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Summary. Let ¥; be independent stable subordinators on (2, &, P) with
indices 0< f;< 1 and R; are the ranges of Y;, i=1, 2. We are able to find the
exact Hausdorff measure and packing measure results for the product sets
R; xR,, and whenever f;+f,<1/2, we deduce results for the vector sum
Ri®R,={x+y:xeR;, yeR,}.
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1 Introduction

It is well known that a stable process of index «>1 on R has a continuous
local time [1] (Blumenthal and Getoor), I{t, x), and that the stochastic process
inverse to I(t, 0) is a stable subordinator of index f=1—1/« [9] (Stone). For
a stable subordinator with index B, say Y, the range R;n[0, 1] has positive
finite Hausdorff measure with respect to ¢(s)=s’(loglog1)! # — see [17]
{Taylor and Wendel) — and, if

h(s)=s"1(s) (1.1)

with f (s) monotone increasing, Taylor [15] showed that the packing measure
2

f f2(s) is { <+

N =+ o0

o+

0
h—p(Ys[0, 1])2{00 a.s. according as (1.2)

where Y,[0,1]={y=Y,(t):t€[0,1]}. We remark that, the subordinator
which arises as the inverse of the local time of a stable process of index « with
1 <o <2 has index 8 with 0<g<3. However, all of our analysis, apart from
some results on projections, requires only that 0 < <1, so we state the main
results in the context.
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We know that the product set Ry x R, and Ry @R, are random sets. The
general results of [2] (Besicovitch and Moran) imply that, if ¢;(s)=s’/(log-

log})' "% and ¢(s)= 1 (s)¢p2(s), then
¢—m(R;xR,n[0,1]1*)>0 as.

But the general theory does not provide an upper bound. Our first main result
(Theorem 3.8) is that there is a finite positive constant ¢ such that

¢—m(R, x RN [0, Y{(1)]x[0,, Y5(1)])=c as. (1.3)

Our result for packing measure (Theorem 4.2) is more surprising. Using the
formulation (1.1), with
h(sy=s"+*P2f(s),

we obtain

0
h—p(Y{[0,1]x Y, [0, 1])={ +oo a.s. according as

1
[?(s)log =
f(s) <40
—_—d 1.4
0{ s = + 0. (14)

1
Thus the critical functions for (1.4) are f1 (s)=(log 1/s)‘17(10glog 1/s)~* ¢, while

those for (1.2) are of the form (log 1/s)"Z(loglog 1/s) "2 7%, & >0. As an immedi-
ate corollary of these main theorems we remark that

dlm(R1 X R2)=Dlm(R1 X R2)=ﬁ1+“32 a.s.,

which implies that for almost all e, this product set is a fractal in the sense of
[14] (Taylor). Here dim(E) and Dim(E) denote the Hausdorfl and packing
dimensions of E respectively.

We also remark that the general results about projecting a planar set on
a line {e.g. [4] (Falconer)) relate to the fractal properties in almost all
directions. These results do not help us with particular projections. As pointed
out in [10] (Taylor), the projections on the lines y=x and y= —x of a product
set Ax B are scalar multiples of the vector sum A®B and difference
AOB(={x—y:xeA, yeB}). When f;+,>1, Rin[0,1J®R,;n[0,1] and
R.N[0, 1TOR, N[0, 1] have positive Lebesgue measure, while our result (1.3)
implies that, when f; + i, =1, both of these sets have zero Lebesgue measure.
Hence, for almost all /40,

P(eR, ®R,)=0.

Whenever B + 5, =<1/2, we can determine the exact Hausdorfl measure func-
tion for R; ® R, andR; © R, {Theorem 5.1), which is our third main result in
this paper. However, we have not been able to do the interesting critical case
B1+ B,=1, and packing measure results in all cases seem to be difficult.

As usual, we use ¢y, c,, ... to denote finite positive constants whose
values may or may not be known. They may be different in different theorems.
We start by assembling some preliminary results needed in the sequel.
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2 Preliminaries

¢(t) is said to be a measure function if it is right continuous and monotone
increasing with ¢(0+)=0. Let ¢ denote the class of measure functions
¢:(0,1)-[0,1]

We now consider some special classes of sets for covering and packing. Let
I' stand for the class of the open balls B(x, ) in R¢ and I'* stand for the class
of dyadic cubes in R? Cel* if it has side length 27", nelN, and each of its
projections proj; C on the ith axis is a half-open interval of the form [k;277,
(k;+1)27") where k;eZ. For xeR?, let u,(x) be the unique dyadic cube of side
27" containing Xx.

We also need the class I'** of semidyadic cubes. Cel'** if it has side
length 27" and proj; C=[%k;27", (3k; +1)27") with k;eZ. We denote by v,(x)
the unique semidyadic cube in I'** of side length 27" whose complement is at
distance 27772 from u,,4 5(x).

Now we define set functions ¢ —m, ¢ —m,, and ¢ —m* on sets in R? by

¢—m(E)=lifninf{z¢(d(Ei)), UE,2E, d(E;)<6}, @.1)
él0
([)—ms(E):lilminf{ Y (d(E)), OE2F, d(E)<6, E€l'},  (22)
é|0
d)—m*(E):lilminf{ Y $((E)), UE:2E, d(E) <6, EcT*},  (23)
a0

where d(E) is the diameter of E. It is easy to see that for any E in R?,
¢ —m(E)s¢—myE)< ¢ —m*(E)<c, ¢ —m(E). (24)

¢, is a positive constant and ¢ —m(E) is said to be ¢-Hausdorff measure of E.
In defining ¢ —m;, we used economical coverings by open balls with small
radii. Now we consider dense packing by disjoint balls with centers in E and
differing radii; this yields packing measure, whose definition and initial prop-
erties are given in [16] (Taylor and Tricot). Again assume ¢e® and define

¢ —P(E)=limsup{ > ¢(2r,), B(x;, r;) disjoint, x;€E, r;<d}.  (2.5)
310
It is a premeasure and we obtain a metric outer measure by

¢—p(E)=inf{ Y — P(E;), ES UE;}. (2.6)

¢ —p is called ¢-packing measure.

If we replace open balls in (2.5) by dyadic cubes containing x; or
semidyadic cubes v,(x;) we have ¢ — P*(E) or ¢ — P**(E). Correspondingly
we obtain ¢ —p*(E) and ¢—p**(E). ¢ —p* may be of different order than
¢ —p but it is proved in [16] that

¢—m(E)< ¢ —p(E), 2.7)
and

c2¢—p**(E)S2¢—p(E)=cs¢—p**(E). (2.8)

for some constants c,, ¢; depending only on ¢ and the dimension of the space.
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In studying measure properties, the density theorem is a very effective
technique. C. A . Rogers and S. J. Taylor [7] and other people first studied the
density theorem for Hausdorff measure. Then a similar result for packing
measure is obtained in [16]. We state these as a lemma.

Lemma 2.1 For a given ¢e® there are constants Ay, Ay, A3 such that for all
EcR? and every finite Borel measure p in IR,

2
bt nf i

}<¢>—m(E)

2
<o p(R) sup {1113 lonf”ﬁE r)r)}, 2.9)

)3 u(E) inf {lim sup —2¢7)

Inf o lmsup-p r)}§d>—p(E)

¢ (2r)
<u(R7)sup { limsu . (210
‘u( ) erE) { r—0 P B(X, r) ( )
This lemma gives the ordinary form for the density theorem. We will some-
times use equivalent forms.
In addition to the standard Borel-Cantelli lemma we need a version which
does not assume independence.

Lemma 2.2 Let (Q, %, P) be a probability space and A;ieF, i=1,2,.... If
Y:iP(4;)=+ oo and

. P(4;nA;
hmmfz” 1 P )<cc13aconstant

n—0 (Zl L P(A )2 -
then P(limsup, 4,)=c 1. See [5] (Kochen and Stone).

For any two functions f(t) and g(t), we write f(t) ~ g(t) if there exists
a constant ¢, #0, such that f(t) —cq as t—0 or co. We write f(t) ~ g(t) if

e f(t)Zg(t) £ csf(t), ¢, and ¢, are positive constants.

We will need to estimate the small tail of (T; + T, )(T5 + T,), where the T;’s
are independent nonnegative random variables. This will be done in two steps.
First, we estimate the small tail of X, + X, when they are independent and

1”{){l<;\,}’\‘cl}~ as A,LO, l=1, 2.
Lemma 2.3 Suppose that X and X, are independent nonnegative random

variables with P(X{<x)=F1(x) and P(X,<x)=F,(x). If
F1(x)_> 2( x)
X

coand ———>cyas x}0,
then
H(x)

x2

where H(x)=P(X; + X, <x).

1
—>§clc2asxl0,
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Proof. We know that H(x)=[, F;(x—y)dF,(y), because X;, X, are
non-negative. Then Ve>0, if x, is small, we have
Fi(x) Fy(x)

<Ci1+E&Cc—e<
X X

c1—Ee< < +&xZxp.

So when x < x,,

HO)_ 7B i)

X 4 x
gboq SREX
20 Fi(x—y)
-y 7 BE kg
i=0 i
?X
F<x ! >
2hot P\ X TR i+1 i
P ()]
21 i 1 i+1
S(c1+e) <1——><c +2¢ >
1 igo 2k 22k 2k

1 o2
§(01+8)02§< o >+(c1+s) Z 237.
Let ¢—0, then k— + oo we have

lims H(x)<
msup——>-¢1C;, .
Lo 2 =9 1¢2

. .. H H 1
Similarly we can prove liminf, |, #>— ¢(c5. Therefore x(;c ) —>5 C1C, as
X

x10. # 2

Lemma 2.4 Let U and V be two independent nonnegative random variables.
PU>t)~e ™ and P(V>t)xe ™, for t=22>0, a>0, then

PU+V>t)xte ™
holds when t is large.

Proof. The proof of this lemma is easy. We only need to bound U and
V stochastically from above and below by proper shifted exponential random
variables.. #

1
IfU=log ———,and V=log , then the asymptotic form of the small

T,+T, Ts+T,
tail for (7, +7,) gives the form of the large tail of U. The small tail of
(Ty+T,){T3+T,) now comes from the large tail of U+ V.

We expect that Lemmas 2.3, 2.4 are known results but include above
proofs since we could not find a suitable reference. Qur next result relates to
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the large tail of a sum of a random number of ii.d. variables, each with
large tail which is not small enough to allow a Laplace transform argument
to work. We believe this result may be of independent interest so call it
Theorem 2.5.

Theorem 2.5 If { X;} is a sequence of nonnegative independent random variables
and P(X ;> x) Sexp(—ox?) for x 2 xo, where 0<y < 1. W is independent of { X ;}
and takes positive integer values with P(W=k)<p* 0<p<1,k=1,2,..., then
there exist a point x, = x, and a constant ¢ such that

w
P( Xi>x>§cexp(—ocxy), for x=x, .
i=1

Proof. We may assume without loss of generality that W is a suitable shifted
geometric random variable, let ¥; be i.i.d. random variables and independent
of W with P(Y ;> x)=exp(—oax’), x>0,i=1,.... Since ¥;’s are subexponential
random variables (see [6] (Pitman)), so are random variables Z;=Y;+¢,t>0.
One may choose t large enough to make Z; dominate X; stochastically. Then
the tail of Y7, Z; dominates that of ¥')” | X stochastically. But by Corollary3
in [3] (Embrechts, et al.), the tail of Ziu;l Z; is of the order exp(—ax’) as
x— + oo and this completes our proof. #

In the proofs of next three sections we need both tails of the distribution of
Y;(1), where Y is a stable subordinator of index f with 0 < f<1in IR. We take
those forms from [8] (Skorokhod).

Let G(x)=P(Y;(1)<x), then for a constant 0 <c<1,

_B __B_
G(x)~x2@-Flexp(—cx 17F), as x—0 (2.11)
and
1—G(x)~x"* x— +o0. (2.12)

Let 7(r) be the occupation time of ¥y in [0,7), then

+ 0
T(F)= f IBy(O)(Yﬂ(S))dS .
(o}
Using the scaling property and (2.12) above we get
P(r(l)<x)=P(Y4(x)>1)
_1
=PY(1)>x #)~x, as x—0 (2.13)

3 Hausdorff measure of R; xR,

We use |{E| to denote the Lebesgue measure of E and [x,y) to denote
[xq,y1)x[x2,2), where x=(xi,x,) and y=(y;,y,) We will write
R=R, xR,, where R; are the ranges of the two independent stable subor-
dinators Y;’s of indices f8;, i=1,2. From now on to the end of this paper we
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1 2-p1—8 .
denote ¢(s)= sh:*b> <loglog— . For convenience, we assume both
s
Y, and Y, start at 0. Define p,(E)=|{s:Yi(s)eE}|,i=1,2 and p=p, x u,. We
set Y (¢, £2)=(Y1(t1), Y2(t2)) and Y (A)={y=(Y1(t1), Y2(t2)):(t1, t2)eA}.
In this section, methods of Taylor and Wendel [17] are used to obtain the
upper bound of ¢-Hausdorff measure of Rn[0, 1]2.

Lemma 3.1 There exists a constant K >0 such that

: 1[0, (h, h))
limsup ————-<K a.s.
ol gy
1 1-8;
Proof. Let ¢;(h)=h? <log ﬁ) . By using Theorem 5 in [13] (Taylor) we
obtain that for certain constants ¢; and c,,
lim su =¢;as,i=1,2.
ol Gk
Thus
. py X (2 [0, (h, h)) _ . p1[0,h) . 1[0, h)
Iimsup ————————<limsu - limsup ———
wor gl woT g moT a0
:CICZa.S.

Taking K =c;c¢, we obtain this lemma. #

Lemma 3.2 Given (x, y)eR, let S=[(x, y), (x, y)+(h, h)). Then for a.s. v we
have

S
lim sup ﬁugK, K is the same as in Lemma 3.1.

wlo” p(h)

Proof. By the definition of y and Lemma 3.1 and using the strong Markov
property at points (x, y)eR, we obtain this result immediately. #

Remark. Since we have Lemma 3.2, we can use another form of the density
theorem. For convenience we state it here:

Suppose that F is a measure defined on the Borel sets in IR ? and that E is
a Borel set such that for each xcE

limsup F[x, x+T)

<¢, ¢ is a certain constant.
tl0 h(t) =0,

Then 2ch—m(E)z F(E), where h(s)e® and T=(t, t).
This result can be proved by the same argument used in Lemma 4
of [17].
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Theorem 3.3 There is a constant ¢ >0 such that for a.s. ©
Proof. By the definition of p,

#((0, Y (t1, £2))) = w(RN[0, Y (¢4, £2)))
—t,t,.

Thus for every Ee#(R?), u(RNY (E)) is the Lebesgue measure of E.
Now let I' denote the set of points (w, (1, 1,))e x [0, 1]* such that

lim sup ulY iy, 1), Y(tq, t2)+H)__<_K
lo o(h)

where H =(h, h) and K is the same positive constant as in Lemma 3.1. One can

verify that I is product measurable.

By the strong Markov property and Lemma 3.2 one can see that each
(t1,t,) section of I has probability 1, so that almost every w section A= A(w)
has Lebesgue measure 1. By using Lemma 3.2 and the version of the density
theorem in the remark of Lemma 3.2 we have

d—m(RAL0, Y (1, 1)) =(1/2K)u(RA(Y (A4))=(1/2K)>0 a.s. #

In order to obtain the upper bound for ¢ —m(R) it is required to cover not
only the good points (x, y) where
u(S)

limsu ——_c>0 ¢ is a constant 31
nSP o0 Gl

with S=[(x, y), (x, y)+(h, h)) and (x, y)eR, but also the bad points where (3.1)
is not satisfied. We therefore proceed to obtain a lemma allowing us to deal
with the bad points.

1
Lemma 3.4 Let v,=(", vi*))eR?, v,((”=v,({2)=\ﬁ exp(—k!7?), >0, w,=
\/Ev U Define Bi={u[0, v,)<a;a,Kd(wy)}, where ay, a, are positive con-
stants, K was defined in Lemma 3.1. Then for suitable positive constants c3, C4,
mgy, we have

2m
P< N Bk>§exp(—c4mc3), for all mzm, .
k

=m

Proof. Let Ey={u[vy+1,v:)<aa;K¢(wg)}. It is clear that By S E,, k=1.
No consider

(l) 1-4:
vk, 0 a;d; .
Fi = {(”(E"“(,) ")ﬂ,_(l \é)’f <loglog—) } di=JK, i=1,2

Vk+1
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Note that
2 J s 1 Bi
ara; Ko (wi)= H aidin/2 |:1——exp(k1+‘s—(k+1)1+‘5)]

i=1

1 1-8:
x (03— vt 1) <loglog W~>

Bi 1-g: ,
| 2 <loglog ) (6o 1)

_L 1 (1
2 . .
=[] A (0 — v 1),
i=1
so Ex=2F, ;nF, ;. But by the results in [13] (Taylor),
1

P(F, ) zexp(—bidix")=exp(—bir;log(k(1+9))) ,

where b;’s are constants bigger than 1 and independent of a; and K, but r,’s are
certain positive constants depending on a; and K. Choose a; small enough
such that

then for some constants cs, ¢4 and m, large enough,

2m
Y. P(EQ)z(m+1)exp((—b; —by)(1+5)log2m)Z cam®, mZmg .

k=m

The definition of E, in the beginning of this proof makes these sets indepen-
dent, thus we have

2m 2m 2m
P(OE> HP(Ek=U1 P(E}))

<exp <— )y P(E£)>§eXP(—c4m”)-

=m

Since N2 B S (e Ex, therefore

2m
P( m Bk>§eXp(_c4mC3)a mzmg. #

k=m
Remark. By Lemma 3.4 we have that
M
P< N Bk>§exp(—c4mcﬂ), for m=zmg, M=2m . (3.2)
k=m
Using Lemmas 3.1 and 3.4 we obtain:

Corollary 3.5 Let K, =a,a,K, a;, a, and K were defined in Lemma 3.4, then

K, <lim sup “L& 5 1)

WP T ) =R as
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Let A, be the collection of semidyadic cubes
1 joi—1 s
{(x V) SX < o V<5 } , 26, 2j=1,2- -~

It is easy to see that any rectangle {(x,y):a;<x<by, a,<y<b,} with
max{b;—a;,by—a;}<27""2 min{b; —ay, b,—a,} 227" ! can be con-
tained in a member of | Jy=p, 4. Furthermore A, is almost nested in the
following sense.

Lemma 3.6 If E=|j-I; where each I;is a member of A, with h between hq and
n, then it is possible to find a subset {j,} of {1,2, ...,m} such that E=\])I;_ and no
point of E is in more than four of the cubes I;,.

Proof. See [11] (Taylor).
Theorem 3.7 For a.s. , there exists ¢=¢(w) < + oo such that
¢—m(Rn[0,1]*)=¢

Proof. In the proof of this theorem m, v w,, 8, ay,a,, K are the same as in
Lemma 3.4.
Given ¢>0, choose h, so that 27" <min(e/2,w,,) Choose

L
m=[(holog2)**?], where [x] denotes the largest integer <x. Given n, let

M, be the largest integer k such that exp(—k°*1)/ \/i >27" nshould be taken
large enough so that n>hy+4 and M, =2m. For suitable positive constants
cs, ¢ We have M, > csn®s, when n is sufficiently large. For such fixed n, let us
consider the collection of dyadic cubes like

<] i-—1< <i
Jzn 2,,: on =y on ’

we say that I;; , is bad for the sample point w if

1. R meets [;; , and
2. there is no semidyadic cube [a, b) of | Jn=p, 4 such that [a, b) contains
I;;»nR and

pla, b) >a1a2K

P(d[a, b))~ 4k h:> d(E) is the diameter of E .

All other cubes I; ; , are said to be good. If I; ; , is good then either RNI; ; , is
empty or it can be covered by a semidyadic cube [a,b) of | Ji=4,4s With
ula, bYp(d[a, b)) *=(1/4F+7F)g,a, K. We complete the covering of
RAN[0, 112 by taking I, ; , itself to cover the set Rn1; ; , when the cube is bad,
then all cubes of the covering have diameter less than e.

Now we show that the contribution to the covering from bad cubes is
small.
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If RN ; , is not void, let s j,i=(s§~,li), s}i-)) be the ‘least’ point in R in the sense
that s\ =inf{seR,:s2j—1/2"} and s\ =inf{seR,:5=(i—1)/2"}. Define

j
Bi.ji={uls;i 85,0+ 00)/P(d([55,5, 85,1+ 06))) <aia,K}

where k=m, m+1,...,M,. By the remark of Lemma 3.4 and the strong
Markov property we know that N i By, ;.; has a probability at most
exp(—c,n°®), c7 and cg are two positive constants.

Now the diameter of the cube [s; ;, s;;+v;) is a number in the interval
[27"" 1 27%). Hence [s;;,s;;+v;) can be covered by a cube [a,b) of
Uk=h, 4, such that d([a, b)) <4w,.

Suppose that o is in the complement of the set (5=,
least one k between m and M, with

' By, ;i then there is at

1Ls; i Sj,i+Uk)>

B (wi) -

Covering [s; ;,5;,:+vx) by [a, b)eJi=n, Ax With d([a, b)) < 4w,, when ¢ is
small enough we have

pla,b) _ aia,K

d(d([a, b))~ 40P

aa,K .

, note: ¢p(4t)<abr*h2p(t) .

Thus the cube I; ; , is good. Therefore for a constant c¢g>0
P(l;; , is bad)< P(R meets I; ; ,) - exp(—cyn®)
Zcojfi7tif2"lexp(—cns), See Lemma 1 in [17].

Now let 7, denote the number of bad cubes I; ; , with 1<i, j<2" It follows
that
2n 2n
E(T,)Scoexp(—cqon) 3, Y if 7=t <y 02" Pt Poyexp(—cqon®s) ,
i=1j=1
where ¢,0>0 is a constant.
The covering by bad cubes will make a contribution

I,=T,{27"" ") [log(nlog2)]* 71772}
whose expectation is majorized by an expression of the form
yn=c11(logn)2 P17 P2exp(—c,n), c1y is a constant.

For any >0, we have P(2,,>#) <y.,/n. Set #=1/n and allow n to vary, by the
Borel-Cantelli Lemma we deduce that with probability 1 there exists an
integer n, such that 2, < 1/n, n2n,. Therefore the contribution to the cover-
ing by the bad cubes is negligible.
For each good cube which contains a point of R we choose a cube [a, b) in
{Uh=n, A4 such that

ula,b) >a1a2K

¢(d([a, b))~ 4fs7r2 "
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This gives a finite collection of cubes to which Lemma 3.6 can be applied. We
obtain a set of form { ) [a;, b;) which still covers the good cubes I; ; , but none
of them are covered more than four times. For this covering

2 ulai, b)<4- 1 [0,1)- ua [0, 1),

where [, =sup{b{"}, l,=sup{b{”} and b;=(b{", b{*), i=1, 2. So I, and
I,<1+27" Hence for a proper constant ¢, >0,

Y ¢d([a, D))Serap [0, 14+27%) - puy[0, 1+274).
Thus we obtain a finite covering, say | JJ;, of R for each n=n, such that

Y dd(J))Seiapa [0, 14+27%) - pp[0, 14+27%)+1/n.
Let e—~0 (so ho— + o), then n— + oo,

¢ —m(RN[0,11%)<c3u[0, (1, 1)) as., c,5 is a positive constant.

Since [0, (1, 1)) is finite, the proof is now complete. #

Let f(ty,t,)=¢—m(RN[0, Y(ty,1,))). Repeat the argument in [17] we ob-
tain that for a constant ¢>0,

flty, ty)=ctqt, as. (3.3)
We state this result in the following theorem.

Theorem 3.8 Let Y and Y, be two independent stable subordinators with
indices 1 and [, respectively (0< 4, B2 <1), and R; be the range of Y;,i=1,
2 then

¢—m(Ry x Ryn [0, (Y((t1), Y2(t2))))=ctyt; as.,

1\2"F1=h

where ¢(h)=hP17F> (loglog 7
Now for any stable process X with index > 1, there is a stable subordinator
Y, with index f=1— 1/ such that Y, is the inverse to the local time of X at
zero. Using (3.3) we have the following corollary.

Corollary 3.9 Let X, and X, be two independent stable processes on the line of
indices oy, 5> 1, with zero sets Z and Z, and their local times at zero are
A1 (t) and A;(t). Then there is a positive constant ¢ depending only on X | and X,
such that

o—m(ZyxZ,n[0,1,]x[0,8,])=cAy(t1) Aa(t2)
1.1 1.1
for all ti,t,>0, where qo(h)=h2 *t % (loglog 1/h)“1+°‘2.

4 Packing measure of R; xR,

Let {Q, B, %, Uy, {;, @} be a Hunt process (One can find the definitions and
properties related to a Hunt process in [ 1]). The Blumenthal zero one law says
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that for all Aeny,s, %y, Q*(A) is either zero or one. Now we need a corres-
ponding law for a pair of independent Hunt processes.
We write \/,.; %, to denote the o-field generated by the union of all
A, and o{U,:seA} to denote the o-field generated by U, s€ 4.
LetX,={Q, Z, #,X,0),0, Py} and X,={Q, 9,9, X,(t),n, P5*} be
two independent Hunt processes on R, where F=\/,,%,
=0{X(s):5Zt}, 9=\/no% Y% =0{X,:s5t}, X(5)o0,=X(s+1),

Xo(s)om=Xs(s+1).
For any x =(x,, x,)elR?, P* is defined by extension from

P([ﬂ le(si)(Ai)} N [ﬂ Xgl(r»(B,-)])

:Pf1<'é1 X1 (s:)(4; ) sz( ﬂ X5 t)(B; ))

where n and m are any integers and all 4;, B;e Z(R)(%(IR?)=the Borel o-field
on RY). Let X (t)=(X1(t), X»(t)) and #,=0{ X (s):s=t}. One can verify that
X={Q, #, #, X(t), {& P~} is a Hunt process, where =;ff=\/t>0 A,
X(s)o&r=X(t+s).

Lemma 4.1 X, X, and X, are defined as above. Given a set Aen s o(F NV Y3)
and x={(x1, X,), then P*(A) is either zero or one.

Proof. By the Blumenthal zero one law in [1], VAen,. o5, we have
P*(4)=0or 1 for all xin R?.
We know that

,—0'< N Xo4A), si<t, AeBR?), i=1,...,n, ne]N>

=O'( ﬂ Xs_il(Cl,iXCZ,,-):Si§t, Cl,i Cz,ieg(m), i=l,...,n, n€N>
i=1
and

FNYG =0(F,0%;)
=a{[ﬁ Xrl(si)(Ai)}ﬂ[ N X3'()(B, ] 4, BeB(R),
i=1 =

Siy tjét, n, meN} y
but for any i, j,

X HCy i xCy )=XT s HC1 )N X3 5:)(Ca,)eF V9,
and
Xl_l(si)(Ai)mXZ_1(tj)(Bj)=Xs_jl(Ai xR)N X HR x B))e A, ,

so #,=F VY%, Therefore VAen . o F, V 4, P*(A) is either one or zero, for
all xelR2. #
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Remark. If X is a Lévy process on (2, #, P), define
Po(X(1)eA)=P(X(t)eAd), F.=0{X(s),s<t}, t>0,
PHX(t)ed)=P(X(r)eA| X(0)=x), x#0 ,

then {Q, X (t), #, #,,0,, P*} is a Hunt process, p(t, x, A)=P*(X (t)e A) are its
transition functions.

For Hausdorff measure, as one can see from our results in Sect. 3, the exact
measure function for Ry x R, is the product of those for Ry and R,. For
packing measure the situation is more complicated.

The proof of following theorem is relatively long. The first step is to
estimate two probabilities needed in the sequel. The second step is to use the
density theorem to find the exact packing measure of ¥,[0, 1] x ¥,[0, 1].

Theorem 4.2 Let h(s)=s"1"52y(s), Y (5)e®, Y(2s)/Y(s)SN < +o0, 0<s<,
then

h—p(Y{[0,1]xY,[0,1])= {O a.s. according as
+ o0

/ [W(S)]Zlosg[l/lﬁ(S)] is {< + 00

0+ =400 .

Proof. Let
Yiw=1/2" P u; By 2n(Y i(t:)), 1:€(0, 1),
Z; o=(1/2""Fiuf (Byjan(Y (1)), 1:€(0, 1), (tis are fixed)

where  p;B.(x)=|{r:|Y;()—x|<r}| and p B,(Y;(t;))=|{s>1;:| Y(s)—
Yt <ril,i=1, 2.
Given any fixed 1>0, we now estimate P(Yy,Y, ,<A(27""')) and

P(Zy wZpn<Mp27"7H).
Let Tl(r) foo IB (0)(Y (S))dS T3(V fO IB (0)(Y2(S))ds and let Tz(r) T4(r)
be the corresponding sojourn times for independent copies of the duals ¥ {",

Y of Y., Y, obtained by time reversal, see [1]. We denote T;(1) as T,,
1_1 .,4. Hence

P(Yl,nYZ,n<)“w(2—n+1)):P((T1 FTNTs+T)<Ap(27"1)) .
According to (2.13) we know that
P(T;<x)~x as x—0,i=1,2.

Thus by Lemma 2.3 for any fixed >0,

1
P, + Ty < A2 )~y A2y,

P(Ts + Ty <227 1))~ ,121//2 nt1y
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Let U=log

V=log , then

1 1
T,+T,’ T3+T,
1
Y, Yy, <Ay " ))= e Eres il B
P( i,n 2,n< Q/I( )) P<U+V>10g /11,0(2_'”_1))

By using Lemma 2.4 we know

Y227 log AP (Y2, <W27")). (4.1)

b
lp(z—n-l—l)

Similarly we can prove that

Y227 ) log AP(Zy 0 Zsyw<p27"1) . 4.2)

1
l//(2 —n+ 1)
(4.1) and (4.2) will be used later in the proof of this theorem.

- [(s)]% log[1/y(5)] ds< + o0. Set
N

We now consider the case that [,

G= {(th t,)el0, 1]2 . h%énf .ulBr(Yl(t;l)();szr(Yz(Iz))= OO} ’

then |G| =1, using the same Fubini argument as in the proof of Theorem 3.3.
By Lemma 2.1 we have h—p(Y(G))=0 as., where Y(G)={y:y=(Y(t1),

Y,(t2)), (t1,t2)eG}.
As for the bad points, let

Qn:{(tl, F)el0, 11 i ulBr(Yl(tl))uzB,(Yz(tz))én} .

h(2r)

We can get a contribution to h—p**(Y(Q,)) from semi-dyadic cubes of side
27 ¥ such that Y=(Y {, Y,) hits the inside dyadic cube of side 27*~ 2 and then
leaves the ball of radius 2%~ 2 in time (¢, t,) where ¢, - t, <nh(2¥) (note that
t;is the time spent by ¥ ;, i= 1, 2). The expected number of dyadic cubes of side
2752 hit in [0, 1]% is O(2¥#17£2)) and the probability of being bad (being hit
but the process gets out quickly) is O(¥(1/2%)log 1/4(1/2%)) (by using (4.2)).
Denote N, as the total number of bad cubes, we have

Bh—P**7(Q,)Zcr 3 E(NJH2™)

k=kq

Scis i h(279) 24P+ Py (27 ) log (1 (274))

k=k,

gc19< 5 ¢2<2-")log<1/w(2—’°>)>, ko large ,

k=ko

where ¢+, ¢,5 and ¢, are proper positive constants.
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ds < oo implies that this series converges, we can

[¥(s)]*log[1/¥(s)]
AR

let ko— oo to deduce that Eh—p**Y (Q,)=0, which gives h—p**Y(Q,)=0
a.s.
But Guu,Q,=[0, 117, therefore by (2.8)

h—p(Y1[0, 1] x ¥,[0, 11)=0 as.
Vlog(1)
S

Now let us consider the other case that f 5=+ co. First

we define random variables a\™, b{™
A,={(a{"+b") (a5 + D) <e?27h(27")}
ai”=[{— AT Y H <t S — A2+t | Vi) - Vi) <27,

bzgn)=I{lhi(zmn)+ti<téihi(z_nﬂ)'i‘ti»|Yi(t)—Yi(ti)|<2_"}| )

and events A, by

where hy(s)=s?1y1%(s), i=1, 2, A>0, ¢ is small enough to make
(I+eh2 ) <h(27"*h),i=1,2.
By the independence of a{" and b{",
P <a§")<-§ zhl(z—")> P <b§"><§ /1h2(2‘")>
<P +b{"<edh 27"
<P <eh 27") P <eih 27M) .
Using (2.13) we obtain
P(a?”+b{" <edh; (2 ")~y (27" .
Similarly, P(aS” + b3 <edh, Q™" 2y (27").
By using Lemma 2.4 we can find a constant ¢, >0 such that
P(4n) S ca0d 227" Hlog(1/ (2777 h)
Let B,={pt1By-+(Y 1(t1)) 2 B2-»(Y 5(t;))<e2A*h(27")}, then B, < 4,, by (4.1)

we know P(B,)~y?(27"* ) log . So for a constant ¢,; >0, P(B,)>

1
l/1(2—n+1) . B
¢21P(4,). But {4,} are independent, so P(B,,mBm)§<z;> P(B,.)P(B,), if
n==m. By using Lemma 2.2, we obtain

P(lirilfup B,)=c3,>0.
Thus letting 2—0, for any painr (t:tz), O0<ty,t,<1, we have

o b BuY ()2 BUY 2(22))
P (1113 énf n(er)

:0>2C%1>0 .
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Since this event has the same probability as

GIURE (2()§Z;Z(r)+T4(r))=0} and the later one is in the initial

o-field generated by Y, Y, applying Lemma 4.1 gives

.o M B (Y1 (E) iz B(Y 5(22))
hrrri(l)nf n(2r)

liminf, o

=0 a.s.

The standard Fubini argument and Lemma 2.1 now imply that

h—p(Y,[0, 1] x Y,[0,1])= + o0 as.. #

5 The measure properties of the projection

Now we consider the measure properties of the projection of R on the line
y=x.
Let ¥, be independent stable subordinators with indices f§; such that

Bi1+B,=1/2and W, ={Y(t):te[0, + 00)} N[0, 1] and W= —\lfi(Wl AW, )=

{u\—/}—; ueW , veW }
Because ¢ —m{A) = ¢ —mfprojs A) for all 8 ( proj, 4 is the projection of 4 in
the direction 8, using Theorem 3.8 we know ¢ —m(W )< o0 a.s., where ¢(s)=

1\2" 5182 . )
shth <log10g §> . The proof of ¢ —m(W)>0 a.s. is much more difficult.

In unit cube [0, 1]2 for each n>2 we have 2"—2 nondegenerate
and nonoverlapping strips which are perpendicular to the diagonal y = x such
that for the ith strip, S;,, the coordinates of the two interception points

. . i+1 i+1 )
with the diagonal are (?’?) and ( TT ) In fact, S; ,=[0,1]*n

1
{(x y): T 1_Jc-|~ y< 2:_ 1}. We call the segment between the above two
i+1
2"— 27 4

V(Wi o) =u(S; ), for all i, n, p was defined in the beginning of Sect. 3.

interception points as w; ,. Actually w; ,=<(x, y):x=yp, —

Define measure v=v, on W such that

Fix n, for each xe% [0, 11® [0, 1], there a unique segment w; , containing x,
we denote it as w,{x). We now consider the upper bound of
Volwa(x) o
o™ 7 '
Let T;, denote the number of dyadic cubes in the strip S;, hit by
Y=(Y ,Y,). Before we estimate the probability of {T; ,=k} we should note

limsup,¢
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the following facts: (1) For any stable subordinator X with index 0 < <1, if

i i+
in=]=,—],0Zig£2"-1
I; » [2n, o >, <i< , then

. sin nf8 1
. < .
P(XhltSIl’")zn(l—ﬁ) 17

(see [17]) . 5.1

(2) For any stable subordinator X and any two integers j<k, using the
technique of stopping time and the strong Markov property one can prove

P({X hits I; ,} n{X hits I ,})SP({X hits [; ,})P({X hits I;,_; ,})
and if [, <[, <--- <, then
P(X hits I; ... 15, 0)
=P(X hits I, ,)P(X hits I, ,| X hits I} ,,)--- P(X hits I}, ,| X hits I;,_, ,) .
(3) For a dyadic cube, say I, ; ,= [(% , %) s <12+T,% , %g)), contained in
the ith strip S; ., we have k=2i—[. If we call (I/27", k/27") as the least point of
I, ., then we can number the dyadic cubes in the strip S, , by the numerators

of the first coordinates of their least points.
Now we are ready to estimate P(7; ,=r). In fact,

P(Ti,n Z T)

<P <There are at least [g] dyadic cubes lying in
the upper half of the strip S; , hit by Y )
+P (There are at least [%] dyadic cubes lying in

the lower half of the strip S; , hit by ¥ >

=M, > P(Y hits D ,---and D, ),

1S, <<y S

where [x] denotes the largest integer less than x and D, ..., D,; are dyadic
cubes in S; ,, M; >0 is a constant. Let k=[r/2], by those facts we know the
term in the right hand side of the inequality is dominated by

i—k+1 i 1 1

M, ch [ - ...
e 121 zk;lkz_:lﬂlll boly=1)

1 1 1 1
Te—lo ) P (=1 P (=L )' Qi)' %
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Mlclé2 i—k+1 i—-1 1 ] 1
= BETA rooX B ()2 BB ([l )2 PP
I,=1 Loy > Ty b1 274 k-2 lk-1
1
—B. — 1-6,-8, 1
- 1=p1—5, . ! L
L+ 1 i—k+1 1—p1—8,
1=p1—p2
<M1C2 fatba—l (1—}- ! )( +—1—>k
Bi 1=Br=$2) ~
where ¢, =[] sin and ¢ <1 +;><l Thus there exists
EOR-p) T T T —p)

0<p<1 such that P(T; ,=r)=<c,3p", c,3 is a constant.
Therefore when r=r,, we can find a number, say p,, between 0 and 1, such
that

P(T,,2r=p) . (5.2)
Let B;(t)=inf{u:Y (u)>1t},i=1, 2. They have the same distributions as t* B,(1)

and {B;(1)=x}={Y;(x)<1}, i=1, 2. It follows from (2.11) that for some
constants ¢53>0 and 0<c) <1, i=1, 2, we have

P(Bi(a)zw>~P(Y-(1)<<w‘%))
__ B

B
(’) (W 2(1 By y2(1- ﬁ))exp( C 1=Fiy 1‘31‘)’

T
By the above estimation we have
P(B,(1)B,(1)>A)<P(B1(1)> ")+ P(B,(1)>1'77)

R A
Yexp(—c3oAtP1), i A2 1,,

IA

where y= C3p 1S a positive constant less than 1.

=B
2—B1—8B;’
So given any dyadic cube I, there is a constant ¢z, >0 such that for any M >0,

P <¢IZ2(I) )>M> P(B;(1)B,(1)> M (loglog2™)? ~F:i~F2)

P
Jexp(—c3oM! Filoglog2”)

lIA

C31n—C3OM‘1T§T‘ (5.3)

IA
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Given xeW,; @ W,, if S; ,=S; ,(x) is the unique strip containing w,(x), then
using (5.2), (5.3) and Theorem 2.5 we have

vm(wn(x)) u(‘si,n(x))
e

Tin /J(I(j)) . . .
<P Y — gM), (IY”s are dyadic cubes in S; ,)
=192

1
§C32P, (by (5‘3)) B

I —
if we choose M large enough to make c3oM 1 #1>2, c3, is a constant.
Hence by the Borel-Cantelli Lemma we obtain

imgup 5555

Using Lemma 2.1 we have ¢ —m(W)>0 a.s. So we have proved the following
theorem:

<3M as, for any xeW.

Theorem 5.1 IfY, and Y , are two independent stable subordinators with indices
B1 and B, such that 8+ ,<1/2, then

0<p—m(W)<+ w0 as,

1\2 81752
where ¢(s)=sP1F2 <Iog log —) .
s

Corollary 5.2 If X, X, are two independent stable processes with indices

1 1.3
l<oy, 0, <2 and —+—gz, Z, and Z 5 are zero sets of X1 and X ,, then
&y 0O

0<o—m(Z,n[0,1]1® Z;n[0,1])< + < as,

1,1

2-1_1 1\a; " a;

where @(s)=s * *2 (10g10g—) .

s

Remark. The conditions in Corollary 5.2 exclude the most interesting case of

X1, X, both being Wiener processes. In this case the number T; , of cubes hit

in one strip S; , does not have an exponential tail so we are unable to find the
exact measure function for Z, @ Z,.

As for the packing measure of Z; n[0, 11@® Z,n [0, 17, if g(s) = 5% *£2( (s),

f2(s)log £ (5)]

/ o+ ¢

f(s) is a measure function, then when ds< + o0,

g—p(Z,n[0,11® Z,n[0,1])=0. But we can say little about the other

. . . . . 2r
direction. The problem is that we can not estimate lim sup,.¢ :l%% , Where
X, ¥
u is the projection of uy X u, on the diagonal, because of a lack of indepen-
dence.

The final result relates to the case f{+ f,>1.
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Theorem 5.3 If Y, and Y, are two independent stable subordinators with
indices B, and B, such that B+ ,>1, then

W@ W,|>0 as..

Proof. In order to prove this theorem we only need to modify the proof of
Theorem 1 in [12] (Taylor) and adapt the technique of Lemma 9 in [12] to
show that, for each x€(0, 1), P(xeW ;@ W,)=c>0. #
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