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Summary. A percolation process in IR d is considered in which the sites are a Pois- 
son process with intensity p and the bond between each pair of sites is open if and 
only if the sites are within a fixed distance r of each other. The distribution of the 
number of sites in the cluster C of the origin is examined, and related to the 
geometry of C. It is shown that when p and k are large, there is a characteristic 
radius 2 such that conditionally on[C[ = k, the convex hull of C closely approxim- 
ates a ball of radius 2, with high probability. When the normal volume k/p that 
k points would occupy is small, the cluster is compressed, in that the number of 
points per unit volume in this 2-ball is much greater than the ambient density p. 
For  larger normal volumes there is less compression. This can be compared to 
Bernoulli bond percolation on the square lattice in two dimensions, where an 
analog of this compression is known not to occur. 

Mathematics Subject Classifications (1991): 60K35, 82B43 

I Introduction 

Traditionally the study of percolation has focused on lattice models. But continu- 
ous models, in which the set of sites is a random point process, are mare natural for 
many applications, particularly those arising in statistics and in the study of 
impurities in materials, as examined by Hall [Ha2], Men'shikov et al. [MMS],  
Given and Stell [GS1, GS2], Stell and Xu [SXl and the references therein. Other 
recent works on continuous models are by Penrose [Pc] on the cluster size 
distribution, and by Roy [Ro] and Zuev and Sidorenko [ZS] on equality of critical 
points. 

Most interesting, perhaps, are results for continuous models which are not 
direct extensions of known results for lattice models. In [ACC] it was shown that 
for Bernoulli bond percolation on the square lattice in two dimensions, for each 
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supercritical probability there is a characteristic shape W with the following 
property: for large k, conditionally on the cluster of the origin containing k sites, 
with high probability the shape of the cluster approximates a multiple ck 1/2 W of 
this characteristic shape. Further, the constant c is such that the density of the 
k-cluster in the region ck ~/2 W is the same as the ambient density of the infinite 
cluster in all of Z 2. That  is, the k-cluster looks like a broken-off piece of the infinite 
cluster - it is not any more tightly compressed. In contrast, we will see for our 
continuous model that an analog of such compression does sometimes occur. 

It should be mentioned that the correspondence underlying this analogy is not 
an exact one - a different analog for lattice percolation, closer than that considered 
in [ACC], to the questions we consider here is possible, and might well exhibit 
answers similar to what we will obtain here for the continuous model. But we will 
not consider that alternate analog, outside of a brief description following Theorem 
2.4 below, because it is not as natural a question for lattice models. 

Two main types of continuous models have been considered. In the first, the lily 
pad model, independent regions of random size and/or shape are placed with center 
at each site of a (usually Poisson) point process; the clusters are then the connected 
components of the subset of IR d that is covered by these regions. This model is 
considered in [Hal ,  Ha2, MMS, Ro, ZS], and [Gr, Sect. 10.51. In the second type 
of model, there is a nonincreasing function f :  (0, co) ~ [0, 1] withf(s) ~ 0 as s --, oo, 
and there is a bond between every pair of sites of the point process; these bonds are 
independently open with probability given by the function f evaluated at the 
distance between the two endpoints. We will call this the random connection model; 
it is considered in [GS1, GS2, SX] and [Pe]. 

Here we will consider what is perhaps the simplest continuous percolation 
model, the Poisson blob model, which lies in the intersection of the above two types. 
Our point process will be a Poisson process X in IR d (d > 2) with intensity p, with 
a point added at 0; thus X u {0} is a Poisson process "as viewed from one of its 
sites." (We use X to denote both the random counting measure and the corres- 
ponding set of sites.) For  a fixed r > 0, each pair of sites is then connected by an 
open bond if and only if the sites are separated by distance < r. This is of course 
equivalent to the lily pad model with nonrandom discs of radius r/2, or to the 
random connection model with f = l(o,r]. The cluster C of the origin is defined to 
be the set of sites which are connected to 0 by a path of open bonds. We wish to 
examine the distribution of the cardinality [ C1 when p is large, and determine what 
a typical configuration looks like given [C[ = k. 

In a forthcoming paper we will examine similar questions for the random 
connection model with general smooth f It will be shown that this smoothness 
makes the qualitative features of finite clusters quite different from the present case 
with discontinuous f =  l(o,rj. 

We will use Pp to denote probability when the intensity is p. In both the lily pad 
and random connection models, it is known [ZS, Pe] that under mild hypotheses 
satisfied for the Poisson blob model, there is a critical intensity 0 < Po < m such 
that Pp([Ct = oo) is positive for p > Po and zero for p < Po. 

II Statement of results 

Penrose [Pe] showed that for the random connection model with finite range, 

lira Pp([CI = 1)/Pp(ICi < ~ )  = 1 . 
p--~ oo 
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Since limp_~ o~ Pp([ C[ = oo) = 1, this is a statement about rare events. What we will 
obtain in our special case is much more detailed information about the probabilit- 
ies of the rare events [] CI = k + 1]. (The " + 1" here takes account of the origin.) 
Given a subset A of IR e and s > 0, let 

AS: = { x ~ I R a : d ( x , A )  < s} 

As:= {x~IRa: d ( x , A  c) > s} , 

where d( . ,  .) denotes Euclidean distance. For  j-dimensional sets A in IRa, j < d, let 
I A[ denote the j-dimensional volume; recall that I AI denotes cardinality for count- 
able sets A. When confusion is possible we use vol( . )  to denote d-dimensional 
volume. Let U denote the unit ball of IRa, and na : = I U I. What makes the event 
[IC[ = k + 1] rare for large p is that the region C r must be empty except for the 
k sites of X in C; stated another way, C must be surrounded by a skin of thickness 
at least r which is completely empty of sites. One way for this to occur is that, for 
some 2 > 0, there be k sites of X in the ball 2U, and 0 sites of X in the annular 
region (2 + r )U\2U.  Thus define 

q(p, k):= sup P p [ X ( 2 U )  = k ] P p [ X ( ( 2  + r ) U \ 2 U )  = O] 
A>O 

= sup exp(--pzca(2 + r)a)(prca,~a)k/k! . 
2 > 0  

Let 2~ denote the positive solution of the equation 

2(2 + r) a-1 = a/na; (2.1) 

it is easily checked that the above sup occurs at 2 = 2k/,. 
If we ignored the possibility that the k sites of X in 2U are not all connected, 

which is unlikely for large p and not-too-large 2, we would obtain a seemingly 
crude lower bound: 

Pa(IC[ = k + 1) > q(p, k ) .  (2.2) 

(This would be exactly true if we restricted the sup defining q to 0 < 2 < r.) But in 
fact, the lower bound (2.2) is not so crude at all, as our main result will show. When 
ICI = k + 1, C will be shown to approximate the ball 2k/p U. This is analogous to 
phenomena observed in the study of "density of states," where in systems at low 
temperature most of the probability is concentrated on the small subcollection of 
states which have some particular geometry; see [LGP] .  

Let Cn denote the convex hull of C. There are two natural smoothings of C to 
use in comparing C to a ball or other region of IRa: Cn and the set (C%. Note 
C = (C*), = Cn. For  C small relative to r, (C~), can be thought of as Cn with dents 
in it. It is easily checked that any convergence to a convex set which we prove for 
the shape of (C~)~ is also valid for Cn,  provided C stays bounded. Define 

din(A, B):=  infx vol((A + x) ~ B), A, B = IRa. 

Theorem 2.1 For the Poisson blob model, 

logPp( lCl  = k) / logq(p,  k ) ~  l as p ~ oo, uniformly in k > O . (2.3) 

Further, conditionally on I CI = k + 1, c is approximately a ball o f  radius 2k/o, in the 
sense that 

d,,((2~J (Cr)r), U) ---r 0 in probability as p ~ oo and k ~ oo . (2.4) 
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Theorem 2.1 is most easily understood by decomposing it into three different cases: 
k/p ~ O, k/p bounded away from 0 and 0% and k/p ~ oo. The corresponding 
optimal radius 2k/p then also approaches 0, stays bounded, or approaches o% 
respectively. The first case has two subcases: k fixed and k ~ oo. In the cases k/p ~ 0 
and k/p bounded we will be able to strengthen (2.4), as follows. Let H(A,  B) denote 
the Hausdorff distance between subsets A and B of IR d, and let dn be the translated 
Hausdorff distance given by 

dr~(A, B):= inf H(A,  x + B) 
x e ~  a 

where x + B is the translation of B by x. The statement 

du(2~r (Cr)r, U) ~ 0 in probability (2.5) 

is not in general equivalent to (2.4). This is because (2.4) allows for the possibility for 
example that (C),  is shaped like a ball with a long thin spike attached, while (2.5) 
allows (C'), to be a "spherical sponge", i.e. ball-shaped with many small holes 
inside. When 2k/0 stays bounded, however, (2.4) and (2.5) are equivalent. This fact 
involves the special nature of (C%; specifically, no two components of (C% can be 
separated by distance greater than r, and any point not in (C% is part of an r-ball 
which doesn't meet (C%. 

We define the relative density 0 of the cluster C to be [C(pvol (Cu) ,  which 
should be thought of as the ratio of the density I CI/vol(Cn) of the cluster C to the 
ambient density p. 

Theorem 2.2 Let k > 0 be f ixed and p ~ oo. Then 

the optimal radius 2k/p ~ (Trd r d -  1 ) -  1 k / p  -+  0 ; (2.6) 

Pp(]CI = k + 1) = e x p ( -  [p~zdr a + (d - 1)klog(p/k)  + O(1)]); (2.7) 

and for k > 1, conditionally on [ICI = k + 1], 

2k~J diam(C) is bounded away from 0 and ~ in probability; (2.8) 

the relative density 0 ~ ~ in probability.  (2.9) 

We call the phenomenon in (2.9) compression. 
For k = 0 the factor k log (p/k) in (2.7) should be interpreted as 0, and the 0(1) is 

unnecessary. 

Theorem 2.3 Suppose k ~ ~ and p ~ ~ with k/p -+ O. Then 

the optimal radius )~k/O ~ (~Za rd- 1)-1 k/p -~ 0;  (2.10) 

Pp(tCl = k + 1) 

= e x p ( -  [p~dr d + (d - 1 ) k l o g ( p / k )  + (d -1)klog(ercar ~) + o(k)]) ; (2.11) 

and conditionally on [[C] = k + 1], 
-i r -i r d~,(2k/p (C )~, U) --+ 0 in probabili ty,  (2.12) d~(2k/p (C )~, U) -~ 0 and 

the relative density 0 ~ ~ in probability.  (2.13) 

Note the decay in (2.11) is locally roughly exponential in k, with the local rate 
shrinking from a very large value as k grows. 
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The ratio kip represents the amount of volume which typically contains about 
k points when the intensity of the Poisson process is p. We therefore call kip the 
normal volume. (2.9) and (2.13) show that clusters with small norma]l volume are 
typically highly compressed. 

Theorem 2.4 Let 0 < m < M < oo and ~ = k/p. Then as p ~ 0% uniformly in those 
k for which m <- a <- M, 

the optimal radius 2~ is bounded away from 0 and oo; (2.14) 

Pp(ICI = k + 1) = e x p ( -  [r/2~ + (d -1 ) log(1  + r /~)]k(1  + o(1))) ; (2.15) 

and conditionally on [ICI = k + 1] , 

dH(2~ -~ (Cr)r, U ) ~  0 and dm(2k-/~(Cr)~, U ) ~  0 in probability ; (2.16) 

the relative density satisfies l0 - (1 + r/2~) d- 11~ 0 in probability. (2.17) 

We call the phenomenon in (2.17) partial compression; the cluster is denser than the 
ambient density p but only by a finite factor. Thus clusters with moderate normal 
volume are typically partially compressed. 

Note that, as in (2.11), the decay in (2.15) is roughly exponential in k. 
Taking the low-temperature limit p ~ oo is of course equivalent to keeping 

p fixed and letting r -~ oo. For  lattice percolation, the analog of p ~ oo would he to 
have the bond density p ~ 1, whereas r -~ oo corresponds to the completely 
different phenomenon of extending the range, having a possibly open bond be- 
tween every pair of lattice sites separated by distance at most r. The results of 
[ACC] discussed above in the introduction considered p fixed, r = 1, and k ~ 0% 
where it was found that no compression occurred. A better analog, for lattice 
percolation, to our Theorems 2.3 and 2.4 might he to consider p fixed and k, r ~ oo; 
k/p corresponds to k/Tcdr d wherever limits of this ratio are taken. We do not know if 
any compression would then occur. Our closest analog to the results in [ACC] is 
Theorem 2.5 below, in which no compression occurs. 

In [ACC] only dimension d = 2 was considered, but the results covered all 
supercritical probabilities. Here the dimension d > 2 is arbitrary but only very high 
intensities (low temperatures) are considered; this allows the use of Peierls-type 
arguments in which one sums over all possible contours which could bound 
a lattice approximation to the cluster. 

Theorem 2.5 Let k ~ oo and p ~ oo with kip ~ oo. Then 

the optimal radius 2k/p ~ (k/pnd) TM ~ oo ; (2.18) 

Pp(ICI = k + 1) = e x p ( -  dnJ/drk(p/k)t/~(1 + o(1)) ; (2.19) 

and conditionally on [ICI = k + 1] , 

dm((2/}p ~ (Cr)r), U ) ~  0 in probability; (2.20) 

the relative density 0 --* 1 in probability. (2.21) 

Thus clusters with large normal volume are typically not compressed. The decay in 
(2.19), in contrast to (2.11) and (2.15), is subexponential in k. The power k (d- 1)/d in 
the exponent corresponds to that found by Kesten and Zhang [KZ] for Bernoulli 
bond percolation on the lattice. 
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In dimension d = 2 one can substitute dH for dm in (2.20); see the remarks after 
(2.5) and see Remark 4.8 below. 

By rescaling one can obtain results in which r varies, in addition to k and p. 
Compression, partial compression, and no compression correspond to k/pr d ap- 
proaching 0, staying bounded away from 0 and o% and approaching oo respec- 
tively. Thus for example if k ~ oe, p ~ o% and r--* 0 with kip ~ a t (0 ,  oo), then 
conditionally on I CI = k + 1, with high probability C will approximate a ball of 
radius (ct/rcn) TM surrounded by a thin shell of empty space; there is no compression. 
Allowing r ~ 0 in this way makes for a more natural continuum limit. 

When k -~ oo and kip stays bounded, one can say more than just that C ap- 
proximates a ball; the next theorem shows that the k + 1 points approximate 
a uniform distribution over a randomly translated ball. 

Theorem 2.6 Let  k -+ oo and p ~ oo with k/p bounded. On the event [ICl = k + 1], 
let Yk denote the centroid of  Co(C), let v denote the uniform distribution on U and 
define the empirical measure 

x e C  

Then 
~ ( ~ k (  + Yk)llel = k + 1) ~ v in probabili ty.  (2.22) 

The weak convergence in probability in (2.22) means that the sup-norm distance 
between the corresponding d.f.'s approaches 0 in probability. 

Theorem 2.1 is a routine consequence of Theorems 2.2-2.5, so we will only 
prove the latter results and Theorem 2.6. 

III Proofs when the normal volume is small 

In this section we will prove Theorems 2.2 and 2.3. Throughout,  cl, c2 . . . .  repres- 
ent positive constants which do not depend on k or p. The case k = 0 is trivial, so 
we henceforth assume k > 1. 

We begin with an easy lower bound. As kip ~ 0 we have 2k/p "" Cl kip where 
Cl :=  ( ~ j - 1 ) - 1 .  When c lk /p  < r all sites in (c lk /p)U are connected; therefore 
using Stirling's formula, 

Pp[[C[ = k + l ]  => P p [ X ( ( q k / p ) U )  = k ] P p [ X ( ( c l k / p  + r )U \ ( c l k /p )U)  = O] 

>= (2~k)- 1/z (e~ac~ (k/p) d- 1)k exp(--  [p~dr d + d~dr d- 1Cl k + c2 k2/p]) 

>= e x p ( -  [p~dr a + (d - 1)k log(p/k) + (d - 1)k l o g ( e ~ j  n) + c2k2/p + c3 log k ] ) .  

(3.1) 

Note that the right side of (3.1) includes both a term (d - 1) k log (p/k) arising from 
the need to have k points in a very small ball, and a term p~zdr d arising from the need 
to have a shell of empty space surrounding this ball. The optimal radius 
2k/p represents an optimal tradeoff between the probabilities of these two events; at 
the optimal radius, both events are rare. This contrasts with the situation for large 
k/p, examined in Sect. IV. 

The idea of the proof of(2.8) and (2.12) is to show that all possible ways for the 
event [ICI = k + U to occur, other than those in (2.8) and (2.12), together have 
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probability which is much less than the right side of (3.1). Our first four lemmas 
deal with the possibility of spatially very large clusters. 

Lemma 3.1 Let # > 1 and define 

0 , ( y ) : =  ne- l ra- ly /4  - log(ena#eyd), y > O. 

There exists c4 = c4(#, r, d) > 0 such that if yk/p < c4 then 

Po(I C] = k + 1, yk/p < diam(C) __< #yk/p) 

__< e x p ( -  [pltdr e + (d - 1 ) k  log(p/k) + k0u(y)] ) . 

Note that 0 , (y )  ~ oo as y --* oo and as y ~ 0. 

Proof Let C,  be the set of sites of X u {0} in the ball (#yk/p) U. Define events 

A:= [X((#yk/p) U) = k3 

B : =  [yk/p < diam(C,)  < #yk/p] .  

Then, provided c4 < r/# so that llyk/p < r, we have 

Pp(ICI = k + 1, yk/p < diam(C) < #yk/p) (3.2) 

= E(Pp(ICI = k + 1, yk/p < diam(C) < #yk/plC,))  

= E(Po(X(C, \ (#yk /p)U)  = 0l C , )  1A 1B). 

Let x and z be the endpoints of a diameter of C , ,  let v be any vector perpendicular 
to x - z, and let w be the point of C,  which maximizes the inner product with v. Let 
Hx and H~ be the hyperplanes through x and z perpendicular to x - z, and let S be 
the slab between Hx and H~. Let Hw be the hyperplane through w perpendicular to 
v; there then exist halfspaces H + , Hz + , and H + bounded by H~, H, ,  and Hw which 
have no points of C ,  in their interiors. Then on the event B, 

C' I ,l>=lH+~ c ~ ( x + r O ) l + l H ~ + n ( z + r U ) l + l S c ~ H + w n ( w + r U ) l  (3.3) 

>= ~dr e + ~e-lrd-lyk/4p 

provided c4 is small enough. Thus, using Stirling's formula, since X inside and 
outside this ball are independent, the right side of (3.2) is bounded above by 

exp ( - p [r~d r e + ~ze- 1 re- ~yk/4p - I(#yk/p) U I] ) Po (A) 

= exp(-- p [~zer d + red_ ~ r e- l yk/4pl)(pl(#yk/p) u l)k/k! 

< exp(-- [pTzer n + (d -1)k log(p /k )  + k0.(y)]). [] 

We need to consider some lattice approximations. Define 

N(6):= {x + [ -  6/2, 6/2]a: xe62U} .  

For A c IR d let 

&(A):= u {Gz~r Gc~A 4: r 

Q~(A):= w {Geff(6): G c A} 

and define the outer boundary of A to be 

8oA:=  { x ~ A :  x connected to ~ in A c} . 
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A union H of cubes from some fY(g) is strongly connected if every x, y e H can be 
connected by a path in H which does not pass through any intersection of 
dimension d - 2 or less of two cubes in fq(g). Define 

W(g ) :=  {H ~ lRd: H is a strongly connected finite union of cubes in fg(g)}. 

A g-plaquette is a face of any cube in fg(g) with sides parallel to the axes. A g-contour 
is a set of 6-plaquettes which is of the form 0oH for some H e W ( g ) ;  let 

cg,(g):= {S: S is a g-contour of n plaquettes enclosing 0} . 

It is well-known that there exists a constant aa such that 

= " .  ( 3 . 4 )  I~.(g)l < aa 

A union S of g-ptaquettes is strongly connected if every x, y e S can be connected by 
a path which does not pass through any intersection of dimension d - 3 or less of 
two 6-plaquettes. Given a g-contour S, let I(S) denote the closed region enclosed by 
S and let 

D(S) :=  w {G~fq(g): G c I(S), G has a face in S} . 

Then 

S e cg, (g) implies [D (S) l >= ga n/2d. (3.5) 

If g < some c6 then the inner lattice approximation Qg(C') is always strongly 
connected, and its outer layer of cubes satisfies 

X(D(doQ6(Cr))) = 0 when g < c6 . (3.6) 

Lemma 3.2 For every fi < oo there exist R < oo and Pl < oo such that for p > p~, 

Pp[ICI < ~ ,  diam(C) > R] =< e -~ . 

Proof Fix g < c6. The contour OoQz(C r) consists of at least RIg plaquettes, so by 
(3.4), (3.5), and (3.6), 

PoEIcI < ~ ,  diam(C) > R]  < 

and the lemma follows easily. [] 

E ~, Pp(X(D(S)) = O) 
n > R/6 S~Cg.(b) 

2 a~ exp( -pgan /2d)  
n > R/6 

Lemma 3.3 For every 0 < ~ < r, R < co there exist c7 > 0 and P2 < o0 such that 
for p > P2, 

Pp[~ < diam(C) < R] < e x p ( - p [ n a r  ~ + c7] ) .  

Proof As in the proof  of Lemma 3.1 (cf. (3.3) and the preceding definitions), when 
< diam(C) < R there exists a region A c [ -  (R + r), R + r] d such that (i) A con- 

sists of two half-balls of radius r and the intersection of a third r-ball with a slab of 
thickness ff or more, and (ii) X(A) = 0. Therefore, for some Cs, c9 and Clo, we have 
IAI >-_ rcdr a + Cs~, and for fi < c9 we have tQ~(A)I > nar d + Clo~. The lemma now 
follows readily from the fact there are only finitely many possible sets Q~(A). [] 
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Lemma 3.4 For every fl < ~ there exist cll  < 0% ~ > 0 and P3 < oo such that 
when p > P3, 

P , [ I C I  = k + 1, c11k/p <= diam(C) < (] 

_< exp(-- [pndr d + (d --1)k log(p/k) + ilk]).  

Proof. Fix # > 1 and ~ _<_ c4 (of Lemma 3.1). Fix cll  such that ~ku(cii) > fl + log2. 
We may assume that c11k/p <= ~. Let N be the largest integer such that 
cli#t~k/p <_ ~. Then provided cli  is sufficiently (depending on /0 large, by 
Lemma 3.1, 

Pp[[CI = k + 1, c i ik /p  <= diam(C) =< ~] 

N 

<= ~ Pp[ICI = k + 1, c~i#~k/p <= diam(C)_< cii#J+lk/p] 
j=O 

N 

=< ~, e x p ( -  [pnar a + (d -1)k log(p /k )  + k~u(cli l~)]) 
j=O 

< 2 exp(-- [pT~dr a + (d -1 )k log(p /k )  + k~u(c~)] ) ,  

and the lemma follows. [] 

The next lemma covering very small clusters follows from essentially the same 
argument as in Lemma 3.4. 

Lemma 3.5 For every fl < oo there exist ci2 > O, ~ > 0 and P4 < o(5 such that when 
P ~ P4 and cizk/p <= ~, 

Pp []CI = k + 1, diam(C) < c lz k/p] < e x p ( -  [p~dr ~ + (d - 1 ) k  log (p/k) + ilk]).  

Proof of Theorem 2.2 From Lemma 3.1 with # = cli/c~2 we have 

Pp[ICI = k + 1, clzk/p < diam(C) < c~k /p]  

< e x p ( -  [pndr d + (d -1 )k log(p /k )  + k~ku(ci2)]). 

With (3.1) this and Lemmas 3.2-3.5, with fl fixed but arbitrarily large, prove (2.7) 
and (2.8). (2.6) is trivial, and (2.9) is an easy consequence of (2.6) and (2.8). [] 

To prove Theorem 2.3 we will need more precise results than [,emma 3.1 to 
handle Clzk/p ~ diam(C) < cl a k/p. The following result is due to Minkowski; see 
e.g. [Bu, Chap. 2]. 

Lemma 3.6 Let A and B be nonempty convex sets in IR a. There exist positive "mixed 
volumes" V~(A, B), 0 < i < d, such that 

Further, Vo(A,B)= IBI, ga(A,B)= IAI, and dVe_ i (A ,U)= IOAI. For fixed 
1 _< i _< d - 1  and a > O, as A varies with IAI = alUI held fixed, V~(A, U) has 
a minimum, unique up to translations, at A = a~/eU. 

Remark 3.7 The convex subsets of a fixed bounded set in IRe form a compact set 
with respect to the topology of the metric d~; therefore the infimum of 
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z(A) = V/(A, U), as A varies over any bounded  collection which has [A[ = a[ U[ 
and is dn-bounded  away from al/du, is strictly greater than z(al/dU). 

The next lemma will cover the possibility that  the cluster C occupies a volume 
significantly different from the optimal volume. 

L e m m a  3.8 For every e > 0 and 0 < t < T there is a ~o > 0 such that for every 
0 < ( < ~o there exist kl > 1 and ci > 0 (i = 13, 14) such that i fk  > kl and k/p < c13 
then for 6 = (k/p, 

Pp[ICI  = k + 1, tk/p < diam(C) < Tk/p, [(IQO(C)l/z~d(Clk/p)a) TM - 1 1  > e] 

< e x p ( -  [pndr ~ + (d - 1 ) k  log(p/k) + (d - 1 ) k  log(endr d) + c~4k]) .  

Proof. Leaving aside the specification of  (o for the moment ,  let D ~ 0 be an element 
of Jf(fi) with tk/p < diam(D) < (T  + (d~/2)k/p and [([Dl/nd(C~k/p)a) TM - 11 => e. 
Note  the number  of such D is bounded  uniformly in k and p, and diam(C) < Tk/p 
ensures Q~(C) is such a set D. Also (T  + (dl /2)k/p < r provided cla is small enough, 
so that  all sites of  X in D are connected. As in the p roof  of L e m m a  3.1 it follows 
from the independence of  X inside and outside of D that  

Po[ICI = k + 1, Q~(C) = D] 

< Po IX(D) = k] sup Po [ X ( W \ D )  = 0] (3.7) 
AeO# 

= (k!)-~(plDI) k e x p ( - p  inf 1A~]) 
A ~ '  

where 0-# denotes the collection of all finite sets A c D with I AI = k + l, 0 s A, 
diam(A) < Tk/p and with every 6-cube comprising D containing at least one point  
of A. Fix A ~ ~//; we need a lower bound  for [Ar I. Note  we cannot  apply Lemma 3.6 
to [A'{ = [A + rU[ because A is no t  convex. 

Suppose x e A n \ ( A % .  Recalling that (A% can be thought  of as An with dents in 
it, we wish to show these dents are not  very deep, i.e. x is close to 8An.  There exists 
y e ~3A r with d(x, y) < r. Let a be a point  of A which minimizes (x - y).  a. There 
exists z on the line from x to y such that z .  a = (x - y).a; note y and A n  are on 
opposite sides of the hyperplane th rough  a and z perpendicular to x - y. Let ~o be 
the angle between a - y and x - y; then 

d(x, ~AI1) <= d(x, z) < r - d(y, z) = r - d(y, a) cos r < r(1 - cos ~0). 

But for some c16(r, T), diam(A) < Tk/p ensures that  
r(1 - cos ~0) < e : =  c16(k/p) z 

and it follows that  

and then that  

G : =  (A~)~ ~ (A*)r, 

A r ~ G r . (3.8) 

Since G is convex, we will be able to apply Lemma 3.6 to IG + rU[ once we 
know [GI. 

We need to show that  the G is not  much smaller than D. We have 

ID\G[ <= IDn\AHI + ]An\(An)~] �9 (3.9) 
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Now 
A n  ~ DH c ( A o )  ~d'~ , 

so for some cw and ct8, 

IO~ , \An l  < c w c S d l / 2 ( d i a m ( A n ) )  d - z  < c18~(k/p)  e 

while 

Define z by 

]AH \(AH)~I <--_ c w a ( d i a m ( A n ) )  d-1 < c l s ~ ( k / p )  d . 

(3.10) 

(3.11) 

IOl = r  k/p) d , 

so that the radii of the optimal ball and the ball of volume I D I differ by a factor of z, 
and 

I z - l l > _ _ e .  

Suppose first that D is large enough so z __> 1/4. Given ~ > 0 to be specified later, 
from (3.9)-(3.11), if ~0 is small enough then 

ID\G[ -_< (1 - ( 1  -~)~)lDI so IGI _-> (1 -~)dIDI = [((1 - ~)~Clk/p)UI.  

Using (3.8) and Lemma 3.6, then, 

IArl > IG + rU[ > I((1 - q ) z c l k / p ) U  + rUI > ~dr a + drcera-t(1 - ~ ) z c l k / p  . 

Using (3.7), the definition of cl,  and Stirling's formula, we then obtain 

P o [ I C I  = k + 1, Oa(C) -- D] 

<= (ep lD l / k )  k exp ( -  [prcar a + d(1 - t/) rk ] )  (3.12) 

= (edzde- dO - q)~:)k exp (-- [p~zdr d 

+ (d -- 1)k log (p/k)  + (d - 1 ) k l o g ( e ~ : a ) ] ) .  

Note that the factor (ea'cde -a(1 -q)~)k comes from the nonoptimal size (-c :t: 1) of D. 
The function f (z ) :=  eaCe -a~ achieves a unique maximum at f(1) = 1, so there 
exists c19(e, d) > 0 small enough so 

[ z - l l  > e implies f(z) =< e -2c19 

We can then choose t/(d) so that 

[z -1 [  __> e implies ed'cde -d(1-'~)~ <= e -~9  . (3.13) 

Under the alternate possibility that z < 1/4, the extra term 
drCdrd-l(1 --  q ) z c l k / p  in the lower bound for IA"[ is not needed, and the above 
inqualities remain valid with t /=  1, provided we take c19 less than log(4/e). The 
lemma now follows from (3.12) and (3.13), since, as discussed above, the number of 
possible D is bounded. [] 

It remains to cover the possibility that C has near-optimal volume but a non- 
spherical shape. 

Lemma 3.9 For  every  T, 7 > 0 there is a (1 > 0 such that  f o r  every  0 < ( < (1 
there ex i s t  e > O, k 2 ~_~ 1 and ci > 0 (i = 20, 21) such that  i f  k >= k2 and k /p  <= C20 
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then for c5 = (k/p, 

Pp[IC] = k + 1, diam(C) ___< Tk/p, (1 - ~)d < iO~(C)l/~(clk/p)~ < (1 + ~)~, 
Cn, U) > y3 

= e x p ( -  [pnar d + (d - 1 ) k  log(p/k) + (d - 1)k log(enar n) + c21k]). 

Proof The proof is similar to that of Lemma 3.8, so we will continue with the 
notation of that proof, It is enough to prove the lemma with ).~J replaced by p/cl k, 
as the ratio can be made arbitrarily close to 1 by taking C2o small. Again we fix 
D and A, with the additional restriction that 

dn((p/clk)An,  U) > 7.  (3.14) 

Let G*:= (I U I/IG[) lid G, so [G*[ = ]U ]. As in Lemma 3.8, and using Lemma 3.6, we 
have 

]A *] > IG + rU] > nar a + dVI(G*, U)(IGI/iUI)I/ar d-1 �9 

For some s > 0 to be specified later, let us first consider the case of 
[G] > [((1 + s)zclk/p)U[. Here analogously to (3.12), 

Pp[ICI--  k + 1, Qo(C) = D] 

__< (edzae-a(l + o*)~ exp ( -  [pndr d + (d - 1)k log(p/k) 

+ (d - I)k log(eTcdr~)]) (3.15) 

=< (e-d~)kexp(--[p~dr d + (d - 1 ) k  log(p/k) + (d --1)k log(e~dra)]) . 

The other possibility is 

Ial < I((1 + ~)zcxk/p)UI. (3.16) 

If ~1 is small enough then as in Lemma 3.8, 

Ial => (1 - e)alOl > I((1 - e)zctk/p)U[. (3.17) 

Also, 

dn ((ptc 1 k) An, G*) (3.18) 

<= dn((p/clk)An,  (p/clk)(An)~) + dn((plclk)G, (I UI/I GI)*/~G). 
Since [D[ > (1 - ~)~(c,k/p) d and diam(D) <= (T + ~dl/2)k/p, D and also An can- 
not be too flat, and therefore provided ~ is small, for some c23, 

dn((p/clk)An,  (p/clk)(An)~) < c23(p/clk)a < 7/4. (3.19) 

Meanwhile, 

dn((p/cik) G, (1Ut/[G1) 1laG) < I(P/Cl k) - (I Ut/iG[)l/dldiam(G) . (3.20) 

Since by (3.16) and (3.17), using [~ -11 < ~, 

(1 + ~)2(p/clk) > ([ UI/IGI) TM > (1 -~)2(p/clk) , 

we have from (3.20) 

dn((p/Clk)G , ([ UI/[ G[)I/dG) < (2~ + ~2)(p/cl k)cll k/p < 7/4 
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if e is sufficiently small. This with (3.14), (3.18) and (3.19) gives 

dn(G*, U) > 7/2. (3.21) 

By Remark 3.7 there is a constant o-(7, d) > 0 such that (3.21) implies 

Vl(G*, U) >__ VI(U, U) + G = ~d + G. 

Therefore analogously to (3.12), 

PpEICl -- k + 1, Qa(c) = D3 (3.22) 

<-- (eazde -a(1-0"(1 +e/~a))kexp(-- [p~zdr a + (d - 1 ) k l o g ( p / k )  + (d -1 )k log (exara ) ] ) .  

If e is small enough then uniformly in z, 

edzde-d(1-e)~(1 +~ma) <= e-C24 

for some c24 > 0. (Note this uses the positiveness of the nonsphericality term a.) 
The 1emma now follows from (3.15) and (3.22), since the number of possible D is 
bounded. [] 

To show that the lower bound in (3.1) really gives the right rate, we will use an 
upper bound for C of near-optimal volume, without restriction on the shape. 

Lemma 3.10 For every T, v > 0 there is a (2 > 0 such that for every 0 < ( < (2 there 
exist e > O, k3 > 1 and C25 > 0 such that i l k  > ka and k/p < C25 then for fi = (k/p,  

Pp[-ICl = k + 1, diam(C) =< Tk/p, (1 - e )  a <= IQa(C)l/~a(c~k/p) a =% (1 + e) d] 

_-< exp(-- [pxar d + (d - 1 ) k l o g ( p / k )  + (d -1)klog(e~zdr d) -- vk]) . 

Proof  The proof is again similar to that of Lemma 3.8. Fixing D as in that proof, if 
(2 is small enough we have 

IG[ _-> I((1 - e),c~k/p)UI 

and analogously to (3.12), 

Po[[Cl = k + 1, Qa(C) = D] 

< (eazae-e(1-~),)k exp(-- [prcar a + (d - 1 ) k l o g ( p / k )  + (d - 1 ) k  log(ercara)]). 

If e is small enough then since [z - 11 < e, 

ed72de-d(1-e)z < eV/2 

and the 1emma follows as in Lemma 3.8. [] 

Proof  of  Theorem 2.3 Fix v,y > 0 and fl > ~dr a. Let T =  cll  and t --: c12 be as in 
Lemmas 3.4 and 3.5, R as in Lemma 3.2, and ( as in Lemmas 3.4 and 3.5. Then let 

be as in Lemmas 3.9 and 3.10. (2.11) follows from (3.1) and Lemmas 3.2-3.5, 3.8, 
and 3.10. Let ~c:= min(c14, c21)/2; then from (3.1) and Lemmas 3.2,-3.5, 3.8, and 
3.9, if k and p are large and k/p is small, 

PpEdH(2gJCu, U) > 711cI = k + 1] 

<= 6e-2~k/exp( - Ec2k2/p + C 3 logk]) __< e -~k 
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and (2.12) for du, with (C)r replaced by Cu, follows. (2.12) for du as written then 
follows from the fact that, for ~ : =  c16(k/p) 2 as in the proof of Lemma 3.8, we have 

(Cu)~ = (C')r ~ CR 

except possibly on the event [diam (C) > c11k/p], which has conditional probabil- 
ity decreasing exponentially in k by Lemma 3.4. Equivalence of convergence for dH 
and d,, follows from the remarks after (2.5). (2.10) is trivial, and (2.13) follows easily 
from (2.10) and (2.12). [] 

IV Proofs when the normal volume is large 

In this section we will prove Theorem 2.5. When k/p is large and ICI = k + 1, the 
cluster C tends to be spread over a large region, resulting in two new features not 
present in Sect. III where k/p was smaller. First, when k/p was small, we approxim- 
ated C r by something close to (Cn) r (specifically by G ") which enabled us to use 
Lemma 2.6 from convex geometry. In the present situation, C can be very irregular- 
ly shaped, and C r is just C with a thin skin around it so C" need not be anywhere 
close to convex. Second, a spread-out cluster C, or more precisely (C~),, is likely to 
surround a number of separate small clusters which sit inside holes in C. For large 
2 the conditions X(2U) = k, X((2 + r) U \ 2 U )  = 0 imply only that I CI < k + 1, not 
I CI = k + 1. But for large p these conditions do imply that with high probability 
I CI is a large fraction of k. Therefore instead of directly estimating Pp [ICI = k + 1] 
we will make some of our estimates at first for Pp [(1 - 2e) k < I CI < oo], with e > 0 
small. 

In place of Lemma 3.6 we will use the following lemma, which is well-known 
when restricted to convex sets (see e.g. [Bo].) The second statement of the lemma is 
false in dimension d > 3 for dr~ in place of d,,, because of the possibility for example 
that B is shaped like a ball with a long arbitrarily thin spike attached. 

Lemma 4.1 (See [Tal, Ta2]) For a > 0 the region B = al/aU uniquely minimizes 
I OBI among all (not necessarily connected) regions B c IR d with piecewise C 1 bound- 
ary and lBI = l a TM U I. Given ~ > O, there exists ~l > 0 such that for  every polyhedron 
B with Inl = laX/UUI and din(B, aa/aU) > e, we have IQBI > (1 + ~l)lO(al/UU)l. 
If A is finite or polyhedral and t > 0, then one can find a polyhedron B with ] B] and 
I DBI arbitrarily close to IA~I and 10A t I. Thus the second conclusion in Lemma 4.1 is 
also valid when B is such a set A t. The lemma can then be used to estimate volumes 
I A~\AI using the relationship 

I A ' \ A I  = f IOAq ds .  (4.1) 
0 

In particular we have the following. 

Lemma 4.2 Given 7 > O, there exist t 1 > 0 and to > 0 such that for  A with IAI = I UI, 
din(A, U) > 7, and OA s piecewise Ci  for  all 0 <- s < to , for  0 < t <-< to, 

IAe\AI > (1 + t / )IUt\UI.  

Proof  The difficulty here in applying (4.1) and Lemma 4.1 is that A ~ could be 
spherical for arbitrarily small s, though A is not. 
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For  s > 0 let b~ denote the radius of the multiple of U with volume [A ~1. Let 
: = inf {s > 0: I Aq < I U~I }. Now I Z~ = I U~ and by Lemma 4.1 for 0 < s < c~ we 

have 

I dslA~l > gq  

It follows that a = ~ and thus 

Ia~l = [b~UI >: IUSl for all s .  

If for some s we have b, > (1 + s)(1 + e/8) then 

Ia~l = Ib~UI > I(1 + 8/8)U~1 

and therefore 

(4.2) 

I~AS[ > [aU~l(1 + e/8). (4.3) 

On the other hand, presuming 8 < 1 and s < to :=  8/16, if bs < (1 + s)(1 + 8/8) 
then din(U, bsU ) < 8/4. But our assumptions din(A, U) > 8 and IAI = IUI ensure 
that for all x, 

8/2 < IA\(U + x)[ < IA~\(U + x)l 

so dm(A ~, U) > 8/2 and therefore dm(A ~, bs U) > 8/4. By Lemma 4.1, for some i / >  0 
not depending on s or A, this implies 

I~(bi-lAS)l > (1 + t/)l~gl 

and therefore by (4.2) 

I~hSl > (1 + ~)10(bsU)l > (1 + t/)I~?U~I. (4.4) 

Taking ~ < e/8 the theorem then follows from (4.1), (4.3) and (4.4). [] 

The lower bound is more complicated than (3.1) here, because not all sites of 
X in the optimal ball are necessarily interconnected. The first inequality in the 
following lemma reflects the fact that, with no compression, having about k points 
in the ball of optimal radius is not a particularly rare event. In contrast to Sect. III, 
the rarity of clusters of size near k here is almost exclusively due to the need to have 
a shell of empty space surrounding a ball of optimal radius. See the remarks 
following (3.1). 

Lemma 4.3 Given e, t 1 > 0 there exist Ps < oo and c27 < 0(3 such that if p > Ps and 
k/p > c27, then for B : =  (k/rCdp)l/dU, 

Pp[(1 - 28)k < ICl < ~ ]  _>- Po[X(nr\B)  = 0]/4 

_> exp ( - (1 + tl) dn~/a rk (p/k) 1/a ).  

Proof. Let C,  denote the cluster of 0 for the restriction Xn of X to B. Then 
X outside B is independent of C , ,  so 

Pp[(1 - 28)k ___ [CI < m] (4.5) 

> Po[X(Br\B) = 0](1 -- Po[X(B) ~ (1 - ~)kl - P p [ X ( B \ C . )  >= ~k]).  
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Now IBI = k/p so EoX(B ) = k; hence for large k, 

PoEX(B) <= (1 -- e)k] <= 1/4. 

We need to show next that B\C,  is likely to be small. For  some c28 to be specified, 
let 

M : =  max((c28/p) log(k/p), r) . 

Let 3 := rain(c6, r/2dl/2)(cf. (3.6).) Given x e B \ C ,  one of the following four possi- 
bilities must occur: 

d(x, ~B) < M (4.6) 

d(x, OB) > M and there exists a h-contour S c B enclosing x with X(D(S)) = 0 
(4.7) 

there exists a h-contour S c B enclosing 0 with X(D(S)) = 0 (4.8) 

d(x, QB) > M and there exists a h-contour S, enclosing 0 but excluding x 

(4.9) and a point y~3B(~d,/2 , with X(D(S)~ B) = 0. 

Presuming p and k/p are large, we have 

vol({x e B: (4.6) holds}) < (e/8)lB = (e/8)k/p 

and for some c29 

Po [-(4.8) occurs] 

(4.10) 

<= ~ ~ Pp[X(D(S)) = O] 
n > 2d Seed,(5) 

< ~, a~e -Pn3"/Zd 

n >  2d 

e x p ( -  c29P) (4.11) 

< 1/12. 

If (4.9) occurs then for some n there exists a strongly connected set S of n h- 
plaquettes in B, each intersecting B~dl/2, such that (i) S separates Bad~/2 into a region 
containing both x and y and a region H containing 0; (ii) the union D of all h-cubes 
in H adjacent to S has X(D) = 0; and (iii) n => [(M - 5dl/2)/3] > M/43. Here [-  ] 
denotes the integer part. One can take S, for example, to be one of the strongly- 
connected components of the set of those plaquettes in OoQ~ (C,)  which intersect 
B~al/:. Note D consists of at least n/2d h-cubes. Similarly to (3.3), since there are at 
most 2d[B [/5 a h-plaquettes in B, the number of such sets S that can occur is at most 
(2d[BI/h~)5], where 5d is some constant depending only on the dimension d. 
Therefore provided p is large, and c28 is chosen large enough, for some C3o, 

Pp[(4.9) occurs for some x~B] < ~ (2dlBl/ha)5~exp( - pnhd/2d) 
n > M/46 

< I B l e x p ( -  c3opM) (4.12) 

< 1/12. 

The calculations in (4.11) give 

Ep(vol({x~B: (4.7) holds for x})) < I B l e x p ( -  c29p) 
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so that if p is large, 

Po[vol({x~S: (4.7) holds for x}) > (~/8)k/p] < 1/12. (4.13) 

Combining (4.10)-(4.13) gives 

Pp[IB\  Cr,[ >- (~/4)k/p] <= 1/4. (4.14) 

It is easy to see that the region C' can be constructed without any knowledge of the 
configuration X in B \ C , .  Therefore X ( B \ C , )  depends on C ', only through 
]B\C,[, and we have by (4.14) 

P o [ X ( B \ C , )  > ek] <_< 1/4 + P[Z  > ek] <__ 1/2, 

where Z is Poisson (ek/4). 
The first inequality in the lemma now follows from (4.5); the second inequality is 

trivial. D 

As in Sect. III, (2.20) will be proved by showing that all possible ways for the 
event []C[ = k + 1] to occur other than that in (2.20) have probability which is 
much less than the lower bound in Lemma 4.3. Given a (3-contour S, let N(S) 
denote the number of (3-plaquettes comprising S. The next lemma covers the 
possibility of a very large cluster; the proof is similar to Lemma 3.2 and is omitted. 

Lemma 4.4 Given 0 < (3 < min(c6, r/2d i/2) there exists P6 < oo depending on (3, r, 
d such that if p >= P6 then 

Pp [I C] = k + 1, N(~oQa(C')) >= (k/p) (d-')/d] <= e x p ( -  2dn~/drk(p/k)i/d). 

We next consider clusters occupying regions of somewhat greater than optimal 
volume. 

Lemma 4.5 Given e > 0 there is a (3o > 0 such that for every 0 < (3 <= (30 there exist 
P7 < oo and Cai, c32 < oo depending on e, (3, r, d such that if p > P7 and kip > Cai 
then for s :=  r - (3d 1/2, 

Pp[ICl = k + 1, N(OoQa(C')) < (k/p) (a-1)/d, ](I(~oQa(C)))sl > (1 + e)ak/p] 

< e x p ( -  (1 + c32)drc~/ffk(p/k)i/a). 

Proof Let D be the region enclosed by some (3-contour, with IDsl > (1 + ~yk/p. If 
I(OoQa(C)) = D, then X((D~)S\D~) = 0, while for b~ given by 

Ib~gl=lDsl  

we have by Lemma 4.2 

I(D~)S\D~l > I(b~ + s)U\bsUI 

>__ (1 + # -  1 d~/es(k/p) (d- i)/d 

_>_ (1 + e/2)dn~/dr(k/p) (d- i):e 

provided (30 is small enough. Hence using (3.3), for m :=  (k/p) (d- i)/e, 

Po[ICI = k + 1, N(OoQ~(C')) < (k/p) (a-1)/a, I(I(OoQ~(C')))sl >= (1 + e)ak/p] 

_-< ~ a } e x p ( -  (1 + e/2)dzc~/ark(p/k) TM) 
2 d < n < m  

from which the lemma follows easily. [] 
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We continue now with the case of clusters occupying less than optimal volume. 

Lemma 4.6 Given s > 0 there exist Ps < co and c33, c34 < oo depending on s, r, 
d such that if  p > p 8  and k i p > c 3 4  then for O < g < m i n ( c 6 , r / 2 d  1/2) and 
S : =  r - g d  t/2, 

Po [I CI = k + 1, N(OoQ~(Cr)) < (k/p) (a- 1)/d, i(i(OoQa(cr)))s I _-< (i - e)ak/p] 

< e x p ( -  c33 k). 

Proof Let D be the region enclosed by some g-contour, with ID~ I < (1 - e)dk/p. If 
I(OoQ~(C')) = D, then X(Os) > k, while EX(D~) < (1 - e)dk. Therefore for some 
C35, 

PoUlCI = k + 1,I(t?oQ~(C)) = D] <= P [ Z  >= k] <= e x p ( -  c35k) , 

where Z is Poisson ((1 - e)dk). The result now follows by summing over n as in 
Lemma 4.5. [] 

Next we consider clusters of near-optimal volume but nonspherical shape. 

Lemma 4.7 Given ? > 0 one can find e, go > 0 such that for every 0 < g <__ go there 
exist P9 < oo and c36, c37 < GO depending on e, y, g, r, d such that if p >= P9 and 
kip >_>_ C36 then for s :=  r - gd 1/2, 

Pp[IC[ = k + 1, N(OoQo(C*)) < (k/p) (a-~)/a, 

(I -- e)dk/p <= l(I(aoQo(CO))s [ < (1 + t)ak/p, d,,(2~J (C~),, U) > 73 

~< e x p ( -  (1 + c37)&zJ/ark(p/k)t/d). 

Proof There are two ways for the event of nonsphericality 

-~ ~ ( 4 . 1 5 )  d~ (2k/p (C ),, U) > ? 

to occur, under the condition of near-optimal volume 

(1 - e)ak/p < I(I(OoQo(CO)sl <= (1 + e)ak/p . (4.16) 

Roughly, either the outer boundary 0o(C% is nonspherical, or the outer boundary 
is essentially spherical but (C% has holes in it, i.e. a substantial fraction of the 
interior of 0o(C')r is not in (C%. 

The first possibility can be dealt with by contour-counting, as in the last two 
lemmas. With e, go to be specified later and g < g0, let D be the region enclosed by 
some g-contour, with 

N (~3oD ) < (k/p)(d- ~)/d (4.17) 

(1 -e)dk/p < [D~[ < (1 + e)dk/p (4.18) 

and 
d,~((t U1/TD, I)I/dD,, U) > ?/4.  (4.19) 

The idea is that D~ and (D,) s are possible values of approximations for (C')r and for 
C', each "with holes filled in." Let a : =  (ID~[/I UI) TM, so 

I a -  1D~ I = [ U[ (4.20) 
and 

o- => (1 --e)(k/rcdp) ~/~ . 
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By Lemma 4.2 there is a constant t/(7, d)~(0, 1) such that 

ID\D~I > I(D~)~\D~I 

> (1 + q)aal U~/'\UI 

> (1 + Fl)ad-ldTCd S 

which gives 

ID\Ds I > (1 + q/2)dn~/%(k/p) (a- 1)/d, (4.21) 

the last inequality being valid provided e, 6o are sufficiently small. If 
I(OoQo(C')) = D, then X(D\Ds) = 0. Therefore by (3.4), for some %8, provided P9 
is large, 

Pp[ICI = k + 1, I(OoQ~(C~)) = D for some D satisfying (4.17) and (4.21)] 

<: exp(c38(k/p) (a- 1)/d)exp(-- (1 + q/2)dTz]/drk(p/k) TM) (4.22) 

< e x p ( -  (1 + ~l/4)dTz~/drk(p/k)l/d). 

The other possibility, when [C[ = k +  1, under (4.15) and (4.16) is that 
I(8oQa(C~)) = D for some D satisfying (4.17) and (4.18) but not (4.21), hence also 
not (4.19). Fix such a D. We claim that 

I Ds\(C~)~ 1 > (7/9) k/p.  (4.23) 

Note that 
(Cr)r c D~ c D = I(0o C)  

and that, provided %6 is large, 

(1 - e)(k/r~dp) 1/d < (r, 2kip < (1 + e)(k/~zap) TM . (4.24) 

Since (4,19) does not hold, for some x and t_7:= U + x, 

la-lD~ A ~71 __< 7/4. (4.25) 

Now provided e is small, using (4.20), (4.24) and (4.25), 

12k~(C%\ 0l  < I 2 ~ D ~ \  ~71 < (a/,~k/p)~(l~ - ~D~\[71 + I U\(Zk/pla) ur) <= 716. 

Therefore by (4.15), 

I [7\2~2(C') ,  I > 5?/6. (4.26) 

Also 

10\2~2D~1 =< (~/Zk/p)d(12k/p/a)U\U[ + I U \ a - l D s l )  < 7/6 

which with (4.26) gives 

- 1 - 1 r 27/3 12kl, Ds\2klo (C ),1 > 

which with (4.24) yields the claim (4.23), since na < 6 for all d. 
By (4.18) and failure of (4.19), taking e small we may assume 

IOl < (1 + 7/40)k/p. (4.27) 
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o r  

Under (4.23) there are two possibilities: either 

[Ds c~ (cr\(C%)l > (~/18)k/p (4.28) 

IDs\  C'I > (7/18)k/p . (4.29) 

Under (4.28) there is an excessive amount  of empty space in D, as follows. On the 
event I(OoQo(C~)) = O we have 

u {G~@(fi): G c D, X(G) = O} = Qa(C'\(C')r). 

If 6o is small enough relative to r, and 7 < 1, (4.27) and (4.28) imply 

IQa(C\(C%)l > IC'\(C%l/2 > (y/36)k/p > (y/40)lD[ 

so that 

and 

satisfy 

M : =  card({GeN(6): G c D,X(G) = 0}) 

m:=  card({G6 (~(fi): G ~ D}) 

M > (7/40)m. 

But P[X(G)  = 0] = exp(-p~a) ,  m = IDI/5 d > k/2p6 a by (4.18), and the random 
variables X(G) are iid, so by Bennett's inequality ([Be], or see [Ho])  still assuming 
(4.28) and P9 large, for some c39 , 

Pp[ICI = k + 1, l(~oQa(Cr)) = 03 

= < P [M = > (?/40)m] 

< e x p ( -  7mp6ff160) 

< e x p ( -  e39k ) . (4.30) 

Therefore by (3.4) and (4.30), provided ,09 is large, for some C4o, 

Po EICI = k + 1, I (8oQo(Cr) )  = D (4.31) 

for some D such that (4.17), (4.18), (4.27) hold and (4.19) failsl 

< e x p ( -  c4ok) �9 

Under the alternate possibility (4.29) there are likely to be too many sites of X in 
D, as follows. Let C,  denote the cluster of 0 for the restriction of X to Ds. As in the 
proof of Lemma 4.3, C,  can be constructed without any knowledge of the 
configuration X in Ds\C , .  On the event I(0oQ~(C')) = / 9  we have C = C, .  It 
follows under (4.29) that given C, ,  X(Ds \ C , )  is stochastically larger than Poisson 
((7/18)k). Therefore using (4.27), for Z a Poisson ((7/18)k) r.v., still assuming (4.29), 
for some c41, 

PoEICl = k + 1, I(8oQa(C')) = D, (4.28) holds] PEZ > (y/36)k] 

< PEX(D) > (1 + 7/36)k] 

< e x p ( -  c41 k) . (4.32) 
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Therefore by (3.4) and (4.32), provided P9 is large, for some c42, 

Po[ICI = k + 1, I(t?oQ~(Cr)) = D (4.33) 

for some D such that (4.17), (4.18), (4.29) hold and (4.t9) fails] 

=< exp(-- c42k). 

With (4.31) and (4.22) this proves the lemma. [] 

Remark 4.8 In dimension d = 2, d,, can be replaced by dn in (2.20) of Theorem 2.5. 
This is because (4.21) is valid when we have dn in place of din in (4.19), provided that, 
for a and D as in the last proof, a is sufficiently large and D is a possible value of 
I(OoQ6(Cr)). Indeed, roughly, suppose d,(a-1Ds,  U) is large but din(a-1D~, U) is 
not, so ]a-~D~ A (U + x)[ is small for some x, which we take for simplicity to be 0. 
Then a -  ~Ds must contain a point y a large distance from U; from the nature of C *, 
a-ID~ must actually contain a string of points, with adjacent ones separated by 
distance at most r/a, connecting y to a point z near 0U, so (Ds) ~ is connected. But 
I(D~)S\D~ [ is at least roughly s times the length of ~(D~) ~. Because d = 2 and (D~) ~ is 
connected, the length of a (D~)~ is at least approximately as great as the length of the 
convex hull boundary O(a(U ~ {Y})n), which is significantly more than the length 
of a(aU). This in turn gives (4.21). [] 

Corresponding to Lemma 3.10, to ensure that the lower bound in Lemma 4.3 
really gives the right rate, we need an upper bound for C of near-optimal volume, 
without restriction on the shape. 

Lemma 4.9 Given ~l > 0 one can find 8, 50 > 0 such that for every 0 < 5 <__ 6o there 
exist P l o < o e  and c4a < ov such that if p >  Plo and k/p > c43 then for 
s :=  r - (Sd j/2, 

Pp[[CI -- k + 1, N(OoQ~(C')) < (k/p) (a-1)/a, I(I(~oQo(C)))~l > (1 - ~)k/p] 

__< e x p ( -  (1 - tl)drc~/ark(p/k)l/a). 

Proof. This is essentially the same as the derivation of (4.22) in the last lemma, with 
1 + I/, 1 + r//2, 1 + r//4 replaced in (4.21) and (4.22) by constants slightly less than 
1. D 

Proposition 4.10 Given a > 0 there exist Pit < oe and c44 < oe such that if p > Pll 
and k/p >= c44 then 

e x p ( -  (1 +oOdn~/ark(p/k) TM) <= Pp[k + 1 < IC[ < oo] 

= e x p ( -  (1 - a)dn]/erk(p/k) TM) . 
Proof. Assume ~ < 1. The lower bound is a slight reformulation of Lemma 4.3. For 
the upper bound, let e, 5o be as in Lemma 4.9 with ~ = e/2, and let 5 be as in 
Lemmas 4.4, 4.6, and 4.9. The latter three lemmas show, for p ~  and c43 large 
enough, that 

Pp[ICI = k + 1] <= 3exp(-- (1 -e/2)d~z]/erk(p/k)~/a). 

The proposition now follows by summing the series. [] 

In order to obtain the desired results about Po [I CI = k + 1] from Proposition 
4.10, we will use the following, which is similar to a result of Kunz and Souillard 
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[KS] for site percolation on a lattice, though our use of a continuous model 
introduces additional complications. The terms " +  1" in Lemma 4.11 do not 
appear in the result for lattices, and are an artifact of the existence in our model of 
a fixed site at 0. 

Lemma 4.11 For every p > 0 and j, E > O, 

P o [ I C l = j + g  +l ]  > PpElCI = j + I ] P o [ I C I - - f  +l]  
(4.34) 

j + f + l  j + l  f + l  

Proof Let us use "left" and "right" in this proof to signify relative values of the dth 
coordinate, i.e. x is left of y means x has a smaller dth coordinate. 

Let CL and CR denote the cluster of 0 for the restriction of X to the half spaces 
HL and HR to the left and right of 0, respectively. By translation invariance we have 

Pp [ICI = j + 1]/(j + 1) = Pp [IC[ = j + 1 and 0 is the rightmost point of C ] .  

(4.35) 

Define events 

A : =  [ICLI = j  + 1], B : =  [ICR[ = # +1 ]  . 

Now A is not the same as the event on the right side of (4.35), but we do have 

Po[ICI = j  + 1 and 0 is the rightmost point of C] 

= Po(A n [ x ( c ~  ~ H~ )  = 0])  

= f e x p ( -  Pl UL C~ HRI)dP. (4.36) 
A 

Similarly, reversing left and right, 

Po[[CI = g + 1]/(# + 1) = f e x p ( -  p[C~ nHL])dP .  (4.37) 

Observing that knowledge of CL does not affect the configuration X outside 
C~L n HL, and similarly for CR, we obtain 

Pp[]CI = j  + ~ + 1]/(j + f + 1) 

= Pp[IC] = j  + f + 1 and 0 is the ( j  + 1)st leftmost point of C] 

> Pp(A n B n [X(C~L n HR\C~) = O] c~ [X(C~ n HL\CL) = 0]) 

= f exp(--PIC~LnHR\C~J)exp( - plC~nHL\C~L[)dP 
A n B  

> f e x p ( - p l C  r = L C~ HRI)exp(-- p[C~ c~ HLI)dP. (4.38) 
Ac~B 

Since CL and CR are independent, (4.35)-(4.37) show that the right side of (4.38) is 
equal to the right side of (4.34). [] 

Somewhat as in [KS], Lemma 4.11 will help us to reduce the problem of lower 
bounds for Pp[ICI = k + 1] to the same problem for a much smaller value of k, 
where the following crude bound will suffice. 
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L e m m a  4.12 For every M < 
k < Mp then 

P~[ICI = k + 1] >__ e x p ( -  c45P) �9 

Proof Let B : =  (k/pna)i/aU, so [BI = kip < M, and let 5 : =  r/2d i/2. Then 

Pp[ICl = k § 1] 

> Pp [X(B~\B) = O, X(B)  = k, X(G) > 1 for all G~ if(6) with G = B ] .  

N o w  
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there exist c45 and PI2 such that if p > P12 and 

(4.39) 

Pp[X(G) = 0 for some GetS(8) with G ~ BIX(B) = k-_l 

< (I Bl/~d)(1 - bd/]BI)k 

< (M/6 a) e x p ( -  p6a) 

=< 1/2 

provided Pi2 is large. Therefore by (4.39) and Stirling's formula, for some C4e, 

Pp[ICI = k + 13 > Pp[X(B ' \B)  = O,X(B) = k]/2 

> e x p ( -  c46p)/4(27zk) i/2 

and the lemma follows easily. [] 

Proof of Thorem 2.5 Fix 0 < 11 < 1/8. By Proposi t ion 4.10, for some ,o13 and c47, if 
P > Pl3 and kip > C47 , 

Po [(1 - 5t/)k __< I CI -<_ k] >___ e x p ( -  (1 - q)n~/drpi/ak ~e- i)/,~). 

Therefore  there exists 1 ___ Jl < 5ilk + 1 such that  

Pv[ICI  = k - j l  + 1]/(k - j ~  + 1) 

>__ (5t/k + 1)- i  exp( - (1 -q)n~/arpi/ak(e-i)/a)/(k - J l  + 1) 

->_ e x p ( -  nl/arpl/ak(e-1)/d) . 

If j i /P  >= e,,7 we then similarly obtain J2 < 5~/j, such that  

Po[-ICI = j a  - j 2  + 1 ] / ( j ,  - j 2  + 1) > e x p ( -  nl/drp~/ej]e-~)/e). 

We can continue in this manner,  using jo : = k, until we reach the largest index n for 
which j , /p  > c47. By Lemma 4.12 applied with M : =  c47, for some c48, 

Po[I C I = j ,+ i + 1-]/(j,+ i + 1) => e x p ( -  c4sp)/C47P > e x p ( -  c48 p ) .  

Successive applications of Lemma 4.11 give the lower bound  

[,0o 1 Pp[-ICl = k +1]  __> Pp[[CI = j i - j i + i  + 1]/( j i  - j~+~ +1) 

�9 Po[ ICl  = j , + l  + 1]/(j,+~ + 1) 

> exp(- -  n~/erpi/e( ~ jl e-i)/e) -- c4sp) 
i = 0  

=> exp (-- (1 -- (6t/) (e- 1)/e)- i 7zle/arpi/dk(e- 1)/d , 
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the last inequality being valid provided k/p is sufficiently large. Proposition 4.10 
provides a similar upper bound for Pp [] CI = k + 13, and, since q > 0 is arbitrary, 
the theorem then follows from these two bounds and Lemmas 4.4-4.7, analogously 
to the proof of Theorem 2.3. Equivalence of convergence for dn and d,, follows from 
the discussion after (2.5). [] 

V Proofs when the normal volume is moderate 

In this section we will prove Theorem 2.4. Some of the ideas are relatively similar to 
the proofs of Theorems 2.3 and 2.5, so we will be a little sketchy at times. From the 
proof of Lemma 4.12 we have for B = 2~U 

Pp[ICI = k + 1] __> P p [ X ( B ' \ B )  = 0, X(B)  = k ] /2 .  

Fix ( > 0. Using Stirling's formula and these restatements of (2.1): 

na(2~ + r)d/~ = 1 + r/2~; ~/na2~ = (1 + r/2~) a-1 , (5.1) 

this gives, provided k is large, 

PoEt cI -- k + 13 _-> e x p ( -  [r/2~ + (d -1 ) l og (1  + r/2~)]k)/3(Dtk) 1/2 

> e x p ( -  (1 + 0[-r/2~ + (d - 1)log(1 + r/2~)Jk).  (5.2) 

By Lemma 3.2 we may restrict our attention to diam(C) < R for some large R. 
Let 6 > 0, s :=  r - 6d 1/2, and let O E ~ ( 6 )  be a possible value for Qz(Cr). Define 
z, z* by 

IDa[ = I(1 +z)A~UI, [D[ = 1(8+(1 + ~ * ) ~ ) U I  �9 

Then z < ~* by (4.1) and Lemma 4.1. Note z is near 0 when D~ has near-optimal 
volume, and z* is near 0 if D~ is also approximately spherical. We have 

Pp [I c I = k + 1, Qa(C ~) = D] <= Pp [X(Ds) = k, X(DkD~) = 0] 

= e x p ( -  plDl)(plD,  l)k/k!. (5.3) 

Using (4.1) and Lemma 4.1 again, along with (5.1) and the definition (2.1) of 2~, we 
obtain 

ID[ = :ra(s + (1 + z * ) 2 J  

> nd(2~ + r) a + d~(z* - ~ d l / 2 / ~ )  

= ~(1 + r/2~ + d(z* - 6dl/2/2~)). 

With (5.1) and (5.3) this yields 

Po [-[CI = k +1, Q~(c ~) = D] 

< e x p ( -  [r/2~ + (d -1 ) log (1  + r/2~) 

+ d(z* - l o g ( 1  + z) -6da /2 /2 , ) ]k ) .  (5.4) 

Fix 0 < e < 1/2. Note 2= is bounded between ,~,, and 2M. If 6 is sufficiently small 
(depending on g), then there exists c4s > 0 such that 

[z[ > e implies d(z - log(1 +z)  - 6d'/2/2~) > c,8 
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and 
z* > z + e implies d(z* - log(1 + z) - 6dl/2/2~) > c4s �9 

Under either of these two conditions we get from (5.4): 

Pp[ICl = k + 1, Qo(c9  = D] 

< e x p ( -  Er/2~ + (d - 1)log(1 + r/2~) + c , ,8]k ) .  (5.5) 

Thus let us henceforth assume D is such that Itl _-< ~ and t* < t + 5. Fix 7 > 0, 
and fix a > 0 to be specified later. Let us show that Q ~(C )  = D implies 

d.,(2~-1(C%, U) < 7.  (5.6) 

Our proof will be somewhat like that of Lemma 4.7, but simplified by the fact that 
here D approximates not only the outer boundary of C' but also the holes, if any. 
We claim that if ~ is small enough (depending o n / 4  ? and AM) then z* = z + e 
ensures that 

din(((1 + "c)2~,)-~Ds, U) < min((aT) (d+i)/2, 7/8). (5.7) 

For suppose that (5.7) fails. Let a : =  (1 +z)2~, so ]o--iD~[ = [UI. By Lemma 4.2 
there exists 0 < to < s/(1 + z)2~, c49 > 0 and q > 0 depending on a, 7 such that 

ID\D~I > I(D~y\D~I 

= ~a(l(~r-lD~yO\(~r-~D~)l + I(a-~Ds)~/~\(~r-iDs)~~ 

_-> ~(I u ~ / % u I  + nl u ' ~  

__> I(~U)~\auI + C 4 9  �9 

Therefore 

IDI ~ I(s + (1 + ~)Z=)UI + C 4 9  , 

which if e is small enough (depending on a, 7 and 2M) implies z* > t + e. This 
proves the claim (5.7). 

By (5.7) we may assume that 

1((1 + v)2=)- iDs A U[ < min((aT) (d+ 1)/2 7/8); (5.8) 

if not then replace U throughout by a fixed translation of U for which this 
inequality holds. 

If (5.6) fails then either 

or 

I K l ( c % \ u I  > ~,/2 (5.9) 

I u \~ - l ( c~ ) , l  > y/2. (5.10) 

But if Q,5(C r) = D, (5.9) and (5.8) would imply 

,~gl(1 + v ) u \ u I  = I~rU\;~uI  >= I O s \ s  - IOs\~rUI >-_ (,~/2 -o-8/8)7 > 2~y/4 

implying I tl > 5, provided e is small enough, depending on ? and )~m. This rules out 
(5.9). 
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To rule out (5.10) when Q6 (C r) = D, let y e U\2~- i (C r)r maximize d (y, ~ U) and 
define b by d(y, OU) = by. Note that 

Ig\221(cr)r[  < b7[~gl , (5.11) 

so we wish to bound b. There exists z 6 2~- 1 C ~ for which d(z, y) < 2~- ~ r; since z 6 2~- 1 
D, the ball V: = z + s2~-~U does not meet 2~- ~ Ds, hence satisfies 

U n  V c  U \ 2 ~ I D s .  

Let x e U c~ V maximize d(x, 0U); then el(x, 8U) > by - rid 1/2. Since the radius of 
V is at least r/22M, there exists a constant c50 depending only on r/22u and d such 
that 

[U\2~-ID~[ > [U c~ VI > C5o(b7 - rid1~2) (d+1)/2 �9 (5.12) 

But from (5.8), if ~ is small enough, depending on a and 7, 

IU\22~D~I <-_ IU\(1 +~)UI + (l +OdlU\~-~D~l (5.13) 

< I~U[e + (aT) (d§ 

__< 2(aT)(d+ 1)/2 . 

From (5.12) and (5.13), either 

b7/2 <-_ ~d 1/2 

o r  

C5o (b7/2) (d+ 1)/2 __< 2(a7)(~§ 1)/2 . 

Thus for some c5~ depending only on r/22u and d, 

b _-< max(c51 a, 2~dl/2/7 ) . 

Thus if we choose a small enough (depending on r/22M and d) and 6 small enough 
(depending on 7 and d), it follows that (5.10) does not hold. 

We have shown that if Q0(C r) = D for some D such that [z[ __< e and z* __< -c +5, 
then (5.6) holds. Recalling that we have restricted to diam(C) _<_ R, so that the 
number of possible D is finite, with (5.4) and (5.5) this proves Theorem 2.4, similarly 
to the proofs of Theorems 2.3 and 2.5. [] 

VI The uniform distribution within the cluster 

This section contains the proof of Theorem 2.6. Recall that Yk denotes the centroid 
of Co(C). It is sufficient to show that for every v > 0, if e > 0 is sufficiently small 
(not depending on k or p) then there exist events Ak c [1C[ = k +1]  satisfying 

Po(Ak l lC[=k  +l ) - - .1  ask,  p ~ o o  

such that for N : =  X(Yk + (1 -38)2k/p U) 

Ak ~ IN > (1 - z ) k ]  

+ (1 -~),~k/pu c Co(C) c Yk + (1 + ~)2~/pu 

(6.1) 

(6.2) 

(6.3) 
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given Ak c~ [ N  = n], the n points  {x - Yk:X ~ X c~(Yk + (1 --3e)2k/vU)) (6.4) 

are independent  and uniformly distr ibuted in (1 - 3e)2k/p U .  

Let z > 0, let e > 0, let ~ > 0 be a constant  to be specified, and let 6 = (kip. We 
consider the case of  k / p <  c51, with c51 ((, e) to be specified. The p roof  for kip > c51 
but  bounded  is similar, so we omit  it. Fo r  a bounded  subset D of IR a let zD denote  
the centroid of Co(D) and 

Gl~ = ZD + (1 -- 2e)J,k/oU , G ~ : =  ZD + (1 + 2e)2k/pU . 

Let Ak be the event that  

[C[ = k + 1 (6.5) 

Yk + (1 --e)2k/o U = Co(C)  = Yk + (1 + 02k/, U (6.6) 
and  

X(G~\GO) < zk for D = QO(Co(C)).  (6.7) 

Let  D be a possible value of Qa(Co(C)). Assume now that  Ak occurs and 
Qa(Co(C)) = D. Fo r  some c52(d), provided ( and c51 are small, 

11Yk -- Z, II < CS2a < ~2k/p �9 (6.8) 

Therefore  

Co(C)  = Co(C  c~ (G~\GO)). (6.9) 

This means  that  Yk is a function of the restriction of X to o D G 2 \ G  1 . I t  also means  that  
the occurrence of Ak n [Q6(Co(C)) = D] is unaffected by the posi t ions of  the sites 
of  X in G0. Therefore,  given Ak n [Q6(Co(C)) = D], the sites of X in G0 are iid 
uniform in G ~ Since D is arbi t rary,  and since by (6.8) Yk + (1 -- 3e)2k/p U c G~ on 
Ak n [Q~(Co(C)) = D],  (6.4) follows. 

N o w  (6.2) follows f rom (6.6) and (6.7). F r o m  Theorems  2.3 and 2.4, 

P o [ ( 6 . 6 ) l I C l = k + l ] - - + l  as k, p---,,oe , 

so to prove  (6.1) it is enough to show 

Po[(6.6) h o l d s , ( 6 . 7 ) f a i l s l l C l = k + l ] ~ O  ask,  p--~oe . (6.10) 

Let  D be a possible value of QO(Co(C)) under  (6.6). Then as in (3.7) 

Po[ICI -- k + 1, Q~(Co(C)) = D, X(D c~ G~ > zk] 

< Pp[X(D) = k, X(D c~ G~\G~) > zk] sup Pp[X(A ' \D)  = 0] (6.11) 
AEqg 

= ( k i ) - l ( p l D I ) k e x p ( - p  inf ]ArJ)Pp[X(D c~ G ~ \G ~)>  zklX(D) = k ] ,  
A ~ q /  

where now 0//denotes the collection of all finite sets A c D with I A I := k + 1, 0 ~ A, 
and QO(Co(A)) = D. Provided  e is small, we have 

IG~\G~I < ZlZk/pUI/4, 

while 
[DI > (1 - ~)al2k/pU I 
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so that, provided e is small, 

ID c~ GD2\G~I/ID[ < z /2 .  

This implies that  the probability on the right side of (6.11) satisfies 

P p [ X ( D  c~ G~\G~)  > zk[X(D) = k] < e -c53k (6.12) 

for some c53(z). 
Provided c51 is taken small enough (depending on e), we have 

(1 - 2e)2k/p > (1 -- 4e)clk/p and (1 + 2e)2k/p < (1 + 4e)Cl k i p .  (6.13) 

As in the proof  of (3.8) within the proof of Lemma 3.8, it is easily checked that, 
provided ( is small, for A e q/, 

Ar ~ ( Yk + (i - 2e);tk/o U) ~ 

so that using (6.13) 

I A ~ ] >= 7~dr d -}- drear d -  1(1 - - 4 e ) c l k / p  = 7rd rd -}- d( t  - 4 e ) k / p  

while, p rov ided  ( is small,  

IDI < rca((l + 2e)Ak/o) d < ~d((1 + 4 e ) c i k / p )  d �9 

Therefore from (6.11) and (6.12), using Stirling's formula, 

Po[ICI = k + 1, Q~(Co(C)) = D, X(D c~ G~\G~)  > zk] 

< (plDle/k)  k e x p ( - p ~ d r  d -- (1 -- 4e)dk) 

< e x p ( -  [pTzar d + (d - 1 ) k l o g p / k  + (d - 1 ) k  log(ercdr ~) 

- (4e + log(1 + 4e)kd + c53k)]) �9 

Since the number of possible D remains bounded as k, p ~ o% this and (3.1) prove 
(6.10), provided %1 and e are small. [] 
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