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Summary: We consider the one-dimensional heat equation, with a semilin- 
ear term and with a nonlinear white noise term. R. Durrett  conjectured 
that this equation arises as a weak limit of the contact process with long- 
range interactions. We show that our equation possesses a phase transition. 
To be more precise, we assume that the initial function is nonnegative 
with bounded total mass. If a certain parameter  in the equation is small 
enough, then the solution dies out to 0 in finite time, with probabili ty 1. 
If this parameter  is large enough, then the solution has a positive probabil i ty 
of never dying out to O. This result answers a question of Durett.  
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1 Introduction 

Consider the equation 

(1.1) ut=lUxx-~-Ou--u2-}-u�89 t>O, NE]R, 0>0  

u(O, x) = Uo(X) > 0 

where VV= l?V(t, x) is spacetime white noise. Durret t  suggested that (1.1) 
should arise as a limit of the long-range contact process studied in Bramson, 
Durrett,  and Swindle [1]. In addition, Durret t  guessed that (1.1) exhibits 
a phase transition as 0 varies. For  small values of 0, u(t, x) should die 
out to 0 in finite time. For  large values of 0, u(t, x) should survive with 
nonzero probability. 

* Supported by an NSA grant, and by the Army's Mathematical Sciences Institute at 
Cornell 
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The purpose of this paper is to prove the existence of a phase transition. 
In a companion paper, we show that our solution arises as the limit of 
a long-range contact process. 

For our main result, we assume that the initial function Uo(X) in (1.1) 
is continuous with compact support, nonnegative, and not identically 0. 
We write uosC~ +. We say that u(t, x) survives if for all t>0 ,  u(t, 0) is not 
identically 0. 

Theorem 1 Let u(t, x) be a solution to (1.1). There exists a constant 0c>0, 
not depending on Uo, such that 

(i) I f  O< 0~, then P(u(t, x)survives)=O 
(ii) I f  0 > 0 C, then P(u(t, x) survives) > O. 

For future use, we let T be the first time such that u(t, x) is identically 
0. Let T-- oc if there is no such time. 

Next we discuss the proof of Theorezn 1. First consider case (i), in which 
0<0~, and we must show P(u(t, x) survives)=0). We compare u(t, x) to 
a continuous time branching process with expected offspring size /z< 1. 
Such a branching process dies out with Probability 1. To implement this 

N 

comparison, we write Uo(X)= ~ u~)(x), where u~ ) is supported on interval 
z i + l  i=1  

[zi, zi+ 1], ~ @(x)  d x <  1, and u~(x)>=O. We show that one can think 
ai 

of the u(i~(t, x) as almost evolving independently, starting from @(x), and 
N 

such that u(t, x)> ~ u(i~(t, x). The u (i~ satisfy an equation similar to (1.1). 

We call the u (~} "bricks" that make up u. We choose a stopping time z, 
and again majorize ui('c, X) by a sum of N(i, z) bricks. These are the offspring 
of the original brick. If 0 is small, we show that the expected offspring 
size EN (i, z)< 1, completing the proof. This final step involves scaling (1.1), 
thereby transforming it into 

0 3 
(1.2) v t=-~  v~x + v - v  2 + v ~ IV. 

Here, 0 is small, so the solution does not spread quickly. Furthermore, 
the term - v  2 keeps the solution from becoming too large. Assume that 
we start with a brick: v(0, x)= l(n<_x<_n+ 1). If 0 is small, then with high 
probability, the noise will drive v(t, x) to 0 before it spreads out too much. 

Secondly, consider Theorem 1, case (ii). Here 0 > 0c, and we must prove 
that P(u(t, x) survives)> 0. We compare u(t, x) to oriented percolation. This 
idea has already been used in particle systems, as explained in [4]. We 
begin with another scaling of u(t, x), obtaining 

(1.3) vt = ~ v ~ x + v - v 2  +O-�88 ~ IV. 
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If 0 is large, the noise in (1.3) is small, and we almost have 

(1.4) w, = ~  w~,~ + w -  w 2 . 

But (1.4) is the classical Kolmogorov-Petrovskii-Piscuinov equation for 
which many solutions converge to travelling waves. In particular, if 
w(0, x)>�89 1 ( n < x < n + l )  then for some future time to, W(to, x)>�89 l ( n - 1  
< x < n + 2). The same holds true for v(t, x) satisfying (1.2), with high proba- 
bility. Again, we can show approximate independence of the bricks. By 
this method, we compare v(t, x) to an oriented site percolation process. 
This process will be described in Sect. 2.2: It is similar to ordinary percola- 
tion, except that only paths having certain directions (the forward time 
direction) are allowed. There is some mild dependence in our percolation 
process, but this causes no trouble. We show that if 0 > 0 c, then there is 
a positive probability that, in the percolation model, the origin is part 
of an infinite connected cluster. This in turn implies that u(t, x) survives 
with positive probability. 

Finally, we note that there is a further connection between (1.1) and 
the Kolmogorov-Petrovskii-Piscuinov equation. In a future paper, Tribe 
will show that (1.1) possesses random travelling wave solutions. The proof 
will use techniques of Durrett [3]. 

2 Phase transition 

2.1 Preliminary results 

First we specify the martingale problem mentioned in the introduction. 
Let C([0, oo), Mr) be the space of continuous M F valued paths and 
D([0, oo), MF) the corresponding space of cadlag paths. On either space 
Xt are the coordinate variables, ~ the canonical right continuous filtration 
and ~ = a ( ~ t :  t~0).  We write Xt(f)  for ~f(x)Xt(dx ) whenever this is 
defined. For m6M e define a candidate density at xe lR by 

l i m  (n/2)  m ( I x  - ( l / n ) ,  x + ( l / n ) ]  

U(m, x)={;  ~ 
if the limit exists 

otherwise. 

Consider the martingale problem for probabilities on (C[0, oo), MF) , 

~ ,  W): for all ~be C2 the space of infinitely differentiable functions of com- 
pact support, Z,(~b) is an almost surely continuous local martingale where 

(2.1) Zt (r = Xt (r - Xo (r - i Xs ((1/6) q~xx + 0 ~b - U (Xs, ' )  ~b) d s, 
0 

t 

(z(r  = ~ xs(r 21 as. 
0 
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If uoeL 1 and u(t, x) is a solution to (1.1) then letting Xt(dx)=u(t, x)dx, 
the law of X solves (2.1). We also give a martingale problem for a related 
process which will prove useful: for all q~eC[, Z,(qS) is an almost surely 
continuous local martingale where 

(2.2) g~(q~) = X,(0) - Xo (0) - i Xs ((1/6) qS= + 0 q~) ds, 
0 

t 

xs(o ds. 
0 

If uoeL 1 and ~i(t, x) solves 

(2.3) 8t= ~ axx + Ogt + al/2 W, a(0, x)=uo 

then the law of Xt(dx)=~(t ,x)dx solves (2.2). Note that uniqueness in 
law for the martingale problems implies uniqueness in law for the stochastic 
P.D.E.'s. (2.2) is the martingale problem for the measure-valued branching 
process studied by Dawson, Perkins, and others. It is known that (2.2) 
has a unique solution if 8(0, x) is nonnegative and integrable. For uniqueness 
of (2.1) we have the following lemma, given in Evans and Perkins [8], 
Theorem 3.9. Let M F be the set of finite measures on N, and define 

9 =(m~Me: ~ log+ (1/Ix--y[) m(dx) m(dy)< Go). 

Lemma 2.1.1 Let rosY.  Then there exists a unique solution P to (2.1) satisfy- 
ing P(X o = m) = 1. 

Next, we give a scaling result which will prove useful later. A similar idea 
appeared in Mueller and Sowers [13], Lemma 2.4. 

Lemma 2.1.2 Let u(t, x) satisfy (1.1), and let 

Then v(t, x) satisfies 

v(t, x)=cu(at, bx). 

a C ~ a T 

(2.4) v ~ = ~  Vxx+ Oar ac vz +~-~ v~ IV, 

where the I/V in (2.4) may be a different white noise than the I;V in (1.1). 

Proof. By Theorem 3.2 of Walsh [18], (1.1) is equivalent to the following 
weak form: for all #~(x)e C2, we have 

(2.5) S u(t, x) ~)(x) dx = ; u(O, x) dp(x) dx 
- o o  - o o  

+ i u(s, xlr xx+ x) dx 
0 - - o o  

0 - - o o  
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Lemma 2.1.2 follows by scaling (2.5), and observing that if W(t, x) is a 
Brownian sheet, then a -~ b -~ W(a t, b x) is also a Brownian sheet. 

We also need comparison theorems. Similar theorems appear in Kotelen- 
ez [11], Mueller [123, Pardoux [143, and Shiga [16]. In passing, we note 
that the proof of the existence of a critical parameter 0r is buried in the 
middle of this sequence of lemmas, in 2.1.6. We nead a slightly different 
equation than (1.1). Suppose that a > 0, b > 0. Consider 

a 
(2.6) u,= ~ u ~  + u-- u 2 + bu ~ IV, 

u(O, x) = Uo(X). 

Of course, (2.6) can be given rigorous meaning via an integral equation 
similar to (2.5). We also consider the following equations 

(2.7) a u,=~ Uxx + u + bu} iv, 

u (0, x) = uo (x), 

a 
(2.8) u t = ~ u x ~ + u - u 2 + b u  ~ IV, L < x < R ,  

u(t, L)=u(t ,  n ) = o ,  

u(O, x) = Uo(X). 

Lemma 2.1.3 Let u~)~C~ for i=  1, 2; and assume that U~ol)(x)<u~o2}(x) for 
all x~lR. Then, on a common probability space, we can find solutions u(i)(t, x) 
i=1,  2 to (2.6), such that u(i)(O,x)=u~)(x), i = 1 , 2 ;  and such that u(l)(t,x) 
<u{Z)(t, x) for all t>0 ,  x~lR, a.s. 

Lemma 2.1.4 Let u~)~C~ for i=  1, 2; and assume that U~ol)(x)<u~oZ)(x) for 
all xER. Then, on a common probability space, we can construct solutions 
u(1}(t, x) to (2.6) and u~2)(t, x) to (2.7), such that u~i)(O,x)=u~)(x); i=1 ,  2; 
and such that u(1)(t, x) <=u(2)(t, x) for all t >O, x~R,  a.s. 

Lemma 2.1.5 Let u(~)eC + for i > 0 ;  and assume that U(o~ for all 
x~lR, i> 1. Then, on a common probability space, we can find a solution 
u(~ x) to (2.6) and u(~ x); i > l  to (2.8), such that uti)(O, x)=u(~)(x), i > 0 ;  
and such that u(~ x)>u(i)(t, x ) f o r  all i> 1, t >O, x~]R, a.s. Here, we are 
assuming that u(i)(t, x) are given by (2.8)for i> l and L i < x <  Ri. Outside 
of [Li, Ri], we assume that ut~ x)=0.  

The following lemma proves the existence of a critical parameter 0 ~  [0, oo] 
for a given initial condition. Using absolute continuity results of Evans 
and Perkins [7], it follows that for t > 0, solutions u(t, .) with different initial 
conditions induce absolutely continuous measures on function space. Thus, 
the critical parameter must be the same for all initial conditions. 
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We include the following lemma here because its proof is similar to 
that of the preceding lemmas. 

Lemma 2.1.6 Suppose that Ul(t, x) and u2(t, x) are two solutions of  (1.1) 
with the same initial conditions uo(x ), but with different parameters 0=01 
and O= Oa, respectively. Suppose further that 01 <02. Then, with Probability 
1, ul (t, x) < u2 (t, x) for all t>0 ,  x e R. 

Lemmas 2.1.3-2.1.6 have similar proofs, so we omit some details. But first, 
note that these lemmas are easy to see on the heuristic level. We think 
of u as a limit of contact processes. Lemma 2.1.6 says that for two contact 
processes with the same initial conditions, the contact process with more 
growth will be larger. The other lemmas say that for two contact processes, 
if one has a larger set of occupied sites at time 0, it will still have a larger 
set of occupied sites at some later time. Standard coupling methods can 
be used to make these statements precise. 

Now we give rigorous proofs. We first consider Lemmas 2.1.3 and 2.1.4. 
Let f,(u) be a sequence of Lipschitz functions converging uniformly to u + 
for ue[0,  ~ ] .  Also assume that f~(0)=0. 

Consider the equations 

a 
(2.9) u, = ~ u~x + u -  u 2 + bf,(u) IV, 

u(O, x) = U(o " (x), 

a 
(2.10) u ,=~ux~+u+bf , (u )  IV, 

u(O, x) = u~o2~(x). 

By Theorem 3.3 of Kotelenez [11], if u(l'n)(t, x) and u(2'n~(t, x) are solutions 
to (2.9) and (2.10) respectively, and if u(ol)(x)<u~o2)(x) for all xeIR, then for 
all t>0 ,  xeP, ,  we have u(l'~)(t, x)<u(2'n)(t, x) a.s. Now we use the same 
argument as in the proof of Theorem 2.5 of Shiga [16]. First, this argument 
gives the tightness of u (2" ~) (t, x). Then since u (1' ~) (t, x)<= u (2' ~)(t, x), and since 
- u  2 is locally Lipschitz, Shiga's argument also shows the tightness of 
(u (1' n)(t, x), u (2' ") (t, x)). Choosing a subsequence which converges in distribu- 
tion, we obtain solutions u(1)(t, x) and u(2)(t, x) to (2.6) and (2.7), respectively, 
such that for all t > 0, x ~IR, we have u(1)(t, x)< u (2) (t, x). This proves Lemma 
2.1.4. We can also prove Lemma 2.1.3, by considering solutions u ~1'") and 
u (2'") to (2.9) which are both majorized by a solution u (3'") to (2.10). Using 
Kotelenez's Theorem and extracting a convergent subsequence proves Lem- 
ma 2.1.3. 

Let us outline the proof of Lemma 2.1.5. Again, we replace u ~ byf , (u)  
in (2.6) and (2.8), where f ,  was given earlier in the proof of Lemmas 2.1.3 
and 2.1.4. To analyze such equations, Kotelenez [11] considers Picard itera- 
tion for the corresponding integral equations, where IV is approximated 
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by a smoother noise. We have a countable number of processes while Kote- 
lenez has just 2, but in the approximation, for each i> 1 we would have 
that u(~ x)>u(~ x) for all t>0,  xeR. The union of the null sets would 
still be a null set. We would have to show tightness for an infinite set 
of processes instead of just 2, but again this would cause no difficulties. 
Lemma 2.1.5 would fit into his scheme, except that (2.6) involves the Lapla- 
cian A on ~ ,  and (2.8) involves the Dirichlet Laplacian on EL, R]. Let 
S(t, x, f )  be the semigroup generated by A on ~ ,  and let _S(t, x, f )  be the 
semigroup generated by A on [L, R]. To prove Lemma 2.1.5 by Kotelenez's 
methods, we would merely use the fact that for xe[L, R], t>0,  and f > 0 ,  
we have S_(t, x, f )<S(t ,  x, f). 

Finally, 2.1.6 also follows from Kotelenez's comparison theorem, after 
replacing u ~ by a sequence of Lipschitz approximations f,(x) and taking 
the weak limit. 

X n Lemma 2.1.7 Suppose that u~)~C + for k = 0  .... , n; and that {l/Vk(t, )}k=l 

are independent white noises. Suppose that U(o ~ < ~ u~)(x). 
k = l  

Let c~, fl>0. Then for some white noise l;Vo(t, x) there exist solutions 
{u(~)(t, x)}~=o to 

(2.11) , , (k )  . . . .  (k) ~_ , , (k )  ( , , (k)]2 _!_/~/,,(k)]�89 I,T/- 
~. - - ~ . ~ X X T ~  - - k a  ] T]J I , .~  ) rr k 

u(~)(0, x)=u(ok)(x); k=O . . . .  , n 

such that for all t >O, xeN,  we have 

u(~ x)<__ ~ u(~)(t, x). 
k = l  

Proof We reformulate (2.11) as a martingale problem. For a function 

4)~Cf(IR), let Xk(t, 4)) = S u(t, X)4)(x)dx. Fix k in (2.11). As is well known 
--GO 

from Walsh [18] or Shiga [16], (2.11) holds for some white noise ~ iff 
Zk (t, 4)) is a continuous local martingale for all 4)e C~ (IR), where 

(2.12) Zk(t, 4))= xk(t, 4))--Xk(O, 0)+ i Xk(S, C~4)xx+4)--4)U(k)(S, "))ds, 
0 

(z~(.,  4))),=/~-~ i x~(s, 4)21 ds. 
0 

Furthermore, if W k and Wt are independent white noises, we have 

(z~(.,  ~), z~(., 4)))~=o. 
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Let _u(t, x )=  ~ u(k)(t, X) and let X(t, 4))= ; u_(t, x)~)(x)dx, for geC2(~-).  
k = l  - o a  

Adding (2.12) for k =  1 . . . . .  n; and taking into account (2.1), we find that 

(2.13) 
( .  1 

U-t=O~U-xx+U---U-2+2 E u(i)uJ)+flu-:l]Vo ' 
l <=i<j<n 

U (0, X) > U~O O) (X), 

for some white noise W. Applying arguments similar to those used to prove 
Lemmas 2.1.4-2.1.7, we find that for t>0 ,  x d R ,  we have 

u(~ x)<u_(t, x) a.s. 

Here, the Wo in (2.11) is the same as in (2.13). This proves Lemma 2.1.7. 
We wish to show that if uoeC +, then solutions u(t, x) of (2.6) have 

compact support in x, and to estimate the size of the support. By Lemma 
2.1.4, we need only study solutions ~(t, x) of (2.7). Note that ~(t, x) is the 
density of a super-Brownian motion, with different parameters than usual. 
Consider the equation 

(2.14) v(~) _ a  v(~) + ~,v(~ ) + b(v(~))~ (V, 
' - 6 = , 

(2.15) v(0, x) = Uo(X). 

Iscoe [10] has shown that v(~ x) has compact support in x, if uoeC +. 
However r not v (~ satisfies (2.6). To compare v (1) to v (~ we need a 
result of Dawson [2]. Dawson proved the following lemma for (2.15) with 
a = 6, b = 1 ; but his proof easily generalizes to our case. 

Lemma 2.1.8 Let P~,t denote the measure induced on path space by v(~)(s, x); 
s<=t, x d R .  Assume that v(v)(O, x)=uo(x ). Then P~,t is absolutely continuous 
with respect to Po,t, and 

t ~?z s) (2.16) dP~,t = e x p ( _ 7  [ ; (s,x) W(dx i xld d dPo,t \ b g _~ d s ) - 2 0 ~ o  _~ 
b 

Let A =A(t, y) he the event that for O<_s<<_t and Ixl >y,  we have v(r)(s, x)=0.  
Suppose that v(r)(0, x ) = 0  for [xl>R,  and that the initial mass 

~ v  (~)(0, x) d x = I. 
- c o  

Lemma 2.1.9 I f  y> R and t<17 -,  then 
4~ 

ga 
P~,t(AC(t, R + y))<cI 

b(R + y) 
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Proof By L e m m a  2.1.8 and  Cauchy ' s  inequality,  

(bj  , V ~ (S,  (2.17) P~ t(X) = Eo,dI(A c) exp - x) W(dx ds) 
- -  ~ 3  

2b2 o -oo 

<Po,t(X) ~ Eo, t exp - ~ v~(s,x) W(dxds) 
0 - - o O  

However ,  results of  Iscoe [10] al low us to es t imate  Po, t(A). He  only deal t  
with the case a = 6, b = 1, bu t  some simple modif ica t ions  give us the following 
result. This is a modif ica t ion  of T h e o r e m  1 of Iscoe [10]. Here,  v(t, x) 
= v (~ x) .  

L e m m a  2.1.10 Suppose I = 1. Then 

oo h x 

where h(x) is the solution of: 

(2.18) 

Let ho(x) be 
that  

a 
h ~  = b 2 h 2 

lim h ( x ) =  oo. 
[x]~l 

the solut ion of (2.18) with a = 6 ,  b = l .  By scaling, we find 

a 
h(x) = ~ ho (x). 

Iscoe [10] notes  tha t  h o (0) ~ 8.38. Therefore  

Po, t (X)  < Po, 0o (A~) 

< I - e x p [ - ( R + Y ) - Z ~ b z I h o ( _  R ] l  
L 6 \R+y]J 

since ho(x) is nondecreas ing  in [0, 13. Recall  tha t  I= ; v(O, x) dx. Using  

the inequal i ty  1 - e -  x =< x for x > 0, we have  - oo 

a ( ~ + y )  Po, t(Ac)<=(R + y)-2 ~ Iho 

a 
~ c  bZ(R + y) 2 

for y > R, where  c = 6 ho (�89 
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oo 
Now consider X =  ~ ~ v~(s, x)W(dxds), where v=v (~ Since X is a 

0 - -oo  

white noise integral in the sense of Walsh [18], X is equal in distribution 
to a time-changed Brownian motion. That is, for some Brownian motion B 

t 

X=B(T), T=~ ~ v(s,x)dxds. 
0 --oo 

It is well known that the total mass M(t) = ; v(t, x) dx satisfies the Feller 

equation dM= bM ~ dB, for some Brownian motion B. We have: 

(2.19) P(lXl>2)<=P(supiB(s)[>2)+P sup M(s)> 
s<=r \ s=t  

By standard estimates, 

=(I)+(II). 

9 

for •2/r sufficiently large. To estimate (II), we let Y(t)=~M(t) ~ and u s e  

Ito's lemma: 0 

dY=dB-bM-~dt<=dB. 
4 

Therefore, since Y(O)=(2/b) M (O)~=(2/b) I ~, 

(2.21) (ii)=p(sup- 2 F/ 
\ s<__t b b g t] 

< P  s B ( s ) + v I  > 
\ s=t  L 

- 2 r , 

- \~__<~ b / V  t _1] 

4 / / 7  ,\2 

_<_exp[ b~tV~ - I : )  ] 

e x  - -  
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if I < 0.08 r/t and if r/(b 2 t 2) is sufficiently large�9 Putting together (2.19), (2.20), 
and (2�9 with r=2bt,  we have 

[ . ]  (2�9 P(IXl>2)<exp - +exp  - 

(2�9 __<2 exp[ - 2  ] 

for 2 sufficiently large, and such that I < 0.08 2 b. 
1 

Now, using (2.22), for t <~-7' we have 

1-2' i ; 
Eo, t exp [ ~ - -  o - oo 

- 2 ?  
=Eo.t  exp [ ~ - -  X] 

o 
--< I I - -2yy l  -~  exp [ ~ - - j  e (x~ay )  + 1 

[+q ] < f - exp +1 d z P { X E d y } + l  
- o o  

< 2 +  T ; ' ( I X l e d y ) 2 7 - e x p [ - - ~ - ]  dz 
0 z 

< 2 +  ff r { I x l > z }  exp dz 
o 

~o 27 [ - 2 7 z ]  [- z l .  
_ _<2+ o j b -  exp I - T - ]  exp [ - ~ - J  az 

< C < O 0  

1 
where c does not depend on a, b, or 7, but only on the fact that t > - -  
Putting together (2.17), (2.19), and (2.24), we obtain Lemma 2.1.9. 47 

Next, we prove a large deviations lemma. As stated earlier, several au- 
thors have given similar theorems. For t>=O, -M<x<<_M, let v(t, x) and 
w(t, x) satisfy the following equations. 

(2.24) vt = 1 l )  x x  .3 7 I )  - -  1.) 2 " t "  b v ~ IV, 

v(t, --M)=v(t, M)=0,  

v(O, x) = Uo(X), 

(2.25) wt = ~ wxx + w -- w 2, 
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w(t, - - M ) = w ( t ,  M)=0, 

w (0, x) = Uo (x). 

Our goal is to show the following lemma. Its proof will take up the rest 
of the subsection. 

g T Lemma 2.1.11 Let L, M, T >  1, and suppose that sup u o ( x ) < ~ e -  . There 

exists a constant C(T, M) such that if g)2/(Lb2)> C(T, M) then 

- M < _ x < _ M  

It is convenient to cut off v when it becomes large. Let v(L)(t, x) satisfy 

(2.26) ~t"(L) - -  6 U x x  1 , ,(L) ~_ , ,(L) __ (1)(L) A L) 2 + b (v (L) A L) ~ IV, 

v (L)(t, -- M) = v (L) (t, M) = 0, 

v ~L~(0, x) = Uo (x).  

Let z=z (L)  be the first time t___0 that sup v(L)(t, x)=L.  Clearly, we can 
x~N_ 

construct u(t, x) and v(c)(t, x) satisfying (2.25) and (2.26), respectively, such 
that v(t, x) = v(L)(t, x) for t < z, - M _< x _< M. 

Let H(t, x, y) be the fundamental solution of the equation 

ut=uxx+u; t>O, -M<_x<_M,  

u(t, - M ) = u ( t ,  M)=O, 

u (0, x)  = 6 (x - y) .  

Let 

N(t, x)= b i ~ H(t--s, x, y)[r y)A L] ~ W(dy d s)). 
0 --oo 

Of course, N(t, x) is the noise term in the integral equation equivalent to 
(2.26). The following lemma is very similar to proposition (A.2) of Sowers 
[17]. 

c32 
Lemma 2.1.12 Fix T, M > 0 .  There is a constant c > 0  such that if Lb 2 
is sufficiently large, then 

P( sup IN(s ,x) l>cS)<exp[--c~2|  
o_<~_<r [ Lb2] " 

- M < _ x < _ M  

The proof of Lemma 2.1.12 rests on the following result. 
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Lemma 2.1.13 Let 0 < h < M. I f  0 < a < �89 then 

T M 

(A) j" j" I H ( t , x + h , y ) - H ( t , x , y ) 1 2 d y d t < c h  z~ 
0 - M  

T M 
(B) y y [ H ( t + h , x , y ) - - H ( t , x , y ) l e d y d s < c h  e 

0 - M  

h M 
(C) y y [H( t+s ,x , y )12dyds<ch  ~ 

0 - M  

The constants c depend on T and M. 

Proo fo f lemma 2.1.13. Sowers [-17] Lemma A.1, gives a similar proof, for 
periodic boundary conditions. Note that, for t > 0, 

(2.27) H(t, x, y)=e t ~ e-Ok' Ok(X ) ~k(Y) 
k : l  

where 

c~k (x ) = ] / / ~  sin ( rc k x 
\ 2M 2 k) 

~2 k 2 

Ok -- 24 M 2 " 

To prove part A of Lemma 2.1.13, by (2.27), 

T M 

0 - M  

]H(t, x + h, y ) -  H(t, x, y) [2  dy dt 

~-, 1 - -e -2OkT <_e 2r I G ( x + h ) - G ( x ) l  z 
- -  k=lA'~ 2 0  k 

e2 T 
~= I ~ k ( x q - h ) - - ~ k ( X ) [  2 - 2 a  ]~bg(X + h ) - q ~ ,  (x)]2L 

k = l ~ k  

Clearly, [q~k(x + h)-qSk(X)] < lf22__~,, and by the mean value theorem, I Ok(X 
V lVl 7rk 

+ h) -  qSk (x)l < ~  h. Therefore 
27 M: 

r ~ ~ ka~ 
Y IH( t , x+h,y ) -H( t , x ,y )12dy<=c h2~ 12 

0 --M k = l  Ok 

<=ch 2~. 



144 C. Muelter, R. Tribe 

To prove part B, by (2.27), 

T M 

~ [H(t+h, x, y)-H(t, x, y)12dy 
0 - M  

T 

=<eZT ~ ~b2(x) f [ e-~176 
k = l  0 

2eZ r __e-- 2Ok T <= [eh  1] 2 ~ 1 
M k= 1 20k 

< c h  2 

i fh<M.  
To prove part C, by the maximum principle, H(t, x, y)<e2rG(t, x,y) 

for t<T. 
h M h M 

~ ]H(t, +s,x,y)J2dyds<~eZr~ ~ G(t+s,y)2dyds 
0 - M  0 - M  

=co t]/~s-~ ~ e  t+sdyds 

h 

ol/5 
=ch-~. 

This completes the proof of Lemma 2.1.13. Now we proceed with the proof 
of Lemma 2.1.12. This part is similar to the proof of Lemma 2.1 of Mueller 
[12]. We know by Walsh [18], Chap. 2, that N(t, x) is a.s. continuous in 
(t, x). Therefore, the following estimate will prove Lemma 2.1.12. 

Let J =  J(T,  M) be the set of integers (i, k, ~, n) such that i=  1, 2; n> 1; 
0 < k < 2"; - 2" < Y < 2 ". Define events A (i, k, (, n) by 

(M + T) 2~ + 

n ( IN/kT  ( f + l ) M ~  N[kT E2M) 5 "~. 
A(2, k,< )=~ ~ ,  2 ~ -]- \~- '  --< (M+ T) 2~+TJ 

Let 

Note that 

(2.28) 

A= (~ A(i,k,{,n). 
( i , k ,~ ,n )~J  

{ sup [N(t,x)i>c~}cA c. 
s < T  

-M<_x<_M 
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/s  ~ 
Indeed, consider the binary expansion of ( t ' M )  for (s, x)E[O, t] 

x [ - M ,  M]. By adding digits one by one, we can construct a path from 

(0, 0) to  (} '  M) (wi th  infinitely many steps), such that there is only 1 
1 

step 
/ 

each of the type, except for n=  1. In that case there may be as many as 
2 (M+ T) steps 

(~r, ~M)__,{(k + l) r \ 2~ ,~2-- M) or 

\-2 ~ '  2" M_). 

N(s, x) is an infinite sum of terms N(s2, x2)-N(s l ,  xl), where each step 
(Sl, xl)--+(s2, x2) is one of the above type. If A holds, then IN(s, x)] is 
bounded by the sum of such terms, and the sum is less than or equal to 

2 (M+T)  ~, _ _ 6  2~+7<6" 
k = l  (M+T) 

Now we estimate P(AC(i, k, Y, n)). Note that 

N (t, x ) -  N (t, y) 

=b S [H(t-s ,  x, z ) - H ( t - s ,  y, Z)](v(L)(s, Z)/X L) ~ W(dzds) 
0 - M  

is a white noise integral. Thus, it is a time changed Brownian motion with 
time scale S bounded by 

T M 

S<=Lb 2 ~ ~ IH(t ,x,z)-H(t ,Y,Z)l  2dzdt.  
0 - M  

Therefore, by Lemma 2.1.13, with o-=�88 

(2.29) P(AC(2, k,E, n))<__P( sup .. IB(s)]>-- ~ ) 
\s<=cLb ~2-~ (M + T) 2 ~+ 7 

ca 2 2~ 
< exp ~ ] 
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for large 6, where c depends on T and M. Now 

N(t+h, x)-N(t ,  x) 

=b ~ [H(t+h-s,x,z)-H(t-s,x,z)J(v(L)(s,z)AL)~W(dzds) 
0 - M  

h M 

+ ~ ~ H( t+h-s ,  x, Z)(V(L)(S, z)AL) ~ W(dzd(t-s)). 
0 - M  

Thus, N(t+h, x)-N(t ,  x) is a time-changed Brownian motion with time 
scale bounded by 

S<2L ~ IH( t+h-s ,x , z ) -H( t -s ,x , z )12dzds  
kO - M  

h 

+S ; H(t+h-s,x ,z)2dzdsJ 2" 
0 - -oo  

Therefore, by Lemma 2.1.13, 

(2.30) P(AC(1, k,f,n))<=P( sup )B(s)[> 6 ) 
ks<cLb22-~ (Mq- T) 2 ~+7 

e~22~ 
<exp - Lb 2 ] 

for large 6, where c depends on t and M. 
Adding together (2.29) and (2.30) for (i, k, #, n )~J ,  we obtain Lemma 

2.1.12. 
Now we wish to relate v (c) to v. 

T, L, M > 0 ,  and suppose that sup Uo(x)<Le -r. I f  Lemma 2.1.14 Fix 
L -MNx<-M Z 

by is large enough, then 

P( o_<t__<rsup v(L)(t, X)> L)=<exp [ - c _ ] .  
- - M < _ x < _ M  

Proof of Lemma 2.1.14. 
(2.26). 

(2.31) v(L)(t, X)= 

The following integral equation is equivalent to 

M 

H(t, x, y) Uo(y) dy 
- M  

T M 

V) [-v (L) ~ -- ~ ~ H(t-s ,  x . . . . . . .  , jAL]2dyds 
0 - M  

+N(t, x) 
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If t < T, then the maximum principle shows that 

~t L 
H(t,x,y)uo(y)dy<=e T sup Uo(X)<=~. 

- M  - M < - x < - M  

Lemma 2.1.14 would follow if we had 

P sup IN(t, x)[> <exp  - . 
O<_t<_T 

- M < _ x < _ M  

This estimate follows from Lemma 2.1.12. Now we can complete the proof  
of Lemma 2.1.11, using a Gronwall type argument. The key step is: 

L e m m a  2.1.15 Under the same assumptions as in Lemma 2.1.11, we have 

C62] 
P( sup Iv(L)(t, x)-w(t ,  x ) l > 6 ) < e x p  - ~  . 

O<t<=r 
- M < _ x < M  

Clearly, Lemmas 2.1.14 and 2.1.15 imply Lemma 2.1.11. 

Proof of Lemma 2.I.15. Note that (2.25) and (2.26) are equivalent to the 
following integral equations. 

M 
v~L~(t, x)= ~ I-l(t, x, y) Uo(y) dy 

- M  

-- ~ H(t--s,x,y)[v(L)(s,y)AL]Zdyds 
0 - M  

+N(t, x) 
M 

w(t,x)= I U(t,x,y) uo(y )dy 
- M  

t M 

0 - M  

H(t--s, x, y) w(s, y)2 dyds. 

Subtracting, we obtain 

(2.32) v~L)(t,x)--w(t,x)= ~ H(t-s,x,y)[v(L)(s,y)/xL+w(s,y)] 
0 - - M  

�9 [v(L)(s, y)/X L--w(s, y)] dyds 

+N(t, x). 

Let 

D(t, x )=  [v(L)(t, X)-- w(t, X)I. 
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Since L > 1 and sup Uo (x) < L e- r, the maximum principle shows that, 
- M ~ x < _ M  

for t =< T, w (t, x) < L for all x ~ [ -  M, M]. Therefore, if s < T, y ~ [ -  M, M], 

Iv(r)(s, y)AL--w(s, y)l<D(s, y). 

Thus, (2.32) implies, for t < T, 

(2.33) 

Let 

M 

D(t ,x)<2L i J H( t - s , x , y )D(s ,y )dyds+lN( t , x ) l  
0 - M  

T 

<___2Le r j sup D(s,y)dyds+lN(t ,x)l .  
o -M<_y<_M 

/)( t)= sup D(t,x), 
-M<_x<_M 

N =  sup IN(t, x)]. 
O<_t<_T 

-M<_x<_M 

Then, (2.33) implies 

t 

/ ) ( t )<2Le  r ~ D(s)ds+N. 
0 

Gronwall's lemma then gives 

D(t) <__ N exp [2Le r t] 

<c2~ 

where c depends on L and T. This completes the proof of Lemma 2.1.15. 

2.2 Survival 

In this section we show that if 0 > 01, then u(t, x) has a positive probability 
of survival. Of course, we assume that u(0, x)~L ~, and that u(0, x) is not 
identically 0. 

First, we scale (1.1). Using Lemma 2.1.2 with a=O -t,  b=O -~, c=O -1, 
we find that v(t, x)= c u(a t, b x) satisfies 

(2.34) v~=~Vxx+V-v2 +O-�88 �89 IV. 

It is easy to check that since v(0, x) is nonnegative and not identically 
0, there is a constant 6 > 0  such that with positive probability, v(1, x) 



A stochastic PDE 149 

~61[o. 1](x ). By the Markov property, we can start afresh at time t = l .  
Thus, we may assume without loss that 

v (0, x) >= ~ 1~o, 11(x). 

We wish to compare v(t, x) with _v(t, x) and w(t, x). Here, 

p(t, x)=v(t,  x, s, y), w(t, x)=w(t ,  x, s, y) 

are defined for s~Nu{0} ,  yeZ ,  s < t N s + T ,  and y - - M < x < y + M .  Let 
p and w satisfy 

(2.35) _vt=~ vxx+_v--_v2 + 0 - ~ p  ~ W 

v_ (t, y -  M)=v_ (t, y +  M)=O 

v_ (s, x)= v (s, x)A 1 

(2.36) w, = ~ wxx + w -  w 2 

w(t, y - M ) = w ( t ,  y + m ) = 0  

w (s, x) = v(s, x) A 1. 

Lemma 2.1.5 implies that we may construct v and {v(., . ,  s, Y)}s%l,y~z on 
a common probability space, such that with Probability 1, 

(2.37) v(t, x)> v(t, x, s, y) 

for all s, y and all appropriate t, x. 
Fix 6, e, M, T>0 .  Lemma 2.1.11 shows we can choose 0 so large that 

(2.38) P( sup [_v(t, x ) -w( t ,  x)[ > 6 ) < e .  

y-M<x<~y+M 

Following Durrett and Neuhauser [5], our strategy is to compare v(t, x) 
to N-dependent oriented site percolation with density at least 1 - p .  Let 

Y =  {(x, m)e7Z?: x + m  is even, and m__>0}. 

Given random variables co(x, n), (x, n)eS~ that indicate whether the sites 
are open (1) or closed (0), we say that (y, n) can be reached from (x, m) 
and write (x, m)~(y ,  n) if there is a sequence of points x=xm,  ..., x , = y  
so that ]Xk--Xk_l[=l for m<k<=n and cO(Xk, k )= l  for m<_k<-n. Up to 
this point the co(x, n) could be arbitrary random variables. The phrase " N  
dependent with density at least 1 - p "  means that whenever (xi, nl), 1 _< i__- I 
is a sequence with Ixr > N or Ini--nil >-N for i4=j then 

P(ca(xi, ni)=O for l < i < I ) < p  I. 
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Let to be the set of occupied sites at time 0: eo={xG7Z: co(x, 0)= 1}. Let 
e, = {xa~g: (y, 0 ) ~  (x, n) for some y~eo}. Let cg be the cluster of points (x, n), 
n>0,  such that (0, 0 )~(x ,  n). Durrett  and Neuhauser [5], (Lemma 3.5) 
prove: 

Lemma 2.2.1 Suppose eo=27Z. If p < 6  --4(2N-:)2 then P(O~ezn)<=p 
+ 162p~(ZU- 1)2 

Let ~f,= {(x, m)~g:  re=n}. Suppose that we reverse time in Lemma 2.2.1, 
letting rh(m)= 2 n - m .  We find that 

P(O r ~2.)= P (cg2. = 4)). 

Letting n --, o% we deduce 

Lemma 2.2.2 

P(I~g[ < oo)= lira P(Cg2, = q5 ) 
n ~ o o  

< p +  162p+(2N- 1)2 

Now we describe how to couple v with N-dependent oriented percolation 
co(y, n) where N depends on M and T. For (y, n)~5~, let 

q(y, n)={~ ifotherwise.V_(Tn, y)>6l(y<x<y+ 1) 

Secondly, we construct a process co(y, n) for (y, n)eS~. If ~ ( y - 1 ,  n - l )  
= q (y + 1, n -  1) = 0, we choose 

co(y,n)={10 with probability 1 - p  
with probability p, 

independently of the other random variables in the construction. Otherwise, 
let co (y, n) -- q (y, n). 

To rigorously show that co is N-dependent, we focus on _v(t, x). For 
(y, s ) e ~ ,  let ~ , s  be the o--field generated by {v(t, x): O<_t<s+ T, and either 

M + I  
t < s or Ix-Yl > M + 1}. Clearly, co is N -  dependent with density at 
least 1 - p  if, for all (y, s ) ~ e ,  2 

(2.39) P(co(y, s+  T)=01G,~)__< p. 

Suppose for the moment  that (2.39) holds. Then Lemma 2.2.2 implies that 
v(t, x) survives with positive probability, and we have accomplished our 
goal for Sect. 3. 
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Clearly, (2.39) is implied by the following lemma. For simplicity, we 
take s, y =0 ;  the general result follows from translation. Recall that _v impli- 
citly depends on M. 

Lemma 2.2.3 Suppose p > 0 and that v_ (0, x) > c51Lo, 11(x) �9 There exist M, T > 0 
such that for 0 large enough, we have 

P(v_ (T, x)>=c~ lL_ l.21(x))> l -  p. 

Lemma 2.2.3 immediately follows from Lemma 2.1.11 and the following 
lemma. 

Lemma 2.2.4 There exist T, M, (5 > 0 such that the following holds. Suppose 
that w(O, x)> 6 leo , 11(x). Then 

w(T, x)~261[_2,31(x). 

Proofoflemma 2.2.4. Let M = 6. We work with subsolutions of (2.36). Recall 
w(t,x) is a subsolution of (2.36) if wt<(1/6)wxx+w-w 2, and w satisfies 
the initial conditions and boundary conditions given in (2.36). Let K be 
a nonnegative constant, and let h (t, x); t > 0, - M _< x -< M satisfy 

ht=~hxx+Kh 

h(t, -M)=h( t ,  M ) = 0  

h(0, x ) =  ~ leo ' ~j(x). 

Then h(t, x) is a subsolution of (2.36) for all t, x such that sup h(s, y) 
ONs<-t,y~R 

_<1/2. Note  that h(t, x)e -~t solves the heat equation h,=(1/6)hxx, with 
the same boundary and initial conditions as in (2.40). 

Consider the eigenvalue expansion for h (t, x): 

h(t, x)=~  ~ Cke(~- &)t ~Ok(X) 
k=0 

where 

Of course, 

q 0 k ( X ) = ] ~ s i n [ k r c  x + M]2M J 

 -12M] 
M 

C k~- ~ q)k(X) 1[0 ,1](x) dX.  
- M  

See [6], Sects. 1.8 and 1.9, for the theory of such expansions. 
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Choose ~c>0 such that x - 2 1 > 0 ,  but ~c-2i<0 for all i>2.  Now choose 
T sufficiently large that 

~ cke(~-~k)r<_6 
k = 2  

and such that for - M _< x < M, 

[~x+M]>3.1[-2<x<3].  Ictl e ( ~ - ~ r s i n [  ~ - - ] _  

Finally, choose 6 > 0 such that 

sup sup h(t,x)<�89 
O < t < T  - M < _ x < _ M  

so that h(t, x) is a subsolution of (2.36). Then, 

w(T, x)>h(T, x) 

>6cl e(~-~l)rq)l(x)+ ~ 6e(~-zOr~Ok(X) 
k = 2  

__>26 i f - 2 _ < x _ < 3 .  

Of course, w(T, x)>O. This proves Lemma 2.2.4, and completes the proof 
that v survives with positive probability. 

2.3 Extinction 

In this section, we show that if 0<0o,  then with Probability 1, u(t, x) does 
not survive. Again, we assume that u0 E C +. 

For this section we use Lemma 2.1.2 with a=O -1, b=O -1, c=O -1. 
We find that v(t, x)= cu(at, bx) satisfies 

0 
(2.40) vt = ~ Vxx + v -  v 2 + 0 -~ v ~ I?v'. 

Let V(t)= ~ v(t, x) dx, and let S(t) be the support ofv(t, x) in the x variable. 
--Ct~ 

Suppose that 

(2.41) V(0)  = K 

S(0)= EY, Y+ 1]. 
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Finally, let z be the first time t that either V(t) = 0, V(t) = 2 K, or S (t) r  1, 
y+2].  

We claim that  z < oo a.s. We only outline the argument,  leaving it to 
the reader to fill in the details. Unless v(t, x) is small for most  values of 
x, the noise term will not be small. Then the noise will have an appreciable 
chance of driving V above 2K. If  v(t, x) is small for most  values of x, 
and if S(t)~ [ y -1 ,  y+ 2J, then the terms v - v  2 will be small in comparison 
to the noise term, and v will evolve like a super-Brownian motion. We 
know that the super-Brownian motion dies out in finite time. 

Lemma 2.3.1 For 0 small enough and K large enough, 

P(V(z) >0)  < 1 . 

Proof Without  loss of generality, let y = O. Let t < ~, and integrate (2.40) 
over x. Since S ( t ) c  [ - 1 ,  2] for t < ~, we may  use Jensen's inequality: 

2 

d V = V d t -  ~ v( t ,x)2dx+O-~V~dB 
- 1  

< ( V - � 8 9  V 2) dt +O -~ V~ dB. 

t 2 

Here, B( t )=  ~ V(s) -~ ~ v(s, x) ~ W(dxds) is a Brownian motion. 
0 - 1  

Let Y(t) satisfy 

d Y = ( Y - � 8 9  y2) dt +O-~ Y~ dB 

Y(O) = V(O) = K 
2 

K - O - L  

By Theorem 1.1, Chap. VI, of [9], V(t)< Y(t) a.s., for t < z .  Let a be the 
first time t that Y( t )=0  or Y(t)=2K. Of course, a <  oo a.s. 

Lemma 2.3.2 Given e > O, we can find Oo small enough so that 0 < 0 < 0 o 
implies 

P(Y(a)=2K)<=e. 

Proof We make a scale change, seeking a function f such that f ( Y )  is 
a martingale, and such that f ( 0 ) = 0 ,  f ( 2 K ) = l .  For  such an f, we have 

1 
X " 1 2 f (K)=P(Y(o)=2K) .  Using Ito 's  lemma, we find that  ~ f +(x - - xx  ) 

f ' =  0, and thus 
K 

exp[O(-2y+�89 y2)] dy 
/ (x )=  o 

exp[O(-- 2 y + �89 y2)] d y 
0 
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For large y, the dominant term in the exponent is y2, and hence when 
x = K  and K is large, the denominator in f (K )  is much larger than the 
numerator. Now Lemma 2.3.2 easily follows. 

Lemma 2.3.3 
then 

Proof. Let 

Fix e > 0 and t > O. I f  Oo is small enough, and if 0 < 0 < 0 o, 

P(a>t)<a.  

Z ( t ) = 2 K - ~  y6. 

Using Ito's lemma with (2.42), and recalling that O-6=K ~-, we find that 
Z ( t ) satisfies 

3 1 3 3 3 1 

d Z = d B + K - ~ Y ~ d t - K - a Y ~ d t - � 8 9  K~Y ~dt 

<=dB+�89 

Z ( 0 ) = 2 K - C  

Now, let Z(t) satisfy 

(2.42) dZ=dB+�89  Z d t  

2(0)=2K-+. 

Using Theorem 1.1, Chap. VI of [9], we conclude that 

o <= z(t) <= 2(0.  

Let ~ be the first time s > 0  such that Z(s)=0.  If Z(s) never equals 0, let 
= oo. Then a < ~7, and 

P(a>t )<P(~>t ) .  

However, it is easy to check from (2.42) that if 0 o is small enough, and 
hence K is large enough, then 

(2.43) P(ff > t)__< ~. 

To see (2.43), note that for large K, Z(0) is close to 0. For small time, 
the fluctuations of dB will dominate the dt term in (2.42), and will send 
Z(t) to 0. We leave the details to the reader. 

This proves (2.43), and completes the proof of Lemma 2.3.3. 
Now we finish the proof of Lemma 2.3.1. First, using Lemma 2.3.2 

and Lemma 2.3.3, choose 0o so small that P ( Y ( a ) = 2 K ) < ~ ,  and P(a>t)  
< ~ .  Then, using Lemma 2.1.9, choose 0<0o so small that if t=1/(47), 
then P(S(s)~; [ - 1 ,  2], for some s__< t)< 1/24. Clearly, these three estimates 
imply that 

P(S(~) ~; V- 1, 2]) < ~ .  
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Since V(t)< Y(t) by construction, we have 

P(V(z)>O)<=P(S(z)~: [ -  1, 2])+ P ( Y ( a ) = 2 K ) +  P ( a >  t) 

<~. 

This proves Lemma 2.3.1. 
Now we proceed with the proof  of extinction. Since u(0, x) is continuous 

with compact  support,  we may  choose v(k)(o, X) such that 

v (0, x) =< ~ v ~k~(0, x) 
k = l  

Xk+ 1 

with v(k)(o, X) supported on an interval [Xk, Xk'~- 1], and S v(k)( O, X) d x = K .  
Xk 

By Lemma  2.1.7, we may  extend the v(k)(o, X) to solutions v(k)(t, X) of 

0 V (k) - -  V (k)2 -~ 0 - }/)(k)�89 Wk,  ~f~) = ~ ~ + 

where the ~ are independent white noises, and such that 

v(t, x)< ~ v(k)(t, x). 
k = l  

As mentioned in the  introduction, we wish to regard the v (k) as individuals 
in a branching process. Define z k with respect to v (k), as in Lemma 2.3.2. 

xk+2 

Then supp(v(k)(Zk, "))c [Xk-- 1, Xk+2 ] and v(k)(zk) -- ~ v(k)(Zk, X) d x < 2 K .  
x k -  1 

If V(k)(~k)=0, we say that v (k) has no offspring. If  V(k)(Zk)>O, then there 
exist 6 nonnegative, continuous functions {v (k' o}6= 1 such that each v (k' i)(~k, ") 

x k i  + 1 

is supported on an interval [Xki, Xki-I-l], ~ v~k'O('Ck, X ) d x = K ;  and 
6 xui 

V(k)(rk, X)<- Z v(k'O(rk' X). The functions {v(k'0}~ 1 are regarded as the off- 
k=a 

spring of v (k). We can define v (k' i) (~k + t, X) as before, and continue the argu- 
ment. By Lemma 2.3.1, the expected offspring size is less than 1, so the 
branching process dies out almost surely. This means that eventually, all 
of the functions have reached 0. This proves extinction for v(t, x). 

References 

I. Bramson, M., Durrett, R., Swindle, G.: Statistical mechanics of crabgrass. Ann. Probab. 
17, 444~481 (1989) 

2. Dawson, D.A.: Geostochastic calculus. Can. J. Stat. 6, 143-168 (1978) 
3. Durrett, R. : Oriented percolation in two dimensions. Ann. Probab. 12, 999-1040 (1984) 



156 C. Mueller, R. Tribe 

4. Durrett, R.: A new method for proving phase transitions. In: Alexander, K., Watkins, 
J. (ed.) Spatial Stochastic Processes. Boston: Birkhauser 

5. Durrett, R., Neuhauser, C. : Particle systems and reaction-diffusion equations. (preprint 
1992) 

6. Dym, H., McKean, H.P.: Fourier Series and Integrals. London: Academic Press 1972 
7. Evans, S., Perkins, E.: Absolute continuity results for superprocesses with some applica- 

tions. Trans. Am. Math. Soc. 325, 661-681 (1991) 
8. Evans, S., Perkins, E.: Measure-valued diffusions with singular interactions. (preprint 

1993) 
9. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. 

North-Holland 1981 
10. Iscoe, I.: On the supports of measure-valued critical branching Brownian motion. 

Ann. Probab. 16, 200-221 (1988) 
11. Kotelenez, P.: Comparison methods for a class of function valued stochastic partial 

differential equations. Probab. Theory Relat. Fields (to appear 1992) 
12. Mueller, C. : On the support of solutions to the heat equation with noise. Stochastics 

37, (4) 225-246 (1991) 
13. Mueller, C., Sowers, R.: Blowup for the heat equation with a noise term. Ann. Probab. 

(submitted 1992) 
14. Donati-Martin, C., Pardoux, E.: White noise driven SPDEs with reflection. Probab. 

Theory Relat. Fields (to appear) 
15. Perkins, E.A.: On a problem of Durrett. Handwritten manuscript, 1988 
16. Shiga, T. :Two contrastive properties of solutions for one-dimensional stochastic par- 

tial differential equations. (preprint 1990) 
17. Sowers, R.: Large deviations for a reaction-diffusion equation with non-Gaussian 

perturbations. Ann. Probab. 20, 504-537 (1992) 
18. Walsh, J.B.: An introduction to stochastic partial differential equations. (Lect. Notes 

Math., vol. 1180, pp. 265-439) Berlin Heidelberg New York: Springer 1986 


