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Summary. We shall present here a general study of minimum contrast estimators 
in a nonparametric setting (although our results are also valid in the classical 
parametric case) for independent observations. These estimators include many of 
the most popular estimators in various situations such as maximum likelihood 
estimators, least squares and other estimators of the regression function, estimators 
for mixture models or deconvolu t ion . . .  The main theorem relates the rate of 
convergence of those estimators to the entropy structure of the space of parameters. 
Optimal rates depending on entropy conditions are already known, at least for 
some of the models involved, and they agree with what we get for minimum 
contrast estimators as long as the entropy counts are not too large. But, under 
some circumstances ("large" entropies or changes in the entropy structure due to 
local perturbations), the resulting rates are only suboptimal. Counterexamples are 
constructed which show that the phenomenon is real for non-parametric maximum 
likelihood or regression. This proves that, under purely metric assumptions, our 
theorem is optimal and that minimum contrast estimators happen to be sub- 
optimal. 

Mathematics Subject Classification (1980): 62G05, 62J02 

1 Introduction 

Our purpose in this paper will be to study some general properties of "minimum 
contrast estimators" (M.C.E.), which include maximum likelihood estimators 
(M.L.E.) for i.i.d, variables, least squares (L.S.E.) and minimum ILl-norm 
(M.IL1.N.E.) estimators in a regression setting and several other related estimators. 
This approach leads to a unified framework for studying various situations which 
are usually treated separately. This greater generality is, as is often the case, at the 
price of more restricted assumptions which could be improved in some particular 
circumstances but it has the advantage of providing a global approach to the 
problem. In order to motivate the subsequent study of M.C.E., let us first recall two 
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desirable properties of estimators of a parameter belonging to a compact para- 
meter space. 

1) The estimator should have a risk which is close to the minimax. 
2) It should not be strongly affected by small errors on the model, "small" 

meaning of the order of the expected risk. 
To be more specific, assume that we deal with n variables with joint distribution 

IP0,,, 0 e O, where (O, d) is a compact metric space. For some estimator T. we shall 
consider its maximal risk 

R(T.) = sup lEo,,[d2(O, T.)] 
OeO 

and we would like to find a procedure 0. for designing estimators 0. = 0.(O) 
satisfying the following properties: 

1) For some constant C independent of n and R. = infr.R(T.), R(O.) <= C R.. 
2) Assuming that the true parameter space is O but we use a model O. such 

that d2(O, On) <= C R,, is it true that when 0, = 0,(O,) 

sup lEo,,Ed2(O, 0,)] < K(C)R, 
0EO 

for some fixed function K. In this case we shall say that the procedure 0. is "stable". 
A study of the minimax risk is given in Birg6 (1983), mainly in the case of i.i.d. 
variables (density estimation) and Hellinger distance. It is proved there that, under 
some regularity assumptions (uniformly bounded likelihood ratios say), the mini- 
max risk is determined (up to multiplicative constants) by the metric entropy of the 
parameter space. Using the same framework, it is proved in Birg6 (1984) that in 
general (apart from some pathological parameter spaces) stability should occur for 
some well-chosen estimators. Therefore this paper will be mainly devoted to the 
relationship between the metric entropy structure of the parameter space and the 
performances of M.C.E. We shall conclude that as soon as the entropy function is 
regular enough and not too large M.C.E. will have the optimal rate of convergence, 
but when it becomes too large only suboptimal rates can be expected. Moreover, 
irregular behaviour of the entropy functions can lead to serious troubles for this 
estimator which implies "unstability". All these only concern unrestricted M.C.E. 
i.e. those estimators for which the minimization is carried out over the whole 
parameter space. In a subsequent work we shall investigate the properties of some 
restricted M.C.E. and show that they behave in a much better way. 

We do not know much about systematic studies of M.C.E. properties. Actually 
M.C.E. are some sort of generalization of Huber's M-estimators and they appar- 
ently appear for the first time in Huber (1967) and, up to our knowledge, the name 
M.C.E. was coined by Pfanzagl (1969). A study of consistency is to be found in 
Reiss (1978) but we believe that the first systematic approach to the nonparametric 
case is in Severini and Wong (1987). 

While there exists an enormous amount of literature concerning nonparametric 
curve estimation (density or regression estimation) and parametric maximum 
likelihood or least squares estimators as well, the number of papers devoted to 
maximum likelihood density estimation or nonparametric least squares estimation 
appears to be more limited. Some general results are to be found in Reiss (1984) and 
several papers have been devoted to the Grenander estimator (M.L.E. for mono- 
tone densities) by Grenander (1956 and 1980), Groeneboom (1985), Prakasa Rao 
(1983), Barlow et al. (1972), Birg6 (1989). There are probably other references that 
we are not aware of but some recent and noticeable results are to be found in 
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Severini and Wong (1987), Van de Geer (1990a) and Nemirovskii et al. (1984) and 
(1985) which mainly motivated the present work. Van de Geer (1990a, b) gives fairly 
general and optimal results in the regression framework for L.S.E. or M.IL1.N.E. 
under some metric assumptions. Those results are restricted to cases where the 
dimension is not too large, i.e. when some entropy condition (*) is satisfied. Under 
such a condition the rates of convergence of the estimators are shown to be optimal 
but nothing is said about the case when (*) is not true. 

The preprint by Severini and Wong (1987) was, to our knowledge, the first 
attempt to give a general theory of rates of convergence for M.C.E. related to 
dimension. Unfortunately, the results do not always lead to the optimal rates of 
convergence and, in particular, do not allow to recover the classical n-~/2 rate in 
the parametric case. It should be noted here that the assumptions concerning the 
bounds on their parameter space are weaker than ours and therefore the results not 
directly comparable. The authors also make use, in the i.i.d, case, of the uniform 
metric, which is not the adequate one for these problems ',e Birg6 1983 for 
example). 

As to Nemirovskii et al. (1984) and (1985), they give a fairly general account of 
the regression situation, not only for L.S.E. or M.IL1.N.E. estimators; but also for 
other minimization criteria, with very precise asymptotic results, but only for 
classical Sobolev-type classes of functions and not under purely metric assump- 
tions. These classes happen to belong to the entropy domain which was considered 
by Van de Geer (1990a) and always satisfy condition (*). 

In view of these different attempts, we shall present a unified treatment for all 
those situations, including the more general regression framework of Nemirovskii 
et al. (1984) and (1985) and various other examples. The presentation i[s inspired by 
Van de Geer (1990a) and we shall get the optimal rates of convergence under 
entropy restrictions similar to condition (*) of Van de Geer (1990a). We shall also 
prove rates of convergence when (*) is not satisfied, but in this case they happen to 
be suboptimal. Since this could very well be a weakness of our proof rather than 
a weakness of the estimators themselves, we shall exhibit some counterexamples 
leading to lower bounds for the rates of convergence of these estimators. They show 
that, without additional assumptions, nothing better can be expected and that the 
estimators are actually suboptimal in some circumstances. 

To be more specific let us denote by S~ the class of functions s on [0, 1] such 
that for x, y in [0, 1] f ( x )  > 1/10 and If(x) - f(Y)l < Ix - y[~. The entropy struc- 
ture of such spaces is well-known, see for example Kolmogorov and 
Tikhomirov (1961) or Lorentz (1966), and the rate of convergence of optimal 
estimators, for such classes or similar classes with analogous entropy properties 
should be n -~,-~-r for various models including density or regression estimation. We 
shall prove that, when e > 1/2, the rate of convergence of M.C.E. is actually the 
optimal one but, for ~ < 1/2, one can only guarantee a convergence at a rate n -~/2 
for M.C.E. 

Indeed, there is a split at some stage, corresponding to the entropy structure of 
1/2-Hrlderian functions on [0, 1]. The same split occurs in the proof of functional 
central limit theorems, for analogous reasons. Our eounterexamples below show 
that, under this type (purely metric) of assumptions on the parameter space, our 
results are optimal whatever the entropy structure. Of course, ~-Hrlderian densit- 
ies are rather wild when e < 1/2 but the same type of split carries out to the 
multidimensional case and the class of densities with uniformly bounded second 
derivatives on [0, 1] k has an entropy structure which does not satisfy (*) as soon as 
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k > 4. Our counterexamples only deal with the one-dimensional case in order to 
keep the length of the proofs decent but it is clear that one could extend them and 
show that M.L.E. would not reach the right rate of convergence when estimation is 
carried over some particular spaces of densities on [0, 1] 5 with bounded second 
derivatives. A modification of our construction shows that no stability is to be 
expected from M.C.E. Those estimators can have a very poor  behaviour in case of 
a small (smaller than the expected error) misspecification of the parameter space. 
The proof of the counterexample connected with M.L.E. is more complicated 
because of the introduction of a convex parameter space. The first version, involv- 
ing the simpler non-convex space that we use in the regression framework led to an 
interrogation: could convexity improve the performance of M.L.E.? This could 
very well be the case and was not clear for us until we derived the new counter- 
example. For  sake of simplicity we did not modify the regression case. 

In what follows, we shall set up a framework which is close to the one initiated 
by Severini and Wong (1987), although our assumptions and proofs will clearly be 
different in order to get the optimal rates of convergence. Section 2 will be devoted 
to the presentation of this framework, the corresponding assumptions and the 
main theorem which gives the precise relationship between the entropy structure of 
the parameter space and the rate of convergence of M.C.E. In Sect. 3, we will apply 
these results to various situations, including M.L.E. and regression estimation, 
showing how they can be fitted to the general framework and discussing the 
assumptions. We already mentioned that the cases of L.S.E. and M.IL1.N.E. have 
been partially treated by Van de Geer (1990a). At the time of the writing of this 
paper we received a preprint by the same author dealing with M.L.E. using 
Hellinger distance. Some similarities between the two papers are therefore un- 
avoidable, although the techniques and results appear to be different. The entropy 
conditions in Van de Geer (1990b) are much more restrictive than ours but the 
assumptions on the uniform bounds are weaker, which is not surprising in a paper 
which only considers M.L.E. The generality we want to deal with implies some 
additional restrictions in order to make the whole machinery work. It is clear that 
in each particular case, some ad hoc procedures could be used to simplify the 
assumptions, but this is not the purpose of this paper. Finally, in Sect. 4, we shall 
develop, for both M.L.E. and L.S.E., lower bounds arguments which prove that the 
results of the main theorem are optimal, under the type of assumptions we work 
with. They also show that M.C.E. are definitely unstable. 

2 The abstract model 

Our framework follows more or less the classical nonparametric regression model, 
although it is intended to describe various other models too, as will become 
obvious later. We assume the existence of 2n independent variables X 1 , . . . ,  X, 
and W1 . . . .  , Wn with values on measurable spaces 3f and ~ respectively. We are 
given some abstract parameter space S and some measurable transformation f, 
indexed by S from 5~ x ~ to another measurable space ~ .  We only observe the 
variables Zi = f(X~, Wi, s) where the parameter s is unknown and the distribution 
of the X~'s and Wi!s depends on s. Let us denote by P~ the joint distribution of 
(Xi, W~, Z~) when s obtains, by IE s the expectation with respect to probability 

n 
Ps = n-  1 ~ i= 1 P~ and by P,  the empirical distribution of the Zi's. 
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Our  purpose is to estimate the unknown s on the basis of the observations. The 
estimators that we shall consider in this paper are defined by the mean of 
a "contrast function". 

Definition 1. A real function ? on ~ x S is a contrast function if for all s in S, 

inf IEs[7(Z , t)] = ]Es[y(Z, s)] . 
tES 

Since s is a minimizer of IEs[7(Z, t)], a natural candidate for an estimator of 
s would be a minimizer of the expectation of 7(Z, t) with respect to the empirical 
distribution of the Zi's which leads to the following definition. 

Definition 2. Given some contrast function 7, a minimum contrast estimator or 
1 ,n  

M.C.E. will be any minimizer ~(Z1 . . . .  , Z,)  of the function t - -+ -~ i=1  7(Z, t) = 
n 

7,(t) (empirical contrast). 

Remark. Actually, ~ may very-well not exist at all, but then we could define 
e-minimum contrast estimators (or e-M.C.E.) in the usual way: an e-M.C.E, will be 
any ~ such that 

~,(~) < inf?,(t) + 5. 
t 

Due to the very definition of our estimators, it is clear that their performances 
are naturally measured in terms of the "loss function f "  on S x S: 

t(s, t) = f (7(z, t) - ~(z, s))dP~ = IE~D(Z, t) - ?(Z, s ) ] .  

The assumptions that we need in order to control the regularity of 7 and the "size", 
when properly defined, of the parameter  space S may be rather restrictive when 
applied to 7 itself. To allow more flexibility we shall introduce an auxiliary function 

defined on the same space ~ x S to which our assumptions apply and another 
loss function d(s, t) which, in the applications, will be equivalent to [1/2. 

In what follows, the true value s of the parameter  is fixed and all auxilliary 
quantities might depend on it. 

(A1) There exists two positive functions M and ~ and A on 2Y x S 2 and a positive 
constant B such that for all x e f ,  w e ~K, t, u ~ S and z = f ( x ,  w, s) we have 

[9(z, t) - f(z, u)l =< M(w)A(x ,  t, u) < nM(w)  P~ a.s. 

Remark. Usually S will be a set of functions acting on 3r and we must think of 
A (x, t, u) as It(x) - u ( x ) [  or similar quantities. 

(A2) There exists positive constants e and F such that for 1 _< i _< n 

f exp [-eM(w)] dn~ <_<_ F .  

(A3) For  any ~ > 0, let us denote by ~ a covering of S of minimum cardinality 
exp[H(6,  S)] such that for all So e ~a 

0"] IE~ sup A 2 (X, t, u < 6 2 
L \ t ,  ueSa 

then Card S~ < + oo. Here Y* denotes the measurable envelope of Y. 
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We define the pseudo-distance d on S by 

d2(t, u) = ]EsEA2(X, t, u)] 

and let v. be the normalized centered empirical process defined by 

v. = x/n(P. -- Ps), 

which means that for any function g(z) on ~ we have 

v.(g) = n-1/2 ~ [g(Zi)  -- ]E~(g(Z))] . 
i = ,  

(A4) There exists a constant C > B~/F such that for any t in S whenever 
~.(t) < 7.(s) + 8, then 

C -  l d2(s, t) < -n -1 /2v . [~ ( z ,  t) - ~(z, s)] + 8 . 

In many cases ~ and V are related in a very simple way and then (A4) will be 
a consequence of 

(A'4) There exists a function 7 ~ defined on S such that 

t) : t) + 

and a constant C > Ba/F  such that for any t in S d2(s, t) < Cf(s, t). 
Indeed, due to the centering in v~ we see that 

v,[~(z, t) -- 9(z, s)] = v,[~(z, t) -- ?(z, s)] = nl/2[?,(t) -- ?,(s) -- f(s, t)] . 

Remarks. 1) All the assumptions only involve differences between functions ~ and 
we can therefore always assume without loss of generality that ~(z, s) = 0, Vz ~ At. 
This fact will be used systematically in the proofs. 

2) In (A2) ~ and F are not uniquely defined but in view of Theorem 1 below it is 

clear that we should choose the ratio x/~/c~ as small as possible. When M(w) = M 

is constant, the best choice is a = 2 / M  leading to w/F/a = Me~2. 
We can clearly define numbers H(6, S') for any subset S' of S as in (A3) 

assuming S' to be the parameter space. These numbers, defined for 6 > 0 and S' any 
subset of S will play the role of entropy numbers and will determine the rate of 
convergence of M.C.E. as the following theorem shows: 

Theorem 1. Let us denote by s the true parameter and assume that (A1) to (A4) hold. 

Let  B~(cr) = {t E S:d(s,  t) < a}. Let  a = 1 v and let ~I be a function from 

lO, + oe[ x ]0, 11 to [1, + oe[ such that: 

(i) H(u, B~(G)) < H(u, a),for any (u, a) e]0,  + oe[ x ]0, 1] , 

setting 
2 a a  

~o(~) = f ~I'/2(u, 2Odu , 
aG 2 

1 2 8 F C  

(ii) the function a ~ q~(a)/a is non increasing and continuous. 
Then, there is an absolute constant K such that, if  n is large enough, the equation 

(2.1) 2KC f = , 
O~ 
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has a unique solution o.* and the following bound holds for any positive 2: 
lP*[3t such that 7,(0 < 7,(s) + e and d2(s, t) > max(2Ce, 2o-*2)] < 8.1 exp ( -2 /2 ) ,  

A n  e i  where IP* denotes the outer measure associated with IP = ~,i= 1 s. 

Comments. Concerning the existence and the choice of a function J~ fulfilling (i) 
and (ii), it is worth noticing that it is always possible to define H(u, o.)= 
1 v H(u, S). In the standard finite dimensional parametric case however, we shall 
see in Sect. 3 that H(u, Bs(o.)) is typically bounded by ALog(o./u) and therefore 
~I(u, o.) = (ALog(o./u)) v 1 will be a more judicious choice, allowing to ensure 
a n-1/2 rate of convergence which is precisely what one can expect under these 
circumstances. It is also worth to notice the unpleasant effect of the bound B which 
prevents us to work with an unbounded distance. Even in the simplest case of finite 
dimension and/~(u, o.) as defined above, for large B, (o(o.) will essentially be of order 
ao. leading to o.* of order B/v/-n. For unbounded sets, there is a need for 
a preliminary estimator in order to restrict oneself to a fixed ball of moderate size. 

Theorem 1 is a consequence of Assumption (A4) and of the following result 
which might prove interesting by itself: 

Theorem 2. Assume that Assumptions (A1), (A2) and (A3) hold. Let K = 1920 and 
a, FI and (o be defined as in Theorem l for some C > O. Let o.,2 be defined by eq. (2.1). 
Then, for any non-negative integer L such that 22%-*2_< BCF/e, the following 
inequality holds: 

( ] v , ( ~ ( . , t ) -  ~(.,s))[ ) 
P* sup d2(s ' t) v 22Lo. .2 >-- x/~/(2C) =< 8.1exp(--22L+1no.*2/b), 

\ t e S  

with b = 9a2KZCZF/ct2 <= no. .2.  

The proof of these theorems will be defered to the Appendix. An immediate 
corollary is as follows: 

Corollary 1. Let ~(Zi, . . . , Z , )  be an e-M.C.E. Under (A1) to (A4) we have for any 
p > 0 and some absolute constant Cp: 

IE* [dP(s, g)-I =< (2Ce) v/2 + Cpo. *p �9 

Proof of Corollary 1 
+o~ 

IE*l-dP(s, ~)3 = f lP*[d2(s, ~) > tZ/qdt 
0 

+ a o  

< f lP*[dZ(s, g) > 2o.'2]J~ p/2.1 P o.*Pd)'~ + (2Ce) p/2 
2 e C a *  -2 

+oo  

=< (2Ce) p/2 + 4.05pa *p f ~P/2- ie- i /2d2.  [] 
0 

Remark. For practical purposes, e should be small compared to o.,2 in order not to 
affect the risk of the estimators. Unfortunately, we do not usually know the 
constants involved in the model. Nevertheless, it seems that a choice of the type 

= n-2 would be safe in most cases. 
Some comments concerning assumption (A3) are necessary in order to relate 

this assumption to previous works on rates of convergence and mainly to Le Cam 
(1973), Birg6 (1983) and Van de Geer (1990a) where those rates are related to the 
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entropy structure of the parameter space. In our framework, another notion will be 
useful, which was introduced by Dudley (1978). In order to keep the presentation 
simple, we shall restrict ourselves to the following case: 

Definition 3. Let (O, H" I[) be some subset of an lLP-space of real functions, with 
1 < p < oe. For any subset S of 0 we shall denote by H(6, S) = Log N(6, S) its 
6-entropy with bracketing where N(6, S) denotes the smallest number of pairs 
(Of-, 0+), 1 <_ i <_ N(6, S) such that 

(i) 07_-<0~ + and [t0~ +-0711--<6 

(ii) S c U~_(_~s) {o ~ O[Oi- <- 0 <_ 0~- } . 

It is clear that entropy with bracketing is larger than ordinary entropy and that the 
two numbers will be the same for p--oo. The notion can also be extended to 
Hellinger distance which is actually an lL2-norm on the square roots of the 
densities. 

In most cases, A(x, t, u) will be some function of the difference It(x) - u(x)] (or 
eventually 1 ~  - s x / ~ ]  ) and d will be an ILP-norm. If we can control entropy 
with bracketing for this norm, it will clearly be easy to check (A3), since we shall 
then have when 0 + > t > 0~- and 0~- > u > 07, A(x, t, u) <-_ A(x, O~ +, 0i-). There- 
fore, in examples, checking (A3) will amount to compute entropy with bracketing, 
and mainly for lLZ-norm. This is usually not much more complicated than comput- 
ing ordinary entropy and the results are quite similar. When we have entropy 
results concerning uniform (sup-norm) metric, they immediately extend to entropy 
with bracketing and we shall not give details here, refering to Kolmogorov and 
Tihomirov (1961) or Lorentz (1966) for entropy computations. ILZ-entropies of 
Sobolev and other spaces are studied by Birman and Solomjak (1967) and can be 
extended to lL2-entropy with bracketing as shown in Birg6 and Massart (1993). 
Applications to estimation can be found in Birg6 (1983) and (1986) (with further 
computations) and Van de Geer (1990a). 

We shall content ourselves here to consider one very classical situation which 
has already been extensively studied (Birg6 1983 and 1986, Van de Geer 1990a, 
Stone 1982, Ibragimov and Has'minskii 1983, etc.) of parameter spaces of the 
following type. We shall denote by S(m, ~, A) the set of functions s on some given 
compact interval of the real line such that s (") exists and 

]s(m)(x) -- S(m)(y)] <= Atx  - yl ~ " 

1 

For such a space H(~, S) will typically be of order ~ - ~  (for lLP-norm, the situation 
being more complicated with Hellinger as shown in Birg6 1986) and optimal rates 
of convergence 6n are given by the solution of the equation 

(2.2) n~, 2 = H(~,, S) 
mq-~ 

leading to 3n of order n-~T,-+,)+ 1, this being true both for density estimation and 
regression curve estimation (with gaussian errors, say). It is easy to check that, for 

t 

H(x,  S) of order x -  t/t, t > 0 the solution ~, of Eq. (2.1) if of order n - ~ r  when the 
integral is convergent at zero, i.e. when t > 1/2 and n -t/a when t < 1/2. Therefore 
M.C.E. estimators will be optimal when t > 1/2 and more generally when the 
integral involved is equivalent to anH1/Z(~n, S) since then solving (2.1) basically 
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amounts to solving (2.2). When this is not true, only suboptimal rates can be 
derived from Theorem 1 and this is the case for t < 1/2. Clearly this does not prove 
that M.C.E. are suboptimal but only that Theorem 1 leads to such :rates. But we 
shall see, in Sect. 4, that, for some subspace of S(O, c~, A) the actual rate is not better 
t h a n  n -~/2 for ~ < 1/2 which shows that the theorem cannot be improved without 
additional assumptions. We actually do not know what is the true rate of conver- 
gence of M.L.E. for density estimation or L.S.E. for regression curve estimation 
with parameter space S(0, ~, A) with 0 < ~ < 1/2. 

3 Illustrations 

We shall give here several examples of classical models for which the preceding 
theory works. 

A) M.L.E. for density estimation 

We observe here n i.i.d, variables X1 . . . .  , X,  and we can take W~ = 0, Zi = Xi. The 
parameter s is the density of the distribution of the X'zs with respect to some 
measure # and it is known to belong to some function space S. For  simplicity we 
shall always identify the value of the parameter and the corresponding probability. 
The M.L.E. is a M.C.E. with contrast function 7(z, s ) =  -log(s(z)). The corres- 
ponding natural loss function is given by 

, s (x)  
~(s, t) = IEs[7(Z, t) - ?(Z, s)]  = f tog t - ~  s ( x ) d ~ ( x )  = K ( s ,  t) 

where K denotes the Kullback-Leibler information number. Unfortunately, this 
choice of a loss function leads to serious problems because it is unbounded. The 
following example shows that, even if supers II t/s H o0 < o% M.L.E. could very well be 
divergent. 

Define S to be a parametric set of densities fo on [0, 2] with 0 _< 0 < �89 and fo 
defined as follows 

fo(x) = 0 for 0_< x _  0 ,  

fo(x) = x -  0 for 0 _< x_< 20,  

1 fo(x)= 1 + 2 ( 1 Z 0 )  i ( x - 2 0 ) + 0 f o r : 2 0 < x _ < 2 .  

Assume that fo is the true density. Clearly for 0 > 0, K(fo, fo) = + oe. On the other 
hand, if the smallest observation X(1) is larger than 20, then 

log fo(Xi) > ~ log fo(Xi). 
i = 1  i = i  

The simplest solution to the problem is to assume that the family ,of densities is 
uniformly bounded from above and from below by some constants c -  a and c, say, 
and to use uniform distance to control the fluctuations of % Indeed we shall then 
have 

b ' (x ,  t) - ~,(x, u)l  <-_ c t t ( x )  - u ( x ) l .  
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Taking ~ = ~, M = B = c and A(x, t, u) = It(x) - u(x)[ will clearly solve the prob- 
lem when S is compact in L ~~ The entropy numbers which will appear will 
correspond to this metric structure. (A'4) will always be satisfied in this context (see 
the relations between Kullback information and lLE-distances in Birg6 1983). We 
shall not develop on this, because we would like to avoid such assumptions and 
also because we know from Birg6 (1983) that rates of convergence for estimators 
should be related to the metric structure with Hellinger metric rather than sup- 
norm. Indeed, when all likelihood ratios are bounded by some fixed constant A, 
which is clearly the case in the above setting, we know (Birg6 1983, Lemma 4.4) that 
for some constant C(A) > 4: 

(3.1) 2ha(s, t) <-_ K(s, t) <= C(A)h2(s, t) 

where h denotes Hellinger distance on densities: 

1 
hZ(s, t) = 5 f ( s, , /~)- t , ~ )  2 d~(x) . 

This definition extends to non-negative elements of Ll(/~). 
This implies that, up to a multiplicative constant, K(s, t) could be replaced by 

hZ(s, t) which leads us to adopt a slightly different approach and consider the 
problem of maximum likelihood estimation with loss function h 2. With this loss 
function, it is not necessary to assume that 11 s/t tl 0o is bounded but some control on 
the ratios t/s is clearly needed. Actually, the counterexample of Bahadur (1958) 
shows that, even with a compact parameter space, M.L.E. can diverge when 
likelihood ratios are unbounded. Our assumptions will be as follows 

(Aa) A = s u p  II t/s IF ~ < + oo P~ a.s .  
t ~ S  

(Ab) For any ~ > 0, we can find a minimal number N(6, S) of pairs of non-negative 
functions in ILl(#) (t~-, t[), 1 _< i _< N(6, S) with h(t~, t7,) < 6 and S = U ~  ,s) s~ 
with S~ = {t e Slt7, < t < t~[}. g(6, S) is related to the notion of entropy with 
bracketing as given in Definition 3. 

To put the problem in our basic framework, we choose 

(3.2) ~/(z, t ) = - l o g  [~ (t(z)+ s(z)) 1 . 

The following lemma will be useful to check (A4): 

Lemma 1. For any pair of probabilities P and Q 

(3.3) h(P, Q) >= h(P, P @ Q )  > bh(P, Q) , 

(3 
Proof The left hand side inequality easily follows from convexity arguments since 
h2(p, Q) = 1 - fdx /dP ~ .  The reverse inequality is more computational. Let us 

x t(x) x2" t(x) is define the function t(x) on [ - 1 ,  +oo[  by x / l + x = l + ~ - ~ -  
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a continuous decreasing function with t ( -1 )  = 4, t(0) = 1 and t (+  ~)  = 0. Assume 
dQ 

that Q ~ P and put u = d---P - 1, then 

1 2 p(P, Q) = f ~/1 + u dP = 1 - g f t(u)u dP 

( P+Q)  withureplacedby since f udP = 0. The same argument applies to p P, 2 

t dQ + dP u 
2 dP 1 = ~ and we get 

It follows that 

h2(p,Q)/h2(P, P2~Q)=4ft(u)uedp/ft(2)uZdP. 

One can check by elementary calculus and some numerical computations that the 
ratio t(x)/t(x/2) is bounded by t(-1)/t(-1/2) which leads to the constant in the 
inequality. The general case follows if we replace Q by (1 - e)Q + eP and let e go to 
zero. [] 

Remark. The constant cannot be improved as shown by the following example: 

dQ e anddQ 1 .Then  take ~-~ = 0 with probability 1 + e f f  = 1 + e with probability 1 + 

the ratio is: 

t ( -1 )  ]--~e + t(e) 1 +----~ 16 
4 ) - -  

~2 ~-~o t ( -1/2)  " 
t ( - - l / 2 ) - i ~  e + t(~/2) 1 +--~ 

p P  + Q']is 2 2x/2" t ( -1/2)  = 8(3 - 2x/2 ) and therefore the ratio hz(P, Q)/h'- , ~ ]  -~ - 

It is clear, since Ilog(a) - log(b)l < , ~ l a  - bl for a, b > 1/x/~ that 

I~(x, t)-- ~(x, u)[ = 2x/2A(x, t, u) = 2 log / t +  
S 

x/ 2s s 

=<2w/~ ? + s /u + s < ~2 
2s ~/  2s t ,/a Ix/~- 

= l___w__ \ ( I + A )  w e a l s O g e t 2  /" Therefore (A1) is satisfied with M = 2x/2 and B 2 /~ log 

IE[A2(X, t, u)] <__ h2(t, u) which allows us to take d = h, to see that (A3) is a conse- 
quence of (Ab) and get H(u, B~(a)) = log N(u, Bs(o')). In order to check (A4) we note 
that the concavity of the logarithm implies that when 7,(t) __< ?,(s) + ~, then 

log C(ZO + s(Z~)) > ~ log(s(Z~)) - ne/2 
i = 1  2 ~ i = l  
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and therefore 

_1 --~ ~(Zi, t)=<-I ~ ~(Zi, s)+e/2. 
n i = 1  n i = 1  

Using (3.1) and (3.3) we get 

n-1/2v ,[~( . ,  t) -- ~(.,  s)] < e/2 - lEs[log(2s/(t + s))] = e/2 - K(s, (s + 0/2) 

< el2 -- 2hZ(s, (s + t)/2) < e/2 - 2bZhZ(s, t).  

All assumpt ions  are satisfied and Theo rem 1 allows us to control  h(s, 3) in terms of 
N(u, B~(a)) which is en t ropy  with bracket ing  for Hellinger distance. We can also 
note  that  the effect of A is modera t e  since B is of order  of  log(A). 

Remark on the parametric case. If  the model  is parametr ic ,  i.e. S = {So, 0 ~ O} 
where O is a bounded  set in IR k, and is regular enough in the following sense: 
(Ac) for some positive 

D ' I I 0  - 0 ' l [  < h~(so, So,) < D II O - 0'1[ 

where I1" II is a no rm on 1R k and D, D'  are positive constants,  then we can use the 
local en t ropy  with bracket ing with respect to Hellinger distance. This local en t ropy  
is defined to be log N(6, B~(S, h)), where B~(S, h) is the bail with radius a with 
respect to the Hellinger distance h. Condi t ion  (Ac) implies (see Le C a m  1973) that  
N(~, B~(S, h)) is of order  of 1 v (6/a) -k/~. Using the same arguments  as above  we 
can apply  Theorem 1 with/~(u,  a) = (A' log(a/u)) v 1. Therefore,  if condit ions (Aa) 
and (Ac) hold, we find that  the M.L.E. 0 of  0 converges to the true value of the 
pa rame te r  with rate n-1/2. 

B) Another contrast funa ion for  density estimation 

Another  simple, a l though not  currently used, contras t  function in the i.i.d case, 
could be, assuming that  S is some compac t  set in lL2(#) where # is a probabi l i ty  
measure  and [[. [[ denotes lL z n o r m  

7(z, t) = rltH 2 - 2t(z) . 

Then  ]Es[7(z, t)] = I l t -  sll 2 -  ]lsll 2 which is clearly minimal  for s = t. If  we 
assume that  S is bounded  in sup-norm by some constant  A and that  it has finite 
en t ropy  with bracket ing in IL2(#), it is easy to check assumpt ions  (A1) to (A4) with 

= 7. Clearly, the en t ropy  proper ty  implies that  supt~s Jl t [I = A' and therefore 

]~(z, t) -- 7(z, u)l =< 2A'I Iltl] -- ]lull] + 2It(z) - u(z)t. 

We can take M = 2, B = (A + A 'z) and A(z, t, u) to be one half  of  this upper  bound.  
Then  d(s, t) is equivalent  to lLZ-norm. More  precisely 

{[t--s[] __< d(t,u) <= (1 + A')I[t -u[[  . 

Since f(s, t) -- Itt - s II 2, (A4) is satisfied. Finally, (A3) only requires that  S has finite 
en t ropy  with bracket ing in IL2(#) which is our  assumption.  

Remark. Another  contras t  function which could be used in the same context  
would be 

~ ( z ,  t )  - -  - t ( z ) / l l  t I1, 
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but it does not lead to very attractive values ofd and ~ and we shall not develop this 
example here. 

C) Regression models. 

In this case, our observations are Zi = (X~, Y/), 1 _< i _< n with 

= s ( X ~ )  + ~ ,  

s belonging to S and the underlying variables (Xi, Wi) being independent with 
respective distributions R~ | Q~. When Ri is a Dirac measure, we get the fixed 
design model. Usually the W~'s will be i.i.d, with distribution Q but this is not 
necessary. 

We shall build the estimator with the use of a function F which has the 
following properties: 

(Ca) F is convex, non linear (but possibly piecewise linear) and for some version F '  
of the derivative 

I E [ F I ( W ~ ) ] = 0  f o r l < i _ < n .  

In this case, our  contrast function is defined by 

7(z, t) = F ( y  - t(x)). 

Then 
n 

ms[7(z  , t ) ]  = n  -1 ~ m[F(s(Xi)- t (xl)+ w,)]. 
i=1 

The convexity of F implies that 

F(s(Xi) - t(Xi) + Wi) >= F(Wi) + (s(Xi) - t(Xi))F'(Wi) 

and the centering of the variables F'(W~) shows that V is a contrast function with 
the corresponding loss function 

f(s, t )= n -1 ~, ]E[F(s (X i ) -  t(Xi) + W i ) -  F(W/)] . 
i = 1  

We shall have to put some additional restrictions on the model in order to check 
our assumptions: 

(Cb) There exists some constant A such that for 1 _ i < n and all t, u, in S, 

]t(Xi) --u(Xi)] < A Ri a.s. 

(Cc) The function F cannot grow too fast in the sense that for some constants 
a, b, Wo > 0 

IF'(w - a ) l  < blF'(w)l for w < - W o  

IF'(w +a)[  < blF'(w)l for w > Wo �9 

11V'r (Cd) For  some constants ~, > 0. 

lEEexp(~' lF '(Wdl)]  < F' 1 <_ i <_ n . 

(Ce) If  G is defined by 

G(w, h) = F(w + h) - F(w) - hF'(w) 



126 L. Birg6 and P. Massart 

then for some constants Co, Co, ho > 0 and 1 < i < n 

(3.4) Co <= h-alE[G(Wi, h)] ~ Co if [hi < ho �9 

Remark. The convexity of F implies that G is non-negative and non-decreasing 
with respect to h for h > 0, non-increasing for h < 0. 

Proposition 1. Assumptions (Ca)-(Ce) imply (A1), (A2) and (A4) with ~ = 7. 

Proof We shall first define M, B and A: 

Iv(Z,, t ) -  v(Z,, u ) l - - I F ( s ( X i ) -  t(X,) + W~) - F(s(Xi)  - u(Xi) + W/)I 

< It(Xi) - u(Xi)] max(lF'(W~ - A)I, IF'(W~ + A)l) 

by (Cb) and the convexity of F. We can therefore define A(x, t, u) = I t ( x ) -  u(x)l 
and M(w) as the second factor. (A1) is satisfied with B = A and in order to check 
(A2), it is enough, in view of (Cd) to prove that M(W~) < D11F'(W/)] + D2. We 
shall content ourselves to prove that 

IF'(w + A)I < OllF'(w)l  + O2 Vw~'r162 # , 

the other inequality being proved in the same way. The inequality is clearly true for 
w > Wo by repeated applications of (Cc). It is also true when F'(w + A) < 0 by 
monotonicity of F' .  Finally, for F'(w + A ) >  0 and w < Wo we can choose 
D2 = F'(wo + A). 

With our definition of A, d is associated to some IL2(kt) norm with # defined as 

# = n  - t  ~ R~. 
i = 1  

d can be expressed as a function of G in the following way 

d(s, t) = n -1 ~ ~[G(W,,  s ( X i )  - t ( x , ) ) 2  
i = 1  

(A'4) will follow if we can show that, for Ih] < A and some positive constant c 

n -~ ~ IE[G(W~,h)] >ch  2 . 
i = I  

This is true by (Ce) if I hl < ho and for A > [hl > ho, the properties of G imply that 

n -1 ~ IE[G(W~,h)] >=coh 2 >=cohZA-Zh z . [] 
i = 1  

Remarks. (i) In order to check (A'4), we only used one half of inequality (3.4). The 
other half will be useful to get lower bounds results on rates of convergence. 
(ii) Clearly, apart from (Cb), all assumptions are related to the structure of the 
"errors" W~ and not the "explanatory variables" X~. The results will therefore be 
valid for any choice of the X{s. 

In order to illustrate those assumptions, we shall consider the popular choices 
F(w) = w 2 (least squares estimators) and F ( w ) =  I wl (minimum IL 1 regression 
estimators). 
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The case of F(w) = [w] is the most complicated because F '  is not continuous, 
but it requires weaker assumptions on the errors. In this case F'(x) = sgn(x) where 
we define 

s g n ( x ) = l  f o r x > 0 ;  s g n ( x ) = - l f o r x < 0 .  

One can then write 

Ix + hi = Ix[ + hsgn(x) + 2Ix + hi ll{-1}(sgn(hx))lljl~f, +~l([hl) 

and therefore 
G(x, h) = 2 Ix + hi 11{_ t}(sgn (hx))llllxl ' + o~t(Ihl). 

It is dear, under such circumstances that we only have to assume that the W~'s have 
a median zero and that (Ce) is satisfied. For h > 0 we get 

0 

IE[G(Wi, h)] = 2 f (x + h)dQi(x) 
- h  

from which we derive 

hQi [ - ~ , 0 ]  < IE[G(W~, h)] <2hQd[-h ,O]) .  

An analogous result holds for h < 0 and (Ce) will be satisfied if we assume that the 
distributions Q, have densities with respect to Lebesgue measure which are uni- 
formly bounded away from zero and from infinity in some vicinity of zero. 

If F (w) = w z, the assumptions are clearly satisfied if the W'~'s are centered with 
exponential moments which is the assumption used by Stone (1982) and slightly 
better than Van de Geer (1990a) who uses subgaussian tails but far from what is 
expected in such a situation, as shown in Nemirovskii et al. (1985). It is actually 
possible to substantially improve our results in this case and to weaken the 
moment condition (A2) when the approximating nets used for entropy computa- 
tions are derived from finite dimensional linear approximations of S. Since the 
details are not obvious and the existence of such approximations suggests the use of 
some better type of estimator, namely restricted M.C.E. which will be dealt with in 
a subsequent work, we defer this extension to this context. Another desirable 
extension is to unbounded parameter sets. In the case of density estimation, the 
need for positivity and bounded integral plus the entropy restrictions will usually 
lead to bounded parameter sets. A trivial example would be the set S of densities on 
[0, 1] satisfying the Lipschitz condition 

[ t (x) - t (y) l  _-< I x - y l  Vx, y~[0, 1].  

For regression functions, the situation is different and a more natural model would 
be a regression function u of the form 0 + fix) with 0 e IR and t e S. More generally 
we shall assume the following model 

q 

= y~ o:~oj(x~) + s ( X , )  + w, ,  s e S ,  o = (ol . . . .  , o q ) e ~  q 
j = l  

where the q))s are bounded functions. We also assume that the differences 
It(x) --u(x)l for t, u in S are bounded by A which is assumption (Cb) restricted to 
S and that the two norms defined by 

1 "  [ (  ~l ) 2 ]  
Ill0111 = sup 0j, II01lZ = n,~l  IE Oj~oj(Xi) 

j .= j 
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are equivalent and especially that 

(3.5) Ill0]il 2 < D 110112 
Without loss of generality we can also assume that 

(3.6) [gj(x)[ < 1  VxeY', j = l , . . . , q .  

Let us denote by (if, g) the L.S.E. in lRq x S (assuming that it exists and e = 0 for 
simplicity), and put 

To = Ojq~i(X~ ) -nll0[12; T =  s u p  ( I Zo l / l [ lO l l [2 )  . 
i = 1  j = l  OERq 

In this setting d is the distance in IL2(#). Let us assume without loss of generality 
that 0 --- 0. Then from the definition of the L.S.E. we know that 

1 6 j o j ( x , )  + e (x , )  - s (X, )  - ~ <= w ~  
i = 1  j = l  i = 1  

from which we easily derive using (Cb) that 

i  6j  (x,)jj iw,) 
i = 1  j = l  i = 1  

and by (3.5) 

(3.7) nllgll 2 < TIII~IIt 2 + 2AZn + 4 ~, W 2 < TDII6112 + 2AZn + 4 i W~ . 
i = 1  i = 1  

Let k be chosen and assume that T <= n/(2D) which is always true in the case of 
n fixed design points since then T = 0. If ~,i=l W~ < knA2/2, then by (3.5) 

111~1112 __< 4DAe(1 + k ) .  

And also in any case 

d((s, 0), (~, 6)) =< it 61t + A .  

Let us consider the event A = {11101112 _-_ 4DA2(1 + k)} and S' the parameter set 
{(0, s), s e S, Itl 0 I112 __< 4DA2(1 + k)}. Then if A occurs the L.S.E. in S' is the global 
L.S.E. and we can apply our theory to S' in order to compute H and 0-* relative to 
S' and get bounds of the type lE[d2((s, 0), (~, 0)~A] < C la  .2. We also have when 
r < n/(2D) 

1 6 ~  
d2((s, o), (~, g)) < 10A 2 + - -  w ~ .  

H i = 1  

Taking into account the fact that any moment of the variables W~'s can be bounded 
in terms of ~' and F '  independently of i and n, it comes from Marcin- 
kiewicz-Zygmund's inequality and Markov's inequality that, for and any p > 2 

2 n and x >- ~ Z i =  1 ] E ( W / 2 ) :  

lPI ~=l WZ > nxl < 
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yielding, via H61der's inequality: 

1 . IE (W 2) is also bounded independently of n and choosing p = 3 Noting that ~ ~ i=  1 
say, we finally get that for large enough k: 

[d2((s, 0), (~, ~))%,~ E~_-< ~/~3 < C2/n. 

Since the parameter set contains an Euclidean space, cr* cannot be of order smaller 
than n-~/2 and finally we see that 

]E [d2((s, 0), (~, 0))~ it__< n/2D] ] =< Cs 0"'2 ' 

In the case of fixed design points, T -- 0 and we are done. In general, since the X{s 
are available one can check whether T < n/2D is true or not. In any case we get by 
Bernstein's inequality (see Appendix 2 and formula (6.4)) using the bound on the 
Irpjrs 

IP i=l(qh(Xi)q~k(Xi)-- > 2 < 2 e x p  8 + " 

Now if those differences are smaller than 2w/n for all j, k we get 

q 

To << - 2 IO;llOkl;ox/~ <=2,,~(qlllOlll) 2 
j , k = l  

and finally 

i _,~2 1 IP[JTI > 2x/~q 2] < 2q 2 exp 
= = 8 + 42/3x//n 

If we choose 2 = x//~ we see that 
2Dq 2 

�9 [ITI _-> n/2D] <-_ 2 q 2 e x p ( - C s n ) .  

This gives our extension to unbounded parameter spaces. A particular case could 
be the space of functions of bounded variation, with a variation bounded by a given 
fixed constant Von [0, 11. Any such function can be written as 0 + s with 0~IR and 
sup~ls(x)l < g/2. This would fit perfectly in our framework but leads us to the 
second question: how can we control the L2-entropy with bracketing of spaces of 
functions of bounded variation or other classical function spaces? A lot is known 
on ordinary lLZ-entropies. The necessary extensions, using classical methods of 
Birman and Solomjak (1967) are provided by Birg6 and Massart (1993) and we 
shall not insist on this matter. It allows to deal with the classical Sobolev spaces on 
[0, 1] m, say, provided that the regularity is good enough compared to m. Those 
multidimensional extensions provide new examples for which the integral defining 
qo(a) in Theorem 1 is not convergent at 0. This is the case in one dimension for 
a-H61derian densities with c~ < 1/2 but when the dimension increases, the split 
occurs for smoother functions. Roughly speaking, if we work with spaces of 
functions of smoothness q (not necessarily an integer) the function/~(u, a) is of 
order u -m/q. As soon as m > 2q we see that p(cr) is of order a 2.m/~ which leads to 
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q 

a ~* of order rt - q / 2 m  instead of the optimal rate which should be n-Zq+m. Multi- 
dimensional examples show that the split occurs for differentiable functions for 
m = 3. Let us also notice that in the case of fixed design points, a better choice for 

would be 

In this case 

~7(z, t) = ( y  - t ( x ) )  2 - 2s(x)t(x) - t z (x) . 

~(z,  t) - ~(z,  u) = 2 w ( u ( x )  - t ( x ) )  

and assumption (A.1) becomes much simpler with M ( w ) =  2w. This does not 
change anything else since then 

v, U ( z ,  t) - ~(z, u ) ]  = v, [~(z, t) - v(z, u ) ] .  

D) I l l - posed  p r o b l e m s  

The framework is similar to the one used in regression, with independent variables 
Xi, W~, 1 < i < n and observations Z~ = (Xi, Y~) but now the Xi's and the elements 
of S belong to the same IL2-space with respect to some measure/~ with a scalar 
product denoted by ( ' ,  ' ) .  The model is given by 

Yi = (Xi ,  s )  + W~, l < . i < < . n .  

Usually, the Xi's will be deterministic but they could be random as well. We shall 
again deal with least squares estimation and therefore our assumptions on the W~'s 
will be the same as in the regression model. They should be centered variables with 
exponential moments. The contrast function will clearly be 

~,(z, t)  = ( y  - ( x ,  t ) )  ~ = ~ (z ,  t)  

leading to the loss function 

(s, t) = n - 1  

We also have 

]E[(Xi, s-- t )  2 ]  . 

i = 1  

IT(z,t)-Y(z,u)[ = 1 2 y - < x , t  + u ) l l < x , u - t > [  

= 12w + ( x ,  2 s - t - u ) l [ ( x , u - t ) [  

< (2lwl + Ilxll l l 2 s - t - u l l ) l ( x , u - t ) l .  

We shall assume the following 

(Da) For  I <_ i <_ n, IE(W~) = 0 and lE[exp(c(t Wil) ] == F ' .  

(Db) suptEs It tll < A / 2 ;  supl II Xl II 5 A'  a.s. 

We can therefore choose A (x, t, u) __< l( x, t - u)l ,  B = A A '  and 
M(w) = 2 ( Iwl  + A A ' ) .  This leads to the distance d2(s, t) = f ( s ,  t). For the entropy 
counts, it is actually enough to control the entropy with respect to the lL2-norm 
II t - u  II. Suppose that t and u belong to the same IL 2 ball of radius e, then 

A 2 ( x , t , u )  < l L t - u [ I  2 _-< (2e) 2 
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and Assumption (A3) will trivially be satisfied with f = 2e. This is a case where only 
usual LZ-entropy is needed rather than entropy with bracketing. 

E) Mixture models and deconvolution 

We observe here n i.i.d, variables X1 . . . .  , X,  and we can take W,. = 0, Zi = Xi. 
The distribution of the X/'s is assumed to have a density with respect to some 
measure # which is known to be of the following form: 

fAz) = ff(O, z) ds(O) 

where the parameter s belongs to some subspace S of distribution functions on 
IR and f ( ' , . )  is a known non-negative mesurable function such that: 
(Ea) f~ is a density for all s e S. 
(Eb) supt II f ,  I1 ~ = A < + oo. 
(Ec) There exists non negative constants C1, C2, j, m, fli and points z/such that 

If(z)  - f . (z) l  <= C1 ~ flilt(z + z i ) -  u(z + z/)l + C2 II t ( J ) -u(J ) t1 , .  
i = 1  

We consider the contrast function 

y(z,t) = I l l  1122 - 2 f ( z ) .  

With this choice we exactly have as in B): 

(s, t) = If is  - f ~  II ~ �9 

Defining ~7(z, t) = - 2ft(z), it follows from (Eb) that ~7 satisfies condition (A1) with 
A(z, t ,u)= ] ft (z) - f ,  (z) l, B = A and M = 2. Now conditions (A2) and (A'4) are 
clearly satisfied. In order to verify (A3) we need some entropy condition. We shall 
here assume that 1) IL2-entropy with bracketing and 2) lLP-entropy are bounded 
(note that condition (i) is unnecessary when C / =  0). We can now give three 
examples where this framework applies. 

Mixture models. O)f(O, z) is bounded and differentiable with respect to 0, 

f ( ' , "  is bounded constant b and all elements of S have their ) by some support 

in the same compact interval, [0, 1] say. Then integrating by parts we get 

f~ (z) - f .  (z) = - f ~ 0  f ( 0 '  z) (t(0) - u(0))  dO 

and (Ec) is satisfied with C1 = 0, C2 = b, j = 0 and p = 1. It follows from Birg6 and 
Massart (1993) that H(6, S) < K/& Therefore Theorem 1 implies that a M.C.E. 
converges to the true value of the parameter with rate n-1/3 (with respect to the 
pseudo-metric f 1/2). 

Deconvolution. (ii) f~(z) = f k ( z  - O)ds(O), where k is a bounded density of the form: 

k(z)= ~ ~,nE~,,+~E+ f k'(u)du, p/~0.  
i = 1  - ~  

Moreover k' belongs to IL 2 and the elements orS are continuous with support in 
[0, 1]. Integration by parts leads to 

f (z)  - f , (z )  = ~ fii(t(z + z/) - u ( z  + zi)) + fk'(z -O)( t (O)-  u(O))dO 
i = 1  
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which implies by Cauchy-Schwarz that (Ec) holds with CI = 1, C2 = 1] k' 112,J : 0 
and p = 2. By Birg6 and Massart (1993), IL 2 entropy with bracketing of bounded 
decreasing functions is of order 1/6 which implies rates of order n-  1/3. 

We can readily see that this rate cannot be improved in general. Let us consider 
the set of distribution functions s such that fs = 1///where/~ is a fixed constant, 
/3 > 1, as the parameter set S. Let # be the Lebesgue measure on [0, 1] and 
f(O, z) =/~0__<z, then we simply have: 

L =/~s 

and we know from Birg6 (1989) for instance that, in this situation, the ILl-minimax 
risk (and therefore the lLZ-minimax risk) is bounded from below by Kn-1/3. 

(iii) The framework is the same but k instead of k' belongs to IL 2 and 
the elements of S have densities with respect to Lebesgue measure. Then, by 
Cauchy-Schwarz 

If(z) -L(z)l < [Ikl12 lit' -u ' l12, 

hence (Ec) holds with C1 = 0, C2 = IIk II 2, J = 1 and p = 2. The rates of conver- 
gence will be derived in the usual way from the L 2 entropy properties of the 
densities of the elements of S. 

Remarks. (i) This framework can be extended to the case of 0 belonging to iR k. 
(ii) If the likelihood ratios f If, are uniformly bounded, the same theory can be 
developed with the contrast function 7(z, t ) =  - l o g f ( z )  leading to maximum 
likelihood deconvolution. Unfortunately, the loss function will then be K(f~, f )  or 
equivalently II L -f~ tl 2 which can be much smaller than II s' - t' 112. 

4 Suboptimality of minimum contrast estimators 

As we already mentioned, the rates of convergence given by Theorem 1 in the case 
of a "large" parameter set for which the integral f~o Hm(  x, S)dx is divergent at 
zero are not the optimal ones, as defined by the general theory in Birg6 (1983). 
Therefore the question naturally arises of knowing whether the proof of Theorem 1 
is suboptimal or the estimator itself is. The answer will be given in this section 
where we shall exhibit sets S for which the "bad" rate announced by Theorem 1 is 
actually the true one, for two different models: density estimation and regression. 
This does not mean that M.C.E. are always suboptimal when the entropy condition 
does not hold. We do not know anything about it, but if M.C.E. are optimal when 
the entropy condition does not hold, it is clear that some additional circumstance 
occurs, which is not a consequence of the assumptions of Theorem 1. Under the 
assumptions we use, it is impossible to derive better rates of convergence and those 
could very well be the right ones in some particular situations. In particular, even 
on a convex set of densities with uniformly bounded likelihood ratios, M.L.E. can 
be suboptimal. 

The main reason for this trouble is the following. The solution 6, of Eq. (2.2) 
only involves H(x, S) for x > 6,. Even if H(x, S) is explosive for x smaller than 6,, 
this will not change anything to the optimal rate for n observations. On the 
contrary, the integral in Theorem 1 depends on values of H(x, S) for x smaller than 
~,. As a consequence, M.C.E. are definitely unstable and will be sensitive to 
perturbations of S which only involves H(x, S) for x < 6,. This is not the case for 
optimal estimators as shown in Birg6 (1984). 
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A) Construction of the parameter spaces 

In order to define a convenient parameter space, let us start with the basic functions 

f(x)  = xll[o; lt4[(x) + 1/4 ~[1/4; 3/4-1 (x) -t- (1 - X)111314; 11 ( X ) ,  

v(x) = x~lto; 1/21(x) + (1 - X ) ] [ ] l / 2 ;  1 ] ( X )  . 

We shall then define on [ - 1/2; 1/2] and [ - t/; t/] respectively with 2, O, tl > 0 

fa(x) = 2(f(2x) - f ( -  2x)); Vo,,l = Off(x/q) - v ( -  x/q)) , 

which clearly satisfy 

il A II ~ = 2/4; II vo,.  Ii ~ = 0/2; f f x ( x )  dx = f v o , . ( x )  = 0 

f f ~ ( x )  dx = 22/24; fvg,~(x)dx = t/02/2. 

We shall say that the set y = { Yt . . . . .  Yk } satisfies the property A(q) if all intervals 
] Y l - q ; Y i + ~ [ , l < i - < k  are disjointed and included into the set 

1 , 3  j = [ _  3; _ _~] w [~, ~]. Here k is an arbitrary positive integer. 
Assuming that the following relationships hold with constants c, 0 < c < 1 and 

~ , O < c ~ <  1. 

O=c;t2; t f f=2~-10;  0 < 2 < 1 / 4 ,  

which implies that 0 <__ 2/4 and q < 1/8, we can define for y ~ A frO, 
k 

W,~,y(X) = ~ I)0,11(2 , --  X) 
i = 1  

and notice that whatever 2, 2', ff,~(x)w~:,y = 0. We shall define the parameter spaces 
O~ and 0 , .  O, is the set of all densities of the form 1 +f~.(x) + Wx, y(X) where 
0_< 2 < 1/4 and y is any vector of any dimension satisfying A(q) with t/as above. 
O~ will be the convex hull of O,, i.e. the set of g's of the form 

L L 

g = 1 + E ~,(A,(x) + w;~,,,,(x)), u, >= o, E ~, = 1 
' = I  l = 1  

L 

= 1 +fz(x)  + 2 #tw;,,y~(X) 
/ = 1  

with 2 =  Z~=l#,2, .  

Proposition 2. Denoting f (x) = O(x) - 1 ,  we have for all 9 in 0o; 

(i) I]fll~o < 3~/8 < 3/32; IJ~(x)l < 2 l / (x ) !  < 3lA(x)[ ;  

(ii) II f H22 > )-2/24; 

(iii) h2(1, g) --> 22/210; 

(iv) Ig(x) - g(Y)l < Ix - y[~' for any x, y in [ - 1 / 2 ,  1/2]. 

Proof. (i) One has [f~(x) + Wzy(x)l < 32/8 since 0 < 2/4 and the first inequality 
follows by convexity. The second uses the same arguments since 
Iw2~,y(x)l < �89  

(ii) Follows from orthogonality between f~ and Wz, r(X), whatever 2, ~' and y are 
and (iii) from Lemma 4.1 in Birg6 (1983) and our upper bound on g. 
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(iv) The assumption A(q) implies that fz is constant on the supports of the 
V o , , ( y i - ' )  which are themselves disjointed. Considering that the largest mono- 
tonous parts of f~ and Vo, ~ have respective lengths 1/4 and t/and the maximal slopes 
are 22 and 0/t/we have to check that 

2 2 6 + 0 ~ - 1 ~ < ( e + 6 )  ~ f o r 0 < 6 < _ l / 4 ;  0 < e < ~ .  

Since (e + 6) ~ > 2~-1(e ~ + 6 ~) by concavity and e < e~t/1-~, it is enough to check 
that 226 + 0t/-~e ~ < 2 ~- ~(e ~ + 6 ~) which clearly follows from our upper bound on 
2. The result follows by convexity. [] 

Then it follows from our proposition that 6), is a convex set of a-H61derian 
densities. We shall use O~ as a parameter space to derive lower bounds on rates of 
convergence of M.C.E. and demonstrate the limitations of those estimators. Since 
O~ is a subset of the set of a-H61derian functions, from Birg6 (1983) we know that, 
at least in the i.i.d, case, rates of convergence of optimal estimators should be at 

least n2~+~, which could be readily checked with suitable histograms. Similar 
results also hold in the regression framework. Computations below will show that 
M.C.E. cannot reach this rate for a < 1/2. 

B) Max imum likelihood estimators 

Let us now consider what happens when we use M.L.E. on 65, with c = 1. Assume 
the observations X1, . . . ,  X,  are i.i.d, and uniform on [ _ ~,1" 711 and 9,A is the 
M.L.E. 

Theorem 3. There exists  some positive constant e such that 

lim infP[h(1;  0,) > e(n log (n)) -~/2 ] > 1/2. 

An immediate consequence of this theorem is the fact that, as soon as ~ < 1/2, the 
rate of convergence of M,L.E. is not better than (nlog (n)) -~/2 which is suboptimal 

--Ct 

as compared to n2~+1. The rate is actually bounded by n -~/2,  a s  follows from 
Sect. 3. The log (n) gap is likely to be due to our proof and we believe that the actual 
rate is n -~/2. 

The proof of the theorem relies in a crucial way on the following technical 
lemma (see the proof in the Appendix) about spacings of uniform random variables. 

Lemma 2, Let  X1 ,  . . . , X ,  be n independant uniform variables on [ -  1/2; 1/2] and 
IV, the cardinal o f  the maximal subset S o f  (X1;""  " ; X , }  such that S satisfies 

o2 
1]  and for  any pair X i , X j  with X i s S  and X j ~  S, IXi - X j l  > n + l  . Then \n + 

= ) 1 , 

Proof  o f  Theorem 3. Let 9(x) = 1 + f ( x )  be an element of 0 , .  We already noticed 
that 11 f II~ < 3/32. Now for ixE < 3/32 we can write (x -2 [log (1 + x) - x ]  being 
increasing) with a = 0.47, b = 0.534 

X - b x  2 <= log(1 + x) < x - - a x  2 . 
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This implies that the likelihood function can be written 

i l~  i f ( X j ) -  ~ cjfZ(Xj); a < c j < b .  
j = l  j = l  j = l  

It follows from Proposition 2(i) that 

9 2 ~ fZix~) < f2(Xj)  <= ~f~, (Xj) 

then 

j=l j=l /=i j=l j=l 

with a/4 < M. < 9b/4 and finally 

~. ; 2  n L 
log 9(Xj) 2x/n  S, - M,  T, + • l~z W,,  =2,/g T; j = l  / = 1  

where 

S,~--* N(0,1); 0 . 1 1 < M , < 1 . 2 0 2 ;  T, a s , l ;  W,,t= i wz,,y,(Xj). 
j = l  

Claim. For e > O, there exists K, such that uniformly over O~ with probability larger 
than 1 - 

L 

W,,l < K~nT~(log(n)/n) ~/2 
/ = 1  

and therefore for large n and some K with 9teat probability 

log 9(X j) < KnS~(log(n)/n) ~/2, 
j = l  

On the other hand, Lemma 2 proves the existence of a subset of size N, of the X/s ,  
0.2 

which we shall denote by {Xj . . . . .  XjN, } such that if 3r//2 < - -  the density 
' = n + l  

9(x)= 1 +A(x)+ ~ Vo., xi, + - x  
i= 

n 
belongs to O, and asymptotically N, > g with a probability close to 1. Then, with 

large probability 

r -  n/~ 2 n 2  2 
log O(Xj) > - 2x/n -- - -  + - -  

j=t 19.9 16 

1 .  
Choosing t /=  8nn m the definition of 0, we find that the corresponding 2 is given by 

2 2 = (4n)-~/2. The log-likelihood for ~ is therefore of order n 1 -= which implies that 
the M.L.E. is obtained for values of 2 larger than 6(nlog(n)) -~/2 for some 6 > 0, 
hence the result. 
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There remains to prove our claim. Let us first consider the following situation 
of n i.i.d, uniform variables on [a, b] with common c.d.f. F and empirical distribu- 
tion F, and let Z ,  = v/n(F,  - F )  be the normalized empirical process. Let also u 
be a fixed absolutel~ continuous function defined on I-0, 1] and satisfying 
u(0) = u(1)= 0 and fo  u(x)dx = 0. We shall consider the following set ~K~ of 
functions defined on [a, b] for 0 < ~ __< 1: 

~F'~= { w(x)= 22 ~ u((yi-x)/tl) '  O < 2 <= l/4,tff = 

where {Yi}o~i~k is a sequence satisfying 

yo=0; yi+l >yi+tl;  yk <=b; k<=(b-a) /q .  

Under such conditions, for each ~ > 0 there exists some K~ such that 

(4.1) IP sup ~ w(Xj) > K~(n-1/21og(n)) ~] < e . 
w e ~ o  j =  

Indeed, since IE [w (X) ] = 0 by assumption, we have to control n ~/2 sup~ 2-  ~ Z,  (w). 
But clearly, integrating by parts we get 

k Y~ 

Z.(w) = ,~2 Z f u((y,-x)/rl)dZ.(x) 
i = l  y i - r /  

~2 ~ Yi 
= --  f u'((y, - x)/n)Z.(x) dx 

i=l yi-tl 

k Yi 
=,122 f 

i = l  yi--t/ 

-1 blt ( ( y  i --  X)/~) [ Zn(X ) -- Zn(Yi )  ] dx  

1 
< 22k sup [ Z . ( x ) - Z . ( y ) t  f lu'(x)l dx 

Ix -Yl < ~ 0 

< 22(b-a)/~lllu'l l l  sup I Z . ( x ) - Z . ( y ) ] .  
Ix - y l  5 

Now the inequality by Mason, Shorack and Wellner (see Shorack and Wellner 
1986, p. 545) shows that, for q > 0, t > 0 

lP t_ ix -,Isups, Iz,(x) - Z , ( y ) l  _-> t < exp ~1 + t / x / n J '  

where the K~'s denote different constants. Therefore, summing those probabilities 
for values of t /of the form 2J/n, j > 0 with t = K3 (t//21og (n)) 1/2 we get for K3 large 
enough 

[ 1 sup IZ.(x)-Z.(y) l>K3(rl log(n)) l /z]<=e.  IP 3#>n, lx  yl~=, 

From this we deduce that with probability larger than 1 -  e, uniformly for 
2 > (log (n)/n) "/z 

xfnZ.(w) < K4 2z- x/=(nlog (n)) 1/z <= n2K4 (log(n)/n) "/z . 
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?1 On the other hand since }-'j: l W(Xj) ~ n It u I[ 0022, for 2 __< (log (n)/ny/2 

v/~Z,(w) < n2 II u II + (log(n)/nY/2 , 

which proves (4.1) from which our claim follows. [] 

Remark. As a by-product of our proof, we get a lower bound for convergence of 
empirical processes. Let G~ be the set of functions g defined on [ -  1/2; 1/2] and 
such that 

I g ( x ) - g ( y ) l  < I x - y l = ;  ]lglt+ < 1.  

Let P be the uniform probability on [ - 1 / 2 ;  1/2] and P, the empirical measure 
derived from n i.i.d, variables with distribution P. Now, all g's of the form 

~i= t vo,,(yi -x )  with t/~ = 2 t -~0 and the yi's satisfying A(t/) are in G, and g (x ) =  k 

centered for P. But there exists some 

O(x) = F, vo,~ x j~  + ~ - x 
i = l  

defined as above such that with probability tending to 1, P,g > ~ ( 4 n ) - L  This 
implies that the classical n-  2/2 rate of convergence in the T.C.L. cannot be true over 
the class G~ for e < �89 a result which goes back to Bakhvalov. Another consequence 

IP, -P.g] 
is the fact that the ratio supg+ G= II g II 2 will be bounded away from zero. for any 

c~ in ]0,  13. 

C) Regression 

Let us now consider a regression framework of the type Yj = g(Xj)+ e~ as 
described in Sect. 3, where g belongs to O~, the ej's are i.i.d, and independent of the 
Xj's which are themselves independent and uniformly distributed over 
[ - 1 / 2 ,  1/2]. Given some convex function F satisfying 

IE(F'(ej)) = 0, IE(IF'(e~)[) = a', var (F'(ej)) = 0 - 2  , 

we shall define our estimator 0, to be the minimizer over O, of the quantity 
ZY=~ F(Yj - g(X~)) or equivalently of Z]=~ [F(Yj - g(Xj)) - F(ej)]. As before 
we assume that the true value of g is 1, therefore the quantity of interest can be 
written with g = 1 + f as 

R,(g) = ~ [F(Yj-g(Xj))-F(ei)] = ~ [F(ej-U(Xi) ) - F(e))] 
j = t  j = l  

= -  ~ f(Xj)F'(ej)+ i G(e,,-f(X/)) 
j = l  j = t  

=--2 ~ fl(Xj)F'(ej)- ~ wzy(Xj)F'(ej)+ ~ G(ej, .-f(Xj)). 
j = l  j = l  / = 1  

Using the properties of G and the same arguments as before we get 

2v/~G 
R"(g)- ~ S" + n22M"T" + nM"V" 
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where 
9 9Co 

S, Xe,N(0,1); O < M , < ~ C o l l f a [ I  2 . . . .  <--'64' 

T,, ~~, 1; V~ a.s. 1; [M~I N a'0/2 

and then for large n with large probability 

R . ( g )  __> - - n '0/2. 

On the other hand, using again Lemma 2 we can define 0 belonging to O~ if 
0.2 

3r//2 < by 
n + l  

=1 ~" ( 2  t/ F ' ( ~ )  ) ,F'(%)[ O(x) = 1 + fz(x) + ~ Vo, n Xj, + x 
i =  

where PIN,  >__ ~] 

get 

1. Therefore, asymptotically with a large probability we 
n---~ -i- oo 

nCo ; ?  _ 0/2 [ F ' % i ) l  R.(O) ~ 2x /na  + - ~ -  
i = 1  

Since the e~'s and X2's are independent, the last term obeys the law of large 
numbers which implies that with large probability 

riCo 22 no' 
R~ <-_ + -5--  - -f-g o .  

3C0 2 
If we define O, by 0 = T 2 ,  we can just conclude as before and get: 

a 

Theorem 4 in the above regression framework, the rate of convergence of M.C.E. 
over O~ will satisfy for some positive e 

liminf P[h(1, 0,) > en-~/2] > 1/2. 
n 

Remark. With a slight modification of the proof we can extend the result to the 
case where the sequence {Xj }j _> 1 satisfies Lemma 2, possibly with different values 
of the constants. This will be the case if, for example, the Xfs  are deterministic and 
equispaced or i.i.d, with a density with respect to Lebesgue measure, which is 
bounded away from zero and infinity on a subinterval of J. 

Unstability of the risk of M.C.E. estimators. The phenomenon is well-known, at 
least for the M.L.E., and we shall not go into great details but just give some 
illustrative example derived from our previous construction. 

Let Oz be the set of Lipschitz densities on [--1/2, 1/2] which means that 
I g(x) - g(Y)l < Ix - Y l for 9 in Oz �9 In this case the optimal rate of convergence is 
n- a/3 and it follows from Birg6 (1984) that the rate will not change if we replace for 
each n, OL by On such that any element of O~ is at a distance of Or. smaller than 
n-1/3. This is due to the fact that for n observations the risk is, in this case, only 
determined by the metric structure relative to balls of radius n -1/3 or larger. 
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Modifying the structure for smaller balls will only slightly affect the minimax risk 
as shown in Birg6 (1984). Unfortunately, our proofs of convergence of M.C.E. do 
involve smaller balls in a crucial way through a chaining argument. The following 
illustration will show that this is not only a defect of the proof but a real drawback 
of the estimator. 

For each n, we define a subset O, of our set O1 by 0 = 2 2 , / I  = 2ca, n -5/a, c, < 1. 
Clearly, any element g of O, is within (nil02~2) 1/2 <= s -z/3 in LZ-norm, (and 
similarly in Hellinger distance) of a Lipschitz density 1 + fa- Now the arguments 
used in the proof of Theorem 3 show that with large probability when n goes to 
infinity we shall have uniformly over O, 

n)~2 nO ~ /~ + - -  
j=l l~ g(Xj) < 2x/n + 2 - =  2 

and for some 

n~b2 
log 0(Xj) > - 2x/n n22 nO 2x f~  + _ _  

= - ~ + 16 = - 82 j = l  

The M.L.E. will occur for large values of 2 although the distance between On and 
Lipschitz densities can be made arbitrarily small by a proper choice of e,. Of 
course, this implies that perturbations Vo,, will be rather wild. If we assume some 
smoothness on them, various rates of convergence may occur but in the worst case 
above, the M.L.E. will not even be consistent. 

5 Appendix 1 

The purpose of this appendix is to provide a proof of Lemma 2. The following large 
deviation inequality for uniform spacings will be helpful. 

Lemma 3 Let U(o) = 0, U(1) , . . . ,  U(,), U(,+I) = 1 be the order statistics corres- 
ponding to n i.i.d, variables, uniformly distributed on [0, 1] and V~ = U(i+ l) - U(1), 
0 <_ i < n be the corresponding spacings. Then, setting J = [a/(n + 1), 1], we have for 
any positive e, 6 

IP( i=1 ~ l l s (V~- l )~J(V~)<bn)  < e x p ( - ( n + l ) ( 6 - 1 ~  +3))) 

(5.1) + 2exp ( -  (n - 1)e z) 

with b = e x p ( -  2a(1 + fi)) - e. 

Proof Let us first recall some classical facts about large deviation theory. 

�9 If S is binomial ~(n, p) and 0 < e, then 

(5.2) IP(S - np > he) < exp( -  2na 2) 

(see Massart 1990, for a more precise inequality). 
�9 If Wo, W 1 , . . . ,  14/, are i.i.d, exponential r.v.'s with parameter 1, by the 

Cram6r-Chernoff inequality, we get for e < 0 

( 5 . 3 )  I P ( ~ = o ( W ~ - l ) > ( n + l ) e ) < ( l + e ) n + l e x p ( - ( n + l ) e  ) . 
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It is well known that the joint distribution of the Vi's is the same as the joint 
n distribution of the (Wi/~j=o W~) s, so that the left-hand side of (5.1) is equal to 

with ~ = Wi A Wi-t and I = [alY, 1], where 

g/= ~ N/(n+ 1). 
j = O  

Now, assuming that n = 2m + 1 is odd, it is clear that the event {2~=111I(~) > bn} 
is included in the intersection of the events 

Z _-> + 1) _-> . 
i i = 1  

Therefore, an upper bound for IPo is 

~'(~ >__ t) + n' nto,o,t(w2~-i ) >_- (1 - b)(m + 1) 
\ i = l  

Assuming t = 1 + 6, we can bound the first term using (5.3) by 

e x p ( - ( n  + 1)(6 - log(1 + 6)) .  

For  the second term, we use (5.2) after convenient centering by 
p = IP ( l~ i < at) = 1 - e-2,t, since the corresponding W~'s are independent. As- 
suming that e = 1 - b - p -- e -2at - b, we get the bound e x p ( - 2 ( m  + 1)e2). The 
last term can be bounded analogously by exp(-2me2).  The conclusion follows, the 
case of n = 2m being similar. [] 

Proof of Lemma 2. Assuming that Mn observations fall in [ - 3 / 8 ,  - 1 /8 ] ,  let us 
order them and denote them Y(:) . . . . .  Y(M.). With Y ( o ) = - 3 / 8  and 
Y(M.+I) = - - 1 / 8 ,  the variables U(i)= 4(Y(i)+ 3/8) satisfy the assumptions of 
Lemma 3 with M, replacing n. Clearly Y(0 will belong to S if 
Vi- 1 A Vi > 4(0.4/(n + 1)). Let N ;  be the number of those ~0's, it is enough, using 
the same arguments for the interval [1/8, 3/81 to prove that IP(N', > n/16) ~ 1 as 
n --, + oo. Now for M, + 1 < B(n + 1), we have 

M n  

N~. => 2 ~j(E-t)IIj(V~); J = [1.6fl/(M. + 1),1] 
i = l  

and if M. > an, (M./(16~)) => n/16. This allows us to conclude that 

i 

> IE IP ~s(E_:)ll ,(Vi)-> M./(16a)IM. llj.(M. 
i 

>:min'(~-ll[J(Vi-1)l11(Vi)>=m/(16~))P(MnEJ;n)m~grn i 
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where o r  and m +  1 < f l ( n +  t)}. Now if c~< 1/4 < fl, the last 
factor converges to 1. The first one can be bounded from below using Lemma 
3 with a = 1.6// and b = 1/(16e) which clearly allows e, 6 to be positive for 
convenient choices of e and ft. [] 

6 Appendix 2 

The purpose of this Appendix is to provide a proof of Theorems 1 and 2. This proof 
is based on a control of the modulus of continuity of the empirical process 
v, = x//n(P, - P~) indexed by the family {~(., t) - i ( ' ,  s), t~S} .  Without loss of 
generality we assume throughout the proofs that i ( ' ,  s) = 0. 

Proposition 3 Suppose that assumptions (A1), (A2) and (A3) hold and B = 1. Then, 
for any positive a, a and 2 such that a <_ 1 <_ a and 

Or7 

(6.1) (Kx//F/a) f max(l, H1/2(u, Bs(a)))du < 2 
Ao/(64r #~) 

(6.2) 2 < 32(aF/~)a2v/~ 

the followin9 bound is available 

IP*( sup Iv,(~(', t) - ~(., s))l > ,~  < 8 e x p ( -  4~2,?/(K2a2r~2)) (6,3) 
\ t ~ B s ( a )  / 

where K = 1920. 

In order to prove Proposition 3 we shall use a chaining argument with adaptive 
truncatures. This technique was intiated by Bass (1985) in the context of set- 
indexed partial sum processes and then used by Ossiander (1988) and next by 
Andersen et al. (1989) in order to prove uniform central limit theorems for 
function-indexed empirical processes. 

Since we shall use Bernstein's inequality repeatedly we prefer to recall the 
precise statement of this inequality. To do this we need to give some notation and 
definition. 

Definition 4 Let p and c be positive constants. We define fig(p, c) to be the set of 
random variables X such that IE[X] m < (m!/2)pc m-2, for any integer m > 2. 

We can now state Bernstein's inequality (see Shorack and Wellner 1986, p. 855). 

Lemma 4 Let X1 , .  . . , X,, be independent random variables which are centered at 
expectations. Let S, = X1 + �9 �9 �9 + X ,  and assume that Xk belongs to fig(Pk, c) for 
any 1 <_ k <_ n. Then, for any positive 2 

]P(IS.I > ,~v/-s _-< 2 e x p ( -  22/2(v + (c2/w/n))) 

where v = n - l ~ k = l p k .  

Remark. It is very easy to verify that i fX belongs to fig(p, c) then X - IEX belongs 
to fft~ 2c). Thus, if the variables X's have the same properties as in Lemma 4 but 
are no longer assumed to be centered, the following exponential inequality is still 
available: 

(6.4) ~'([S, - IES, I > 2x/~) < 2exp(-- 22/4(2v + (c)l,/,~/-n))). 
We are now in position to prove Proposition 3. 
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Proof of Proposition 3 Let us keep in mind that A (x, t, u) __< 1 since B = 1 and fix 
the value of the constant  K = 1920. Now using a regularization argument,  it is 
enough to prove (6.3) if we assume the following condit ion to be fulfilled instead 
of (6.1) 

(6.5) (Kx~/c~) yr  H1/2(u)  du ~ 

~c#( 6 4F ,/n ) 

where H is a cont inuous and strictly decreasing function such that  
max( l ,  H(& Bs(a))) < H(6) for any positive 6 and H(6) i" + Go as 6 ~ 0. Since H is 

decreasing (6.5) and (6.2) imply that  2 > (K(r~-F/e)H1/2(a~)(a- ao/2) which 
means (since o-< 1) that 22 >(F/4)(aKa/~)2H(ao) and thus H(aa)<4e22a/ 
(FKzaa~2). So, since H is cont inuous and strictly decreasing with H(6) T + oo 
as 6 ~ 0 we may define 6o = H-l(4cd22/(FKZaa~2)) and we have 

(6.6) 80 <= aa . 

Next  we define 6i = 2- i6o for any nonnegat ive integer i. Since s is fixed we shall 
omit to ment ion explicitly (in the notations) the dependence with respect to s of the 
various quantities we have to deal with. So, for any t ~ S, let f = 5( ' ,  t) (we recall 
that  ~(. ,  s) = 0). Now, since (A3) holds for Bs(a), for each nonnegat ive integer i, we 
may choose a covering ~ i  = { S l , i , . . . ,  Sj,~} of BS(a) with J~ < expH(6~) and 

r( ,)*1 IE~ sup A2(X,t ,u <6  2 , f o r l < j < J / .  
k_\t,u~Sj, i 

For  any positive 6 we set ~-I(6) = ~a~>_aH(6). This function lid will be useful 
because the mapping (~Zo, . . . ,  ~k) below ranges in a finite set with cardinali ty 
bounded by exp(lH(6k)). Fo r  each pair (j, i) with i > 0, 1 < j =< J~ choose some 
point  sj, i in Sj, i and define the mappings ~h from S to {1 . . . .  , J~} in such a way that  
t belongs to S j, i whenever ~i(t) = j. Setting h = s~(0,~ and Ti = S=~(0, i we then define 

/ / k f = m a x  , - - M  s u p A ( . , u ,  ti 
i<k \u~T~ 

and 

C )* Ak(f~) = min sup A( . ,  u, h) �9 
ink \ueT~ 

It follows from those definitions that  

(6.7) Hgf  < f~ < n k f  + 2MAk(f) 

and 

(6.8) lEs(AkZ(fd) < 62 . 

We finally set ~-  = { f ,  t e Bs(o)}. F r o m  now on we shall write ,)c,, instead of '%" for 
short and "Akf"  instead o f "Ak( f ) ' .  We need to define a few more  parameters.  Let 
A = 48 x/F/~,  and for any integer k 

(6.9) r/k = A6kII-I(ak) */2 , 

(6.10) a k  = (2r/,),~a~/nk+,. 
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Let N = min{k > 0:6k < (~/(16r)),V,j~} and for any f ~ f f ,  

# ( f )  = (min{k > O:Akf > ak}) /~ N .  

When N > 1, the following decomposition is available: 

N - 1  

(6.11) f =  HoT+ ( f  - HNf) + ~ ( / - /g+ l f -  I lg f ) .  
k = 0  

Now, summating by parts we get 

N - 1  N - 1  

([Ik+lf -- Hkf)~u(f)<k+X = ~ ( f  -- Ilkf)ll.(I)=k + (FINf --f)ll~,(f)<N �9 
k = O  k = O  

Then, plugging this identity in Eq. (6.11), we finally get the decomposition that we 
shall use below, when N > 1 

N N - 1  

(6.12.a) f =  l l o f  + ~ ( f -  Hkf)llu(f)=k + ~ (Hk+lf-- IIkf)llu(f)>=k+l ; 
k = O  k = O  

when N = O, we shall simply use 

(6.12.5) f =  I lo f  + ( f  -- rlof)  . 

Proof of Proposition 3 when N > 1. The following inequality derives straightfor- 
wardly from (6.12.a) 

lP*(sup [v,(f)] > 2~ < IP1 + IP2  + 11) 3, 
\ f e , ~  / 

where 

IPI -~- ]P( suplv,(Hof)[ > )o/8), 
\ f e ~  

fe .~-  k = O  k =  1 

]Pa = ~ IP suplv,((Hk+lf -- 1-Ikf)~.(f)>k+l)l 2> t/k+l 
k = 0  \ f E o *  

provided that the following inequality holds: 

N 

(6.13) ~ r/k < 2/10. 
k = l  

In order to control the probabilities lPi, i = 1, 2, 3 it is useful to notice some 
elementary relations based on the fact that ak and Ak are non-increasing 

(6.14) {#(f)  = k} c {ak < Akf  < ak-1),  for 1 < k < N - 1, 

(/~(f) = 0) = {ao < Aof}, {#(f)  = N} c {AN f <  aN-l} �9 

Control oflP1. We simply note that l(17of)(zi)l <= M(w~)((Aof)(xz) + A(xi, s, to)). 
Now x~ and wi are independent, Pi(Mm) ~ Fm!/~ m by (A2) and A < 1 by (A1), hence 

(Hof)(zz)~((4/~2)F(Pi(A2 f + AZ(s, to)), 2/~). 
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Therefore, bound (6.4) yields 

IP i < 2exp(H(Oo))exp(-2-6cd22/(32F(rr z + 62) + a;~/x/-d)), 

thus, using (6.2), (6.6) and the fact that a > 1, we get 

1Pi < 2 exp(H(5o)) e x p ( -  2 -  i3 az2z/(FaZaZ)) 

which finally gives, using the definition of 6o and the crude bound K 2 > 2 i6, 

F t  < 2 e x p ( -  H(5o)).  

Control of lPz. We note that [g] < h implies 

(6.15) Iv.(g)i _-< Iv.(h)l  + 2xSnP(h) 

therefore, bound (6.7) yields 

l v , ( f  - Hkf)l[(g(f)=k)[ ~= 2IVn(M(Akf)ll(u(f)=k))[ + 4 ~ ( M ( A k f ) ~ o , ( f ) = k ) )  ; 

thus, since M and (Akf)ll(u (f)=k) are independent and Pi(M) <= F/e, we get 

] v , ( f -  Hkf)ll(,(y)=k)l < 2Rk(f) + 4\/-n(F/a)Ek(f) (6.16) 

where 

and 

Rk(f )  = [vn(M(Akf)~(~ ( r k))[ 

Ek(f)  = ff( (Akf)ll(u( y )=k)) �9 

Control of Ek. For each integer k such that 0 _< k _< N - 1, we use (6.14), (6.8) and 
(6.10) to obtain the bound 

Ek(f)  < fi((Akf)ll(zkf>a~)) < 6~ak < (c~/(2V))~h+ 1/x/~ 

and for k = N, we simply use the Cauehy-Schwarz inequality and the definition of 
aN to get 

EN(f) <= fi(aN(f))  <= aN < ( . / ( 1 6 r ) ) 2 / x / n  . 

Control of Rk. For each integer k such that 1 < k _< N, we note that (6.14) implies 
for any integer m __> 2, because of (A2) 

IE((M(Akf)~(,(f)=k)) (Zi)) m) ----< IE(Mm(w~)(A'~f) (x~)ll((ak f )(x,)=<a~- ,)) 

< ~ m i 2 m-z )pi(A~f)(ak_l/oOm-Zm!. P (M)P  (Akf)ak-1 < (F/~ z 

Therefore (m(Akf)f,(u(y)=k))(Zl) ~ J/t~ 2)FPi(A~f), ak- i/~). Thus using bound 
(6.4) and (6.8), we get 

IP sup Rk(f)  > ~k <= 2explH(6k)exp a ~k 
\ S ~  4(4F62 + arlkak-1/w/n)J " 

Therefore, using (6.10), our bound for Rk becomes 

IP(sup R k ( f ) >  rlk~ < 2exp(lI-I(6k)- ~/2 c~2/(48F62)) 
\ f ~  / 
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and (6.9) yields 

lP(sup Rk(f) ~ qkl < 2exp(-- ]H(6k)(A2o~2/(48I')- i ) ) .  
\ r e :  / 

Finally, it follows from the monotonicity of the function H and the definition of the 
constant A that 

P ( s u p  Rk(f)>=rlk)<2exp(-- (k  + 1)H(6o)) . 
\ f ~  

When k = 0, we simply use Aof< 1 and next proceed in the same way as above to 
verify that the variable (M(Aof)~(u(y)=o))(z~) belongs to ~((2/~2)FPi(Agf), i/a). 
Now the inequalities (6.4) and (6.8) yield 

P supRo(f)>,~/16 __<2exp H(6o) .16F6;-~---Z;- / - . . / .  
\fe: 

Using (6.2) and (6.6), we get 

IP sup Ro(f) > 2/16 < 2 exp H(60) - F a ~ + ~ 2 ) ) J "  
\ f e ~ "  

We conclude exactly as we did for the control of IP 1 that 

P ( s u p  Ro(f) >= 2/16) <= 2exp(-- H(6o)) �9 
\ f  e.~" 

Collecting the above estimates, we get from (6.16) that 

]172 _-< 2 e x p ( -  H(6o e x p ( -  kH(6o 
k=  

< 2exp(- / / (6o) ) (1  - exp( - / / (6o) ) )  -1 . 

Taking into account that IP 2 __< 1, this bound finally becomes 

IP2 < 3 e x p ( -  H(6o)). 

Control of IP3. We note that for any integer k such that 0 _< k <_2." N -  1, the 
inclusion {#(f )  > k + 1} c {Akf<__ ak} holds. Then we can verify in the same way 
as for the control of P2 above that ((1-Ik+lf-Ilkf)~,(:)>=k+l)(Zi) belongs to 
~((16/~2)rP~(A~(f) + zl~+ ~(f)), 4ak/e). So, applying bound (6.4) again gives 

N - 1  ~ ~]k+l  

IP3 _-< 2 k=o ~ exp(2H(6k+l))exp --4(160F6~+1 + 4~akrlk+l/W/-~) / �9 

Thus, using (6.10) we get 
N - 1  

2 2 2 P3 --< 2 ~ exp(2~-I(6k+l) -- ~ ~?k+~/(768F6k+l)), 
k=O 

and then by (6.9) 
N - 1  

IP3 < 2 ~' e x p ( -  ~-I(6k+~)((~ZAZ/(768F)) - 2)). 
k = 0  
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Now taking into account the definition of A, we conclude by the same way as we 
did for the control of ]P2 and finally get 

N-1  
11)3 < 2 ~ e x p ( -  lH(fk+l)) < 3exp(-- H(6o)). 

k=0 

End of the proof of Proposition 3 when N > 1. Collecting the above bounds for the 
probabilities lP~, i = 1, 2, 3 we get 

IP*( sup]v.(f)l >->_ 2) < 8exp( - H(6o)) 
\ f  

provided that condition (6.13) is fulfilled. It only remains to show that (6.5) implies 
condition (6.13). This will be a straightforward consequence of the following claim. 

Claim 1 

N 60 
Z b~(lH(3k)) 1/z < 4 f HZ/2(u)du. 

k=l  5N-1 

Proof of Claim 1 

6k H(3j)} _< O k H1/z(bj ) . 
k=l _ k=l 

Recalling that 6j = 2-Jbo, we have 

6k H(bj <-_ H((~j) 1/2 3 k < 2 ~ 6jH(3j) 1/z', 
k=l _ j=O j=O 

thus, since H is non increasing 

~(j~<=k )1/2 (--~0 6J ) 6k H@) <__ 4 f H1/2(u)du 
k= 1 j 5j+i 

which proves Claim 1. 
Now, using (6.9), we can deduce from Claim 1 that 

N 6o 
Z ~k <= 4A f H1/Z(u)du. 

k=l  6~_ i 

So, noticing that since N > 1, (~N-1 > ~ 2 / ( 1 6 / ~ )  and using (6.6) 

7 ~ ilk <= 4A _ Hl/2(u)du 
k = 1 ~2/(6 41" jn ) 

which clearly means (taking into account the definitions of the constants A and K) 
that (6.5) implies condition (6.13). Hence the proof of Proposition 3 is complete 
when N > 1. 

Proof of Proposition 3 when N = 0. We first recall that N = 0 means 

(6.17) 3o _<- a2/(16Fxfn).  



Rates of convergence for minimum contrast estimators 147 

Next, it follows from (6.12b) that 

(6.18) lP*(suplv,,(f)l >-_ ,~] < ~'1 + ~'~ 
\ f e ~ "  / 

where 

P z =  IP(sup Iv.(flof)l> 2 / 8 ) ,  IP2= lP(sup [v . ( f - f /o f ) l  >_-: 32/4) .  
\ f e ~  \ f e . ~  

The control of ]P1 does not differ from the one that we have already performed 
when N ~ 1 and gives 

IP1 =< 2 e x p ( -  H(5o)) . 

In order to bound lP2, we use (6.15) which leads to 

]P2 <~ exp(g(6o)) sup lP(2lv.(MAof)l > 32/4 - 4x/nff(MAof)). 
f e ~  

Now U(M) < FIe and, using (6.17), we get 

fi(MAof) < F6o/e < 2/(16x/n), 

Hence 

IP2 _-< exp(H(fio)) sup IP(Iv,(MAof) I >= 2/4). 
f e ~  

But it is easy to verify that MAof(Zz) belongs to ~(2F62/~ 2, l/a) hence using 
bound (6.4) we get 

IP2 < 2 exp(H(6o))exp(- 2-5~2;~2/(8F6~ + ~2/(2v/n)) ) 

and then, by (6.2) and (6.6) 

]P2 ~ 2 exp(H(6o))exp(- 2-  8~2)L2/(3FaZa 2)) 

which implies (using the definition of 3o and the crude bound K 2 > 3.211) 

IP 2 < 2 e x p ( -  H(6o)) . 

Collecting the above estimates, we finally get from (6.18) 

IP*(sup ,v,,(f)[ > 2) < 4 e x p ( -  H(6o)). 
\ f ~ "  

Hence the proof of Proposition 3 has been completed. [] 

Proof of Theorem 2. Let us first assume that B = 1. For any integer j, let 
Sj = {teS:22Ja *z <=_ dZ(s,t) < 2z(~+i)o -.2 /x 1}. Then, since S = (~j>=zSj)w 
B~(2zo-*), we have 

( , v,('7(-, t)), ) 
IP* sup dZ(s ' t) v 22za .2 > x/#n/(2C) =< IP1 + IP2 

k teS 

where 

lPi = ~ lP*(suplv,(~( ' ,  t))l > x/n22~*z/(2C)) 
j ~ L  \ t e S j  
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and 

]P2 = ]P*( sup [v,(~(.,t))[ > x/~22za*2/(2C) . 
\ t~Bs(2La *) 

Control oflP1. To bound IP 1 we can assume that 22Lcr .2 __< 1 (otherwise IP1 = 0). 
Now, for any integer j such that Sj ~e 13 we apply Proposition 3 with 2 = 
x/~22J~*2/(2C) and a z = 2 z(j+ 1)0-*z/x 1. We may do this only if conditions (6.1) 
and (6.2) are fulfilled. These conditions will be afortiori  fulfilled if the following 
inequalities hold 

(6.19) (Kv/F/e)cp(2Jo-*) < ~22Jo-*Z/(2C) 

and 

(6.20) 22Jo ".2 < (64aFC/oO(22~J+l)~ .2 /~ 1) . 

Noting that Sj ~: 0 implies that (22~j+ 1)~,2)/x 1 > 2 2 ~  *z we see that (6.20) is 
fulfilled whenever 64aFC/c~ > 1 which is precisely ensured by our choice of a. On 
the other hand, since the function cp(a)/r z is decreasing, inequality (6.19) is implied 
by Eq. (2.1). So, it comes from (6.3) that 

( ~222'na'2 "] 
IP1--<8 Z exp 4 ~ J "  

j>=L \ 

Since/~ _> 1 _> 0*, (2.1) implies that no -.2 __> b. Thus, 

1P 1 __< 8 ~ e x p ( -  9.22Jmr*a/(4b)) _-< 8 ~ e x p ( -  9.22L22kn~*2/(4b)) 
j>=L k>-O 

which finally implies since 22k > 1 + 2k and no ".2 ~ b 

~'1 < 8.09 e x p ( -  9.22Ln~r*2/(4b)) . 

Control oflP2. To bound IP2 we use Proposition 3 again with 2 = ~/n22Z~*2/(2C) 
and o -2 = 22% -.1/x 1. Conditions (6.1) and (6.2) will be fulfilled if 

a2L~ .* 

(6.21) ( K x / ~ / e )  f I~/Z(u,  La*)du  < x/~Z2La*2/(2C) 
~a*2/(128FC) 

and 

(6.22) 22% -*2 < (64aFC/cO(22La *e /x 1). 

Clearly (6.19) with j = L implies (6.21). On the other hand 22La .2 =< FC/7 and 
a = 1 v (~/(64FC)) so that (6.22) is fulfilled. Thus we may apply inequality (6.3), 
which gives 

IP2 -< 8 e x p ( -  9K222Ln~*2/(4b)) . 

Now, collecting the above estimates for IP1 and 1P2 and taking into account the 
facts that na .2 > b and K = 1920 straightforward calculations yield (6.18), thus 
completing the proof of Theorem 2 when B = 1. Let us now consider the general 
case of B + 1. We can always go back to our special case setting 
A'(x, t, u) = B - I A ( x ,  t, u) and M'(w) = BM(w).  Then we can derive assumptions 
(A1),(A2) and (A3) for A' and M' changing the constants to B ' =  1, 
~' = B - I ~ , F  ' = F and H(6, S) into H'(6, S ) =  H(B6, S) with a new distance 
d'(s, t) = B - l  d(s, t). This implies that H'(u, a) = H(Bu, Ba). Defining C' = B - Z C  

and a' = 1 v = a we can apply the proof for the case B = 1 to the 

setting with the primes everywhere and get the conclusion (6.18) provided that 
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22% -*'2 < C'F'/e '  where a* '  is the solut ion of 

x~ ~a*'2 _ 2K  C,xf-F S 2~'~*' ~,/2~ H'I/2(u, 2a*')du . c{' 
1 2 8 F ' C '  

Going  back  to the original setting wi thout  pr imes and  mak ing  a change of var iable  
inside the integral leads to the conclusion that  Bo-*' is the solution o-* of Eq. (2.1). 
This allows to t ranslate  (6.18) which is true for the pr ime values into the original 
setting with a * '  = B - *  a*. I t  is easy to see that  removing  the pr imes does not  affect 
the probabil i ty.  The  exponent  should therefore remain  unchanged  which leads, 
since b '2 = 9a'ZKZC'2I"/cd 2 <= no -*'2 to 

a*Z/b 2 = 9a,2K 2 c ' z  F ' �9 

This gives the final value of b together  with b 2 _<_ na *z. The conclusion follows since 
22La *'2 < C'F' /a '  is equivalent  to 22% *2 < BCF/~. [] 

We are now in posi t ion to prove  Theo rem 1. 

Proof  o f  Theorem 1 Since d(s, t) < B and C >= Ba /F  we can always assume that  

(6.23) 2a  .2 < BCF/c~ . 

Let f2~ be the event 

Iv , (~( ' ,  t))[ < x/n(dZ(s, t) v (,~a*z))/(2C), for any  t e S .  

Now,  let T~(co) = { tES:7 , ( t )  < y,(s) + e}, then for any co ~ f2z and  any t e  T~(co), we 
have because of (A4) 

dZ(s, t)/C < - n-1/Zv,(~( ., t)) + e < (dZ(s, t) v (2a '2)) / (2C) + 

which means  that  for any co ~ f2z and any t e TAco), we have 

d2(s, t) <= (2Ce) v (2a .2) . 

Next  we note that  since we m a y  assume tha t  8 .1  e x p ( -  2/2) < 1, we m a y  a fo r t io r i  
assume that  2 > 1. So, we can define L to be the integer such that  
22L < 2 < 2 E~L+I). Because of (6.23), we have 22La'2 < BCF/a  thus, we can use 
T he o rem 2 and get 

IP*(f2]) < 8.1 e x p ( -  2/2) 

implying Theo rem 1. [] 
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