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Summary. The quantum stochastic calculus initiated by Hudson and Par- 
thasarathy, and the non-causal stochastic calculus originating with the papers of 
Hitsuda and Skorohod, are two potent extensions of the It6 calculus, currently 
enjoying intensive development. The former provides a quantum probabilistic 
extension of Schr6dinger's equation, enabling the construction of a Markov pro- 
cess for a quantum dynamical semigroup. The latter allows the treatment of 
stochastic differential equations which involve terms which anticipate the future. In 
this paper the close relationship between these theories is displayed, and a non- 
causal quantum stochastic calculus, already in demand from physics, is described. 
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0 Introduction 

Close scrutiny of the quantum stochastic integrals of Hudson and Parthasarathy 
[HuP, Par] reveals that each may be obtained from a combination of classical 
operations - the Hitsuda-Skorohod integral ([Hit, Sko] see e.g. [NuZ, NuP])  and 
the gradient operator on Wiener space (see e.g. [Zak]). In their action on Fock 
space - more precisely, Guichardet space (see below) - both these operations take 
a particularly simple form; and, due to a combinatorial property of Fock space (the 
~r see below), are easy to work with. This is illustrated by an elementary 
(Hilbert space) proof of the mutual adjointness of gradient and integral, first 
established by Gaveau and Trauber [GaT]. Many other results in the non-causal 
calculus are made simple by exploiting combinatorial properties of Guichardet- 
Fock space. The Quantum It6 Lemma [HuP] is seen as a corollary of the so-called 
Skorohod isometry for non-causal integrals. Moreover, exploiting these opera- 
tions, one is led to a natural formulation of non-adapted integrals - and, with equal 
ease, of multiple integrals - in the quantum context. Demands for a quantum 
calculus able to deal with anticipating integrands have come from quantum optics. 
By employing a form of non-adapted calculus Maassen and Robinson are able to 
account for the spectral shape of an atom made fluorescent by a laser beam tuned 
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to a transition frequency of the atom [-RoM]. Barchielli's work on input-output 
channels, and electron shelving also involves anticipating processes [Bar]. Gener- 
alised quantum stochastic integrals have also been constructed by Belavkin [Bell. 

In the Hudson-Parthasarathy calculus there are three fundamental processes: 
A* creation ( t ), preservation (At) and annihilation (At). The annihilation integral is 

the simplest of the corresponding stochastic integrals. All operators act on a do- 
main of exponential vectors e~ (defined in (1.1)) in Fock space. Exponential vectors 
correspond, under the natural isomorphism between Fock space and Wiener space 
(expressed in (0.3)), with stochastic exponentials: exp { f q ) d B -  �89 The for- 
mal eigen-relation dAe~ = ~o(t)e~ dt led these authors to the formula 

f F dAe~ = ~o(s) F(s)e~ ds (0.1) 
0 0 

for an operator-valued process {F(s):s > 0} which satisfies the condition of local 
square-integrability of the (Hilbert space-valued) map s ~-+ F(s)e~. In order to define 
the creation integral f ;  F dA*, beyond the case of simple integrands, estimates were 
sought. These were obtained by imposing two conditions. Firstly the integrand 
F should be adapted in an operator sense: for each t, F(t) acts non-trivially only in 
Fock space up to time t. Secondly the increments of the integrator should be in the 
It6 sense - namely future pointing. Under these conditions, the commutation 
relations for creation and annihilation operators, together with Gronwall's 
Lemma, give the estimate 

f d A * ~ o  2 F =< 2e 11~112 I[F(s)e~[[ 2 ds. 
0 0 

This permits an extension by continuity of the creation integral to locally square 
integrable F. Furthermore the preservation integral yields to the same treatment, 
once the test functions (p are restricted to be locally essentially bounded. 

The adjoint relations 

( fF  dA*)* = fF* dA; ( fF  dA)* = fF* dA; ( fF  dA)* = fv*  dA* 

- valid for all reasonably well-behaved integrands - may be explained by the 
commutativity of each of dA*(s), dA(s) and dA(s) with F(s), at each instant s (and 
the self-adjointness of the preservation process). Adaptedness and the It6 conven- 
tion, together obviate the need for separate consideration of integrals of the form 
f d A F  etc (cf. Clifford and Fermi theories [BSW 1.2, ApH, L1] and the free 
stochastic calculus [KuS], Example 4.2 below). 

The key observation in the present work is as follows: the creation integral of 
F acting on an exponential vector e~ is nothing but the Hitsuda-Skorohod (H-S) 
integral of the classical process obtained by letting F(-) act on e~: 

f F  dA* e~ = 5P(F(-) g~). (0.2) 

It is worth remarking that the operator-adaptedness assumption on F does not 
help in the least in giving sense to the right-hand side. F(')ee itself will not be 
adapted (in the classical sense) unless (p = 0. The H-S integral is an extension of the 
It6 integral to non-adapted integrands. The cost of dropping operator-adaptedness 
is the imposition of a certain smoothness assumption. In Fock space (as opposed to 
Wiener space) this amounts to a growth restriction as one moves up through the 
particle levels. 



Quantum and non-causal stochastic calculus 67 

The H-S formulation of the creation integral (0.2) suggests that the natural 
class of integrands is those operator processes F for which the classical process 
F ( ' ) k  is Skorohod-integrable (for a reasonable (dense) family of Fock vec- 
tors/Wiener functionals k): 

A*(F)k  = 5P(F(.)k) .  

Fortunately the H-S integral, when formulated in Guichardet Fock space, is 
beautifully simple. We have gained ground on two counts: an extension of the 
theory is effected by a simplification; the creation integral now being defined 
directly, without recourse to a limiting procedure. 

What about the other integrals? What is the appropriate extension preserving 
the desirable adjoint relations 

A(F)* D A*(F*); A(F)* ~ A(F*); A*(F)* ~ A(F*)? 

(0.1) is already non-adapted but, in the new context, exponential vectors no longer 
play such a central role. The key here is to invoke the gradient operator on Wiener 
functionals. This also takes a strikingly simple form in Fock space. If the formal 
relation dA = a(t)dt is taken too seriously one is confronted with the problematic 
domain of the unsmeared annihilation operators {a(t): t >_-0}. However the 
gradient V is very respectable as an operator W ~-, Yf | L2(IR+) (where Yf is 
Wiener-Fock space). The relation (0.1) then reads 

f F dAe~ = F(s)Vs e~ ds , 
0 0 

where Vsk = Vk(', s) is defined for a.a. s when k e Dom(V)= D o r a ( v / N ) -  N 
being the number operator (see below). In this way one naturally exceeds the 
exponential domain, and arrives at the definition 

A(F)k  = f F(s) Vsk ds , 

for processes F for which Vsk E Dom(F(s)) for a.a. s and F(')V.k is (Bochner) 
integrable for a reasonable (dense) family of vectors k. The form of the extended 
preservation integral is now evident: 

A(F)k  = 5~(F(.)V.k). 

Notice the pattern of order in which operations occur - the gradient, if it is 
involved, is applied first, followed by the operator integrand, with (H-S) integration 
being applied last. This pattern persists in multidimensions (see Sect. 3). It is an 
echo of the extended Wick ordering rule of thumb suggested in [HuS]. 

Any square integrable Wiener functional F may be represented as a sum of 
multiple Wiener-It6 integrals: 

fo + ~ f ,  . f  f , ( t l , .  . . , t n ) d B t ~  . . . d B ,  . 
n>=l t l < . , . < t n  

This provides the isomorphic identification of Wiener space and Fock space 
alluded to above. Using the finite sets language of Guichardet [Gui-I this may be 
neatly expressed by the formula 

F = f f ( a ) d B ~ ,  (0.3) 
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the integral being over finite subsets o- of IR+. In other words, multiple integrals of 
all orders are treated at once. The algebraic character of the resulting identification 
of Wiener space with Guichardet space is discussed in [LM1] and [LP]. In this 
spirit, operators have been defined (successively by Maassen [Maa], Meyer [Mel]  
and Lindsay [L2]) which have the formal expression 

f f f f  x(e, fi, ~, 5)dA* dAp dA~ dS . (0.4) 

x is an ~(-kernel for the operator (see [L2]). In the present context it is no more 
difficult to take multiple integrals of operator-valued integrands. These may be 
constructed from obvious generalisations of the gradient and integral operations in 
Fock space. 

Section 1 serves to fix notation, and ends with the Fock space proof of Gaveau 
and Trauber's result. In Sect. 2 the non-adapted integrals are defined; and a quan- 
tum Skorohod isometry is proved, from which both the classical Skorohod 
isometry and the quantum It6 Lemma follow. In Sect. 3 the case of multidimen- 
sional noise is made explicit; and the reader is taken through a series of amalgama- 
tions, heading for the analogue of (0.4) for operator-valued kernels. The resulting 
integral coincides with a procedure developed independently by Belavkin [-Bell. In 
Sect. 4 it is shown how several previous ad hoc extensions of the Hudson-Par- 
thasarathy theory, together with the Fichtner-Freudenberg class of Fock-space 
operators [FiF], are subsumed by the non-causal calculus presented here; and also 
how Speicher's free integrals [Spe] may be viewed as non-adapted quantum 
stochastic integrals. 

1 Gradient-Skorohod adjoint relation 

Fixing a o--finite, non-atomic, separable measure space M = (S, ~-, m) in which 
each singleton set {s} belongs to ~ ,  let T denote the collection of subsets of 
S having finite cardinality: {a c S: # a < ~ }. Then F has the countable partition 
U,=>o F,, where F, = {a c S: #o- = n} and S will frequently be identified with F1. 
The measurable structure on F is defined as follows: U c F is measurable if, for 
each n, q~-I(U~F,)~N'c~S("),  where S (") is the collection of points lying in 
general position: {s E S':si + sj for i 4=j} and 45: U,~o Sc") ~ F is the map taking 
each point s E S (") to the set of its coordinates {sl . . . . .  s,} with S(~ {0} being 
mapped to { ~ }. The union maps o- �9 F d ~  [o[ := o1 w . . .  w ~ra (d > 2) are then 
measurable. The sets S (") may not themselves be measurable, in the product algebra 
~ " ,  however each differs from S" by a null set so that the following defines 
a measure # on F: 

n>l  

where z~ (U) = 1 if ~ c U, and 0 otherwise, and m" is the completion of the 
product measure m'. (F, #) is the symmetric measure space of M [Gui], and LZ(F) 
is naturally isomorphic (through the map 4) to the symmetric Fock space over 
L2(M). The abbreviation da for dp(o-) will be adopted throughout and L2(F) will 
be referred to as Guichardet space. Exponential vectors take the following form in 
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Guicharde t  space: 

e~(o-) = 1-[ q~(s), ~0 e L 2 ( M ) .  (1.1) 

The crucial p roper ty  of these vectors is that  they are linearly independent  and total  
in LZ(F), moreove r  the correspondence  ~0 ~ e~ is continuous.  The following ident- 
ity is frequently useful [ L M  2, LP] .  

~(-Lemma. F o r  d > 2 let g : F d ~ C be integrable, or  measurab le  and non-negat ive,  
then 

f . . . f g(al . . . .  , ad)dal. . . dad = f 2 g ( ~ z ,  . . . , aa)do- 

the sum being over partitions of a into d parts: (~1, �9 �9 �9 %). 

This result clearly extends to separably-valued,  integrable maps  into a Banach  
space. 

Definition 1.1 Fo r  f :  F ~ C, agf: F x F ~ 02 is defined by agile, fl) = f ( a  w fl), and 
for x : F x F ~ 0212, N x  : F --* 02 is defined by Nx(a)  = ~ = ~  x(a, ~), where ~ denotes  
the complemen t  a k a  of c~ in a. 

These will be referred to as union and partition operators .  Not ice  tha t  

age~=~| and N(e~| 

a consequence of which is that  Nag = 2 N where N is the number operator: 

Nk(a) = #ak(o-).  

Proposit ion 1.2 Considering ~ and N as unbounded Hilbert space operators between 
L2(F)  and L2(F x F), with maximal domains, 

(i) ag* = N and N* = ag - in particular each operator is closed; 
(ii) D o m  ag = Dom(x/ /2  N) and D o m  N = Dom(x/2cN'  +N~) Psy~.) 

where Psym. is the orthogonal projection given by PSym. X(O-, Z) = 

2 - ( # ~ ~  ~ . . . . .  x(c~, ~) and N~x(o-t, o-2): = ( #  o-i)x(o-1, o-2). 

Proof This is given in I-L2, Propos i t ion  2.5]. [] 

Not ice  that  for k e D o m  0//and a.a. co, ag~,k = k(" u co) defines an element of L2(F) .  
N o w  consider the opera tors  V : L  z(F)-+ L2(F x S) and 5 e : L 2 ( F  x S) ~ L2(F) 
given by 

Vf(e ,  s) = f ( e  w {s}); ~ x ( a )  = Y" x(ak{s}, s) 

with their maximal  domains:  

{ f e  L 2 ( F ) : f f l f ( ~  w {s})l 2 d~ds < o9 } and 

{ x  e L 2 ( F  x s ) :  f l ~ x ( o - ) [  2 do- < ~ } (1.2) 

respectively. V and 5 z are restrictions of ag and N in the sense tha t  agflr • s = V f a n d  
N x  = 5'~x whenever  the suppor t  of  x lies in F x S. Thus  Ve~ = % | ~0 and,  in the 
nota t ion  of [LP] ,  5~ | ~b) = e~ o ~, so that  5PV = N. 
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Theorem 1.3 (cf [GaT])  When these unbounded operators are given their maximal 
domains (1.2), 

(i) V*=SO; 5 O * = V  
(ii) Dom V = Dom , f N ;  Dora 5O = Dom(x/NT, Psym.) 

where Psym. is the orthogonal projection given by 

Psym.X(a,t)=(1 + # a )  -1 ~ x(aw{t}\{s},s) ,  

and Nix(a, t) = #ax(o, t). 

Proof. Let V:L2(F)---*L2(FxS) be given by Vk(a,s)=(1 + # ~ r ) - ~ k ( a u  {s}). 
Then, by the ~-Lemma, 

II Vkll 2 = f f ( 1  + # a )  -* Ik(~us)l  2 drds 

= f ~ ( # ' c ) - * l k ( v ) l Z d T = l l P ~ , k l l  2 
F>_I s ~ z  

so that V is a partial isometry with initial space L2(F=>I). Since V = ~/I  + N1 V 
and ~ + N1 is self-adjoint, V is a closed operator. From the above calculation it is 
clear that Dom V = Dora x~NN, so that Vx/N is the polar decomposition of V. By 
another application of the ~r 

i f (1  + #a)-~k(a w {s})x(a, s)da ds 

= f Z k(r162162162 

so that V* is given by 

V*x(~) -- zr_~ (~I ( #  ~)-~ Y, x(~\ {s}, sl. 
S E $  

In particular, 5O = , , ~  V*. Thus 90 = V* and, since V is closed, 5O* = V. Finally 

f ~ x(a\{s},s) 2 d o = f # a  2 ]XsYm.(O'\{S) 's)12 do 
s ~ a  s e r f  

= f f (  # r  + 1)]Xsym.("C, S)[ 2 de ds 

so that Dora 5 ~ = Dora(x/1 + N1 Psym.). [] 

Theorem 1.3 remains valid if the target space C is replaced by a separable hilbert 
space D since the ;(-Lemma does. When S = IR+ we have the identification of Fock 
space and Wiener space via chaos decomposition expressed through multiple 
Wiener-It6 integrals (0.3). Under this identification 5O becomes the 
Hitsuda-Skorohod integral and V becomes the gradient operator, moreover the 
multidimensional case may be treated with equal ease by choosing 
S = IR+ x {1 . . . . .  d}. Functions x 'F  ~ Jt~:= La(F;  b) which are square-integr- 
able and for which the corresponding element of L2(F x F; b) lies in the domain of 

will be called Skorohod integrable. Interesting results on this duality and the 
iterated Hitsuda-Skorohod and gradient operations, together with further refer- 
ences, may be found in Meyer's Quantum Probability Notes [Me2]. 
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2 Quantum Skorohod isometry 

We are now ready for the formal definitions first given tentatively in [LP]. Let 
{F(co): co ~ F} be a family of operators on ~ '  -- L2(F; D), let k be a vector in 9 f  and 
consider the conditions 

(a) k e DomF(o)  for a.a. co; 
(b) k e Dom ~//= Dora x/ /~;  
(c) ~//~k s Dom F(co) for a.a.co 

Definition 2.1 Dora(T(F)) = {k ~ A, ~ : ,k satisfies (a) and F(')k  is Bochner integr- 
able} 

T(F)k = f F(co)kdco 

Dom(A*(F)) = {k s W: k satisfies (a) and F(')k  is Skorohod integrable} 

A*(F)k = ~(F(')k)  

Dom(A(F)) = {k s ~r k satisfies (b), (c) and F(')ql.k is Bochner integrable} 

A(F)k = f F(co)~,ok do) (=  r(Fql.)k) 

Dom(A(F))  = {k ~ Jr :  k satisfies (b), (c) and F(.)ql.k is Skorhod integrable} 

A(F)k -- ~(F(')qt.k) (= A*(Fql.)k). 

When F is supported by S = F1, then (b) should be replaced by 

(b') k ~ Dora V = Dora ~/N 

and the definitions then read 

A*(F)k = 5e(F(-)k); A(F)k = f F(s)V~k ds; A(F)k = 5a(F( ' )V.k).  

First note that if w~ ~ Dora F(co), for almost all co, and e~(" )F(" )v% ~ LI(F; ~t~), 
then v% ~ Dom A(F) and 

A (F) v~ = f % (co) F (co) v% dco. (2.1) 

Moreover ve~ e Dom A(F) if and only if vs~ ~ Dom A*(~oF), in which case 

A(F)v% = A*(%F)v%. (2.2) 

The adjoint relations 

A*(F*) ~ A(F)*; A(F*) ~ A*(F)*; A(F*) ~ A(F)* 

follow immediately from Proposition 1.2, and there is a quantum Skorohod 
isometry. 

Theorem 2.2 Let {Fi(s):s ~ S}, i = 1, 2, be two families of operators on 2If and let 
ki ~ Dom A*(F~). I f  

ff(1 + #a)II[F,(t)k] (o)ll~ da dt < oo (2.3) 

then 

( A*( F1)k~, A* (F2)k2) = 

f (F~(s)k~,F2(s)k2)ds + f f  (v~[F~(t)k~], Vt[F2(s)k2]) dsdt .  (2.4) 
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Proof. The condition (2.3) is sufficient for each of the three terms in (2.4) to be 
well-defined. Let xi:(a, t ) ~  [Fi(t)ki] (a). then by the ~(-Lemma each xi satisfies, 

ff[[v~ xt[[ 2 ds dt = f l l x / N x ,  ll 2 dt < oo , 

justifying two further applications of the ~-Lemma below: 

f ( F~(t)k~, e2(t)k2) dt + f f  ( v~[F~( t )k~ ,  V,[F2(s)k])  ds dt 

= f f ( x l ( a ,  t), x2(a, t))~ d~ dt + f f f ( x l (~o  u s, t), x2(m u t, s))~ da~ ds dt 

= f f  (x l  (a, t), x2 (a, t))~ da dt + f f  ~ ( x l  (a, t), x2 (a \ s w t, s))2 da dt 

= f f  ~ ( x l ( a , t ) , x 2 ( a w t \ s , s ) ) ~ d a d t  
5 ~ r  

= f Z ~ (xl(c~\t ,  t), x2(o)\s, s))~ do) 
t~r S~fZ~ 

= (A*(F1)k l ,  A*(F2)k2) . [] 

This contains the classical Skorohod isometry. 

Corollary 2.3 [Sko] Let x be an LE-process on a standard Wiener (probability) space 
for which xt~ Dora V for a.a. t, and f I E l V s x ,  I 2 ds dt < oo. Then x is Skorohod 
integrable and 

l E l ~ x l  2 -- f~Elx~l 2 dt + fflE(VtxsVsxt) ds dt .  

Proof. Apply the theorem with S = JR+: let kl = k2 = 1 and, for each t, put Fl(t) 
and F2(t) equal to the rank one operator ]xt) (1 [. The result then follows by the 
natural identification of Wiener space and Fock space. [] 

This is not an isometry at all - there are non-zero processes whose H-S  integral is 
zero. However it is an extension of the It6 isometry since when x is adapted the 
second term vanishes: Vsx, = 0 for s > t, and Vtxs = 0 for s < t. It may be seen from 
the proof of the theorem that the classical result actually implies the quantum 
isometry. Moreover, one may view the proof as commutation relations of the form 
"Vs*Vt = VtVs* - c~(s - t)" at work. Such arguments are made rigorous in white 
noise analysis (see e.g. [Kuo, KuRl).  Clearly these differing points of view are 
complementary - see [Oba] for a Hida-type distribution theory for quantum 
stochastic integrals. 

When S = IR+ the integrals defined above are multiple-integral, non-adapted 
extensions of the Hudson-Parthasarathy integrals and, as we see next, the (quan- 
tum) Skorohod isometry yields a new proof of the quantum It6 Lemma which is 
both simple and direct. Let N be a dense subspace of a Hilbert space D, and let D be 
a dense subspace of L 2 (IN + ) with the invariance proper ty:f~ D ~fXEo, tl ~ D Vt > 0. 

Proposition 2.4 Let {F(s) : s > 0} be an operator-adapted, square-integrable (9, D)- 
process (see [HuP, Definitions 3.1, 3.3, L 31). Then f Fd A *, f Fd A and f F d A are the 
restrictions of  the respective operators A*(F), A(F) and A(F) to the exponential 
domain ~ | r (For f FdAw~ to be well-defined, f l  ~o(s)] 2 [[F(s)w~[I 2 ds must be 
finite.) 
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Proof We have already observed (before (2.1)) that N | g(D) c Dom A(F). Since 
F has support in F~, (2.1) implies that 

A(F)w~ = f ~o(s) F(s)veo ds = f FdA veo, 

for v e 9 ,  q) s D. Thus A(F)  extends f F d A .  Let x: a ~ - - ~  [F(s)ve,~] (a\s)  and 
y = f F d A *  v%. Now (~, s)~-~(O(s)eq,(z), [ f (s )v%] (z))~ is integrable so, by the 
~:-Lemma, a ~  (ueo(a), x(a))~ is integrable with integral 

f O(s) (ueo, F(s)v%) ds = (ue, ,  y )  . 

Let a > 1, then, by another application of the ~(-Lemma, 

f l la-  #" x(o-)ll~ d~ ~ f ( #a/a 2~)  ~, Ill-F(s)w~3 (~\s)ll~ 

= f f  [(1 + #r) / (a2)~+#q IIf(s)w~(~)ll~ d~ ds 

=< 7(a)fllF(s) w~ II 2 ds 

for some 7(a) < oo. Combining these we have 

f (ueo(a), a-  #" {y(a) - x(a)} )~ da = f ( ueo- ~o(~), y(~r) - x(a) ;>~ da = O . 

By the totality o f ~  | g(D) in ~ = L2(F; b) = D | L2(F), x = y a.c. In particular 
x e ~ and F ( ' )  ve 0 is Skorohod integrable. Thus A* (F) extends f Fd A*. That A (F) 
extends f F d A  now follows from (2.2) and the corresponding relation for Hud- 
son-Parthasarathy integrals: 

f FdA v% = f q~FdA* ve,p . [] 

Corollary 2.5 [HuP] Let M~ = fo  FidA* where Fi is an operator-adapted, locally 
square integrable (Ni, D~)-process, and let ks = vi%i where vi e Ni and q)i ~ Di 
(i = 1, 2). I f  

then 

T 

f IIq~,(s)M,(s)k~ll 2 ds < oo, for each T >  O, (2.5) 
0 

T 

( M a ( T ) k l ,  M2(T)k2 )  = f qh(s) ( Ml(s)kl ,  F2(s)k2) ds 
0 

T 

+ f ~02 (s) (Fl(s)kl, M2(s)k2) ds 
0 

T 

+ f (Fl(s)kl, F2(s)k2) ds. 
0 

Proof. Let a = k/(1 + k) and T > 0 then F~:= x / ~  F~zto, rl satisfies the conditions 
of Theorem 2.2. Let x~:(a,t)~-+[F~(t)ki](~r,t). By operator-adaptedness, 
xl(a u t, s) = ~pl(t)xl(~, s) for s < t and similarly x2(cr u s, t) -- r t) for 
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s > t, so that 

f d a a  #~-1 ( [A*(F[ )k l ]  (a), [A*(F'2)k2] (a))~ 
T 

- f d t f d a a # ~ ( x l ( a ,  t), x2(o , t))~ 
0 

T T 

= f dt f d s f d a a  #~+1 ( x l ( a u t ,  s) ,x2(aws, t))~ 
0 0 

T t 

= f dt (pl(t) f d s f d a  a #~+1 (x l (a ,  s), [Vx2(', t)] (a, s))~ 
0 0 

T 

+ f ds q)2(S) i d t f d a  a #~+1 ( [Vxl ( ' ,  s)] (a, t), x2(ff, t))~ 
0 0 

T 

= f d t ~ ( t ) f d a a  *~ ([Ml( t )k13 (a), [V2(t)k2] (a))~ 
0 

T 

+ f ds p2(s ) fda  a #~ ([Fl(s)k l]  (a), [M2(s)k2] (ff))~ 
0 

where Theorem 1.3 and Proposition 2.4 are used in the last step. Letting k ~ oo the 
result follows by dominated convergence. [] 

Corollary 2.6 Let F, q), k and M be as in Corollary 2.5, then 

Proof By Corollary 2.5 M ( ' ) k  satisfies 

IIM(t)kll 2 = f {2llf(s)k[[ 2 + [~o(s)l 2 IlM(s)kll 2 - ~(s)} ds 
0 

where c~:= II~o(.)M(')kll 2 + Ilf( ')kll 2 - 2 R e ( q ) ( ' ) M ( ' ) k ,  F ( ' ) k )  is non-nega- 
tive. l[ M(" ) k 112 is thus (a.e.) differentiable, and a simple integrating factor argument 
gives (2.6). [] 

Remark. In fact the condition (2.5) is redundant since fo F,. dA* ki is continuous, 
and so locally bounded. 

3 Multidimensions 

For this section let S -- S~ x {1 . . . .  , d} and write Fo for F(So), so that F = F(S) is 
naturally indentifiable with F.  a : = iv, x . . .  x Fo. We shall use the grad/Skorohod 
notation for the union/partition operations. Thus, for i,j = 1 . . . . .  d, 

v~: L2(r; b) - ,  L2(r  x r . ;  b) ~ : L 2 ( r  x r . ;  b) - ,  L~(r; b) 

V i f ( a , z ) = f ( a u ' c  i) 5~jx:a~--~ ~ X(a\Cd, O0 
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where, for ~ e Fo, vi = {(t, i):t ~ r} and, for a ~ F, aj = {s" (s,j) e o-}. Generalised 
creation, exchange, annihilation and time integrals may then be defined as follows 

A*(F)k = 5Pj(F(')k); Aj(F)k = 5P3(F(')V'.k); 

A'(F)k = f F(a)V~k da; T(F) = f F(a)k da (3.1) 
1-. ro 

for suitable operator-valued maps F : F o ~ ( d 4 ' ~ ) .  If we define 6% to be the 
operation of (Lebesgue) integration over Fo, and V ~ to be the injectiLon given by 
V~ a) = k(og), then the operations (3.1) may be (individually) written 

A~(F)k = ~p(F(')V~.k). 

Our aim is to amalgamate these (d + 1)2-operations. The creation and annihilation 
integrals simply give us back those of Definition 1.4: 

A*(F)k:a~--~ ~ I-F(~)k] (a\a); A(F)k = f F(7)V~kd 7 (3.2) 
~ a  F 

with the difference that we may think of an element of F as a d-tuple of elements of 
Fo, so that F in (3.2) is a d-argument function. For preservation/exchange d 2 
arguments are required, and a little thought leads to the definition. 

A(F)k:a~--~ ~ [F(~)V~,.kJ(a\og") 
t o . c a  

where the sum is over d x d arrays ~ = (o9j) of elements of iv. for which the d-tuple 
m = ( U i o 9 ~ , . . . , U ~ o 9 ~ )  is a subset of a in the sense that (o9-)jcaj for 
j = 1 . . . .  , d, and co. is defined similarly in terms of the rows of ~, instead of its 
columns. The final amalgamation of these three operations, and T('), makes 
contact with 2-, 3-, and 4-argument integral-sum kernel operators [Maa, Mel,  L2]. 
In one dimensional form, a four argument kernel x determines an operator X by 

Xk: a~'-'~ffx(al, a2, coa, 092) k(o91 ~3 a2 u a3) do91 do92 (3.3) 

where the sum is over partitions of a into three:(~l,~2, a3). Under suitable 
regularity conditions the product of two such operators X and Y is a third 
integral-sum kernel operator. Remarkably the value of the kernel of X Y is given 
simply by a (finite) sum over partitions of products of values of x and values of 
y [L2]. 

A creation-annihilation amalgamation is quite straight forward: 

A*A(F)k: a ~  ~ f[F(a, ~)V~kJ (~) d~ 

as is preservation-annihilation: 

Al(F)k'a~-* y. f[F( %,7)V~.k](a\o9")dT. 
a ) ' c a  

If we combine all three, and T, we obain 

~(F)k:a~-~ ~ ff[F(a, fl,7, b)V~ak](~)dTd6 
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where a, ~, ~, and ~ are d-tuples from Fo, fl is a d x d array from Fo and ~ is the 
complement of c~ • fl" in a. S is a quantuTn stochastic operation on a (d + 1) 2- 
argument operator-valued function F, generalising the scalar-valued case of inte- 
gral-sum operators (3.3). It is equivalent to the generalised quantum stochastic 
integral discussed in [Bell. Belavkin gives an estimate for the integration operator 
in terms of a scale of Fock space norms and L2x L ~ x  L2x L ~ norm in the 
argument of the integrand. He also obtains a formula for the product of non- 
adapted integrals generalising the product formula for 4-argument ~(-kernel oper- 
ators [L2]. 
Notice that our multiple integral does not coincide with iterated Wick-ordered 
integrals. In other words if F = F~ | 1 7 4 1 7 4  then, in general, 
Y,(F) ~: A*(Ft)A(F2)A(F3)T(F4). For example, although A*(F~)A(F3) = A*A 
(F1 | it is easily seen that A(F2)A(F3) ~ A4(F2 | F3). 

4 Examples 

In this section we view various constructions as non-adapted quantum stochastic 
integrals. 

Example 4.1 In their construction of tocally normal states of infinite Bose systems 
Fichtner and Freudenberg are lead to a class of Fock space operators which 
incorporate a position measurement with a local observable [FiF]. These fit into 
the present scheme as preservation integrals of the form A():v(')X) where U is 
a measurable subset of configuration space Fs and X is a (local) observable. The 
action of these operators is given by 

A(zv(')X)k:a~-~ ~ Zv(a)(XV~k)(a\a). (4.1) 
~ c a  

This has a nice interpretation: pick out each configuration lying in U and, holding 
it fixed, measure observable X. Let 6 ~ : F ~ C denote the function which maps a to 
1 if a = ~ ,  and to 0 otherwise. I fX is the rank one operator I f )  ( 6 ~  I respectively 
I ~  ) (gl) wi thfE  L2(F,,), g ~ L2(F,,) then one gets (generalised) creation (respec- 
tively annihilation) operators. More generally if X is an integral operator, with 
kernel x, (4.1) gives the corresponding 2-argument integral-sum operator [Maa, 
L2]. If X is a self-adjoint, one-particle operator then (4.1) gives its differential 
second quantisation, whose action in the notation of [LP] is ~ ~ Xq) o e~. 

Example 4.2 Kfimmerer and Speicher have developed an It6-type stochastic 
calculus based on a non-commutative notion of independence due to Voiculescu 
[K/iS, Spe]. Voiculescu's independence is related to a continuous free product (as 
opposed to tenor product) of algebras [Voi]. Parthasarathy and Sinha showed that 
the basic processes of this free stochastic calculus may be represented in Guichardet 
space as slightly extended Hudson-Parthasarathy-type integrals [PS2]. By exploit- 
ing the basic tools of non-causal calculus we may take this much further and 
represent stochastic integrals with respect to these processes. The key ingredients 
are the shift process (St)r>=o and a projection-valued process (U)~__>o defined as 
follows 

Stk(a)={k(aot) and Ptk(a)={k~ a) otherwise.ifac[t'~176 
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Let ~P: ( ~ ,  >_ 0 L2 (Tn) --* L2 (I'T) be given by 

( ~ f ) ( a )  =f , (s : , s2  - s l , . . . , s ,  - s ,_:)  

for f =  (f,) and e = { s : , . . . ,  s,} where 0 N sz < . . .  < s, and T = [0, oo). Then 
gt is an isomorphism of full (unsymmetrised) Fock space with Guichardet space 
which intertwines 

f d A ~  GV:= A*(S" G ~') and f G  ~' d A : ' =  A(G'e(S') *) (4.2) 

respectively with the creation and annihilation integrals 

f dl* G and f Gdl (4.3) 

of the free calculus, where G~e(s) = ~G(s)7 ~- 1. In (4.3) G should be adapted to the 
Cuntz algebra filtration and should belong to LZ(T;N) where ~ is a certain 
Banach algebra consisting of bounded operators [KuS]. The natural constraints in 
(4.2) are rather different. In the creation integral only one of the terms in the 
Skorohod sum survives, due to the shift: 

[A*(S" F)k-I (a) = St(S" F(')k)(a) = [F(min a)k] ((a\{min a}) - min a) 

for a 4: ~ ,  and the ~-Lemma yields the isometric relation: 

II f dA~ FkH~ = IIF(')kl]LZ(T;W) (4.4) 

and natural domain: {k G W : F ( . ) k  G L2(T; W)}. Moreover, if F is bounded- 
operator-valued, as in [KuS], then 

[1 f dA~ Film(.) < ][F(')[IL2(T;N(*)) �9 

Notice that the Cuntz algebra relations 

l(q))I*(O) = ( ~o, ~ ) I 

follow from the isometry (4.4) by letting G = q)(')I and then polarising. When 
F belongs to LZ(T;~(W))  its free annihilation integral is bounded, being 
( f d A ~  F*)*, but more generally 

f F dA:k = f F(t)($5" Vtk dt 

with corresponding domain. 
Free preservation integrals [Spe] may also be constructed on Guiehardet space 

from the Skorohod integral and gradient operator: 

f dA: Fk = 6e(V.P" r( ' )k)  . (4.5) 

Again only one term in the Skorohod sum survives, so 

[ f d A :  Fk] (a) = Y: Zrts,~)(a\{s})[F(s)k] (a) = [F(min a)k] (a). 

This is not a non-causal preservation integral in our sense, since the gradient  
operator is not acting first. For this reason the domain of the free preservation 
integral (4.5) is more delicate: an assumption of the form - for  each s > 0 F(s)k is 
continuous on F[s, oo) - is appropriate. The free preservation process 
A:(t) = f o  dA: is projection valued: A:(t) = (P')• In order to establish algebraic 
relations in the free stochastic calculus (It6-type product formula), and to construct 
stochastic dilations of quantum dynamical semigroups using the calculus, it is 
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necessary to consider two-sided integrals of the form fFdAsG etc. Taking care of 
continuity for the domain, the 2-sided annihilation integral may be defined directly: 

f F dA s Gk = f G(t) (St) * V~F(t)k dt . 

The other 2-sided integrals may be defined first as forms: 

f F* dA ~ G: (h, k)~-~f(V,F(t)h, StG(t)k ) dt 

f F* dAcG :(h, k)~-* f < nWtF(t)h, PWtG(t)k ) dt 

with domain constraints beginning with P" V.F( ")h E L 2 (T; our). This again con- 
nects with the work of Obata [Oba]. 

Example 4.3 The quantum It6 calculus is extended by Vincent-Smith to cover 
certain processes of the form X(s) = Fs |  s where Fs acts on 
2/fs:= {k e 2/f:supp k c F[O, s]} and R ~ is a second quantised multiplication 
operator acting on J/f~ := {k e W:supp  k c F[s, oo] } [Vin]. The corresponding 
integrals f x  dA and f d A * X  coincide with our non-adapted integrals A(X) and 
A*(X) respectively, and have the following action on the exponential domain: 

f X dAvee = f r ve~,, | R*e~,s ds 

f dA* Xw~ : a~-~ ~ Fsvg~s ~ (a c~ [0, s))R~,,(a c~ (s, oo)) . 
S E G  

In Vincent-Smith's applications R s is the projection onto the zero particle subspace 
of Ws so that X is O-adapted: X(s) = F(s)Ps where F(s) = F, | I s and P, is the 
orthogonal projection onto Yf,. The solution of the non-adapted quantum 
stochastic differential equation 

W(t) = I - A(Zro,,] V*P.) + A*(XEo,a VP. W) + T(ZEo.qKP. W) 

is then the dilation of the semigroup on N(D)  with generator 
X~-+XK + K * X  + V*XV(K, VeN([))) obtained in [A1F]. Integrals in which 
integrators occur on the 'wrong side', namely f x  dA* and f d A X ,  are also 
discussed in [Vin], but these are not used in his applications. Extended preserva- 
tion integrals are not defined - our analysis shows that these should be neither left 
nor right integrals: first (stochastically) differentiate, then act with an operator 
integrand and finally stochastically integrate in the Hitsuda-Skorohod sense. 

Example 4.4 Let T be a finite quantum stop time in the following sense: 
{T(t):t > 0} is a spectral resolution adapted to the Fock space filtration 
(~(W,) @ It). The following associated operators may be defined rigorously: 

s r =  fdT(t)S*; Pr.~:= fdT( t )  cp(t)P,, cp~L~ 

where, as before, S t is the shift through t and Pt the orthogonal projection on 
Jft  [PS1]. The time increments here are backward pointing. Parthasarathy and 
Sinha showed that if ~ r  is the range of the isometric operator S T and ~T is the 
closed linear span of the ranges of (Pr. ~: ~ ~ L~ (]R + )) then a natural isomorphism 
exists between J t ~ 1 7 4  T and ~ ,  factorising ~f  into before and after time 
T spaces. This is not really an example of the present theory, but due to its obvious 
resemblance to the free integral and O-adapted integral respectively, one might 
hope that a broader picture may eventually emerge, in which time may be random, 
and such integrals incorporated into the non-causal quantum stochastic calculus. 
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