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Summary. Let A be an oval with a nice boundary in ~2 R a large positive 
number, c > 0  some fixed number and c~ a uniformly distributed random 
vector in the unit square [0, 1] 2. We are interested in the number of lattice 
points in the shifted annular region consisting of the difference of the sets 
{(R+c/R)A-~} and {(R-c/R)A-ct}. We prove that when R tends to 
infinity, the expectation and the variance of this random variable tend to 4c 
times the area of the set A, i.e. to the area of the domain where we are counting 
the number of lattice points. This is consistent with computer studies in the 
case of a circle or an ellipse which indicate that the distribution of this random 
variable tends to the Poisson law. We also make some comments about 
possible generalizations. 

Mathematics Subject Classifications (1991): 60F5, 60K4, l lK06 

1 Introduction 

Using computer simulation Cheng and Lebowitz [4] studied the distribution 
of the number of lattice points in the domain between two concentric circles of 
radii R + c/R and R-c/R whose center is uniformly distributed on the unit 
square [0, 1] a. (By lattice points we mean points from 7/2, i.e. from the set of 
points in ~2 with integer coordinates.) This computer study, motivated by 
works of Sinai [9, 10], Bleher [2] and Major [8], suggested that for large 
R this distribution is asymptotically Poissonian with parameter 4nc, i.e. with 
the area of the domain where we are counting the number of lattice points. 
A first step to check the correctness of this statement is to investigate whether 
the variance of this distribution is asymptotically 4rcc, i.e. whether the variance 
behaves as the Poissonian limit suggests. We answer this question in the 
affirmative. A similar statement holds for a class of ovals defined as follows. 
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Definition of an oval. A closed bounded convex set A is an oval in ~2 if it 
contains the origin in its interior, and its boundary is a smooth four times 
differentiable Jordan curve whose curvature is positive at all points. 

We also introduce the following notations. Let I A[ denote the area of 
a measurable set A in ~2. Given some set A c N  2, eeR 2 and number R~R + 
define the set R A -  a as 

RA--~= {Uf~2; u=Rv-.,  v~A} 

and for c > 0, R2> c introduce the difference set 

OR(c,,) = [(R + c / R ) A - , ] \ [ R -  c / R ) A -  a]. (1.1) 

Clearly, ] OR (c, ,)1 = 4clA] for all a. The following Theorem is the main result 
of this paper. 

Theorem. Let A be an oval, c > 0 some fixed positive number and cg a uniformly 

distributed random variable on [0, 1] 2. For R> x/c let ~R=~R(O~) denote the 
number of lattice points in the set OR(e, ~) defined in (1.l). Then 

E~a=4clA[ ,  (1.2) 

lim Vat ~a=4c[A]. (1.3) 
R--* oo 

The investigation of the number of lattice points in a domain is a popular 
subject in number theory. See e.g. [6] for a recent treatment or [7], This 
problem also has physical motivations, relating to the investigation of the 
statistics of eigenvalues in a quantum system with an integrable classical 
Hamiltonian. For  example, if A is a circle, the lattice points n label energy 
levels E(n;~)= 111-cr 2 of the Laplacian - - ( V - - a )  2 o n  the unit torus. These 
energies can be thought of as points on the real line and their statistics can be 
studied. This problem seems to be very hard. An easier problem is to consider 
not a fixed ~ but a random one distributed uniformly on the unit square 
[0, 1] 2, and this is what we have done. A widely accepted conjecture in the 
physics community is that the distribution of levels is, for typical systems in 
this class, locally Poissonian [1], i.e. the statistics of the energy levels in the 
interval [E, E+L],  L is fixed and E is uniformly distributed in an interval 
[-0, T] with T ~  0% behave like Poisson distributed points with density re. In 
our context the conjecture is the following: 
Let P(n; R) be the probability that there are exactly n lattice points in OR(C, 0r 
Then 

lira P(n,R)=p(n) with p(n)=[(4c]A])"/n!]e -4clAl". (1.4) 
R~oo 

Such a result was proved by Sinai [8] and Major [9] for the number of lattice 
points in scaled annuli domains bounded by very random curves. Here all the 
randomness comes from 0~, so the proof of (1.4), if indeed it is true, is far from 
trivial. Our theorem proves that the limit of the first and second moment of 
P(n; R) has the right behavior when R ~  oo. In fact, our result also shows that 
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the covariance of pairs of distinct random variables ~I~)=~R+jc--IORI 
vanishes as R~oo .  This suggests that lim~.~limR-*~((R--IORI)/Ix/~RI 
should be a Gaussian random variable. This is consistent with taking the 
large parameter limit of the Poissonian distribution, but may be valid more 
generally. 

2 Proof of the Theorem 

The proof of relation (1.2) is simple. We can write E is(a) as the sum of the 
probabilities 

ECR(a)= ~ P(m~OR(C,~))= ~ IOnC~([O, 1]2--m)l=lORI. 
m c ~  2 mEZ 2 

Because of (1.2) formula (1.3) is equivalent to the relation 

lim E ~g(Ct) (r 1) = [OR 12. 
R--> oo 

We claim that 

Indeed, 

(2.1) 

E ~R(")( ~S(~)-- 1) = ~ ~ P(meOR(C, ~), mleOs(C, cO) 
mEZ 2 mleZ2\{m} 

= ~ ~ I[O, 1]2c~(OR--m)c~(OR--ml)I 
me//2 mleZ2k{m}  

= ~ ~ I([0, 1]2+m)c~ORc~(OR--ml)l 
meZ 2 mleZ2\{0} 

-- ~ I�9 
mEZ2\{0} 

Hence to prove the Theorem it is enough to prove relation (2.1) with the help 
of relation (2.2). This requires a good estimate on the area of OReS(OR--m). 
First we introduce some notations. 

Let us denote the boundary of the set tA for t > 0, by 7t, and let 7 = Y~. For 
some xeTt let g0(x) denote the angle of the vector x and O(x) the angle of the 
normal of the curve 7, at x (pointing outside of the domain tA) with the vector 
el =(1, 0). Given some zeR2\{0} let d(z, t) denote the diameter of the set tA in 
the direction z, i.e. 

d(z,t)--max{[zl-zEI; Zl~Yt, Z2E7t, ZI--Z2~-2Z, with some 2>0}.  

Let Zd, r(t) and za,~(t) be the end points of this maximal vector, i.e. za,~(t)eT~, 
Zd, t(t)e)', Za,r(t)-- Za, ~(t) = 2Z with 2 > 0 and [ za,~(t)- za,,(t) l = d(z, t). For ze ~2 
let z" denote the vector z rotated by + ~/2, and define K + (z) and K~- (z) as the 
half planes whose boundary is the line going through the points zd,~(t) and 

E~R(~)(r ~ IOgC~(Og--m)l. (2.2) 
meZ2\{0} 
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Zd.~(t) and which are in the direction z • and - z  a of this line, respectively. For 
zE N2 and 0 <[zl < d(z, t) define the (unique) points zt,+,, z.+z~K + (z)~Tt and zt.~, 
ztSl~K~-(z)nTt such that z + z + - -zt~i=z.  t,r-- t , l  = Z  and Zt, r 
For z~, Z2Z?R define the function 

4c 2 [zl I I z21 cos(cp (z,) - O(zl)) cos (~o (z2) - ~P (z2)) 
FR(Zl,Z2)-- R4 i s i n ( 0 ( z l ) _  ip(z2)) I 

and for some zeN 2, 0<  [z] <d(z, R) the functions 

f/~ (z)= FR(Z~,z, Z+,r), f ~  (Z) = FR(Z~,z, Z~,,). 

F o r  A ~ 7 / 2  and B ~  2 define their sum 

and 

We claim that 

A + B = { x + y ,  xCA, y~B} 

A(2)(R)=RA+ (-RA).  

f [ f~ (z )+ f~ (z ) ]  dz= 16c21AI 2. (2.3) 
Aa~(R) 

Put 

hR(Z)= I�9 l, 

We then also claim that 

z ~  2. (2.4) 

f 
lim ~, hR(m)-- f [ - f+(z )+f~(z ) ]dz~=0 .  (2.5) 

R-+co (.m~2\{0} A~2~(R) ) 

Relations (2.2), (2.3) and (2.5) together imply (2.1) hence also the Theorem. To 
prove (2.3) we introduce the maps 

G +: A(2)(R)\{0}F--~TR • ?R, 

Z + Z + G+(z)=( R,~, ~,~), G-(z)=(z~..z~,r). 

Observe that the set Int G+(A(2)(R)\{0})c~Int G-(A(2)(R)\{0}) is empty, the 
maps G + are diffeomorphisms on IntA(a~(R)\{0}, and G+(A(Z~(R)\{O})w 
G-(A(2)(R)\{0}) is 7R X 7R\{(Z,Z), Z67r}. 

The inverses of the maps G-+(z) have Jacobians [sin(O(z~,r)-r To 
see this we make the following observation: Let [ z l , z l - t - d z l ]  and 
[z2, z2 + dz2] be two small curves on 7R starting from some points zl and z2 
respectively. Then the inverse of the map G -+ maps the set [zl ,z~+dz~] 
X ]-z2,z2+dz2] approximately to z2-z~+A(dzl,dZ2), where A(dzl,dz2) is 

a parallelogram with one vertex at the origin, whose sides are the vectors dzt 
and dz2. The area of this parallelogram is [dzl[ [ dzzll sin(~/,(zl)-O(z2))]. We 
can approximate the area of the image of the above domain by the inverse 



On the number of lattice points 257 

map (G• - 1 with the area of this parallelogram. Since this approximation 
gives only an error of order o([dzl[[dz21) the Jacobian has the form we have 
stated. 
The above relations imply that 

f [f/~ (z)+fR(Z)] dz 
A(2)(R) 

4c 2 
= f ~ IzlllzEICOs(I/J(Zl)-~(Zl))COS(l,~(z2)-~(z2))dZl dz2 

~g x ~R 

= 2c Izlcos(~,(z)-~o(z))dz 

-- 2 c f  I zl cos(C,(z)-~o(z)) dz = 16c z I AI 2, 
Yl 

hence relation (2.3) holds. To prove relation (2.5) we need some geometrical 
facts formulated in relations (2.9) and (2.10) and a lemma about the value of 
hR(Z). They will be proved in the next Section. 

Lemma 1 There is some e > 0  such that the function hR(Z) defined in (2.4) 
satisfies the following estimates: 

a) For 1 __< Izl <eR, hR(Z)<const./Rlzl. 
b) For all 0<~/__<e and tIR <=]z[(1-tl)d(z,R ) 

R2{hR(Z)--[f[~(z)+f R(Z)]}-~O as R--*o% 

and the convergence is uniform in z. 
c) Let us f ix  some positive constant B > O. Then the following inequalities hold: 

(cl) hR(z)<const./(R3/2x/d(z,R)-]z[) if (1-e)d(z,R)<__[z[<=d(z,R)-B/R. 

(c2) hR(Z)<(const./R) if d(z,R)-(B/R)<=[z[<=d(z,R)+ B/R. 

d) hR(Z) = 0 if lz[ > d(z, R) + B/R, and B is larger than c times the diameter of the 
set A. 

To prove relation (2.5) let us introduce the sets 

D](R)- -{zeN 2, 0< lz l<eR} ,  

DR (R) = (1 -- e)A(2)(R)\D ] (R), 

D ~3 (R) = (1 - B/R 2) A(2)(R)\(1 - g) A (2)(R), 

D~(R) = (1 + B/R2)A(2)(R)\(1 - B/R2)A(2)(R). 

Define the discrete measure/2 on the positive half-line [0, 00], 

#([0, x ] ) =  {the number of lattice points in the set xA(2)}, 

where A ~2) denotes A(2)(R) with R = 1. Define also the signed measure 

v( [0, x ]) = #( [0, x] ) -- x 2 Area(A (2)). 
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I fA is an oval, then A (2) is again an oval [3]. (This means that the boundary of 
A (2) is again strictly convex, smooth, and has positive curvature at all points.) 
Hence the results known for ovals can be applied to A ~2). In particular, we can 
state because of a result of Colin de Verdi6re [5] that 

[v([0, x])[ <const.x 2/3 for all x >  1. (2.6) 

Let us also remark that the normals of 7R in the points za, r(R) and zd, l(R) 
satisfy the relation 

O (ze, r (R)) = ~ (Zd,; (R)) + ~z (2.7) 

for all z~R2\{0}, i.e. the normals in the points ze,~(R) and za, t(R) point in 
opposite directions. The half-line 2z, 2 > 0, intersects the boundary of A(Z)(R) 
at distance d(z, R) from the origin. Hence Part cl of lemma 1 bounds the value 
of hR(Z) for z~O](R) and Part c2 bounds the value of hR(Z) for zeD~(R). 
By Part a of Lemma 1 

1 1 
Z hR(m) <cons t .~  Z - - < c o n s t . e .  

Iml m6Z2c~D] (R)\{0} msZ 2 
O<lml<~R 

Since R 2 (f[~(Rz)+f~(Rz)) is uniformly continuous in the set(1/R)D~(R), 
hence 

hR(m)-- f [f~(z)+fR(Z)]dz~O as R ~  
m~Z2c~D~(R) D~(R) 

by Part b of Lemma 1. Put 

HR(t)= sup hR(z), 
z~t~A (2) 

where 0A (2) denotes the boundary of A (2). By using Part cl of Lemma 1, 
integrating by parts and applying (2.6) we can write 

(R - B/R) 

hR(m) =< f H R ( X ) # ( d x )  

m~Z2c~D~(R) (1 -e) R 

const .  (R-B/R) X const. (R-B/R) v(dx) 
< R3/2 (l_f)R ex/-~-~xdx-[- e3/~ f 

(1--e)R 

/ -  const. I-Y([0, x])7 (R-B/R) 
< const.x/e + ~ g ? 5 - / = /  

l_ # R - x  3(1-~)R 

~R ~/R) v([0, x]) 
+ const, f Ra/2(R_x)3/2dx 

(1 -e)R 

<const. +R-1/3+R 5/6 f (R_x)3/2dx 
(1 -e)R 

<const . [R 1 /3+x~  ]. 
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Similarly, by Part c2 of Lemma 1 

(R + B/R) 1 

hR(ln)<const, f -~ #(dx) 
m~Z2mD~(R) (R B/R) 

(R § B/R) X const. 
< const. (g-/B/a) ~ dx+---~v([R-B/R, R+B/R]) 

< const. [(l/R) + R-  l/a] < const.R- 1/3. 

The above relations together with Part d of Lemma 1 imply that 

hR(m)- f [ f /~ (z )+fR(Z) ]dz=O(~e+R-1 /3 ) .  
D~2(R) 

2 
m~Z2\{O} 

We claim that 

(2.8) 

11= f [ f  ~(z)+f R(Z)]dz=O(e) (2.8') 
D](R) 

and 

12 = f [f/~ (z)+fR (Z)] dz = O(x/~ ). (2.8 ") 
A(2)(R)\(1 -- ~)A(i)(R) 

Since e > 0 can be chosen arbitrary small the above relations imply (2.5). 
In Sect. 3 we shall prove the following statements. There is some e > 0 such 
that if ] z] = uR with some 0 < u < e, then the normals of ];R satisfy the inequality 

z + (2.9) I@( R,,r)-- @(Z/~,l)[ >const. u, 

and if ]z[ = (1-u)d(z ,R)  with some 0 < u < e ,  then 

z § c o n s t . ~ .  (2.10) I~t( R,,r)-- O(Z/~I)--Tg[ > 

In the first case we get that 
1 

[ f~  (z) l + I f f f  (z)[ < const. R2 u (2.11) 

and in the second case 
1 

[ f  + (z)] + l fR (Z) l< c o n s t . - -  (2.12) 
R 2 ~  ' 

Thus we get, by integrating in a polar coordinate system and applying the 
estimate (2.11), that 

1 ~ 2 1 
f R u- du < const.e. 11 <const.R- 7 u 

Relation (2.12) implies that for (1-e)R < t<_R 

f [f+(z)+fR(Z)]dz<const. f ( l - t )  1/2R-3/Zdz 
tOAI2) tcqA (2) 

1 
< const. 
- 
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In tegra t ing  first on the curves 77, ( 1 - e ) R  < t <  R, we get that  

~R 
12 < const, f R -  1/2u- 1/2 du < const.x/~. 

0 

Hence we proved  the Theo rem with the help of L e m m a  1 and formulas  (2.9) 
and (2.10). 

3 Proof  of Lemma 1 

We shall need a result abou t  convex sets in the proof.  To  formulate  it we 
introduce some notations.  Let  us fix some vector  z e N  2, z # 0 .  In t roduce  the 
coordinate  system whose coord ina te  axis x is in the direction z/[z[ and the 
coordinate  axis y is its ro ta t ion  with + ~z/2, in the direction z~/Iz I 1. In this new 
coordinate  system let (Xo (t), yo(t)) and (xl (t), y l(t)) be the points  of  tangency of 
the curve 7~ with the line parallel to the vector  z in the half-spaces Kt  + (z) and 
K t  (z), respectively. Fo r  Yl (t) < u < yo(t) the line y = u intersects the curve 7t in 
the points  xla(u) and x,,t(u), x~,t(u)<x,,~(u). We shall p rove  the following 

L e m m a  2 There are some positive constants A > O, 0 < B1 < B2 depending only 
on the curve 7 such that 

B l . j t ( y o ( t ) -  u) < x., ,(u)- Xo(t) < B . . j t ( y o ( t ) -  u), 

B~ . / t ( y o ( t ) -  u) < ~o(t)-  x,.,(u) < B, . , / t ( yo( t ) -  u), 

d 

. / y o ( t ) - u  < - ~  ~''~(u) < ~/yo( t ) -  u' 

y,/7~o( O- u < - ~  '<'(u) <,/go(t)_ u' 

if  Yo (t) - tA < u < Yo (t), and 

Bl ~ / t ( u -  yl (t)) < x., ,(u)- x~ (t) < B ~ . j t ( u -  y, (t)), 

B1 x / t (u  -- Y l (t)) < x l (t) - xl,,(u) < B2 ~ / t (u  - Y l (t)), 

B l x / t  d x. , t (u)< B2x / t  

~ < d u  uXffff~-- yl (t)' 

el  .N~7 d e2. ~ 
, /u -y l ( t )  < - &  ~'''(u) < ~/u-yl(t)'  

if y l ( t ) < u < y l ( t ) +  tA. 

Proof  o f  Lemma 2 Let us first restrict our  a t tent ion to the case t = 1. It  is more  
convenient  to work  with the inverse of the function x., 1 (u). Let (x, g(x)) be 



On the number of lattice points 261 

a small part of the curve y in the neighborhood of the point (Xo(1), yo(1)), and 
let p(x) be the curvature of the curve 7 in the point (x, g(x)). We can write in an 
interval [Xo(1), Xo(1) + q], q > O, 

[1 +g'(x)2] 3/2 

p(x) = g"(x) 

Put z(x)= g'(x). Since Z(Xo(1))= 0, the last relation implies that 

~(X) dt - f p - ~ d t  
(1 + t2) 3/2 Xo(1) 

o r  

z(x) -P(x) 

with P(x)=  / [1/p(t)J dt. Since the curvature of y is separated both from 
xo(1) 

zero and infinity, there are some constants K2 >K1 > 0  such that 

K1 (x - Xo (1)) < P(x) < K2 (x - Xo (1)). 

Since z(x)= - P ( x ) / x / 1 - p 2 ( x )  the last relation implies that 

C1 (X-Xo(1)) < - g ' ( x )  < C 2 ( x -  Xo(1)) 

with some C2 > Ct > 0  in an interval xe[xo(1), xo(1)+q). Since g(xo(1))=yo(1) 
we get by integrating that 

1 1 z 
- -~C2 (X--X0(1)) 2 <g (X) - -y0 (1  ) < - -~  CI(X--Xo(1) )  . 

These formulas imply that x~, 1 (u), the inverse of g(x), satisfies Lemma 1 for 
t =  1 in an interval [yo(1) -A,  Yo (1)]. The remaining statements of Lemma 
1 for t = 1 can be proved in the same way. The case of general t > 0 follows 
from the case t = 1 because of the homogeneity properties of Yt- []  

Now we turn to the proof of relations (2.9) and (2.10). Here again we can 
restrict our attention to the case R = 1. Let us recall that the curvature p(x) of 
7 in a point xe7 and the angle of the normal O(x) in this point satisfy the 
relation 

aO(x) 
=p(x), (3.1) 

ds(x) 

where s(x) is the length of the arc (Xo, x) of ? with some fixed Xoe7. 
Under the conditions imposed for formula (2.9) the length of the arc 

z z • ~ is greater than u. Since p(x) is bounded from below by a positive 1,1, 1,r] 
constant, we get formula (2.9) by integrating (3.1). 
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The proof of (2.10) is similar. Here we can apply formula (2.7). Because of this 
formula it is enough to show that 

J 0 (z ~,;) - 0(za, ;(1)) I > const. ,~/-u, 

10(z (,~) - 0(za,~(1)) I > const, x/u, (3.2) 

under the conditions imposed for (2.10). 
Given two vectors zl and z2 le t /_  (zl, z2) denote the angle between them. For  
z~71 let n(z) denote the normal vector to the curve Yl at z. We make the 
following observation: For  any zeN 2 \{0} consider the end points za, l = za,;(1) 
and za, ,= za, r(1) of the interval with maximal length in A in the direction of z. 
The normal of 71 in these points cannot be almost orthogonal to z. More 
explicitly, there is some q > 0 such that 

1 1 
2re + r/< L_(-z, n(za,;)) < ~ r c -  r/. (3.3) 

(This statement is equivalent to the following one: If z is a boundary point of 
the oval A (2), then the vector z cannot be almost orthogonal to the normal of 
the boundary of A (2) in this point. The equivalence of these two statements 
follows from the following argument. The vector za, ~-za, r is on the boundary 
of A ~1), and it is parallel to z. The normal of A (2) in this point is parallel to 
n(za,;). The proof of the second statement is simpler.) 
We claim that under the conditions imposed for formula (2.10) the distance of 
the parallel lines going through the points z~,t and Zl: -+ and through the points 

za,z(1) and za, r(1) is bigger than const.x/-u. Put  m; = ml(z)= 1/cos/_ (z, n(za,;)) 
and mr = mr(z)= 1/cos Z_(z, n(za, r)). Then mr= - m ;  by (2.7), and by (3.3) there 
is some oo > K > 0  such that - K < m ~ ( z ) < K  for all z~N2\{0}. 

Let us fix a new coordinate system with the origin in a point of the line 
going through the points z;,, and za,~, with the x axis in the direction of the 
vector z and y axis in the direction z • and let us work in it. For  e > v > 0 let 
z; + (v) = (zl + (v), v) and z + (v) = (z + (v), v), z; + (v) < z + (v), be the two intersections 
of ~ and the line y = v ,  and put z ( v ) = z + ( v ) - z + ( v ) .  It follows from Lemma 
2 (with its application in the coordinate system with coordinate axes 
parallel to the normal and to the tangent vector of the curve Vl in the 
points za,t(1) and z~,r(1), respectively) that there is some C > 0  such that 
zl + (v) < za:(1) + vm; + Cu 2 and z~ + (v) > za, r(1) + v m t -  Cv 2. The above relations 
imply that [z (v) l = z ~+ (v) - z ;+ (v) > d(z, 1) - 2Cv 2. Since we imposed the condi- 
tion Izl =d(z, 1)-ud(z,  1), this relation implies that the distance between the 

+ and z § and through the points parallel lines going through the points zl,z 1,~ 

za, l(1) and ze:(1) is greater than c o n s t . , ~ .  The same statement holds if 
+ and z+,~ are replaced by zi-; and z 1-,r. Hence the arcs z~,;, za,; and the arcs Zl,l 

z +1,., za, ~ are longer than const.x/~. Hence relation (3.1) and the strict positivity 
of p(x) imply formula (3.2) and hence formula (2.10) too. 

Now we turn to the proof of Lemma 1. We introduce the abbreviation R + 
instead of (R + c/R) and R -  instead of (R - e/R). 
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Proof of  Lemma 1 Proof of Part a Let us introduce the coordinate  system 
with x axis parallel to z and y axis parallel to z • We shall estimate, by means 
of Lem ma  2, the length of the intersection of the set OR~(OR --Z) with the lines 
y = u for different u-s. 
Define uR+ (z) as the (unique) solution of the equat ion 

x~,~+(u)-xz,~+(u)=lzl, u>u~,R+, 

where Ud, R+ is defined by the formula 

xr, R-+ (ua, R +) - xt, R~ (UI, R ~) = max [x~,R • (u) -- XI, R+ (U)], 
I t  

that  is, it is the level u at which the horizontal  line y = u  has the longest 
intersection with the set R + A. 
We claim that  there is some K > 0 such that  

Xr, R+(U)--XI, R+(U)<IZ]+Const./IZl if [UR+(z)--K/R]<u<uR+(z), (3.4) 

Xr,~ (U)--X,,R (U)>Izl if Ud, R- <u<uR+(z ) -K /R ,  (3.4') 

and 

Xr, R+(U)--Xr, R-(U)<�89 ifu~R <U<UR+(Z)-K/R. (3.4") 
x, ,~+(u)-x, ,R (u)<�89 J ' - 

First we show that  relations (3.4)-(3.4") imply that  

I�9 n(OR -- z ) ~ K  ~- (z) l < const. /(R]z]).  (3.5) 

To  see this we show that  the intersection of OR~(OR--Z) with the line y =  u 
has a length smaller that  const./I z l if [ue+ ( z ) -  K/R]  < u < uR+ (z), and it is 
empty if u > UR+ (Z) or Ud, R < U < UR+ (Z)-- K/R.  The above relations imply (3.5). 

The  above intersections are contained in the interval [x~,R+(u), 
xr , ,+(u)-  I zl] whose length is less than const./lzl if [uR+ ( z ) -  K/R]  < u < UR* (Z) 
by (3.4). The distance Xr, R* (U)--Xl, n+ (U) is less than I zl for u > u~+(z), because it 
is a (convex) m ono tone  decreasing function of u in the interval [ua, R+, yo(R + )1 
and it equals ]z] for uR+(z). This implies that  the intersection 
OReS(OR- Z)~ { (X, U), X~R 1} is empty for u > ue+ (z). To  see that  it is empty for 
Ua, R < U <uR+(z) -K/R too, observe first that  the intersection of OR with the 
line y = u  consists of two intervals, [xt, R+(u), XI, R (U)] and [xr, R (u), xr, R+(u)]. 
The  intersections 

[X~,R+(U), X~,R (U)]~(EXl, R~(U), X~,R (U)]- -Iz l )  

and 

E~,~ (u), X,,R+(U)]n(EXr, R (U), X,,R+(U)]--I*J) 

are empty  because of (3.4") and the condit ion ]z[ > 1. The intersection 

Ex~,R+(u), xz, R-Ku)3n(Exr,~ (u), xl,~+(u)]--Izl) 
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is empty because of (3.4') and the intersection 

[xr, R (u), x1,R+(u)]~([x,,~+(u), x~,~ (u)]-Izl) 

is always empty. In such a way we deduced (3.5) from (3.4)-(3.4"). 
Let us recall the following notation. The point (xo(R+), y+)  is the point of 
tangency of the curve 7e+ with the line parallel to z in the half-space K++ (z). 
To prove relations (3.4)-(3.4") let us first observe that because of the first two 
relations in Lemma 2 

B1R(yo(R+ ))-u~+(z)< Izl 2 <BzR(yo(R+ ))-uR+(z). 

In particular, for I z l>  1, yo(R +)-uR+ (z)> const./R. Hence, by the third and 
fourth relations in Lemma 2 

K 
CI~Z] <--~(Xr, R+(U)--X1,R+(U))<C2~z] for uR+(Z)--~<U<UR.(Z) (3.6) 

with some C2 > C1 > 0. Since Xr, R+(UR+(Z))-- XI, R+ (UR+ (Z)) = ]zl we get relation 
(3.4) by integrating the right-hand side of (3.6) in the interval [u, URT(Z)]. 

Because of the left-hand side of (3.6) we can choose for any D > 0 a number 
C = C(D) > 0 such that for uo = uR+ ( z ) -  (C/R) xr, R+ (Uo) - XI, R+ (Uo) > I Z[ + D/I z]. 
We rewrite this relation by  turning from 7R+ to 7R-. In this calculation 
we exploit that [zl<const.  R if z~TR+. Putting u l = ( l - t / ) U o - -  
(1-c/RZ)(l+c/R2) -1 Uo we have u~>uR+(z)-K/R with an appropriate 
K>0,/7=O(R -2) and 

Xr, R-(Ul)-- Xl,R (Ul)=(1--tl)(Xr, R+(Uo)-- Xt,R+(UO)) 

>(1 -tT)(Izl + D/Izl)> Izl 

if D > 0  is sufficiently large. This means that relation (3.4') holds for 
ul>UR+(Z)-K/R. Because of the monotonicity of Xr,e-(Uo)-Xl,e-(Uo) for 
Ud, R < U <yo ( R - )  relation (3.4') holds. 

To prove relation (3.4") first we observe that xr, R+(~)=(1 +fi)xr, R (u) with 
1 +f l=(1 +c/R2)(1 -c/R2) -1 and •=(1 +fl)u. Hence Xr, R+(a)=X~,R (u)+O (l/R) 

d 
and ]u-~)<L/R with some L>0 .  The derivative ~uXr,R+(u) is a monotone 

decreasing function of u, hence it follows from the third relation in Lemma 
2 that 

dx~,~+(u) R 

if [y~ (R +) - K/R] < u <= [-yo(R + ) -- K/R], and K > 0 is chosen sufficiently large. 
Hence 

I X~,R" (U)-- Xr, R+ (t~)l < (R/3L)1 u -- t~l + O (l/R) < 1/2. 

The first relation of (3.4") is proved, and the second one can be proved in the 
same way. 

We have proved relation (3.5). It can be proved in the same way if K~+ (z) is 
repalced by KR+ (z). These two relations together imply Part  a. 
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Proof of Part b. We define two parallelograms P+ (z) and P (z). The parallo- 
gram P + (z) is bounded by two pairs of parallel lines, the lines of the first pair 
are going through the points (1 + c/R2)z~j and ( 1 -  c/RZ)z+ d and they have 

Z + normal ~(R,~), the lines of the second pair are going through the points 
(1--c/R2)z+~--z and ( 1 - c / R 2 ) z ~ - z  and they have normal ~(ZR+~). The 
parallel pairs of lines bounding P-(z) are going through the points 
(1--c/R2)z~,l and (1 + c/RZ)z~l with normal z~t(~), and through the points 
(1-c/R2)z~,~-z and (l+c/R2)z~,~-z with normal ZR,~(~). The parallelo- 
grams P+ (z) and P-(z) have areafR + (z) andfR (z), respectively, and they are 
disjoint if [z[ > t/R. Since the difference of these parallelograms and the do- 
mains ORC~(�9 and ORC~(OR--z)~KR (Z) have an area of order 
o(R-2), the above relations imply Part b of Lemma 1. 

Proof of Part c Let us work in the coordinate system with origin zd, l(R +), with 
x-coordinate axis in the direction -n(ze, ~(R +)), the normal of ?R+ in the point 
zd, t(R +) showing inside the domain AR§ and with y-axis in the direction 
Ze = --n(zd,,(R +))1, the tangent of 7R§ in this point which is obtained when the 
x axis is rotated with angle +~/2. Let y~+(u) be the y coordinate of the 
intersection of the set ?R§ c~K+§ (z) with the line x = u and y+ (u) the y coordi- 
nate of the intersection of the set VR-c~K~-(z) with this line. We shall estimate 
the length of the intersection of OR with the line x = u. We shall prove that the 
Lebesgue measure of this intersection satisfies the inequality 

1 ( 1 ) 2(Oan{(u,y),y~N ( ) } ) < c o n s t . m a x _ ~ ,  1 if 0 < u < t / R  
\ x/ Ru 

(3.7) 

with some r/> 0. 
By Lemma 2 

ly~+(u) l<cons t .x~  if O<u<AR, 

and this inequality implies (3.7) in the case u < K/R with some K > 0. We shall 
show, using again Lemma 2, arguing similarly as in the proof of relation (3.4) 
in the proof of Part a that 

If++ (u)-  y+ (u)] < const./x ~ if (K/R) < u <tlR, (3.8) 

which relation completes the proof of (3.7). To prove (3.8) we have to express 

y~-( ')  by yy+ (.) and to exploit that by Lemma 2 ~vv y+- (v) < const .xfR/x~ if 

K/R <u<v<u+ K/R. 
Let vR++=(v~§ v~+,2) and VR+ =(V~+I,V~*2) be the points of intersection of 
7R + and 7R+--z in the half planes K~-+(z) and K~.(z), respectively. We shall 
prove that there is some constant K > 0 such that 

[- ++ K 
OR~(OR--Z)v~K++(Z)~{(V, y), yG~ 1} =0 if Vr , 1 -~ ,  v++,l + K  1 (3.9) 
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and 

ORn(QR--Z)nK~+(Z)C~{(v,y), y~El} =0 if V(~ VR+,~ - K ,  V~+,I +-~ (3.9') 

We also claim that under the conditions of Part cl or Part c2 of Lemma 1 

VY+l > const.(d(z, R)-Izl) .  (3.10) 

Relations (3.7), (3.9), (3.9') and (3.10) together imply Part c of Lemma 1. To 
prove relation (3.10) let us consider the projection of the vectors v~+ and 
(d(z, R ) -  [zl)(z/I z I ) -  % to the direction of the vector - n(Zd, l(R + )). The sum 
of these two vectors, which is the projection of (d(z,R)-lz[)(z[/lzl) to 
-n(zd, l(R +)) is longer than const.(d(z, R ) - I z  I) because of relation (3.3). On 
the other hand, the proportion of the length of these two vectors is separated 
both from zero and infinity because of relation (3.3) which implies this relation 
if the projection is done in the orthogonal direction n(zd, i(R+)) • and 
Lemma 2. 

To prove relations (3.9) and (3.9') we introduce the following notation. Let 
s%(u) be the y coordinate of the intersection of the set (TR_+-z)nK+• with 
the l inex=u .  Since + + - + + S R (/dR+,2) --yR+(1)R+,2) we get by expression SR--(" ) through 
s++('), exploiting the lower bound on the derivative of the function s~-+(') 
given by Lemma 2 and arguing similarly to the proof of relation (3.7) that 
s+-(v)>xTc+(v) or v<0  if v<v++l-K/R with some sufficiently large K > 0 .  If 
v<0,  then the set OR~{(v,y), y~R 1} is empty. Hence 

K 
ORn{(v,y),y~[Ra}=O, ifv<v,~+,, R'  

By changing the role of 7R and 7R--Z we get that 

K 
ORN{(/) ,y),  y e ~ l } = O ,  i f v > v + §  

The last two relations together imply (3.9). The proof of (3.9') is similar. 
In such a way we have proved Part c of Lemma 1. The proof of Part d is 

trivial, since in this case even the set R + A n ( R + A - z )  is empty. [] 

4 Some concluding remarks 

In this Section we discuss the conjecture about the Poissonian distribution of 
a randomly placed circle suggested by the computer study of Cheng and 
Lebowitz [4] and briefly explain what kind of approach is suggested by the 
present paper. 

It is relatively easy to show that the Poissonian limit for the number of 
lattice points in OR(C, e) would follow from the following generalization of 
formula (2.1): 

lira E~R(~)(~R(~)-- 1)'"((R(~)--k+ 1)=]ORIk=[4c[A]] k for all k>= 1. (4.1) 
R~cr? 
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Some modificat ion of the a rgument  in the p roof  of  formula (2.2) gives that  

E ~R (ct)(~R(c~) - 1)...(~R(ct)- k + 1) 

= E I � 9  1)1. (4.2) 
ml , . . . ,mk- t  are different points in Zz\{0} 

It  is relatively simple to prove the identity 

f I�9169 . . .  dZk_l=r4clAI] k. (4.3) 

Hence to prove the Poissonian limit it would be enough to show that  for 
large R the replacement of  the sum in (4.2) by the integral in (4.3) causes 
a negligible error for all k = 1, 2 . . . . .  Actually, we proved this for k = 1 and 2. 
But the p roof  fork > 3 is much  harder. In our  proof  we exploited the indepen- 
dence caused by the r andom shift ~ [ 0 ,  1] 2. But this independence is not  
sufficient for the p roof  of (4.1) if k > 3 .  In this case some deep number  
theoretical s tatement would be needed which states that  certain functions of 
the k-tuples of  lattice points (ml . . . . .  ink) are almost  uniformly distributed. 
We could give an explicit formulat ion of this statement, but  since this requires 
complicated notat ions and would lead to a problem that  we cannot  handle we 
omit  it. 

Finally, we only briefly ment ion that  the higher dimensional version 
of the problem can be discussed similarly, and the natural  modification 
of the result holds. Moreover ,  the same technique gives a stronger result, 
namely in the case of d-dimensional convex annular  set the first d moments  
converge to the moments  of  a Poissonian r a n d o m  variable. This strengthening 
is related to the fact that  the shift with a r a n d o m  vector which is uniformly 
distributed in the d-dimensional unit cube provides more  randomness  for 
large d. 
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