. Let S , =  ~ ~i 
i = i  

be the associated random walk. Suppose that (S,) is strongly aperiodic 
(see Spitzer (1964)). Define the resolvent density or Green function of the 
walk, 

df  oo 

g(x)= ~ ]P(Si= - x )  x62g a. 
i = 1  

We define the future infima process associated with (S,) (and its truncated 
version), i.e., for 1 < n_< N, 

df  N df  
(5.1) J,=inflSj], J,~ = min ISjl. 

j>--n n < j < N  

Throughout, let 

df 1 
(5.2) ~d=2~r(d/2- -1  ). 

Define C([0, I])  to be the space of real continuous functions on [0, 1] 
endowed with uniform topology. Let j ,  be the extension of {n-1/2jk; 1 <k  
__< n} to C([0, 1]) by linear interpolation, i.e., for all 0_< t <  1, 

df  
Jn  ( t )  = ( n  t - -  [-n t ]  ) ( / ' / -  1 /2  J 1  + [nt] - -  gl - 1/2 J[nt])  -~- FI - 1/2 J[nt]" 

What follows is a central limit theorem for the process {j,, n > l }  which 
does not appear to be an immediate consequence of Donsker's invariance 
principle. (For this and more, see Billingsley (1968).) 
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Theorem 5.1 For all d> 3, j , ~ I ,  where I is the future infima process of 
the radial part of a Brownian motion (as defined in Sect. 4) and => denotes 
weak convergence. 

Remark 5.1.1 The proof of this theorem requires some standard potential 
theory for random walk. Theorem 5.1 generalizes easily to random walk 
with positive definite covariance matrix Q: in this case one replaces the 
standard Brownian motion with a Brownian motion having covariance 
matrix Q. 

With Theorem 5.1 in mind, it is natural to ask whether the laws of 
the iterated logarithm of Sect. 2 hold in the context of random walk. This 
is the content of our next theorem. 

Theorem 5.3 With probability one, 

J. 
lim sup ,~/2- 1 and, 

Lz(n) n ~ c o  Vzn 

maxlSm]-J,  
m~=, 7 s . l -  J. 

lim lira sup 1. s u p  
] / ~  L2 (n) 1 / ~  L2 (n) n ~ o o  n --~ o o  

Remark 5.3.1 This result has already been observed by Erd6s and Taylor 
for simple, symmetric random walk (see Theorem 9 of Erd6s and Taylor 
(1960)). 

The proof of Theorem 5.3 is the same as that of its Brownian analogues 
(Theorem 4.1) and, as such, will not be presented here. The essential differ- 
ence is this: the gambler's ruin problem cannot be solved explicitly in this 
setting. Instead one can use the estimates in Lemma 5.5 and Lemma 5.6. 

Fundamental to the proof of Theorem 5.1 are estimates for certain gam- 
bler's ruin probabilities; the following sequence of lemmas is directed to- 
wards obtaining these estimates. The next lemma can be found in Spitzer 
(1964), pp. 77-79. 

Lemma 5.4 The following hold for the random walks of this section. 

(i) lira sup 1(2 7~ n) a/2 P ( S  n = x )  - exp (-- Ix 12/2 n)] ---- 0 .  
x 

(ii) lim sup IXI 2 n - 11 (2 7z n) el2 IP(S, = x ) -  exp ( -  Ixl2/2 n)[ = 0. 
n 

x 

Lemma 5.5 Under the assumptions of Lemma 5.4, txt ~- 2 g(x)~ Yd, as Ixt--* co. 

Proof Section 26 of Spitzer (1964) contains a proof of this for the case 
d=3.  For  the most part, we shall mimic this proof for the general case 
d > 3: the only exception may be that the last part of our proof is slightly 
cleaner. 
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Define for s > 0 and x e R  a, Ps (x) = (2 ~ s) - d /2  exp ( - Ix l2/2 s). Then, for any 
K > 0 ,  

[KIx[ 21 

(5.3) Ig(x)-  ~ p,(x)l < ~ ( lP(S ,=x)+p, , (x) )  
n = t  ? 1 = 1  

+ ~ IIP(S.=x)-p.(x)l 
n =  1 + [ K l x l Z l  

df 
= r?.3+ T: .3 

As in Spitzer, we estimate the two terms separately. By Lemma 5.4(i), 
sup IP(S, = x) < c3.1 n -  el2 and, trivially, sup p, (x) < c5.3 n -  a/z. Therefore 

x x 

[Klx121 

(5.4) T153 __< c5. 4 
n = l  

n -d/2 <c5.5 K - ( d -  2)/2 Ixl 2-a. 

Fix e > 0 arbitrarily small. By Lemma 5.4(ii), for all n large enough, 

sup  Ixl 2 llP(S. = x) - p .  (x) l  _--- e n - c a -  a)/2. 
x 

Therefore, for all [xl large enough, 

(5.5) T~'3 <=e[x] - 2 ~ rt-{a- 2)/2 <=c5.6 glxl2-a K-(a-4)/2. 
n = [Klxl  z] + 1 

Therefore, 

lim sup Ix] 2 alg(x)-- ~,p,(x)[ <c5. 5 K -~a- 2)/2. 
Ixl -*o~ n 

Since K is arbitrary, it suffices to show that as Ixl ~ oe, 

(5.6) ixl z-d ~ p.(x)~ ~d. 
n 

Write 
n 

Z p , ( x ) = Z  ~ p , (x )ds .  
n n n - - 1  

Since {Ps (x); s __> 1 } is decreasing for each x E2g a, 

o o  oo  

ps(x)ds<=~p.(x)<= ~ ps(x)ds.  
1 n 0 
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However, elementary calculations reveal that for all a > 0, as Ix] ~ 0% 

oo  

Ps(x) ds=lx l  2-a ~ (2rcs)-a/2 exp( - -1 /2s )  ds~Tdlx[ 2-a, 
a a l x l  z - a  

which verifies (5.6) and, hence, the lemma. [] 

Define first hitting times, 

(5.7) rk =inf{j:  k - M <  18il < k+M}.  

Next we obtain gambler's ruin estimates for zk. 

Lemma 5.6 Fix  t 1 > 1. Then under the assumptions of  Lemma 5.4, as k ~ o% 

]ala- 2 _  ka- 2 
lP(zk= ~ ISo=a) laid_ 2 , 

uniformly over all a~;E a with lal = (k + 2M)~. 

Proof  Note that g(S,) is a martingale. Moreover, it is bounded by Lem- 
ma 5.5. Therefore by Doob's optional stopping theorem, 

g(a) = 1E(g(S~k,, ~,) I So = a) 

= lE(g (S,) 1~, < ~,} I So = a) + IE(g(S~) l(~k < ~,/[ So = a). 

Since g(S,) is a bounded martingale, we see that g(SO-*O almost surely 
and in La (IP) as d --* oo. Fix e > 0 small. If k is sufficiently large, then uniform- 
ly over all l a l > k + 2 M ,  

(1 - e )  ya lk+MI2-a lp(zk< co ISo =a)  

<g(a)<(1 +e) 7 a l k - M [  2 a p(Zk < c~ IS o = a). 

Likewise, for all k large enough, Lemma 5.5 guarantees that uniformly over 
all lal > k + 2 M, 

(1 --~) ~alal 2 a s g ( a ) ~ ( 1  -q-~) 7alal 2-d. 

Therefore, 

1 - ~  I k -  MI a- 2 
< < o01 So = a ) < / 1  / 

I k+ MI  d-2 

= = \ 1 - ~ 1  lal a-z  
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Hence  uni formly  over  all [a] = (k + 2 M) t/, 

]a[ d - 2  

]ala_e __kd_ 2 ~('Ek = O0 I S o = a ) <  
[ald- 2 -- lk-- MI a- z [ k - M I  a-2  

+ 2 e  [ald- Z _ kd- 2 ]a[d- e _ ka- 2 

lala- 2 - - l k - -  M[ a- 2 2e < + 
lala- 2 _ k  a- 2 r/d-Z__ 1 

2e 
~ l q - - -  as k ~ o o .  

t /d-2__ 1 ' 

Since e > 0 is arbi t rary ,  we get the upper  bound.  The  lower b o u n d  is simi- 
lar. [ ]  

Finally, we state the following e lementary  l e m m a  wi thout  proof.  

L e m m a  5.7 Suppose Z and Z ,  are a sequence of  C([0 ,  1])-valued random 
variables that are monotonically increasing. I f  the f inite dimensional distribu- 
tions of  Z ,  converge to those of  Z,  then Z,=~ Z. 

We are now ready  to p rove  T h e o r e m  5.1. 

Proof  of  Theorem5.1 Fix m > l  and  O < t l < . . . < t m < l .  By L e m m a  5.7 it 
is sufficient to show that  

D 
(jn(tl), ... ,j,(tm)) ' (I t1, . . . ,  It,.). 

Let 0 < 21 </~2 ~-~''" ~ •m" Since j ,  (t) =<j, + 1 (t) for all 0 _< t < 1, the p r o o f  would  
be comple te  upon  showing that,  as n ~ c~, 

~(Jn (ti) >= }~i for all i < m) -* ]P(lti >= }.i for all i < m). 

However ,  

]P (4nti] ~ ]/fH'~i for all i < m) < ~' (j, (ti) ~ )~i for all i < m) 

< •(J1 + [,td => ~ /n2/ for  all i < m). 

We will show that,  as n ~ c~, 

(5.8) lP( J[ntd ~ ]~n2 i for all i < m) ~ ~(I t ,  > )~i for all i < m). 

The  p r o o f  of  (5.8) can be used to show that,  as n ~ ~ ,  

]P(J1 + [ntd ~ ]//~)~i for all i < m) ~ ~'(It, > 2i for all i_-< m), 

which would  finish the proof.  
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By the Markov property, the left expression in (5.8) can be written as 

(5.9) IP (Jl~tth + ~>  ~ 2 ~  for all iN m -  1, 3t,rm I > ~ 2 m )  

= Y~, ~wtntdlPtltnt~+~l>l~Zmforalli<m--llStntml=Y)= 
y u ~  cl 

Fix an arbitrary ~ > 1. By another application of the Markov property, 

for all y e Z  a with lYl =>(2m V ~ +  2M) q, 

(5.10) lP('cv~.z~+M=oolSo=y)<]P(Jt,tm~>=Vn2,,,lSt,,t~=y ) 
< IP ( -Cv~_  M = oO I So = y). 

By Lemma 5.6, for all e > 0  there exists a positive integer, no, such that 
for all n => no and for all y ~2U with [y[ > (Am ]/-s + 2 M)~/, 

(5.11) IP('cV~;~.~-M=~176 +e) lyla-Z_l[/~2ml a 2 

lYla-2 

lyla- 2- l]~2ml d- 2 
(5.12) ~(zV~m+M=~lSo=y)>>(1-e)  ]y[ a-2 

By picking n o even larger, we can guarantee that for all n > no 

(5.11c1 , { y ~ a :  ~2m<ly[<(~-~2m+ ZM) rl} <cs. 7 na/ZOl_l)a 

for some absolute constant cs.7 = c5.7(d, 2m). Define 

df  
H .  = {( j ) :  ~ 1](r.~]~,~, > ]/n 2i for all i<_m_ - 1 }  

With this notation in mind, (5.9), (5.10) and (5.11 c) imply that for all n > n o 

(5.14) lP(dt,,,,l>lfn2iforalli<m) 
< ( l + e )  2 ( l_]y/ l~12-a2~ 2) 

y~Za 
Iv] _-> (V~).,~ + 2 M)  r/ 

�9 I P ( H n  INt., < = y) IP(St. . .  J = y) 
+(1 +e) 2~ -2 ~ IP(St,~,~1 = y ) 

y ~ Z  d 
V~2~__< lyl < (V~ ~,n + 2 M )  q 

2 2 - - d  <(1 +~)1E((1--2~- Ia t . ,</ l /n l  ) 1,,.~K) 
+c5.7(1 +e) 2e,, -2 ~ n -a/2 

y ~ Z  d 
VnXm <= lY I < (V~J.m + 2 M) rl 

2 2 - d  = < ( 1 + ~ ) I E ( ( 1 - ~ , ~ -  ISt . ,~J l / ;  I ) I~ .~K.)  
+ (1 + e) c 5 8 2 ~ -  2 (/,/__ 1)d. 
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Here cs.8=Cs.s(d,M) is a universal constant. Therefore, since q > l  and 
e > 0 are arbitrary, 

lim sup P(J~,td > ]/n2i for all i < m) 
n ---~ oo 

<l im sup IE((1 _)oa 2 ISE,,m1/]/~[2-d) 1H.~.). 
n - ~ o o  

By approximating 

= 1 > IH, c~K, l{J[~h+ll>]/n2~foralli<m-1 } {SE,,~ = ]/n2~ ~ 

by continuous functionals of {n-~/2S �9 i<m} in the usual way, Donsker's [nti], 

invariance principle can be used to show that 

(5.15) lim suplP(JE, td>]/n2iforalli<m) 
~ --~ oo 

~E((1 -[Xt~/Xml 2-a) l{lI?~>2,foralli<m 1} l{Ix,=l>.a.=}) 

~(l{i?+,>2,for alli<m 1} l{Ix,~l>~.~) 1P(I,~ __> 2m ix,m)) 
= P (I',i +' > 2i for all i < m -  1, Itm > 2,,) 

= P(Iti >2i for all i<m), 

where (5.15) follows from the Markov property of (X,) and the gambler's 
ruin problem for Bessel processes. Likewise one gets a lower bound on 
the lira infby using (5.12). This proves (5.8) and, hence, Theorem 3.1. [] 
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