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Summary. Let V = (V~)~ao be a (not necessarily sub-Markovian) resolvent such 
that the kernel V, for some c~ > 0 is compact and irreducible. We prove the 
following general gauge theorem: If there exists at least one V-excessive function 
which is not V-invariant, then Vo is bounded. 

This result will be applied to resolvents UJ M arising from perturbation of 
sub-Markovian right resolvents lIJ by multiplicative functionals M (not necessarily 
supermartingale), for instance, by Feynman-Kac functionals. Among others, this 
leads to an extension of the gauge theorem of Chung/Rao and even of one direction 
of the conditional gauge theorem of Falkner and Zhao. 

O. Introduction 

In the last decade there has been a wave of results on gauge theorems and 
conditional gauge theorems ([C1], [C2], [CR1], [CR2], [CrFZ], [Fa], [Zl] ,  [Z2], 
. . . ) .  Closely related are results on perturbation of harmonic spaces ([BoHH], 
[HH], [HM] . . . .  ). We prove several gauge theorems in the general context of 
strong resolvents V = (V~),_>o. For instance, suppose that the kernel V~ for some 
c~ > 0 is compact and irreducible. (This assumption is fulfilled in any of the 
above-mentioned articles.) If in that case there exists at least one V-excessive 
function which is not V-invariant, then the potential kernel Vo is bounded. In 
particular, if Vo is non-recurrent, then it is already bounded. 

The notion of a strong resolvent is slightly more restrictive than the usual 
notion of a resolvent. Obviously, some restriction is necessary to avoid pathologies 
(because we do not subject the kernels V, to any boundedness or finiteness 
condition whatsoever). However, this restriction does not matter, since every 
resolvent derived from a measurable semigroup of kernels is a strong resolvent. 
This in particular applies to every resolvent lIJ M = (uM),>o arising from perturba- 
tion of a sub-Markovian right resolvent lIJ by a multiplicative functional M (not 
necessarily supermartingale), i.e. 

uMf(x) := E ~ ~ e-~'t" M, "f(X,) dr. 
o 
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Without any further assumption, U ~ is always a strong resolvent. 
In order to discuss the remaining assumptions on U u, we introduce a certain 

compatibility condition for multiplicative functionals M (being considerably less 
restrictive than the usual Kato condition). For  compatible multiplicative func- 
tionals M, the compactness and irreducibility assumptions on lII g reduce to 
corresponding assumptions on lIJ M' where M' is a suitable decreasing (!) multipli- 
cative functional. For  such sub-Markovian resolvents U M', things are easy and 
well-known. We mention several sufficient criteria for compactness respectively 
irreducibility. 

According to the above general gauge theorem, the main task is to check the 
existence of U~t-excessive functions which are not UM-invariant. Typical U M- 
excessive functions are of course the potentials 

(0.1) U~f: x ~ E ~ ~ Mt'f(X~) dt 
0 

of functions f > 0. But also the gauge function 

(0.2) C ~ : x ~ E ~ I M p  1~< ~}] 

turns out to be UM-excessive. Moreover, even the conditional gauge function 

7M(X, S):= E~/S[M~" 1~< ~ ]  

gives rise to UM-excessive functions, namely, for any U-excessive function s, the 
function 

(0.3) x ~ s(x).  7~(x ,  s) 

is (up to a regularization) UM-excessive. Here E ~/s denotes expectation with respect 
to Doob's s-transformation (i.e. transformation by means of the excessive function 
s) of the original process starting in x. 

Suppose now that U~ is irreducible (for some c~ > 0). Then all these U M- 
excessive functions (0.1)-(0.3) are uM-invariant if and only if they are degenerate 
(i.e. - 0 or - Go). Thus each of them is a good indicator (or "gauge") for Uo M to be 
bounded. 

If the multiplicative function M satisfies the already mentioned compatibility 
condition, then the boundedness of the potential kernel U~ implies the bounded- 
ness of the gauge function F ~t. Hence our general gauge theorem for resolvents 
leads to an extension of the gauge theorem of Chung/Rao. Furthermore, it contains 
in a very general framework one direction of the conditional gauge theorem of 
Falkner and Zhao. 

1. Gauge theorems for resolvents 

Throughout  this paper we assume that E is a Radon space and d o its a-field of 
universally measurable subsets. (We recall that a Radon space is a topological 
space which is homeomorphic to an universally measurable subspace of a compact 
metric space, cf. [DM],  [Sh].) 
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(1.1) Definition. A family V = (V~)~>__o of kernels 

v~ .(e, r --, (e, r 

on the measurable space (E, g) will be called a strong resolvent iff the following 
strong resolvent equation holds for all 0 </~ < ~ < oo: 

(R1) V~ = ~ ( ~ - f l ) " - i ' ( V ~ ) " .  
n = l  

(1.2) Remarks. a) It should be mentioned that this strong resolvent equation is 
always fulfilled if • is defined by a measurable semigroup • = (Qz)t_> o of kernels on 
(E, g) (which have not to be sub-Markovian or bounded): 

V~=~Qt'e-~'tdt for ~ > 0 .  
0 

This follows immediately from the fact that in this case the n-th iteration of the 

1 ~Qt.e_~.t.t,_ldt. kernel V~ is given by (V~)" - (n - 1)[ o 

b) On the other hand, every strong resolvent ~g is of course a resolvent in the 
usual sense, i.e. V satisfies the resolvent equation 

V~ = V~ + (c~ - fl). V~o Vp, V~o Vp = V~o V~ f o r a l l 0 _ < f l < ~ < o o .  

Under suitable continuity assumptions on c~ ~ V~ the converse is also true. For  
example, every sub-Markovian resolvent V with Vo = lim~_~o V~ is a strong resol- 
vent (cf. [DM],  XII.8.3). 

c) In order to illustrate the difference between the resolvent equation and the 
strong resolvent equation, let lIJ be the (sub-Markovian) resolvent derived from the 
Brownian semigroup on E = 1R d and define (for f e ~ +  and ~ > 0) 

[ U~f ifc~> 1 

V,f:= 0 if e < 1 and U~f- 0 
oo else. 

It is easy to see that the family of kernels (V~)~ __> o satisfies the resolvent equation but 
not the strong resolvent equation. 

As usual, the kernel V~ (for ~ > 0) can be considered as a map from g+ to 
&+ (where &+ denotes the set of nonnegative universally measurable functions on 
E). If the function V~I is bounded, the kernel V~ defines also a bounded operator on 
gb, the Banach space of bounded universally measurable functions on E. For  
example, if ~ is sub-Markovian, then [1V~ II = II g~ 1 fJ < 1/c~ for every ~ > 0. Here 
and henceforth 11. ][ denotes the supremum norm on E and also the corresponding 
operator norm on &b. 

However, in this article we are mainly interested in resolvents which are not 
sub-Markovian. In general, the functions V~ 1 for e > 0 are not even assumed to be 
finite. Our essential assumption will be that the operator 

(R2) V~: gb ~ 8b is compact for some e > 0. 
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Several times we will additionally assume that the kernel V~ for some (hence every) 
> 0 is non-degenerate and irreducible in the following sense: 

(R3) V ~ l T ! 0 o n E  and Vf~g+:either V j - = 0 o r  V J > O o n E .  

Typical examples of strong resolvents (satisfying (R2) and/or (R3)) will be discussed 
in the third part of this paper. 

Our aim is to obtain conditions which imply that the potential kernel V:= Vo is 
bounded, i.e. II VII := supx~E Vl(x) < ~ .  Every result in this direction will be called 
"gauge theorem" (for reasons which become clear in the third part). The first one is 
the following 

(1.3) Theorem. Let V satisfy (R1) and (R2). Then the following statements are 
equivalent: 

(1.3.1) I[ VII < or; 

(1.3.2) Vf < oo a.e. for some fsg+ with f >  0 a.e. 

(Here "a.e." means as usual "on a set F ~ g  with VI~\v - 0".) 
I f  V moreover satisfies (R3), then the above statements are also equivalent to: 

(1.3.3) 0 ~ Vf ~ ~ for some f~g+. 

The proof of this Theorem (as well as that of Theorem (1.5)) will be deferred to the 
end of this section 

(1.4) Remark. In general, a kernel V (or a resolvent V) satisfying (1.3.2) is called 
transient. (Among other possible definitions for transience, (1.3.2) is one of the 
weakest, cf. [Ge].) The kernel V is called non-recurrent iff the property (1.3.3) is 
fulfilled. So the Theorem states that under (R1)-(R3) boundedness, transience and 
non-recurrence of V are equivalent. This however will be sharpened in the sequel. 
The importance of Theorem (1.3) lies in the equivalence (1.3.1)<=~(1.3.2) (i.e. 
of boundedness and transience) which requires only (R1)+ (R2). All "gauge 
theorems" up to now use essentially the irreducibility (R3) of V. 

In order to obtain sharper results it turns out to be reasonable not only to 
distinguish between II VII < oo and ]l VLI -= 0% but to consider the following three 
cases: 
�9 I[ VII < o o ,  
�9 In vii -- oo and II V~ nl < oo for all e > 0, 
�9 lIV~]/=oo for s o m e e > 0 .  
These three possible cases will be compared with properties of the set 

* ~  = {u~ g+'u = sup c~. V~u 

of excessive functions for V and with properties of the set 

,~{~= {u~g+:u =~>oinf ~. V~u} 
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of defective functions for vg. Let ~r = *W n ,af '  be the set of invariant functions 
for W. Then obviously for every non-degenerate strong resolvent 

* W = W = { 0 ,  oo}, *Wb=aC~ and , ~ b = a f b = { 0 } .  

(Here and henceforth the index "b" denotes the subspace of bounded functions in 
a given function space.) 

(1.5) Theorem. Let  vg satisfy (R1)-(R3). 
a) The following statements are equivalent: 

(1.5.1) IT Vl l<  co; 

(1.5.2) ,5r = {0}; 

(1.5.3) * ~ ' ,  J(('. 

b) On the other hand, equivalent are: 

(1.5.4) H V!l = co, f[ V~ II < co for all ~ > 0; 

(1.5.5) {0}; 

(1.5.6) *aef\{oe} = * ~ b  = ,af'b = af'b -- 1R+. h with some h > O. 

c) Finally, the statements below are equivalent: 

(1.5.7) [I V= II = oo for some c~ > 0; 

(1.5.8) = {0, 0o}; 

(1.5.9) ,afb 4 = ~b .  

(1.6) Remarks. a) The equivalence (1.5.1)<=>(1.5.2) is true, yet under (R1) + (R2) 
(the implication (1.5.1) => (1,5.2) even under (R1)). Moreover, in (1.5.2) the set , a f  b 
of bounded defective functions can be replaced by ,iT~ {usgb, +" u <_< ~" V~u for 
all e > 0}, the set of bounded submedian functions of E: 

(1.6.1) ,J~b -- {0}. 

The statement (1.6.1) (or (1.5.2)) can be considered as some kind of minimum 
principle. Indeed, let us for the moment call a g-measurable function u nearly 
hyperharmonic if for all a > 0 the function V~u is well defined and e- V=u ~ u. (If 
il V~ II < co, obviously I~;u is well defined for all lower bounded, N-measurable 
functions.) Then for every nearly hyperharmonic function u the negative part u -  is 
a submedian function. So (1.6.1) implies that every lower bounded, nearly hyper- 
harmonic function is nonnegative. " 

b) The assertion of the Theorem remains valid if all the sets *W and 24~ are 
replaced by *Wb and ~,~ffb, respectively. This yields a complete symmetry between 
*afb and ,Wb. However, our main interest lies in the implication 

(1.6.2) *iF 4= ~ =* II vIt < co 

which is sharper than *Jgb * ~ b  ==> tl VII < co, (From Theorem (1.5) one can 
indeed deduce an even sharper version of (1.6.2): * ~  ~= -)~b w {co} ~ II VII < co.) It 
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is easy to see that the essential implication (1.3.3) ~ (1.3.1) in Theorem (1.3) is also 
a direct consequence of (1.6.2). The statement (1.6.2) (or, more generally, Theorem 
(1.5)) can be considered as a general gauge theorem. We shall see in the third part of 
this paper that (1.6.2) includes the gauge theorem of K. L. Chung and M. Rao 
([-CR1], cf. also [CR2]) which is meanwhile a well known theorem in probabilistic 
potential theory. A more general gauge theorem than in [CR1] was obtained in 
analytic potential theory by W. Hansen and H. Hueber ( [ H H ] ,  cf. also [BoHH] ,  
[-HM]). It is a remarkable fact that all these gauge theorems can be deduced from 
a general result on resolvents (Theorem (1.5) or statement (1.6.2)). Moreover, we 
shall obtain from (1.6.2) one part of the so-called conditional gauge theorem of 
N. Falkner and Z. Zhao ([Fa],  [Zl] ,  cf. also [Z2], [CrFZ]).  

The above-mentioned results depend essentially on the following two Lemmas. 

(1.7) Lemma. Let  V satisfy (R1)+(R2).  Let  u s * ~  and v s.2/~b with 
{u < oo } n {v > O) • ~ .  Then there exist 7elR+ and x ~ { u  < oo} c~ {v > 0} such 
that 

u > 7"v on E and u(x) = 7.v(x)  . 

I f  V also satisfies (R3) we have u - 7"v. 

Proof  Let 9 := u/v on {u < oo} n {v > 0} and 9 := oo elsewhere. Then obviously 
9 e g+ and 9 ~ oo. Furthermore, take some c~ > 0 such that V, : gb ~ gb is a com- 
pact operator. This implies that the kernel V~ is basic ( [DM],  IX.15), i.e. that there 
exists a finite measure m on (E, g) (called reference measure) such that for all F e g 

re(F) = 0r V~IF =- 0 . 

Now E is a Radon space. So we can apply Lusin's theorem to the finite measure 
m and to the universally measurable function 9 (cf. [Sh], A2.3). This yields the 
existence of an increasing sequence (K,), of compact sets Kn ~ E such that 

rn(E\K, )  ~ 0 (n ~ oo) 

and such that the restriction of 9 to K,,  i.e. the map 

9 : K ,  ~ ff~+ , 

is continuous in the extended sense (that is, with respect to the topology of IR). 
Since V~(x,. ) is (for every x E E) a finite measure, which is absolutely continuous 
with respect to m, we obtain 

V,l~\~.(x) --, 0 (n --, oo) 

for every x e E. Now V~ is a compact operator, so this convergence is uniform: 

IlV, IE\K~ ~ o  ( n - * ~ ) .  

1 
In particular, there exists a compact set K c E such that II V~ 1E\K II ----< ~ and such 

that the map v : K --* IR+ is continuous. 
Hence there exists some x e K with g(x) = infg(K) =: 7. We may assume that 

7 < oo (otherwise we add to K some point y s E  with 9(Y) < oo). It remains to show 
that 7 = infg(E) �9 
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For  this purpose  let w := u - 7" v. Then we have w > 0 on K and c~- V,w < w on 
E. This implies 

1 
w -  <= c~" V~w- = c~" ~ ( w -  �9 1E\K) ---< C~" ]l g=l~\ r l [ '  IIw-II ~ ~" IIw-]1 

and  therefore 11 w-11 = 0, i.e. w > 0. 
I f  addi t ional ly (R3) holds this obviously yields w - 0 since w was recognized as 

a nonnegative,  hence excessive function and  since w(x) = 0 for some x ~ E .  [] 

(1.8) Lemma .  Let V satisfy (R1) + (R2). Let f[ V]r = oo and l] V, [1 < oo for all 
c~ > O. Then 2g'b :I: {0}, i.e. there exists an invariant function h ~ O. I f  V also satisfies 
(R3), we have h > 0 on E. 

Proof Fix some ct > 0 for which V~ is compact .  By the s t rong resolvent equat ion 
(R1) we have for a l l /~e  [0, e [ :  

oo 

1 ~lE(~ ~) v~]" V~ ~ -  

Assuming that  [I VII = co and I[ Vo [I < oo for all/~ > 0, this implies that  the spectral  
radius of  the opera to r  V, on gb is 1/C~. But V, is a compac t  and posit ivity preserving 
opera to r  on gb. Applying the K r e i n - R u t m a n  theorem we obta in  that  1/~ is an 
eigenvalue of V~ for which there exists a nonnegat ive  eigenfunction h ~ 0. Tha t  is, 
there exists a function h ~ gb, + \{0)  such that  

h = ~" V~h . 

By the resolvent equat ion  we get for any/~ > 0: 

h = ~.  V~h = ~. [ V~h + (~ - ~). V~o V~h] = 

= ~.  V~h + (/~ - ~). Vph = B" Vph.  

So we have h~3 f~ \{0 ) .  [] 

We now turn to the p roof  of  the Theorems.  

Proof  o f  Theorem (1.3). 

(1.3.1) =~ (1.3.2) ~ (1.3.3): Trivial. 
(1.3.2) ~ (1.3.1): Let  us assume that  ]l VJI = oo and that  V~ is compac t  for some 

7 > 0. By (R1) there is a n u m b e r / ~  [0, 71- such that  IJ v~][ = oo and I[ V~[[ < oo for 
all ~ >/~. Applying l emma  2 to the resolvent V p := (V~+~),>o we obtain  a function 
v s gb\{0} invar iant  for VP, i.e. a bounded,  nonnegat ive  fuiaction v ~e 0 with 

v = e . V ~ + ~ v  for a l l c ~ > 0 .  

By the resolvent equat ion  we get ~. V~v - v = ft. V~v, which is > 0 for all c~ > 0 

and equals ~ _ ~ .  v for e > fl, hence tends to 0 for ct -~ oo. In  part icular ,  v s , 3 f b .  

Fur thermore ,  let u :=  V f -  V~of with V~f:= lim,-,oo V~f An easy calculation 
shows that  u - ~" V~u = V ~ f -  V ~ f  which is > 0 for all c~ > 0 and tends to 0 for 
c~ --, oo. Thus  u ~ *,;4". 
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Obviously,  {u < ~ }  c~ {v > 0} ~= ~ (since v = 0 a.e. would imply v - 0). 
Hence applying L e m m a  1 we obta in  xo ~ {u < oe} c~ {v > 0} and 7 ~IR+ such that  
u > 7"v in E and U(Xo) = V' V(Xo). N o w  

u - 7 " v = e ' V ~ ( u - 7 " v ) +  V ~ f -  V ~ f +  7"~'V~v> V ~ f -  Vo~f>O. 

Thus  U(Xo) = 7"V(Xo) implies V,f(xo) = V| for all c~ > 0. Therefore  by (R1) 

0 = V~ f ( xo ) -  V~+~f(xo) = o:'V~ ~ V~+~f(xo) 

for all ~ > O, which implies (due to f > 0 a.e.) 

V~V(Xo) - V ,+pV(Xo)  = , "  V~o V,+pV(Xo)  = 0 

and thus V(Xo)= ~" Vpv(Xo) (since v = c~. V,+~v) for all c~ > 0. So V(Xo)= 0, in 
contradic t ion to Xo ~ {v > 0}. 

(1.3.3) ~ (1.3.1): IfXg satisfies (R3), we obviously have v > 0 on E for the function 
v in the above  proof. Therefore  we have again {u < o9} ~ {v > 0} + ~ for 
u := V f -  Vo~ f So with the same a rgument  as above we obta in  VJ(xo)  = Voo f(xo) 
for some x o c E .  But by (R3) Vf.~O implies V ~ f > 0  and thus 
V~f - Voof> V j -  V p f =  (fl - cz). V~ o Vr > 0 for all ~ > 0 and all sufficiently 
large ft. 

Proof of Theorem (1.5). 

(1.5.1) ~ (1.5.2): Since II VII < co we can take some ~ > 0 such that  

Then  for every u e ,--ffb we obta in  

1 vLI < - -  
= 20~" 

1 
Itull = H~" Gull <_-a'll vl l l lul l  _-<z Ilull, Z 

hence II u Ib = 0. (Indeed, this a rgument  works  for all u ~ , ~ b - )  
(1.5.1) ~ (1.5.3): Obviously,  the function u :-- V1 - V~o 1 is excessive, in part icu-  

l a r u  = c~. V~u + (V~I - Vool) > c~. V~u for all c~ > 0. N o w  (R3)implies Vpl > 0 a n d  
thus V~ 1 - Voo 1 > V, 1 - Vp 1 = (/? - e) '  V, o V~ 1 > 0 for all 0~ > 0 and all suffi- 
ciently large/~. So u E 2/f if and only if u -= oe. 

(1.5.4) ~ (1.5.5): L e m m a  (1.8). 
(1.5.7) => (1.5.9): Since I1 V, h] = oe for some c~ > 0 and since on the other  hand  

V~ is compac t  for some ~ > 0 ,  there is a / ~ > 0  such that  ] lV~ll--oo and 
I1V~+~ 1t < oe for all c~ > 0. Applying the implicat ion (1 .5 .4)~  (1.5.5) to the resol- 
vent Xg ~ := (V~+~)~_>o we obta in  a function hsgb. +\{0} such that  

h=c~'Vp+~h for all e > 0 .  

By the resolvent equat ion we obta in  e '  V,h - h -~ ~. V~h for all ~ > 0, which is -> 0 

and ~ 0, and thus for e > /~  we get c~. V~h - h = c~ ~ ~'h, which tends to 0 for 

~ oe. Hence  h e ,~b \~ / fb .  
(1.5.2) ~ (1.5.1): This follows immediate ly  from (1 .5 .7)~  (1.5.9) and (1.5.4) 

(1.5.5). 
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(1.5.5) ~(1.5.6): Let h be a function in ~b\{0}. By (R3) we have, of course, 
h > 0. Therefore, the assertion follows directly from the above Lemma 1. 

(1.5.7) => (1.5.8): The argument is similar to the proof of(1.5.7) =~ (1.5.9). Choose 
fl > 0 such that ]1Vp[] = o0 and I[ Vp+~ll < oo for all c~ > 0. Since every function 
u which is excessive for V is obviously also excessive for ~ga, we obtain from 
(1.5.4) =~ (1.5.6) that u is indeed invariant for V a, i.e. 

u = e ' V ~ + , u  for all c~ > 0 .  

Therefore, c~- ~ u  = u + t-V~u. Hence u e*~Cf if and only i fu  - 0 or u -= oo. 
All the remaining implications are immediate conseqences of the implications 

proved up to now. IS] 

2. Application to Markov processes 

Let again E be a Radon space with g its a-field of universally measurable subsets. 
Furthermore, let ~' = (Pt)t>=o be a right semigroup of sub-Markovian kernels on 
(E, g), i.e. a semigroup which satisfies the so-called "right hypotheses" (cf. [DM], 
[Sh]). For example, the transition semigroup of an Hunt or standard process is 
a right semigroup. From the semigroup (Pt)t__> o we obtain (by Laplace transforma- 
tion) the sub-Markovian resolvent U = (U~),>_ o and the associated set of excessive 
functions *3/f. For every function s e *~4r we-define a semigroup IP/~ = (PlY)t>0 of 
kernels on the Radon space E/~:= {xEE:0  < s(x) < oo} by 

P~*f(x) = s@)" Pt(s'f)(x) . 

1W is again a right semigroup of sub-Markovian kernels (called the Doob-Meyer  
transformation of IP by s). 

Now let /~ be a Radon space, equipped with its a-field d of universally 
measurable subsets and containing E as an universally measurable subset, and let 
IP/~ be a right semigroup of Markovian kernels on (E, g) such that 

f f~(x,F) = P/~(x,F) for xeE/S,F c E/~ and 

fi~(x,. ) = ~ for x e E\E/s . 

(There are various ways to extend the sub-Markovian semigroup IP # on E/~ to such 
a Markovian semigroup ~'/~ on/~. The most common way is to choose/~ = E w {6} 
with some point 6 used as cemetery and to define file(x, {6}) = 1 - Urn(x, E/~) for 
x ~ Us.) 

Let f2 be the set of right continuous maps from IR + to E and let ~ be the lifetime 
in E, i.e. the debut of E\E. On f2 we have the filtration (~-~)~>_o generated by the 
projection maps (Xt)t_>_o from f2 to/~. Since 1P/~ is a right semigroup we obtain for 
every probability measure/t on E a probability measure P"/~ on f2 such that (Xt)tao 
is a Markov process with initial law/t and transition semigroup 1[ '/~. Let o~/~ be the 
augmentation of ~ with respect to (f2, o ~ ~  W Is) and 

N 
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where the intersection is taken over all probability measures on/~ and all functions 
s ~ "3r We shall say that a statement holds P*-a.s. iff it holds PU/~-a.s. for every 
probability measure p on /~  and every s E *34 ~ 

(2.1) Definition. A map M : IR+ x (2 ~ IR+ will be called a multiplicative functional 
if for all t > 0 

(2.1.1) Mr is ~*-measurable  

and the following holds P*-a.s. 

(2.1.2) M,+~ -- Mr'(Mr ~ Or) for all r > 0; 

(2.1.3) r --* Mr is right continuous on [0, oo[. 

For  (2.1.2) to be well defined it is necessary to give a meaning to the expression 
0'  oo. We make the convention 0" oo = 0 which is common in measure theory. 

(2.2) Examples. Typical multiplicative functionals M are: 
a) the Feynman-Kac  functional (+o ) 

(2.2.1) Mr:= (Iq)t: = exp - ~ q(X~)ds 
0 

for a lower or upper bounded, universally measurable function q on /~  (cf. [St3], 
Lemma 1.3), or more generally, Mr = (I ~+ )~'(1 -q- )t for an arbitrary, universally 
measurable function q on E, here again using the convention 0" ~ = 0; 

b) the killing functional 

{10, f ~  
(2.2.2) Mr:= I(F)(t):= , for t > D(F) 

for a Borel set F c / ~  with D(F) being the debut o f / 7 \F ;  
c) the Doob functional 

h(XO 
(2.2.3) Mt := (/h)t := 

h(Xo) 

for a finely continuous function h on/~  with 0 < h < oo (where fine continuity is 
defined with respect to the semigroup ~). 

For  a multiplicative functional M we define families ]p~t= (PY)t>o and 
llJ z~ = (Uff)~>o of kernels on (E, g) by 

Pff f (x)  := EXEMt "f(Xt)" l~t<~] , 

Uyf(x) := ~ e-~'t" P y f ( x )  dt = E x I e-~'t" Mr "f(Xt) a t .  
0 0 

It is easy to see that ~M is a measurable semigroup of kernels and that therefore IU M 
is a resolvent of kernels satisfying the strong resolvent equation (R1) of the first part 
of this paper. The resolvent lIJ M can be considered as a perturbation of the 
resolvent 113 by the multiplicative functional M. If M is decreasing (i.e. if M _< 1, 
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that is, if Mt < 1 for all t > 0), this perturbation reduces to the usual subordination 
of resolvents (semigroups, processes . . . .  ). 

(2.3) Remarks. a) Every decreasing multiplicative functional M can slightly be 
modified (or "regularized") in order to obtain a decreasing multiplicative functional 
A~r (called perfect exact regularization of M) which is (perfect and) exact (cf. [Sh], 
55.19). The resolvent 1U M (obtained as perturbation of U by M or as regularization 
of U M) is exactly subordinated to ILl. 

On the other hand, for every resolvent V which is exactly subordinated to 
U there exists an exact multiplicative functional M (unique up to indistinguishabil- 
ity) such that V = 1U g (cf. [-Sh], 56.14). 

b) In the case of Brownian motion on IR a, there is a one-to-one correspondence 
between (equivalence classes of indistinguishable) exact decreasing multiplicative 
functionals and (suitable equivalence classes of) measures on IR d charging no polar 
sets ([St4], 7.4). The multiplicative functional M corresponds to the measure # iff 
U g is the resolvent for the quadratic form 

u~--~ f [ Vu(x)12 dx + Slu(x)12 #(dx) 

(resp. for the associated "SchrSdinger operator" - �89 + #). 

The main feature here is that we do not assume that M is decreasing and even 
not that it is a supermartingale, so in general the perturbed resolvent 1U g is not 
sub-Markovian. 

We are interested in boundedness criteria for the potential kernel U g and also 
in such criteria for the gauge function F g on E: 

FM:x~--~EX[M~ �9 1 ~ < ~ ] .  

Its supremum norm I[ F g Jf := supx~EFg(x) is the so-called gauge. 

(2.4) Remark. Let E be a Borel set in IRd and q be an universally measurable 
function on IRe. To get the "gauge function for (E, q )" in the sense of K.L. Chung 
(_cf. [C1], [C2]), we have to choose ~ (resp. IP) to be the Brownian semigroup on 
E = IRd stopped (resp. killed) at the debut of IRd\E and we have to choose M to be 
the Feynman-Kac  functional I q. Then indeed 

[~ 1 Fg(x) = E ~ e -  !q(X~)ds. l~o<~} 

where E x denotes expectation with respect to Brownian motion, starting in x e IR d, 
or--which comes to the same thing--with respect to Brownian motion, starting in 
x ~ IRd and stopped at D := D(IRa\E), the debut of IRd\E. (Note that in our context, 
it is more convenient to use the debut of the set IRd\E instead of its hitting time.) 

In order to obtain weak conditions, which imply the finiteness of the gauge or 
the boundedness of the potential kernel, we generalize the gauge function in two 
directions. First of all we go from the gauge function F g on E to the conditional 
gauge function ~M on E x * ~ :  

yM : (x, s) ~-+ E~/~[M~" 1~< o~}] �9 

Of course, we get back F M as 7M(., 1). 
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In order to obtain a second generalization of the gauge function we define the 
following baIayage kernel H u as a kernel from (E, #) to (E, #) by 

HM(p(x) := EX[M~ �9 ~0(X~). ll;< | �9 

Obviously, the gauge function F u is nothing else than (the "equilibrium potential") 
HM1, hence the gauge L[ FM II is also given by the operator norm IIH M II of the 
balayage kernel, regarded as map H M : #b ~ gb. 

(2.5) Remark. To give an idea of this balayage kernel H u and of the above- 
mentioned conditional gauge function yu, let us consider the special situation of 
[CrFZ] (or [Z1], [Fa]). That is, E is a bounded domain in 1R a and IP is the 
semigroup for a diffusion killed at the debut of IRd\E. In this case one can take/~ to 
be the closure of E in IRa (or to be IR a itself) and lP to be the semigroup for the 
diffusion stopped at the debut of /~\E.  Then the measures HM(x,. ) f_or x e E are 
carried by the boundary 9E of E. (On the other hand, if one chooses E = E w {6}, 
then all the measures HM(x, .) are carried by {6}, in particular on E we have 
H~cp =-_ ~o(6). F M for all q~ e ~z+ .) Now let u( . , .  ) be the Green function and h( . , .  ) be 
the Poisson (or Martin) kernel function for the diffusion on E, provided these 
functions are well defined (which certainly is the case if E has Lipschitz boundary 
and if the diffusion is generated by a second order, uniformly elliptic operator in 
divergence form like in [CrFZ]). 

Typical excessive functions s ~ * ~  are then given by s = u(.,  y) for y e E and by 
s = h(., z) for ze~?E. By means of the conditional gauge function 7 u on E x * ~  we 
can define functions 

(x, y) ~--~ E~' Y[M~ ' 1~;< ~}] := ~M(x, U(., y)) 

on E x E and 

(x, z)~--* E~' ~[Mg" 1{r oo}] := Yu(x, h(., z)) 

on E x 0E. These functions are precisely the "conditional gauge functions" con- 
sidered in [Zl] ,  [Fa], [Z2] and [CrFZ]. 

(2.6) Theorem. Let M be a muttiplicative functional and let lIJ M satisfy (R2) and 
(R3). Then each of the following conditions implies 11U M II < oo: 

(2.6.1) 0 ~ u g f  ~ oo on E for some f e#+;  

(2.6.2) 0 ~ HMrp 7~ co on E for some q9 ~ #+; 

(2.6.3) 0 ~ yM(., S) ~ ~ on E/~ for some se*~& 

(2.7) Remarks. a) In order to obtain the above conditional gauge condition (2.6.3) 
we had to require the ~*-measurability of Mt (t > 0) in (2.1.1) and we could only 
allow P*-exceptionat sets in (2.1.2) and (2.1.3). Since all of our examples (2.2.1)- 
(2.2.3) satisfy these conditions we don't consider them as serious restrictions 
(though it should be clear that the other statements hold for all muttiplicative 
functionals in the usual sense). 

b) The condition (2.6.2) reduces to the gauge condition 

0 7 ~ F U ~  oo o n E  
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if/~ = E w {fi}. In general, however,(2.6.2) is much weaker. So, for our purpose, it 
turns out reasonable not  to require E = E ,,3 {~}, but to allow/~ to be any larger set. 

Proof o f  Theorem (2.6). Let , ~ U  be the set of excessive functions for the resolvent 
1U ~t, and let j f U  be the set of invariant functions for U M. It should be remarked 
that all of the above assertions can be deduced from the statement (1.6.2) which in 
our situation reads as follows 

, x C , u  + y ~ M  ~ II U ~ Ii < oo . 

What we have to do in all the three cases is to prove that the given function is 
excessive for 1U ra, but not invariant. In the case of (2.6.1) we omit this, since the 
assertion is yet proved in Theorem (1.3). 

(2.6.2): For  a function u s d~ to be in , jgM it is obviously sufficient to satis~ 
Pi~tu <= u for t > 0 and limt_,oP~ru = u. But for x ~ E  we have ~ > 0 W-a.s. and 
therefore 

P~ ~ H M cp(x) = E~[Mt" l~t<r EX~[ M~" cp(Xr ] ] 

= EX[Mr (p(X 0 .  I~t<~3],~HM(p(x) (t'~O). 

Thus HMcp~*~g TM. Now take some x e E  with HMcp(x) < oe and assume HMq~s 
~r Then for Lebesgue almost all t > 0 

0 = HMq~(x) -- p~o  HM~p(x) = E~[Mr ~o(x0.1~,~] 

and therefore HUgo(x) = 0. Under (R3), however, this implies H~*~0 - 0. 
(2.6.3): First of all we will prove that the following function a on E is super- 

median for the semigroup IPM: 

f s(x)" 7U(x, s), if s(x) < oe 
~(x) 

( ov , if s(x)= oo . 

Then obviously u:= limt-,0 P ~ a  is an excessive function for the semigroup ]pu 
(hence u~*3/~ u) which in a second step will be shown to coincide with a on 
{s < oo}. Finally, we prove that u e 3(f M implies u -- 0 or u - ov which contradicts 
the assumption (2.6.3). 

a) For  x e { s  = oe} there is nothing to prove. Let F : =  {x~E:s(x)  < or}. Then 
F is an absorbing set, i.e. for all x E F we have W-a.s. 

X t ~ F  for a l l t < ( .  

Thus for x E F 

P ~ ( x )  = EX[Mt . (t(Xt). l(t<r = 

= E X [ M , . s ( X O  �9 7 ~ ( X , ,  s).  1~,<~]  = 

= s(x)" EX/S[Mt" ),U(Xt, s)" ift<;)] , 
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here essentially using the ~t*-measurability of Mt ( [DM],  XVI. 28-34). From the 
Markov property of the s-conditioned process and from the multiplicativity of 
M we obtain 

s(x)" EX/S[M~ �9 Ex~/~[M~ �9 1~< 00}]" l~r<~}] = s(x)'EX/S[M~" l~t<~< co}] < ~(x). 

b) For  x e { s  < oo} we obtain from a) that 

u(x) := lira P y  a(x) = s(x). E~/S[ M~ �9 1(o<~< oo}] �9 
t ~ 0  

Thus u(x) = ~(x) since ~ > 0 P~/~-a.s. for x ~ E. 
c) Finally, assume u 7~ oo (which implies fi ~ oo) and u ~ gyM, i.e. 

u = e . U ~ u  for a l l e > 0 .  

Since t7 coincides with u on the absorbing set {s < oo} we obtain 

~t=c~.Uff~t o n { s < o o }  f o r a l l e > 0 .  

Thus for every x ~ {a < oo} = {s < oo} and Lebesgue almost all t > 0 we get 

0 = a(x) - P~fi(x) = E~[M~. 1~<,~] 

and therefore ~(x) = 0. This, however, implies u(x) = 0 and (by (R3)) u --= 0. [] 

3. Compatible multiplicative functionals 

We recall that up to now we have imposed no explicit finiteness or boundedness 
assumptions on the multiplicative functionals. In particular, we emphasize that 
Theorem (2.6) holds true for arbitrary multiplicative functionals M. 

The point, however, is that we have to check the assumptions on the resolvents 
1U M. In order to obtain sufficient criteria for compactness (and also for irreducibil- 
ity) we introduce the notion of compatible multiplicative functionals. 

(3.1) Definition. The multiplicative functional M will be called compatible if there 
exist two multiplicative functionals K and L such that 

Mz=K~'Lt ,  K t < l  and L ~ > L o = I  for a l l t > 0  

and such that the following compatibility condition is fulfilled 

(3.1.1) E ~ e - ~ t ' K t d L ~  < oo for some e~lR 
0 

(where I[-I1 denotes the supremum norm on E). 

(3.2) Remarks. a) Given an arbitrary multiplicative functional K < 1, the com- 
patibility condition for K '  L is obviously fulfilled if the multiplicative functional 
L _>_ 1 satisfies 

(3.2.1) e-~'tdLt < oo for some ~ I R ,  
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in particular, if L satisfies the so-called (generalized) Kato condition 

(3.2.2) lira ~ e-~'t dL~ = 0 .  
a ~ o o  0 

If L is of the special form 

L~ = (I-g)t = exp q(X~) ds 

with a function q e g+,  then (3.2.2) is equivalent to the usual Kato condition 

(3.2.3) lim q(X~) ds = 0 

(cf. [St3], Sect. 4.A). 
b) To illustrate the difference between the above conditions (3.1. l) and (3.2.2), 

let IP be the Brownian semigroup on E = IR d (d > 2) and let M be given by 

Then M is a compatible multiplicative functional for all k > 0 ([St3], BeispM 4.10; 
see also [St5] for further examples). But L := I -q- satisfies (3.2.2) if and only if 
0 < k < 2. This can easily be seen because in the case of Brownian motion 
a multiplicative functional L > 1 satisfies the Kato condition (3.2.2) iff the asso- 
ciated additive functional log L generates a bounded and uniformly continuous a- 
potential (for some--hence all--a > 0), i.e. iff the function 

x~--~u~.(x) := E ~ ~ e -a ' td ( logL0 
0 

on IR ~ is bounded and uniformly continuous ([St3], Korollar 4.7). 
c) There are two reasons to consider multiplicative functionals which are 

compatible. First of all, for compatible multiplicative functionals M = K.  L the 
conditions (R2) and (R3) on the resolvent ~ffK.L (which is in general not sub- 
Markovian) reduce (according to Proposition (3.3) below) to corresponding condi- 
tions on the sub-Markovian resolvent U K. This is a remarkable fact! The con- 
ditions on U K are easy to check, see Remark (3.5). 

Secondly, for compatible multiplicative functionals M the boundedness of the 
potential kernel U M implies the boundedness of the balayage kernel H u (due to 
3.3.1)). Thus in this case every result which states that U ~t is bounded also states 
that the gauge H FM [I is finite. This is why we call every theorem which yields 
sufficient conditions for [] U u [] < cr a gauge theorem. 

(3.3) Proposition. For a compatible multiplicative functional M = K .  L the follow- 
ing holds: 

(3.3.1) 

(3.3.2) 

(3.3.3) 

1! ~ iI < oe  ~ jJ H ~ Jl < c~ .  

UK. L satisfies ( R 2 ) ~  1U K satisfies (R2). 

rO K'L satisfies (R3)-~ 1U K satisfies (R3). 
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Proof 
(3.3.1): For  x E E  we have 

1 HMI(x)=EX[K~'L~.I~;<o~}I=E ~ K;" 1 +~dL~  "1{r < 
0 

_-< 1 + E ~ I K ,  dL~. 
O 

Now choose some c~ > 0 such C := 11 E" .[~o e-~'~'K~dL~[[ < 0o. Then 

E:r K~dL~ =< C + E ~ ~(1 - e-~~).K~dL~ = 
o o 

s 

= C + ~'E=~ ~ e~' tdt 'e-~S'K~dL~ = 
0 0  

= C + e  e~'t" E~ ~ e-~'~' KsdL~dt = 
0 t 

= C + e ' E  ~ ~ K t ' L t ' E  x~ ~e-~'~'K~dL~dt <= 
0 0 

_<_ c - (1  + ~. II v MI[)- 

(3.3.2): We prove the implication " ~ " .  The converse is less important and the 
proof is quite similar. First of all we remark that if U K is compact for some a > 0 
then (by the resolvent equation (R1)) U~ is compact for all fl > e. So let us choose 
an c~ > 0 such that the operator U~ on gb is compact and that the operator 

W~: f ~ E "  ~ e-~t 'Kt ' f (X~)dL~ 
o 

on gb is bounded. To simplify notation l e t / ( t  := exp(-c~, t)'Kt" l(t<~. Then 

cD 

U ~ ' Z f ( x ) -  U ~ f ( x ) =  E ~ ~ ( L t -  1) 'I~t ' f (Xt)dt  = 
0 

= E =~ S ~ I~t ' f(Xt)dtdL~ = 
0 s 

= E ~ ~ / ( ~ ' E  x~ ~ g , ' f (X t )d tdL~  = 
o o 

= W~,o UKf(x) .  

Thus uK'L= (1 + W~)~ U~ is the composition of a bounded and a compact 
operator and is thereby itself compact. 

(3.3.3): Since Kt" Lt > 0 ~ K, > 0 (due to our convention 0- oo = 0) we have for 
all c~ __> 0, all x e E and all f e  g+: 

U~'Lf(x) > 0<-  U~f(x) > O . U] 
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(3.4) Theorem. Let M = K" L be a compatible multiplicative functional such that 
U r satisfies (R2) and (R3) and assume H M ~ O. Then the followin 9 statements are 
equivalent: 

(3.4.1) , j f M  ~= ~ M ;  

(3.4.2) 0 ~ 7M(., s) ~ oo 

(3.4.3) 0 ~ HM(p ~ oo 

(3.4.4) 0 ~ UMf ~ oo 

(3.4.5) I1HM II < oo ; 

(3.4.6) II U M II < oo ; 

(3.4.7) ,~vt~ = {0}. 

on E/s for some s ~ *~f'~; 

on E for some (# ~ ~+ ; 

on E for some f ~ g+; 

Proof Since M = K" L is assumed to be compatible, the compactness and irreduc- 
ibility of 1LI r imply that also lET M is compact and irreducible. Hence, Theorem (1.5) 
(which yields the equivalence of (3.4.1), (3.4.6) and (3.4.7)) and Theorem (2.6) (which 
states that each of (3.4.2), (3.4.3), (3.4.4) implies (3.4.6)) are applicable. According to 
the above Proposition (3.3), property (3.4.6) implies (3.4.5) and the latter implies 
(3.4.2) and (3.4.3) (since we assumed HM1 ~ 0). But an easy calculation shows that 
under HM1 ~ 0 we also have U~I 7~ 0, hence, (3.4.6) implies (3.4.4), too. This 
finishes the proof. [] 

(3.5) Remark. It remains to check the assumptions (R2) and (R3) on 1U r for 
a decreasing (!) multiplicative functional K < 1. (The assumption H~tl ~ 0 in 
Theorem (3.4) is only to avoid pathologies.) In [St3] we have deduced various 
(sufficient and/or necessary) criteria for 1LI K to satisfy (R2) or (R3). However, in this 
article we can only mention some special results. 

a) For a multiplicative functional K < 1 satisfying UK1 > 0 (that is, Ko > 0 
px-a.s, for all x s E )  the operator U~ (for e > 0) is irreducible under each of the 
following conditions (cf. [St3], 3.13, 3.18): 

�9 E is a fine domain; 
�9 E is a domain and (E, *;4 ~) defines an elliptic harmonic space (in the sense of 

Brelot). 
However, none of these conditions is necessary as it can be seen by the symmetric 
stable processes of index 2r for 0 < r < 1 on a non-empty open subset E of IR d. In 
this case the resolvent U satisfies (R3) without any further assumption on E (cf. 
[St3], Beispiel 3.16). 

b) The operator Uf  (for some--hence all--e > 0) is compact provided 
for some multiplicative functional/~ with K < / ~  < 1 (eg. for K _ 1) one of the 
following conditions is fulfilled: 

�9 U f  is a compact operator; 

�9 E is a compact set and lIJ/~ is a strong Feller resolvent on E, i.e. 

u~:  eb -~ ~ (~ > 0) 

where cg denotes the set of continuous functions on E, or/~ is a compact set 
and 1Llgis a strong Feller resolvent on/~ (cf. [DM],  IX.18). 
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�9 E is a locally compact set, there exists an increasing sequence of compact sets 
(Fn), t E such that the operators U f  '~(e'~ (for n~N)  are compact and 

lira U~l(x) = 0 ,  
X ~ O 9  

cf. [St3], 6.4. 
(Let us note parenthetically that U f  'I(F") is compact (for nEN) if 1E g is 
a strong Feller resolvent on E vanishing at infinity. If moreover K =< P tbr 
some q~g+ with lim~_~oq(X)=- co, then l imx_.~g~l (x)=  0, cf. [St3], 6.2 
resp. 6.17.1). 

(3.6) Final remarks, a) Let us recall that the quantity iJ HM Jt in (3.4.5) is nothing 
else than the gauge JJ Full- Furthermore, note that the finiteness of the gauge 
function F M in one point x e E obviously implies (3.4.2) as well as (3.4.3). Hence, 
Theorem (3.4) indeed contains the gauge theorem in the sense of K . L  Chung. 
Namely, under the assumptions of Theorem (3.4) 

(3.6.1) F M 7~ • ~ IIFMll < oo, 

that is,/f the gauge function F M is finite at one point x ~ E then it is already bounded 
in IRa. 

Moreover, in the (rather general) situation of Theorem (3.4) we even got one 
implication of the famous conditional gauge theorem (cf. [Zl] ,  [Fa], [Z2], [CrFZ]) 

(3.6.2) O ~ TM(.,s) ~ oo onE/~ f o r s o m e s e * ~ j j F M I l < o o .  

(The other implication of the conditional gauge theorem 

II r M II < oo ~ sup 7~(x, s) < oo 
x~EIS 

seems to depend essentially on very restrictive assumptions on E, IP and M.) 
b) Now let us have a look at the assumptions in Theorem (3.4) and let us 

compare them with the assumptions in the gauge theorems of [CR1], [C1], [C2] 
resp. in the conditional gauge theorems of [Fa], [Z1], [Z2]. In all these cases, we 
have the particular situation developed in Remark (2.4). That is, E is a Boret set in 
IR d, IP is the semigroup for the Brownian motion on E, killed at the debut of IRd\E, 
and M is the Feynman-Kac  functional P associated with an universally measur- 
able function q on E. Moreover, one imposes the following additional conditions: 

�9 E is open and connected; 
�9 E is bounded (or at least of finite Lebesgue measure); 
�9 q+ and q- satisfy the Kato condition (3.2.3). 

By means of the criteria (mentioned above in (3.5)) for irreducibility and/or 
compactness, it should be easy to see that 

�9 the fact that the set E is open and connected implies that the resolvent 
lIJq* := 1g ~+ is irreducible (since q § is assumed to satisfy the Kato condition 
which obviously is much stronger than the condition U q+ 1 > 0 on E); 

�9 the boundedness of the set E (or the finiteness of its Lebesgue measure) 
implies that the resolvent 1U is compact; the compactness of 1U implies the 
compactness of lIJ "+ (for arbitrary q+ > 0); 
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�9 the Kato condition for q-  implies the compatibility of M = I q § I -q-  (for 
arbitrary q + > 0). 

Note that, of course, none of the conditions on E and q-+ mentioned above is 
necessary in order to imply our essential assumptions in Theorem (3.4), namely, 
irreducibility and compactness of lIJ q§ and compatibility of M = I q. For instance, 

�9 irreducibility of 1U q+ still holds if we merely assume that E is a fine domain 
(instead of a domain); 

�9 compactness of 1U q+ still holds (for arbitrary q+ > 0) if we merely assume 
that E is Green-compact, i.e. lim~_~EX[D(IRd\E)] = 0 (instead of having 
finite Lebesgue measure); on the other hand, compactness of llJ q+ holds for 
arbitrary Borel sets E if we assume that limx_~ q+ (x) = oe; 

. compatibility of P also holds for highly singular, oscillating potentials like in 
(3.2.b). 

We emphasize that (due to Theorem (3.4) and the above remarks) the gauge 
theorem (for Brownian motion on E c IR d) holds in many situations where 
Harnack's inequality fails to be true! 

Finally, it should be clear that all of the above results remain true if we replace 
the Brownian motion on E ~ 1R d by the diffusion generated by a second order, 

0 2 

uniformly elliptic differential operator A on IR d of the form A = ~a~j" gx~Ox~ + 

0 
b~'~x~ with bounded continuous coefficients or of the form 

A = y" ~x~ aij ~ + 2 bi. with bounded measurable coefficients (since such 

a diffusion defines a strong Feller resolvent and also an elliptic harmonic space, cf. 
[Kr], Th. 2'). 
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