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Summary. Let Yi be independent stable subordinators on (f2, Y ,  P) with 
indices 0 < f i <  1 and Ri are the ranges of Yi, i= 1, 2. We are able to find the 
exact Hausdorff  measure and packing measure results for the product sets 
R1 x R2, and whenever fit +fie < 1/2, we deduce results for the vector sum 
Ra@Rz={x+y:xER1, yER2}. 
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1 Introduction 

It is well known that a stable process of index e > 1 on IR has a continuous 
local time [1] (Blumenthal and Getoor), l(t, x), and that the stochastic process 
inverse to l(t, 0) is a stable subordinator of index f = 1 - 1/e [9] (Stone). For  
a stable subordinator with index f ,  say Yr the range R~c~[0, 1] has positive 
finite Hausdorff  measure with respect to qS(s)=s~(loglog~) 1-p - -  see [17] 
(Taylor and Wendel) - -  and, if 

h(s) = Jf(s) (1.1) 

withf(s)  monotone  increasing, Taylor [15] showed that the packing measure 

h-p(Yp[O, 1])={ 0 a.s. accordingas  f f2(S) ds ~ < +~176 (1.2) 
oo o+ s ( =  + 0% 

where Yz[O, 1]={y=Yp(t):te[O, 1]}. We remark that, the subordinator 
which arises as the inverse of the local time of a stable process of index e with 
1 <c~ __< 2 has index f with 0 <fl__<~. However, all of our analysis, apart  from 
some results on projections, requires only that 0 < f < 1, so we state the main 
results in the context. 
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We know that the product set R1 x R2 and R1 OR2 are random sets. The 
general results of [2] (Besicovitch and Moran) imply that, if ~bi(s)= s~'(log - 
log~) 1-~' and q~(s)= (/)l(S)q~2(s), then 

4)-m(R1 x R z n  [0, 112)>0 a.s. 

But the general theory does not provide an upper bound. Our first main result 
(Theorem 3.8) is that there is a finite positive constant c such that 

(o-re(R1 x R2n[0 ,  Y~(1)] x [0,, Y2(1)])=c a.s. (1.3) 

Our result for packing measure (Theorem 4.2) is more surprising. Using the 
formulation (1.1), with 

h(s) = s ~1 + ~f(s), 

we obtain 

h-p(Y~[O, 11 x Yz[0, 11)=~ 
0 

a.s. according as 
+oo 

1 
f2(s) l o g - -  

f(S)ds~< +oe (1.4) f 0+ S ( =  --}- oO. 

1 
Thus the critical functions for (1.4) arefl(s ) = (log 1/s)~5(loglog 1/s)-1 -~, while 

those for (1.2) are of the form (log 1/s)-~(loglog I/s)-~-~, e > 0. As an immedi- 
ate corollary of these main theorems we remark that 

dim(R1 x R2)=Dim(R1 x Rz)=fll + fi2 a.s., 

which implies that for almost all co, this product set is a fractal in the sense of 
[14] (Taylor). Here dim(E) and Dim(E) denote the Hausdorff and packing 
dimensions of E respectively. 

We also remark that the general results about projecting a planar set on 
a line (e.g. [4] (Falconer)) relate to the fractal properties in almost all 
directions. These results do not help us with particular projections. As pointed 
out in [10] (Taylor), the projections on the lines y = x and y = - x  of a product 
set A x B are scalar multiples of the vector sum A| and difference 
A@B(={x -y : xeA ,  yeB}). When / ~ + / ~ z > l ,  R ln [0 ,1 ]@R~n[0 ,  1] and 
R 1 n [0, 1] @ R  2 (5 [0, ]1 have positive Lebesgue measure, while our result (1.3) 
implies that, when/~  + f12 ~ 1, both of these sets have zero Lebesgue measure. 
Hence, for almost all l+  0, 

P(IERI@R2)=O. 

Whenever/~ + ~82 _-< 1/2, we can determine the exact Hausdorff measure func- 
tion for Rt  (~ R2 andR1 @ R2 (Theorem 5.1), which is our third main result in 
this paper. However, we have not been able to do the interesting critical case 
/~1 +P2 = 1, and packing measure results in all cases seem to be difficult. 

As usual, we use c~, c2 , . . ,  to denote finite positive constants whose 
values may or may not be known. They may be different in different theorems. 
We start by assembling some preliminary results needed in the sequel. 
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2 Preliminaries 

~b(t) is said to be a measure function if it is right continuous and monotone 
increasing with 0(0 + ) = 0 .  Let �9 denote the class of measure functions 
4,:(o, 1)--,[o, 13 

We now consider some special classes of sets for covering and packing. Let 
F stand for the class of the open balls B(x, r) in IRd and F* stand for the class 
of dyadic cubes in IRd. C e F *  if it has side length 2-", heN, and each of its 
projections proji C on the ith axis is a half-open interval of the form [ki2-", 
(ki+ 1)2-") where k~e 7/. For xEIR d, let u,(x) be the unique dyadic cube of side 
2-" containing x. 

We also need the class F** of semidyadic cubes. C e F * *  if it has side 
length 2-" and proji C = [�89 (�89 + 1)2-") with kieTl. We denote by v,(x) 
the unique semidyadic cube in F* * of side length 2-" whose complement is at 
distance 2 -" -2  from u,+2(x). 
Now we define set functions qS-m, q~-ms, and ~b-m* on sets in IRd by 

O - m ( E ) = l i m i n f { ~  4)(d(E~)), u E ~ _ E ,  d(EO<6},  (2.1) 
&,o 

O - m s ( E ) = l i m i n f {  ~O(d(Ei)),  u E ~ _ E ,  d(Ei)<6, Ei~F} ,  (2.2) 
~$o 

O - m * ( E ) = l i m i n f { ~ 4 ) ( d ( E O ) ,  u E ~ _ E ,  d(E~)<6, E ~ F * } ,  (2.3) 
~$o 

where d(E) is the diameter of E. It is easy to see that for any E in IR e, 

4~ -- re(E) < (~ -- m~ (E) < c~ -- m* (E) < c 1 ~ - -  m (E). (2.4) 

c 1 is a positive constant and q~- re(E) is said to be 0-Hausdorff measure of E. 
In defining (b-  ms we used economical coverings by open balls with small 

radii. Now we consider dense packing by disjoint balls with centers in E and 
differing radii; this yields packing measure, whose definition and initial prop- 
erties are given in [16] (Taylor and Tricot). Again assume qSE~ and define 

c ~ - P ( E ) = l i m s u p { Z O ( Z r i ) ,  B(xi ,  ri) disjoint, xieE,  r i<6} .  (2.5) 
~$o 

It is a premeasure and we obtain a metric outer measure by 

- p ( E )  = inf{ ~ b  - P(E~), E __ uEi  }. (2.6) 

0 - P  is called @packing measure. 
If we replace open balls in (2.5) by dyadic cubes containing x~ or 

semidyadic cubes v, (xi) we have q5 - P* (E) or q5 - P* * (E). Correspondingly 
we obtain q5-p* (E) and q5-p* * (E). q5-p* may be of different order than 
~b-p but it is proved in [16] that 

-- re(E) < 0 - p(E), (2.7) 
and 

c 2 ~) - -  p* * (E) < dp - p(E) < c3 c~ - p* * (E). (2.8) 

for some constants c2, c3 depending only on ~b and the dimension of the space. 
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In studying measure properties, the density theorem is a very effective 
technique. C. A.  Rogers and S. J. Taylor [7] and other people first studied the 
density theorem for Hausdorff measure. Then a similar result for packing 
measure is obtained in [16]. We state these as a lemma. 

Lemma 2.1 For a given 4 e ~  there are c o n s t a n t s  2 1 , 2 2 ,  23 such that for all 
E c IRd and every finite Borel measure iz in IR e, 

21/~(E) inf ~liminf qS(Zr) ~ < O - m ( E )  
x~E ( ~-+0 #B(x, r) J -  

( . . . .  ~b (2r) ] (2.9) <)~2#(IR d) sup < n m l m - - > ,  
= x ~  ( , -o  I~B(x,r)J 

 lim sup 
x~E ( ,~o #*~tx, r ) )  

f , .  q~(2r) } 
</~(IRd) sup ~nmsup . (2.10) 

x ~  ( ~-~o #B(x, r) 

This lemma gives the ordinary form for the density theorem. We will some- 
times use equivalent forms. 

In addition to the standard Borel-Cantelli lemma we need a version which 
does not assume independence. 

Lemma 2.2 Let (f2, ~ ,  P) be a probability space and AiE~, i= 1,2, .... I f  
~iP(Ai) = + oo and 

lim inf ~i",j= 1 P(Aic~Aj) <_ c, c is a constant, 
,-+o (Z7=1P(Ai)) 2 - 

then P(lim sup, A, )> c-1. See [5] (Kochen and Stone). 

For any two functions f ( t )  and g(t), we write f ( t )  ~ g(t) if there exists 
f ( t )  

a constant cl 50,  such that ~ ~ cl as t ~ 0 or oo. We write f ( t )  ~ g(t) if 

c2f(t)<=g(t)<= c3f(t), c2 and c3 are positive constants. 
We will need to estimate the small tail of (T1 + T2) (T3 + T4), where the Ti's 

are independent nonnegative random variables. This will be done in two steps. 
First, we estimate the small tail of X~ +X2 when they are independent and 

P { X i < 2 } ~ c i 2  as 250, i=1,  2. 

Lemma 2.3 Suppose that X I  and X2 are independent nonnegative random 
variables with P(X1 < x) = F1 (x) and P(X2 < x) = f z ( X  ). If 

FI(x) ~cl andFZ(X) +0,  - - - -  - - ' - - - > C  2 as x 
X N 

then 
H(x) 1 

X2 ---> -~ C l C 2 as x .~ O , 

where H(x) = P(X1 + X 2  < x ) .  
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Proof We know that H(x)=foFt (x -y )dF2(y ) ,  because X1, 
non-negative. Then Ve > O, if Xo is small, we have 

C 1 - - g < f l ( X ) < c  I -.}-g, c 2 - g < F 2 ( X ) < c 2 + , 9 , ,  x<=x 0 . 
x x 

So when X<Xo, 

H(x) f F l ( x -  y) 
X2 --0 X ~  dF2(y) 

i+*x 
2~-1 7 -  F l ( x - y )  

= Y, f x2 dF2(y) 
i = 0  i 

2 ~ x  ( i )  
=< i=oE x 2 F2 \ 2k x --F 2 ~ x 

X 2 a r e  

2k--1 1 i 

- , = o  

_1(2k+1~ 2"-1 i+1 
<(c1+0c22k, 2k / '+(cl;g) i=OZ 2S 2k . 

Let g--+O, then k ~  + oo we have 

H(x) 1 
lim sup e2 

x~O X ~ 2  C1 " 

Similarly we can prove liminf~;o H ( x ) > l  clc2. Therefore H(x) 1 X 2 = 2  X~--+-~ ClC 2 as 
x~O. # 

Lemma 2.4 Let U and V be two independent nonnegative random variables. 
P ( U > t ) ~ e  -~t and P(V>t),,~e-~t, for t>z>O, e > 0 ,  then 

P(U + V> t ) ~, te -~t 

holds when t is large. 

Proof The proof of this lemma is easy. We only need to bound U and 
V stochastically from above and below by proper shifted exponential random 
variab.~s. _ # 

1 1 
If U = log T1 + T2 ' and V= log T3 +------~4 ' then the asymptotic form of the small 

tail for (T1 +T2) gives the form of the large tail of U. The small tail of 
(T, +Tz)(T3+T4) now comes from the large tail of U+V. 

We expect that Lemmas 2.3, 2.4 are known results but include above 
proofs since we could not find a suitable reference. Our next result relates to 
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the large tail of a sum of a random number of i.i.d, variables, each with 
large tail which is not small enough to allow a Laplace transform argument 
to work. We believe this result may be of independent interest so call it 
Theorem 2.5. 

Theorem 2.5 I f  { Xi } is a sequence of nonnegative independent random variables 
and P (Xi > x) < e x p ( -  o:x~)for x >= Xo, where 0 < ~/ < 1. W is independent of { X i} 
and takes positive integer values with P(W= k)__< p k, 0 < p < 1, k = 1, 2,..., then 
there exist a point x l > Xo and a constant c such that 

P (  ~ X~>x)<cexp(-c~x') ,  for x>xa 

Proof We may assume without loss of generality that W is a suitable shifted 
geometric random variable, let Yi be i.i.d, random variables and independent 
of W with P(Y~ > x) = e x p ( -  ex~), x > 0, i = 1, .... Since Y~'s are subexponential 
random variables (see [6] (Pitman)), so are random variables Zi = Yi + t, t > O. 
One may choose t large enough to make Zi dominate Xi stochastically. Then 
the tail ofF, w 1 Z~ dominates that ofy~ w 1 Xi stochastically. But by Corollary 3 

in [-3] (Embrechts, et al.), the tail of 2 w l  Zi is of the order e x p ( - e x  y) as 
x ~  + oo and this completes our proof. # 

In the proofs of next three sections we need both tails of the distribution of 
Yp(1), where Yp is a stable subordinator of index fi with 0 < fi < 1 in IR. We take 
those forms from [8] (Skorokhod). 
Let G(x) = P(Y~(1) __< x), then for a constant 0 < c < 1, 

p 
G(x)~x2(1-1~)exp(_cx- 1-/~), as x ~ 0  (2.11) 

and 
1 - G ( x ) ~ x  r  (2.12) 

Let T(r) be the occupation time of Yr in [0, r), then 

+oo 

T(r)= f I~r(o3(Yp(s))ds. 
0 

Using the scaling property and (2.12) above we get 

P(T(1) < x) = P(Yr (x) > 1) 

= p ( y e ( 1 ) > x  e )~x ,  as x--+0 (2.13) 

3 Hausdorff measure of R1 x R2 

We use IEI to denote the Lebesgue measure of E and [x ,y)  to denote 
[x l , y l ) x [x2 ,  Y2), where x=(xl ,  x2) and Y=(Yl,Y2). We will write 
R=R1 x R2, where Ri are the ranges of the two independent stable subor- 
dinators Yi's of indices fii, i-- 1,2. From now on to the end of this paper we 
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~)2-fll --f12 
denote  05(s)= s ~1+p2 loglog Fo r  convenience,  we assume bo th  

Y a and  Y2 start  at 0. Define #i(E) = [ { s: Yi(s)~E }], i =  1, 2 and  # = # 1  x #2. We 
set Y (tl, t2 )=(Yl ( t l ) ,  Y2(t2)) and  r ( A ) =  {y=(Yl( ta) ,  Y2(t2)):(ta, t2)eA}.  

In  this section, me thods  of Tay lo r  and Wendel  [17] are used to obta in  the 
upper  bound  of ~b-Hausdorff measure  of Rc~[0, 1] 2. 

L e m m a  3.1 There exists a constant K > 0 such that 

lim sup #[0,  (h, h"<K]~ a.s. 
h+O ~b(h) - 

t/ l"k 1-b'i 
Proof Let (oi(h)=h ~' t l o g ~ )  . By using Theo rem 5 in [13J (Taylor) we 

x / 
obta in  that  for certain constants  ca and c2, 

Thus  

#i[0, h) 
lim sup - - =  ci a.s., i = 1, 2 .  

h;O (~i(h) 

lim sup # 1 x # 2 [0, (h, h )) _-< lim sup # 1 [0, h ) # 2 [0, h) 
- -  �9 lim sup - -  

h,O ~b(h) h+0 q51(h ) h+o ~b2(h) 

=ClC2a.s .  

Taking  K=ClC2 we obta in  this lemma.  # 

L e m m a  3.2 Given (x, y)eR,  let S= [-(x, y), (x, y)+(h, h)). Then for a.s. co we 
have 

lim sup #(S) < ,t  h+O - ~ = r , , ,  K is the same as in Lemma 3.1. 

Proof By the definition of # and  L e m m a  3.1 and using the s t rong M a r k o v  
p rope r ty  at points  (x, y)~R, we obta in  this result immediately.  # 

Remark. Since we have L e m m a  3.2, we can use ano ther  form of the density 
theorem. F o r  convenience we state it here: 

Suppose  tha t  F is a measure  defined on the Borel sets in lR 2 and tha t  E is 
a Borel set such that  for each x~E 

lim sup F[x,  x + T) <_c ' 
t+o h(t) _ c is a certain constant.  

Then  2 c h - m ( E ) > F ( E ) ,  where h(s)cq~ and T =  (t, t). 
This result can be p roved  by the same a rgument  

of [17]. 
used in L e m m a  4 
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Theorem 3.3 There is a constant c > 0  such that for a.s. c~ 

r  [0, Y(1, 1)))>c. 

Proof. By the definition of #, 

#((0, Y( t l ,  t2)))=#(Rc~[O, r ( t l ,  t2))) 

= t i t 2 .  

Thus for every E ~ ( I R 2 ) ,  #(Rc~Y(E)) is the Lebesgue measure of E. 
Now let F denote the set of points (co, (tl, tE ) )E~  X [0, 1] 2 such that 

#[Y(t~, t2), Y(t~, t 2 ) + H )  < K 
lim sup 

h~0 r - 

where H = (h, h) and K is the same positive constant as in Lemma 3.1. One can 
verify that F is product measurable. 

By the strong Markov property and Lemma 3.2 one can see that each 
(t 1, t2) section of F has probability 1, so that almost every co section A = d(co) 
has Lebesgue measure 1. By using Lemma 3.2 and the version of the density 
theorem in the remark of Lemma 3.2 we have 

qS-m(Rn[0 ,  Y(1, 1 ) ) )>(1 /2K)#(R~(Y(A) ) )=(1 /2K)>O a.s. # 

In order to obtain the upper bound for C- re (R)  it is required to cover not 
only the good points (x, y) where 

. #(S) > 0 lmsup ~Th~=c> , c is a constant (3.1) 
h~O tpt ) 

with S -- [(x, y), (x, y) + (h, h)) and (x, y)~R, but also the bad points where (3.1) 
is not satisfied. We therefore proceed to obtain a lemma allowing us to deal 
with the bad points. 

v(1) (1) v~2) ~ - ~ e x p ( - k l + a ) ,  (~>0, Wk= Lemma 3.4 Let Vk=( k , v~Z))eR 2, vk = = - -  

xf2v~ 1). Define Bk={#[O, Vk)<alazKr where al,  a2 are positive con- 
stants, K was defined in Lemma 3.1. Then for suitable positive constants c3, c,, 
too, we have 

P Bk <=exp(--c4mC3),for all m>mo . 
k 

Proof. Let Ek = {#[Vk+ 1, Vk) < ala2KO(Wk)}. It is clear that Bk =-- Ek, k >-_ 1. 
No consider 

~, [ #,[-Vk + 1, Vk ) > a i d i ~  loglog ~ di = x ~ ,  i=  1, 2. 
" l i , k = ' l  i (i) , (i) ~ B i = [ 1  o - l ' ~ f l~  

( ( V k  - - U k + l )  t j - - ~  ] 
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Note that 

ala2Kq~(Wk)=i=l aidi~v/2~ 1 - exp (k l +~- (k+  1) 1+~) 

�9 ( 
x (vk (')-~k+1/''(I) ~p' loglog Wk/ 

< I-I 1oglog tVk -- Vk+ 
i=1 ( 1 - e - l )  a' 

2 

-= [ I  2i k " (i/ ( i )) , ,  , "~Vk - - / ) k + l  , 
i = 1  

so E~,~--FI,kC~F2,k. But by the results in [13] (Taylor), 
1 

P(Fi,k) >_ exp( -  bi2~,~a')- exp(-blrl  log(k(1 + 6))), 

where bi's are constants bigger than 1 and independent ofai and K, but ri's are 
certain positive constants depending on ai and K. Choose ai small enough 
such that 

1 
bi = birl < 2(1 + 5) '  

then for some constants Ca, c4 and mo large enough, 

2m 

P(Ef,)>__(m+ 1)exp((-bi-b2)(l+c~)log2m)>c4m% m>mo . 
k=m 

The definition of Ek in the beginning of this proof makes these sets indepen- 
dent, thus we have 

( ~  ) 2k~=m 2m P Ek = P(Ek)= I] (1-P(E~)) 
\k=m k=m 

:<exp ( - -  ~ \  k=m P(Ef')) <exp(-c4mc ' )  

2m E Since ~ff2m Bk c_ I Ik=m k, therefore 

P Bk <exp(--c4m~), m>mo. # 
\k=m 

Remark. By Lemma 3.4 we have that 

P Bk <=exp(--c4mC~), for m>mo, M > 2 m .  (3.2) 
k 

Using Lemmas 3.1 and 3.4 we obtain: 

Corollary 3.5 Let K1 =aaa2K, al, a2 and K were defined in Lemma 3.4, then 

K1 __<lim sup #[0, (h, h)) <_ K a.s.. 
<o ~b(h) - 
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Let Ah be the collection of semidyadic cubes 

{ , , 1  i} 
(x,y)" < x < ~ ,  2h < y < ~  ,2i, 2 j = 1 , 2 ' ' "  

It is easy to see that any rectangle { ( x , y ) : a l < x < b a ,  a2<=y<b2} with 
m a x { b ~ - a , , b 2 - a 2 } < 2  -h~ min{b~-a~ ,  b z - a 2 } > 2  -m-~ can be con- 
tained in a member of Uh%hoAh. Furthermore Ah is almost nested in the 
following sense. 

Lemma 3.6 I f  E= U]'= 1I~ where each I v is a member of A h with h between ho and 
n, then it is possible to find a subset {j~} of{l ,  2,.. . ,  m} such that E = UIw and no 
point of E is in more than four of the cubes I w. 

Proof See [11] (Taylor). 

Theorem 3.7 For a.s. co, there exists ~= ~(co) < + oo such that 

~b-m(Rc~ [0 ,112)<~.  

Proof. In the proof of this theorem too, v~ i), Wk, 3, al, a2, K are the same as in 
Lemma 3.4. 

Given ~>0, choose ho so that 2 -h~ Choose 
1 

m= [-(holog2) 1 +~], where Ix] denotes the largest integer __< x. Given n, let 

M. be the largest integer k such that exp( - k  a + 1 )/x/- ~ > 2-";  n should be taken 
large enough so that n > h0 + 4 and M. > 2m. For  suitable positive constants 
c5, c6 we have M. > csn c', when n is sufficiently large. For  such fixed n, let us 
consider the collection of dyadic cubes like 

I j i n  = (x,y)" <_x<y_~ " i--1 i 
" " 2 - 2 ' 2" < Y < ~  ' 

we say that Iv, i,n is bad for the sample point co if 

1. R meets Iv, i,, and 
2. there is no semidyadic cube [a, b) of UT,=ho Ah such that [a, b) contains 

Iv, i . . ~ R  and 

#_[a,b) >ala2K d(E) is the diameter of E 
q~(d I-a, b)) = 4 pl + p2 ' 

All other cubes Iv, i,. are said to be good. If Iv, i,. is good then either R('Ilv, ~,. is 
empty or it can be covered by a semidyadic cube [a, b) of ~=hoAh with 
#[a,b)O(d[a,b))-l>(1/4~+P~)ala2K. We complete the covering of 
Rc~ [0, 1] 2 by taking Iv, i,. itself to cover the set Re, Iv, i,. when the cube is bad, 
then all cubes of the covering have diameter less than 5. 

Now we show that the contribution to the covering from bad cubes is 
small. 
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If Rc~Iji, is not void, let s t i=(s}li ), s}.Zi~} be the 'least' point in R in the sense 
that s~))'-- inf{saR1 : s > j -  i/2"} and s},]=inf{saR2:s>=(i- 1)/2"}. Define 

B, .j,i = {# l -s t , .  st.  < a a K}, 

where k=m, rn+ 1,.. . ,M,. By the remark of Lemma 3.4 and the strong 
Markov property we know that NY2,~B~,t,i has a probability at most 
exp(-cvnCs), c7 and Cs are two positive constants. 

Now the diameter of the cube [sj, i, sj,~+ Vk) is a number in the interval 
[2-"-1 ,2-h~ Hence [Sj, i, St, i+Vk ) can be covered by a cube [a,b) of 
~)~=ho Ah such that d([a, b))<4Wk. 

Suppose that co is in the complement of the set M, ~g=m Bk,j,i then there is at 
least one k between m and M, with 

#[sj, i, sj, i+ Vk)> ala2K . 
4J(w ) 

Covering [St,i, St, i+Vk ) by [a, b)~U~=h0 A h with d([a, b))<4Wk, when t is 
small enough we have 

#[a,b) >ala2K 
~b(d([a, b)) = 4 al+a~ ' note: ~b(4t)<4a~+P~b(t). 

Thus the cube Ij,~,. is good. Therefore for a constant c9 >0  

P(It,i,. is bad) < P(R meets I j, i,.)" exp ( -  c7 n ~8) 

<c9j ~-1 ia~-lexp(-cTn~"), See Lemma 1 in [17]. 

Now let T. denote the number of bad cubes It,i,. with 1 < i, j < 2". It follows 
that 

2 ~ 2 n 

E(T.)<c9exp(--cTn ~) ~ ~ iP~-lja~-l<Clo2"(P'+a~)exp(--cTn~), 
i = 1  j = l  

where C~o>0 is a constant. 
The covering by bad cubes will make a contribution 

Z'n = T .  { 2 -  "(~' + ~ z ) [ l o g ( n  log 2 ) ]  2 - ~ ,  - ~ } , 

whose expectation is majorized by an expression of the form 

Z,=c~(logn)Z-~'-P~exp(-cTn~), c~  is a constant. 

For  any t /> 0, we have P(Z" > t/) <)~,/t/. Set t /= 1/n and allow n to vary, by the 
Borel-Cantelli Lemma we deduce that with probability 1 there exists an 
integer no such that Z; < 1/n, n > no. Therefore the contribution to the cover- 
ing by the bad cubes is negligible. 
For  each good cube which contains a point of R we choose a cube [a, b) in 

" A Uh=ho h such that 
#[a,b) >ala2K 

qS(d(Ea, b))) = 4 a~+p~ " 
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This gives a finite collection of cubes to which Lemma 3.6 can be applied. We 
obtain a set of form U [a~, bl) which still covers the good cubes Ii, i,, but none 
of them are covered more than four times. For this covering 

#[ai,  b~)<4 " 1,/1 [0, ll)-/12[0 , 12) , 

where li=sup{b}l)}, /2=sup{b} 2)} and bi=(b}a),b}2)), i=1,  2. So l 1 and 
12 < 1 -t-2 -h~ Hence for a proper constant c12 >0, 

4(d([a, b)))<c12#t [0, 1 +2-h~ �9 #z[0, 1 +2-h~  

Thus we obtain a finite covering, say UJi, of R for each n>no such that 

~. gP(d(J~))<=Cle#l [0, 1 q - 2 - h ~  " /~2[0  , 1 -t- 2-h~ - 1/n. 

Let e-+0 (so ho-+ + oo), then n-+ + 0% 

~o - m(Rc~ [0, 1] 2) <__ c la # [0, (1, 1)) a.s., c 13 is a positive constant. 

Since #[0, (1, 1)) is finite, the proof is now complete. # 

Let f ( t i ,  t2)=4)-m(Rc~[O, Y( t l ,  t2))). Repeat the argument in [17] we ob- 
tain that for a constant c > 0, 

f ( t l ,  t2)=ctl t2 a.s. (3.3) 

We state this result in the following theorem. 

Theorem 3.8 Let Y ~ and Y2 be two independent stable subordinators with 
indices fll and f12 respectively (0 < ill, f12 < 1), and Ri be the range of Y i, i = 1, 
2 then 

O - m ( R i  x R2~ [0, (Yi(t l) ,  Y2(t2))))=ctlt2 a.s., 

where q~(h) = h ' l  +P2 (loglog ~ )  2-p~-p~ . 

Now for any stable process X with index e > 1, there is a stable subordinator 
Y, with index fi = 1 - 1/e such that Yp is the inverse to the local time of X at 
zero. Using (3.3) we have the following corollary. 

Corollary 3.9 Let X1 and X2 be two independent stable processes on the line of 
indices cq, ~2> 1, with zero sets Z1 and Zz  and their local times at zero are 
A1 (t) and Az(t). Then there is a positive constant c depending only on X i  and X2 
such that 

qo--m(Z 1 x Z 2 a [ O  , t t ]  x [0,  t2])=cAl(t l ) 'A2(t2)  
2 __1 1 1 + 1  

for all ti,  t2>O, where q0(h)=h ~' ~(loglogl/h) . . . .  

4 Packing measure of R i • R 2 

Let {•, ~ ,  ~t, Ut, ~t, QX} be a Hunt process (One can find the definitions and 
properties related to a Hunt process in [1]). The Blumenthal zero one law says 
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that for all Ae~h>oJJh, QX(A) is either zero or one. Now we need a corres- 
ponding law for a pair of independent Hunt processes. 

We write ~/t~rNt to denote the a-field generated by the union of all 
Nt and a{Us:seA} to denote the a-field generated by Us, seA. 

Let X1 = {0, ~-, f i t ,  Xl(t), Or, p~l} and X2 = {0, N, Nt, X2(t), t/t, P~=} be 
two independent Hunt processes on IR, where f f= \ c / t>o f f t ,  
~t=a{X,(s):s<t},  N=Vt>oNt, Nt=a{X2:s<t}, X,(s)oOt=X~(s+t), 
X2(s) o ~ = Xi(s + t). 
For any x =(x , ,  x2)eIR 2, P~ is defined by extension from 

P~ ( [  i~= l X 71(si)(Ai)] O [j=~-~l X 21(tj)(BJ)l) 

= P~ (i=~ X 71(si)(Ai)) " P~ (,=~-~l X21(t,)(BJ) ) , 

where n and m are any integers and all A~, BjeN(IR)(NOR a) = the Borel a-field 
on IRe). Let X(t)= (X1 (t), X2(t)) and Wt = a{ X(s):s < t}. One can verify that 
X={F2, W, Wt, X(t), {t, px} is a Hunt process, where 3 f = V t > o  Jg,, 
X(s) o ~t =X(t+s). 

Lemma 4.1 X, X1 and X 2 are defined as above. Given a set Aec~h>O(~h V Nh) 
and x=(xt, x2), then P~(A) is either zero or one. 

Proof. By the Blumenthal zero one law in [1], VAec~t>oX,'tat, we have 

W(A)=0  or 1 for all x in IR2. 
We know that 

and 

~'t V ~ , =  a(~tvo %) 

=a {I i=~1X11(si)(Ai)l (-~ Ij=~-~l X21(tJ)(BJ)l, Ai, BJE~lJ(iR), 

Si, tj<=t, n, mff~, t , 
. I  

but for any i, j, 

X ~  1(C1, i x C2,i).-.~X ; l(si)(Cl,i)("lX 2 l (s i ) (C2, i )e~ t V ~t 
and 

X 7 l(si)(Ai) c~ X;  *(tj)(Bj) = X ;  1 (Ai x IR) m X~ t(IR x Bj)e 2/gt, 

so W, = Yt  V ~t. Therefore VAe c~,> o~-, V ~t, P X(A) is either one or zero, for 
all xeiR 2. # 
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Remark. If X is a L6vy process on (fL ~ ,  P), define 

P~ Yt=a{X(s) ,  s<=t}, t > 0 ,  

P~(X (t)eA ) = P(X (t)EA I X (O)= x), x # 0 ,  

then {O, X(t), ~ ,  ~ ,  0~, P~} is a Hunt process, p(t, x, A)= P~(X(t)eA) are its 
transition functions. 

For Hausdorffmeasure, as one can see from our results in Sect. 3, the exact 
measure function for R1 x R 2 is the product of those for R,  and R=. For 
packing measure the situation is more complicated. 

The proof of following theorem is relatively long. The first step is to 
estimate two probabilities needed in the sequel. The second step is to use the 
density theorem to find the exact packing measure of Y a [0, 1] x Y2 [0, 1]. 

Theorem 4.2 Let h(s)=Jl+P2~l(s), I/I(s)G_(p, O(2s)/O(s)<N< +oo, 0<s<�89  
then 

~ a ,  acco, ,   os 
( +  oo 

f o+ S ~ =  q-oo . 

Proof Let 

Y i,,=(1/2")- a'#1B1/z,(Y i(ti) ), tiE(O, 1), 

Zi,,=(1/2")-a'#+(Bt/~,(Yi(ti))), tie(O, 1), (t~s are fixed), 

where #iBr(x)=l{t:lYi(t)-x[<r}l and #+Br(Y~(ti))=l{s>t~:lY,(s)- 
Yi(ti)[<r}[, i=1,  2. 

Given any fixed 2>0,  we now estimate P(Yl, ,Y2, ,<2O(2-"+l))  and 
P(ZI , ,Z2, ,  < 2~(2-"+ 1)). 
Let Tl(r)=fo Isr(o)(Yl(s))ds, Ta(r)=fo IB~(o)(Yz(s))ds, and let T2(r), T4(r) 
be the corresponding sojourn times for independent copies of the duals Y ~1), 
Y2 (13 of Y1, Y2 obtained by time reversal, see [1]. We denote Ti(1) as Ti, 
i = 1, ..., 4. Hence 

P(Y t,,Y z,n <)~(2-n+ a))= P((TI + Tz)(T3 + T4)<)t~(2-"+ I)) . 

According to (2.13) we know that 

P(Ti<x)~x as x-+0, i=1,  2 . 

Thus by Lemma 2.3 for any fixed 2>0,  

x 1 
P(T1 _}_ T2 < ~l/t 2 (2-n  + 1)) ~ 2  ~ 2~//(2--n + 1) ,  

• 1 
p(T3 .ff T4 < ,)d//2 ( 2 -  n + 1 ) ) ~ 2  )~ 2t/t(2-n+ 1) .  
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1 1 
Let U= log ~ 2  + ~ ' T 1  V= log 14k----~ , Z 3  then 

1 P(YI,.Y2,,,<)~(2-"+I))=P(U+V>I~ ~l~(2~-n+ 1)} �9 

By using Lemma 2.4 we know 

~t2(2 -n+z) log 1 ~(2_,+l) ~P(Yl,,Yz,,<2~(2-"+l)). 

Similarly we can prove that 

~z(2-"+ 1) log 
1 

~(2-" + 1) ~ P(ZI, ,  Z2,, < 2~(2-" + 1)). 

(4.1) and (4.2) will be used later in the proof of this theorem. 

We now consider the case that fo+ [O(s)]2 log[1/O(s)] ds< + oe. Set 
S 

(4.1) 

(4.2) 

G={(tl,tz)e[O,l]2:liminf #IB'(Ya(tl))#2B'(Yz(t2)) } 
,$0 h(2r) - o o  , 

then [GI= 1, using the same Fubini argument as in the proof of Theorem 3.3. 
By Lemma 2.1 we have h-p(Y(G))=O a.s., where Y(G)={y:y=(YI(tl), 
Y2(t2)), (tl, tz)~G}. 
As for the bad points, let 

Qn={(tl, tZ)E[O, 112. liminf fllB~(Yl(tl))#2Br(Y2(t2)) < } 
,$0 h(2r) = n  . 

We can get a contribution to h-p**(Y(Q,))  from semi-dyadic cubes of side 
2 -k such that Y=(Y 1, Y2) hits the inside dyadic cube of side 2 -k-2 and then 
leaves the ball of radius 2-k-2 in time (t l, t z) where t l "t2 < nh(2-k) (note that 
ti is the time spent by Yi, i=  1, 2). The expected number of dyadic cubes of side 
2-k--2 hit in [0, 1] 2 is 0(2 k(fll +f12)) and the probability of being bad (being hit 
but the process gets out quickly) is O@(1/2k)log 1/~(1/2k)) (by using (4.2)). 
Denote Nk as the total number of bad cubes, we have 

+oo 

Eh-P**Y(Q,)<c17 ~ E(Uk)h(2 -k) 
k=ko 

=<c18 ~ h(2-k)2k(P~+&)~(z-k)1og(1/tp(2-k)) 
k=ko 

<--Cl9(k=~ko~t2(2-k)log(1/O(2-k))), ko large, 

where c 1 v, c z s and c 19 are proper positive constants. 
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fo+ [0(s)] 2 log[1/O(s)] ds< oo implies that this series converges, we can 
S 

let ko--+oo to deduce that Eh-p**g(Q,)=O, which gives h-p**g(Q,)=O 
a.s. 
But Gvo vonQ,= [0, 132, therefore by (2.8) 

h-p(Yl[O, 1] x Y2[0, 13)=0 a.s. 

Now let us consider the other case that fo+ 02(s)l~ + oe. First 
s 

we define random variables a} ~), b} n) and events An by 

An = ?t ~ ra(")l + b(n)~l 1tta(n)2 + b(2 ")) < e 222h(2 - ")} , 

a}") = ] {-2hi(Z-"+~)+ti<t< - 2 h i ( 2 - " ) +  h, Ir~(t)-Y,(t,)l <2-"}1 ,  

b} ") = l{ 2h,(2-") + ti < t < 2h,(2-" + 1) + h, I Yi( t )-  Y,(h) I < 2-n }1, 

where hi(s)=s&@a/2(s), i =  1, 2, 2 > 0 ,  e is small enough to make 

(1 +e)hi(2-")<hi(2-"+l) ,  i=  1, 2 .  

By the independence of a~ ") and b] "), 

=< P(a~") + b~")< e2ha (2-")) 

=< P(a~"/< ~2h~ (2-")) '  P(b~") < e2hl (2-")) .  

Using (2.13) we obtain 

P(a ~) + b ~") < e2hl (2 - ~)) ~ 0 (2-") .  

Similarl y, P t ~ a 2(n ) ..~ b 2 (") < e 2 h 2 (2 - ") ) ~ 0 (2 "). 
By using Lemma 2.4 we can find a constant C2o > 0 such that 

P(A,) < C2o0 2(2-"+ ~)log(1/O(2 -"+ ~)). 

Let B,={#~Bz-.(Y~(t~))#zB2-~ then B, cA.,  by (4.1) 
1 

we know P(B,),,~ 02(2 -"+1) log ~(2_.+ i) .  So for a constant c21 >0, P(Bn)> 

c21P(A,). But { A,} are independent, so P(BnC~Bm)<( c@l )z P(Bm) P(B,), if 

n 4= m. By using Lemma 2.2, we obtain 

P(l im sup B,) > c221 > 0 .  

Thus letting 2~0 ,  for any pair (t ~, t2), 0 < t~, t2 < 1, we have 

P ( l im inf/~' B~(Y l(tl))#2gr(r 2(t2)) ) 
\ ~,o h(2r) - 0  > c ~ 1 > 0 .  
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Since this event has the same probability as 

(T1 (r)+ Ta(r))(T2(r)+ T4(r))_O t and the later is in the initial liminfr+0 h(2r) one 
3 

a-field generated by Y ~, Y 2, applying Lemma 4.1 gives 

liminf #lB~(Yl(tl))#2BdYz(tz))=O a.s. 
<o h(2r) 

The standard Fubini argmnent and Lemma 2.1 now imply that 

h-p(Yl[O, 13 x Y2[O, 13)= + oo a.s.. # 

5 The measure properties of the projection 

Now we consider the measure properties of the projection of R on the line 
y = x .  

Let Yi be independent stable subordinators with indices /3i such that 
1 

/31 +/32 < 1/2 and Wi = {Ydt):t~[O, + oo)} c~ [0, 1] and W= - ~ ( W 1  | W2 )=  

/~ : u E W 1 ,  

Because r  m(A )> r --m(projo A) for all 0 (projo A is the projection of A in 
the direction 0, using Theorem 3.8 we know r  re(W)< oo a.s., where q~(s)= 

/ l"~2-/h-& 
s &+& (loglog s )  . The proof of ~b- re(W)> 0 a.s. is much more difficult. 

\ / 

In unit cube [0, 1-12, for each n > 2  we have 2 " - 2  nondegenerate 
and nonoverlapping strips which are perpendicular to the diagonal y = x such 
that for the ith strip, &,,, the coordinates of the two interception points 

( / _  _ i )  and ( i+l  i+1~ with the diagonal are 2 " ' ~  \ 2 "  ' 2" ]" In fact, S~.,=[0,112c~ 

i i + 1 )  
(x,y):~<=x+Y<2,--7~_~. We call the segment between the above two 

{ , ,+1} 
interception points as wi,,. Actually w~,,,= (x, y):x=y, ~<x,  y < - ~ - -  . 

Define measure v = vo, on W such that 

vo(wc,)=#(&,,), for all i, n, # was defined in the beginning of Sect. 3. 

Fix n, for each xe~ l~  [0, 1] �9 [0, 1-1, there a unique segment wi.. containing x, 
, / 2  

we denote it as w,(x). We now consider the upper bound of 

l imsup , ,0  vo,(w,(x)) x~W. 
4,(2-") ' 

Let T~,, denote the number of dyadic cubes in the strip &.,  hit by 
Y= (Y 1, Y2). Before we estimate the probability of { T,,, > k } we should note 
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the following facts: (1) For any stable subordinator X with index 0 < fl < 1, if 

Ic .  = 0 _< i _< 2 n - 1, then 
2 n' 2 . , 

sin rq~ 1 
P(X hits I i , . )<  ( 1 _ f l ) '  i1_~ (see [17]).  (5.1) 

(2) For any stable subordinator X and any two integers j<k ,  using the 
technique of stopping time and the strong Markov property one can prove 

P({X hits Ij,.} r ( X  hits Ik,.})<_<_P({X hits Izn})P({X hits Ik- j , .})  

and if ll < 12 <. . -  < Ik, then 

P(X hits Ii ..... ...,Iz~,.) 

= P(X hits I h , . )P(X hits I~2,. IX hits I~ I,.) ... P(X hits lz~,. IX hits I~_ 1,.) . 

(3) For a dyadic cube, s a y l l k ~ = [ ( 2  / 2k_ ) (~+_~  k+l '~ '~ . . . . . . .  ~ 7  ) ) ,  contained in 

the ith strip &,., we have k = 2i - I. If we call ( I/2 -", k/2 - ") as the least point of 
I~, k,., then we can number the dyadic cubes in the strip S~,. by the numerators 
of the first coordinates of their least points. 
Now we are ready to estimate P(T~..> r). In fact, 

P(r~, .>r)  

= P  (There are at least [ 2  ] dyadic cubes lying in 

the upper half of the strip Si,. hit by Y) 

+ P (There are at least I 2 ]  dyadic cubes lying in 

the lower half of the strip S~,. hit by Y)  

<M1 ~ P(Y hits Dl l , " '  and Dlcrm), 
1 <=~1 < "'" <~[~lZl<= i 

where Ix] denotes the largest integer less than x and D1, ...,D2i are dyadic 
cubes in Si,., M1 >0  is a constant. Let k =  [r/2], by those facts we know the 
term in the right hand side of the inequality is dominated by 

[-~-~-,+ ' ~ 1 1 
M,cw /--" "'" 2 l~-P, (12_l , ) , -~ ,""  

[_ / t = l  l k ~ l k - l + l  

1 1 1 1 
(Ik--lk_ ~) ~-~, (12--/~) ~-e2 '"  (lk_ik_ , )~-~ (2i--lk) ~-p; I 
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+ . .  

=- i l - f l 2  ~ / t= l  

i-* 1 1 1 

1~-~, (12_11)2-~,-e~ " "  (ik_2_lk_l)i-p,-  & l k - l > I k  2 

1 1 --ill  --fi2 1 1--&-~2 1 
1 i--k-+ 1 1 --{- 1 - i l l  -f12 

1-t 1 -  fi , -- fl 2 j 

(;1)( 1 ; <Mlck22 i~+~2-1 1+ 1-t- l _ f l l _ f l  2 

sin~zfii andc22(l_+ 1 ) 
where cz2=l-[i2=, n(1- f l i ) '  1 - f i l - f i 2  <1. Thus there exists 

0 < p <  1 such that P(Tc ,>r )<c23P  r, c23 is a constant. 
Therefore when r>ro,  we can find a number, say P2, between 0 and 1, such 
that 

P(T,,, > r) < P~2 �9 (5.2) 

Let Bi(t) = inf{u: Yi(u) > t}, i=  1, 2. They have the same distributions as tPB~(1) 
and { B i ( 1 ) > x } = { Y , ( x ) < l } ,  i=1,  2. It follows from (2.11) that for some 

-(i) > 0  and 0<c(2i~< 1, i=1,  2, we have constants c2s 
_• 

P(B,(~)>__w)=P(Y,(1)<(w ~'~)) 

.(i) (W 2(1-rio 0 { 2 ( 1 - -  (i) 1 - f l i )  , ~28 -e,)) exp ( - c 2 9 w  -fli(X 1 
1 

if w ~' a ~ O .  

By the above estimation we have 

P(B~ (1)Bz (1) > 2) =< P (B~ (1) > 2 v) + P (B2 (1) > 2 * - ') 

=<�89 exp(-c3o21-~') ,  if 2>20 , 

1 --i l l  
where 7 2 - f l l - - f12 '  C3o is a positive constant less than 1. 

So given any dyadic cube I, there is a constant c 31 > 0 such that for any M > 0, 

/ #q) ) 
P ~ ~ ( ~ - ~  > M = P(B, (1)B2 (1)> M(log log 2") 2 -& -&) 

y 
<�89 e x p ( -  C3o M * -P~ log log 2") 

r 
<=c31n -c~~ (5.3) 
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Given x s W 1  �9 W2, if S~,,=Si,,(x) is the unique strip containing w,(x), then 
using (5.2), (5.3) and Theorem 2.5 we have 

(vo(w.(x)) 
P \  4)(2-") > M ) < P (  ~ ( ~  =Jr1) 

_< p (v~,  #(i(i)) \ j = l  ) (I(J)'s _ q~(2_,)_->M , are dyadic cubes in Si,,) 

1 
=<c32 ~ ,  (by (5.3)), 

7 

if we choose M large enough to make c3oM 1-~1 >2, c32 is a constant. 
Hence by the Borel-Cantelli Lemma we obtain 

limsup v~(w'(x))<_3M a.s., for any xEW. 
,~+~o ~b(2-") - 

Using Lemma 2.1 we have ~b- re (W)>0  a.s. So we have proved the following 
theorem: 

Theorem 5.1 I f  Y ~ and Y 2 a r e  two independent stable subordinators with indices 
fll and f12 such that fll + f12 < 1/2, then 

O < 4 ) - m ( W ) <  + ~ a.s., 

where qS(s)=J~+P2 ( loglog ! )  2-~1-~2. 

Corollary 5.2 I f  X1, X2 are two independent stable processes with indices 
1 1 3 

1 < ~ ,  c~2<2 and ~ + ~ 2 >  ~, Za and Z2 are zero sets of  X~ and X2,  then 

0 < q ) - m ( Z 1  c~[-0, 1] O Z2 r~[-0, 1])< §  a.s., 

where ~0(s) = s . . . .  loglog . 

Remark. The conditions in Corollary 5.2 exclude the most interesting case of 
X 1, X 2 both being Wiener processes. In this case the number T~,, of cubes hit 
in one strip Si,, does not have an exponential tail so we are unable to find the 
exact measure function for Z~ �9 Z2. 

As for the packing measure of Z l  ~ [0, 1] | Z2 ~ [0, 1], if g(s) = s t~ + t~2f(s), 

f(s) is a measure function, then when fo+fZ(s ) [ l~  
S 

g-p(Z~r~[O, 1]@ Zzr~[0, 1])=0.  But we can say little about the other 

direction. The problem is that we can not estimate lim sup,~o - - , g ( 2 r )  where 
#B(x, r) 

# is the projection of #~ x #2 on the diagonal, because of a lack of indepen- 
dence. 

The final result relates to the case fi~ + flz > 1. 
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Theorem 5.3 I f  Y1 and Y2 are two independent stable subordinators with 
indices fll and f12 such that fll +fiE > 1, then 

[W1Q W21>O a.s.. 

Proof. In  o rde r  to p rove  this t heo rem we only  need to modi fy  the p r o o f  of  
T h e o r e m  1 in 1-12] (Taylor)  and  a d a p t  the technique  of  L e m m a  9 in [123 to 
show that ,  for each xe(0,  1), P(xeW1 @ W 2 ) > c > 0 .  # 
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