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0 Introduction 

In this paper we proceed the study started in our previous work (Korostelev and 
Leonov 1992) on the large deviation principle for small random perturbations of 
dynamical systems in discontinuous media. We consider two-dimensional diffusion 
processes with a drift which is discontinuous along the vertical axis {(x, y): x = 0}. 

As far as we are aware, the paper by Borovkov (1967) was the first study of the 
large deviation principle for the infinite-dimensional case. This principle has been 
elaborated in detail by Freidlin and Wentzell (1970) for small random perturba- 
tions (see also Freidlin and Wentzell 1984; Deuschel and Strook 1989). The term 
'action functional' has been proposed by Freidlin (1972) to describe the exponential 
rate of decay of the large deviation probabilities. 

In our study we use a well-known idea of continuous mapping which gives 
a simple solution of the problem in the stable case, i.e. when the drift may be 
decomposed into some smooth vector field and a discontinuous summand whose 
discontinuity is directed towards the vertical axis. We also obtain the large 
deviation principle for the staying-time in the half-plane {(x, y): x > 0}. 

A general upper large deviation bound which is quite close to our results has 
been proved by Dupuis et al. (1991). As these authors remark, a lower large 
deviation bound often requires an analysis on a case by case basis. For  discrete- 
time Markov chains such an analysis has been accomplished by Dupuis and Ellis 
(1992). 

The paper is organized as follows. The main definitions and results are pres- 
ented in Sect. 1. A comparison of methods and a discussion of possible approaches 
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are given in Sect. 2. Section 3 contains the technical details, while Sect. 4 collects 
some remarks on the properties of diffusion got by the continuous mapping 
method. All proofs of the lemmas are postponed to the Appendix. 

1 Statement of the main result 

Our previous paper (Korostelev and Leonov 1992) has dealt with the large 
deviation principle for two-dimensional diffusions (X, Y) = (X ~, Y~) satisfying Ito 
stochastic differential equations 

dX(t) = b(X(t), Y(t))dt + e dW1 (t) 
(1.1) 

dY(t) = B(X(t), Y(t))dt + edW2(t), 0 N t N T ,  

with the initial condition 

X(0)=0 ,  Y(0 )=0 ,  

where s is a small positive parameter; W1 (t), W2 (t) are two independent standard 
Wiener processes. It has been assumed that a drift (b (x, y), B (x, y)) suffers a jump 
along the vertical axis {(x, y): x = 0}. 

In the cited paper only the simplest case has been considered when b(x, y) 
doesn't depend on y: b(x, y) = b(x), and b(x) is piecewise constant: 

{ ~ :  if x > 0  B ( x , y ) = { B : ( y ) i f  x > 0  (1.2, 
b(x) = if x = 0, (y) if x ____ 0, 

where the condition b_ > b+ holds; B+(y) and B_(y) are smooth bounded 
functions. 

The aim of the present paper is to study the system (1.1) with the drift 
(b(x, y), B(x, y)) which depends on both coordinates. We assume now that there 
are two pairs of smooth bounded real-valued functions 

(b+ (x, y), B+ (x, y), (b_ (x, y), B_ (x, y)), 

and the drift in (1.1) has the form 

f (b+(x ,y)  if x > O  S ( x , y ) = [ U + ( x ' Y )  if x > O  
b(x, y) = ((b_ (x, y) if x = O, (B_  (x, y) if x __< O, 

(1.3) 

where Ib+_ (x, y)l, IB+_ (x, y)l < Co, Co > O, 

Ib• (xl, yl)  - b+_(x2, Y2)[ =< L(lxa - x21 + lYl - Y2 I), 

IB+_(xl,yt)--B+_(x2, Y2)[ < L(lxl  -x2l-}-[Yx -- Y2]), L > 0  . 

We will use the concepts and definitions of large deviations developed by 
Freidlin and Wentzell (1984) to obtain the action functional for the solution of (1.1) 
(this functional is often called the rate function governing the large deviations, 
cf. Deuschel and Strook (1989)). We first give a basic definition. 

Definition. Let [l'll0, r be the uniform norm in the space (I~[O,T ] of continuous 
functions. Let 01, ~h2 be elements of (I;ro ' rj with 01 (0) = 02(0) = 0. A functional 
1(01, ~h2) = Io. r(Ol, 02) is called action functional for the solution of (1.1) if 
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(i) for each S > 0 the set 

�9 (S) = {(~1,4'2): I ( ~ i ,  ~2) < S} 

is a compact subset of Cto, r]; 
(ii) for arbitrary small 6 > O, h > O, and for each S > 0 the following inequalities 
hold: 

I e ( H x - 0 1 / I o ,  r + ]1 Y -  4,21ro, r < a) 

> exp{ - g-2(I (~l ,  g'2) + h}; 

( inf [11 x - ~1 H o,r  + II Y -  ~2/I o,T] > a  1P 
k ( 0 1 , 0 2 ) e r  / 

< exp{ - e - 2 ( S -  h)} 

provided that e > 0 is small enough. 
It has been shown in Korostelev and Leonov (1992) that the actmn functional 

for the solution of Eqs. (1.1) with the simplest discontinuous drift (1.2) has the 
following form: 

T 

1(01, ~2) = inf (1/2) f [(r - I~(t)b+ - (1 - fi(t))b_) 2 
ueM(~bl ) 0 

+ (r -- li(t)B+ (O2(t)) -- (1 - li(t))B-(02(t))) 2 ] dt (1.4) 

where M(~/,t) denotes a set of absolutely continuous functions p(t) satisfying the 
following condition: 

/ 3 ( 0 = 0  i f r  

0 < / i ( t ) < l  i f 0 1 ( t ) = 0 ,  

/.2(t)= 1 i f f l ( t )  > 0 ;  

I ( ~ 1 ,  @2) = -~- O0 if the integral in (1.4) diverges or the functions ~1, ~2 are not 
both absolutely continuous. 

The physical meaning o f / i  is obvious: if a diffusion sample path is close to 
(~1, ~2 ), then the share of time spent by this path in the positive half-plane at time 
t is close to /i, so that p is approximately the time occupied by (X, Y) in this 
half-plane. 

Example 1.1 If T = 1, ~1 (t) = 0, and if the functions ~2 (t), B+ (y) are equal to some 
given constants: 

r  B e ( y ) = B + ,  

then the action functional (1.4) may be written more explicitly: 

I(0, ~2) = I(u2) 

inf (1 /2 ) [ ( -  #+b+ - (1 - #+)b_)  2 
0 < # +  < 1  

+ (u2 - ~ +  B +  - (1 - # + ) B _ ) 2 3 .  (1 .5)  
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The formula (1.4) gives an idea on the form of the action functional in the 
general case of the drift (1.3): 

I ( 0 1 , 0 2 )  = inf 1 ; [(~)l(t)-- I~(t)b+(Ol(t),Oz(t)) 
/ ~ 6 M ( 0 1 )  "~ 0 

--  ( t  - -  I~(t))b_ (01 (t), 02  (t))) 2 

+ ((~2(t) - ~(t)B+ (01(0, O2(t)) 

-- (1 --/J(t))B_ (01 (t), 02(t))) 2 ] dt; (1.6) 

1(01, 02) = + ~ if the integral in (1.6) diverges or the functions 0 1 , 0 2  are not 
both absolutely continuous. 

Indeed, we prove that (1.6) holds under the following 'stability' condition. 

A s s u m p t i o n  1.1 Let the jump of b(x, y) on the vertical axis be strictly positive and 
separated from zero uniformly on y, i.e. 

inffl(y) > C1 > 01 
y 

where fl(y) = b_ (0, y) - b+ (0, y). 

T h e o r e m  1.1 I f  Assumption 1.1 holds, then the action functional 1(01, 02) fo r  the 
solution of stochastic equations (1.1) with the drift (1.3) is 9iven by (1.6). 

Remark 1.1 Some possible generalizations of Theorem 1.1 are discussed in Sect. 
4 (see Remarks 4.1 and 4.2). 

Remark 1.2 Let/~,  (t), 0 < /~ ,  (t) < 1, be a pointwise minimizer for the quadratic 
function (in/i) on the right-hand side of (1.6). Since/i ,  (t) is a bounded measurable 
function in t, 0 < t _< T, the function # ,  (t) is absolutely continuous. Hence, the 
minimization problem on the right-hand side of (1.6) may be solved explicitly with 
the action functional presented via some function L, 

T 

1(02, 02) = (1/2) f ]-'(0~, 02, ~)~, ~2)dt. 
0 

But the truncation condit ion/i ,  ~ [0, 1] makes the expression for s rather intricate, 
and we prefer the version (1.6) for the action functional. 

2 R e m a r k s  on m e t h o d s  o f  invest igat ion 

Continuous mappino method. If the drift in (1.1) has the simplest form (1.2), then the 
first coordinate X(t) may be studied independently of the second coordinate Y(t). It 
is worthwhile to note that, in general, the solution of the equation 

T 

x(t)  = f b(X(s))ds + eWl(t) 
0 

does not exist if we substitute ~W1 by an arbitrary continuous function ~p. Never- 
theless, the solution of this equation does exist for a 'sufficiently large' set of 
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functions which is dense in 1121o, rj. It has been shown in Korostelev and Leonov 
(1992) that if b_ > b+, then the mapping defined by this solution turns out to be 
continuous and may be extended to the whole space Cro, T~, SO that X = G1 (e W1 ), 
where G1 is a continuous mapping: 

G1 : C[o, T] -4 Ill[o, TI �9 

Define a functional re(t) as a share of time spent by the sample path X(.) in the 
positive semi-axis: 

re(t) = f z+(X(s) )ds ,  0 < t <_ T, 
0 

where Z+ (x) is the indicator function of the positive semi-axis. For a diffusion in 
discontinuous media it is useful to study the process X(t)  together with the 
functional n(t). The key point of the 'continuous mapping' method is in the 
following relation between X, n, and e WI: 

X(t)  = b+rc(t) + b_( t  - re(t)) + eWl(t) ,  0 < t < T .  (2.1) 

This relation is based on the fact that for any diffusion the staying-time at the origin 
is equal to zero almost surely. Formula (2.1) makes it possible to consider the 
functional ~ = G 2 (e  m 1 ) also as a continuous image of e Wz: 

g(t) = (~W 1 (t) -[- b_ t - X(t ) ) / (b_ - b+ , (2.2) 

the inverse mapping (X, ~) ~ e W1 being quite simple: 

eWe(t) = X(t)  - b+ ~(t) - b_(1 - ~z(t)) 

The second coordinate Y(t) of the solution (X(t), Y(t)) of (1.1) must satisfy the 
integral equation 

j g ( t ) =  f B+(Y( s ) )dn ( s )+  B _ ( Y ( s ) ) d ( s - n ( s ) ) + s W 2 ( t ) ,  O < t < T .  (2.3) 
0 0 

Thus, the pair (X, Y) together with functional (2.2) may be considered as an image 
of the pair (e W~, e W2) under a continuous mapping: 

(X,  re, Y) = ( G I ( ~ W 1 )  , G z ( e W 1 ) ,  G3(gW1,  ~W2))  . 

In this case the inverse mapping is also explicit: 

(e Wl  (t), e W2(t)) = (X  (t) - b+ z~(t) - b_ (1 - ~(t)), 

t t 

Y(t) - f B+ (Y(s))dn(s) - f B_  (Y(s))d(s - ~(s))). (2.4) 
0 0 

The general results imply (Freidlin and Wentzell 1984) that the action functional 
1(01, 02) for the pair (X, Y) has the following representation: 

I ( O * ' 0 2 ) =  i n f (  (1/2) f (H(~ + (2.5) 

where the infimum is taken over all absolutely continuous functions (qh, cp2) with 
qh (0) = cp2 (0) = 0 such that 0~ = G1 (cpa) and 02 = G3 (q)~, cp2) (I(0~, 02) = + oe 
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if there are no such functions q~l, (~02)" Taking into account (2.4), we see that (2.5) 
entails representation (1.4) for the action functional. 

An additional problem arises when we endeavour to realize this idea for the 
general case of the drift (1.3). Indeed, the relation analogous to (2.1) must now have 
the form 

t 

x(t) = f b+ (X(s), Y(s))drc(s) 
0 

+ ) b_(X(s), Y(s))d(s - 7t(s)) + eWl(t), 0 < t < T .  (2.6) 
o 

The right-hand side of (2.6) contains the second coordinate Y(t) which is not still 
defined. To get over this hurdle, we are 'freezing' a continuous path Y(.) and 
defining two non-anticipating functionats 

X = X (t; Y(-), ~ W1 (")) and rc = rc (t; Y(" ), e W~ (.)). 

Since the second coordinate Y(t) is expected to satisfy the integral equation 

r(t) = f B+ (X(s; Y(.),eWI(.)),  Y(s))dTz(s; r( .) ,  eWI(.))  
0 

t 

+ f B _  (X(s; Y('), e W 1 (")), Y(s)) d(s - u(s; Y('), e W1 ("))) 
0 

+eW2(t) ,  0 _ < t < _ T ,  (2.7) 

it is necessary to prove that the solution of equation (2.7) exists, is unique, and 
continuously depends on ~ W~ and e W2. The inverse mapping in the general case is 
not much more involved than (2.4). 

H. Cramer transform. Dupuis and Ellis (1992) have worked out the direct method to 
obtain the rate function governing the large deviations for a random motion in 
discontinuous media. Their result which is remarkable for its generality is based on 
the Wentzell's generalization of the CramSr transform. They have considered 
a Markov chain: 

s(t + 1) = s(t)  + ~+(t + 1)z(&(t )  > 0) 

+ ~ - ( t + l ) z ( S ~ ( t ) < 0 ) ,  t = 0 , 1 , . . . ,  (2.8) 

where S(0) = 0, $1 (t) is the first coordinate of vector S(t), ~ + (t) and ~-( t )  are two 
independent sequences of i.i.d, random vectors with distributions F + and F -  
respectively. To formulate the results by Dupuis and Ellis, we restrict ourselves to 
the two-dimensional case and introduce the following cumulant generating fun- 
ctions 

H++-(zl, z2) = logfexp  {z~x~ + z2x2}~ )-+- (dx~, dx2) 

and their Legendre-Fenchel transforms: 

L+(ul,u2) = sup [(zlul + z 2 u 2 ) -  H+(zl ,z2)].  
Z I  , Z 2  
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When studying the large deviation principle for a random walk in discontinu- 
ous media, the most crucial point is the description of this motion along the axis of 
discontinuity. Under some mild conditions the following equality holds: 

lim l ime 2 l o g P ( / l ~ 2 S ( [ ~ - 2 ] ) -  ul[ < 6) = - L(u) (2.9) 
6 ~ 0  e ~ 0  

where u = (0, u2), H' I1 is the Euclidean norm, and 

L(u) = inf (u+L+(u  +) + # _ L - ( u - ) :  0 < #+ < 1, #+ + #_ = 1, 

#+u + + U - u -  = u , u ~  < 0, ui- > 0 ) .  (2.10) 

Here L(u) is the rate function governing the large deviations of the Markov chain 
(2.8), i.e. the finite-dimensional analogue to the action functional. 

Example 2.1 If IP • are Gaussian distributions having mean values (b• B+ ) and 
identity variance matrices, then simple calculations of L(u) in (2.10) show that 

L ( u ) =  inf ( 1 / 2 ) ( ( - - # + b + - ( 1 - # + ) b _ ) 2 + ( U z - # + B + - ( 1 - # + ) B _ ) 2 ) .  
0 < # + < 1  

This result is in a good accordance with the action functional (1.5) in Example t.1. 

3 Definition of continuous mapping 

Similar to the simplest case of discontinuous drift (1.2), we start with the first 
component G1 of the mapping G. Let Oz(t) be an arbitrary fixed continuous 
function, 0z (t) e I12[o, T~. Define a mapping G1 so that the function 01 = G1 (q~, 02) 
would be a solution of the ordinary differential equation 

~l(t)  = b(Ol(t), 02(0) + ~b(t), 01(0) = (p(0), 

provided that this solution exists. 
Let l(t) = l~(t) be a broken line, i.e. a continuous piecewise linear function with 

breaks at points tj = j6, j  = 0, 1 , . . . ,  T/6, where ~ is a given small positive number 
and T/6 is assumed to be an integer. Define the derivative of the broken line at 
a break-point as its right-hand derivative, and let I~ = (tj_ 1, tj). 

Introduce a set 5r (H) by 

s = {l(t)lI(t) is a broken line, infl/(t)l => H > 0} 
t 

and denote S o  = ~ (2Co)  where Co is the upper bound for Ib• (x, Y)l. 
The next technical lemma will be presented without proof since it is a simple 

generalization of Lemma 1 from Korostelev and Leonov (1992). 

Lemma 3.1 Let O (t) ~ IE[o, TI, #(t) E M(0).  Then for an arbitrary integer n and for an 
arbitrary fixed constant H > 0 there exist positive 6 = 6(n, H) and a broken line 
l = l~(t) such that 

tE s ! l I -  OI[o,T < 1/n, 

1 [ # -  #~[Io, r < 6, where # , ( t )  = rues{s is  < t,l~(s) > 0}, 
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and if ~(t) > O for all t ~ l j ,  then l(t) > O for all t ~ lj, 

if ~ (t) < 0 for all t ~ Ij, then I(t) < 0 for all t ~ I j, 

if tp(t) = O for some ~ Ij, then either I(tj_l) = 0 or l(tj) = 0 

and l(t) va O for all t ~ I~. 

If l~  S o ,  then a function ~1 = Gl(l, ~b2) may be defined as a solution of the 
differential equat ion 

i~l(t ) = b(l~l(t), ~t2(t)) q- [(t), ~/1(0) = l(0). 

The following integral representat ion is valid for this solution: 

t '  

~ ( t ' )  = 01(t) + f b(r (s), r  + l(t') - l ( t ) .  (3.1) 
t 

Fur thermore ,  it is obvious that  

m e s ( s : s < T , ~ l ( s ) = 0 ) = 0  i f l e A ~  . 

Lemma  3.2 I f  Assumption 1.1 holds, l, l' ~ 5go, and ~2, ~ ~ Cto. r],  then for each 
t , t <  T, 

t 

H G1 (l, g'2) - G1 (r ,  g,h)H o. r < K (  Ill - r I] o.t + f ]g,2 (s) - g,h (s) l ds) 
0 

where K = e Lr max (2, L), L is the joint Lipschitz constant for b+ (x, y). 
The proofs of this and the subsequent lemmas are given in the Appendix. 

Corollary 3.1 Since the set 5go is dense in Cro ' r l ,  the mapping G1 may be extended to 
the whole space Cto ' r], preserving the Lipschitz property: for arbitrary pairs of 
continuous functions q), r and ~2, ~'2 the following inequality holds: 

t 

II G~(q~, 02 )  - Gl(qr  g'~)llo.t < (llq) - ~P' IIo, + f Ig, z(S) - r 
0 

To introduce the mapping G 2 for a fixed function ~b2, define auxiliary functions 
f (x ,  y) and v(t): 

{ bb ~ (x, y) + fl(y), x > O  
f (x ,  y) = (x, y), x < 0; 

t 

v(t) = d2(q~, O2)(t) = f f ( O l ( s ) ,  O2(s))ds + q)(t) - Ol(t)  (3.2) 
o 

where ~b~ = G I ( ( R ,  ~ 2  ). If (p = l e A % ,  then it may  be easily verified that  the  
function v (t) is absolutely cont inuous and non-decreasing, as well as the function 

#(t) = G2(rp, ~ba)(t) = f (9(s)/fl(Oz(s))ds. (3.3) 
o 

Moreover ,  for (p = l eA~  the functions #(t) and Or(t) are connected by the 
following relation: 

/i(t) = (1/2)(1 + sign ( ~  (t)). 
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Now, if go(t) is an arbitrary function from ti21o, rl and {l, } is a sequence of broken 
lines which uniformly converges to go, I, e 2"o, then Lemma 3.2 implies that the 
functions v (t), #(t) defined by (3.2) and (3.3) are non-decreasing absolutely continu- 
ous functions of the argument t. Moreover, since the functionf(x, y) is Lipschitzian 
in bo th  arguments, it follows from Lemma 3.2 that #(t) s M(01 ) and the mapping 
G2 = G2(go, 02) is Lipschitzian in go, 02 in the norm of the space tl2to ' rl. 

The next lemma states the uniqueness of the inverse mapping. 

Lemma 3.3 I f  01 ,02  are continuous functions and #~  M(~I) ,  then there exists 
a unique function go, go ~ fig[o, rl, such that 

Ggo = (G1 (go, 02), Gz(go, 02)) = (01, #), 

and the following relation holds: 

t t 

go(t) = f #(s)B(O2(s))ds + 01(0 - f f ( O l  (s), O2(s))ds. (3.4) 
0 0 

Corollary 3.2 For any continuous function 02(t), the functions 01(t) and #(t) con- 
structed above are two non-anticipating functionals of cp(t), the following relation 
being valid as a mere consequence of(3.4): 

go(t) = 01(0 - f b+ (01 (s), 02(s))/i(s) ds 
0 

- f b_ (01(s), 02(s))(1 - li(s))ds. (3.5) 
0 

When two non-anticipating functionals 0 , ,  0'1 are given that correspond to 
different functions 02, 0~ and the same function go, we prove a more precise 
property of continuity. This property is important for the analysis of the vertical 
coordinate. 

Lemma 3.4 Let v = G2(I, 02 ) ,v '  = G2(I, 02 )  where I E 2'  0 and 02, 0~ ~ C[o, rl. 
Then the inequality 

[ 9(s) - r (s)l ds <= L1 f 1102 - 0'~ Ito, sds 
0 0 

holds with some positive constant L , .  

Integral equation for vertical coordinate. Now we proceed to study the vertical 
coordinate and prove that the integral equation 

t 

0z(t) = f B+ (0~(s;02('),  go,(')), 02(s))d#(s;02('), go1(')) 
0 

+ f B_ (0 , ( s ;02( ' ) ,  go1 (')), 02(s))d(s - #(s; 02( ') ,  go1 ('))) + go2(t) 
0 

(3.6) 

has a unique solution if 0 ,  and # are non-anticipating functionals of 02( ' )  and 
go1(') introduced by (3.1) and (3.3). 
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Lemma 3.5 Equation (3.6) with the initial condition 02 (0) = 0 has a unique continu- 
ous solution in the interval 0 <_ t <_ T, this solution being a non-anticipating continu- 
ous functional for  each pair (~Pl, (P2) e IEto ' r ]x  Cto ' r]. 

Define the non-anticipating functional from Lemma 3.5 by 

02 = G3(~01, ~02). 

Thus, we have constructed a mapping F which establishes the correspondence 
between pairs of continuous functions (q)l, ~o2) and triples (~o~, #, 02): 

F : t~ [0  ' T] X I~[0  ' TI --+ I~[0 ,  T] X I~[0 ' T] , 

where ~Eo, r] = {(0(t), #(t)), 0 --< t --< T: 0 e C[o, Wl, # e M(0)} , 

and 01 = Fl(cPl, cp2) = Gl(cpl, G3(cpl, cp2)), 

02 = Fa(q)l, q~2) = G3((Pl, (P2). 

Define the solution of Eqs. (1.1) by 

(X, Y) = (F 1 (smt ,  8W2), F3(sW1, 8W2)) �9 (3.7) 

4 Application of continuous mapping to diffusion 

Before we pass to the proof of Theorem 1.1, it is necessary to clarify whether 
definition (3.7) of the processes X, Y is equivalent to the standard definition of 
diffusion with discontinuous drift. The answer to this question is certainly positive. 
Introduce the staying-times: 

re(t) = mes(s: s < t, X ( s )  > 0 ) ,  

no(t) = mes(s: s < t, X ( s )  = 0) .  

The following properties hold almost surely with respect to probability IP: 

= F2 (e Wt, e W2) for each t e [0, T], and 

~o(T) = 0 , 

this may be proved by the same arguments as in Korostelev and Leonov (1992, 
Corollary 3 to Lemma 5). Hence, the second component of the mapping F, applied 
to the Wiener processes (eW1, ~W2), is the staying-time of the path X( t )  in the 
positive semi-axis. Since ~o (T) is vanishing, relations (3.5) and (3.6) guarantee that 
the following identities are true 

t 

x( t )  = f b(X(s),  Y(s))ds + e Wl(t), 
0 

t 

r(t) = f B(X(s) ,  Y(s))ds + e W2(t) 
0 

lP - a.s. for each t ~ [0, T]. This fact means that the pair (X, Y) is the strong 
solution of Eqs. (1.1) with zero initial conditions. This solution may be regarded as 
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the limit of a sequence of diffusions (X,, Y,,) with 'smoothed' drifts (see Girsanov 
1961), 

Proof of Theorem 1.1 According to Lemma 3.3, the mapping F has a unique 
inverse in Qto, T] • ~[0, T]. Moreover, it follows from (3.5) and (3.6) that for each 
t ~ [0, T]  

F -1(0~, #, ~) ( t )  

= (01(7)-- oJb+(O~(s)' 02(s))ji(s)ds- o ] b_(~q(s), 02(s ) ) (1 -  [2(s))ds, 

$2(t) - o ~ B+(O~(s)' O2(s))12(s)ds- o ~ B-(O1(s)' O2(s))(1- f~(s))ds). 

Therefore, the statement of the theorem is a mere consequence of Theorem 3.3.1 in 
Freidlin and Wentzell (1984). [] 

Remark 4.1 Independence of the Wiener processes Wl and W2 has not been used 
in our definition of diffusion. Hence, all the results may be extended to the case of 
the system (1.1) with the correlated white noise having a constant diffusion matrix. 
In this case the inverse diffusion matrix appears in the corresponding action 
functional. The study of non-constant diffusion matrices requires more involved 
arguments. 

Remark 4.2 If 'infimum' is omitted on the right-hand side of (1.6), then the 
functional 1(01, p, ~2) is the action functional for the triple (X, re, Y). As a conse- 
quence, the process-level large deviation principle may be obtained for the staying- 
time ~z(t) with the action functional 

I~(t~) = inf I ( ~ 1 , # , 0 2 ) .  
~,02 

Appendix 

Proof of Lemma 3.2 Divide the interval [0, TJ into open subintervals (u j, u j+ 1 ), 
j = 0, 1 . . . .  , so that on each subinterval the function g(t) = ~bl (t) - ~b't (t) does not 
change its sign. Note that 9(uj)= 0 with the only possible exception at point 
uo = 0, and either g(t) is identic zero or g(t) is strictly positive (negative) for 
t ~ (uj, uj+ 1). Let's assume that g(t) > 0 for t e (uj, uj+z). Using the abbreviation 
b (01 , 02 )  instead of b(01 (s), 02(s)), we have from (3.1): 

0 < g(t) = J1 + J2, where 

J1 = f Eb(~/1, 0 2 ) -  b ( ~ f f l ,  ~ t i ) ] d s  = J l l  -[- J12 , 
uj 

t 

J~l = f [b(4,1, 02) - b(~'~, r 
uj 

t 
J12 = f [b(~,i,~P2)- b(~,i,Oi)]ds, 

uj 

Jz = g(uj) + t(t) -- I'(t) -- [t(uj) - - / ' (u~) ] .  
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Since f ( x ,  y) is Lipschitzian in y for fixed x, we have 

[J121 --< L f 14'2(s) - 4,'z(s)lds <- L 14,2(s) - 4,1(s)lds. 
g j  0 

Moreover, it is obvious that  ] Jz [ _-< 2 I[ I - l' []o.,. Thus, to prove the lemma, it 
suffices to show that  

b(4,1, 4 ' 2 ) -  b(4' i ,  4'z) = RI + R2, where R1 < 0, [R2] -< L[4'~ - 4'il 

(R1 = R1 (4 '1,4 ' i ,  4'2), R2 = R2(4'1, 4"1, 4'2)). (A1) 

Indeed, provided that  g(t) > 0, we get: 

t 

g(t) = Ig(t)[ < L f 14 '~(s ) -4 , i ( s ) lds  + 1J121 + ]J2[, 
u j  

and the lemma follows from Gronwall 's  lemma. 
To prove (A1), we first remark that  if 4'~ > 4'] > 0 or 0 > 4'~ > 4'i ,  then 

obviously 

Ib(4'~, 4'2) - b(4,1, 4'2)1 < L[4,~ - 4,11. 

Now, if 4,1 > 0 >~ 4,1, then 

b(4'l ,  4'2) = b+ (4'1, 4'2), b(4'i ,  4'2) = b-  (4'i, 4'2), and 

b(4,~, 4'2) - b(4,'z, 4'2) = [b+ (4'~, 4'2) - b+ (0, 4'2)] 

+ [b+ (0, 4'2) - b_(0, 4'2)] + [b_ (0, 4'2) - b-(4,1,  4 '2)] ,  

where [b+(0, 4'2) - b_(0, 4'2)] < 0 due to Assumption 1.1, and 

I[b+ (4'1, 4'2) - b+(0, 4'2)] Jr- [b_ (0, 4'2) - b - (4 ' i ,  4'2)] 

< LI4'~[ + LI4' i[  = LI4' l  - 4 ' i l .  

This proves (A1) and completes the proof of the lemma. [] 

Proof o f  Lemma 3.3 Approximating the function 4,(t) by broken lines 4'"(0 = la (t) 
from Lemma 3.1 with fi = fi(n, 3Co), we define On(t) on intervals Ij recursively: 

c~,(t) = ~)"(t) - b+ (4,"(t), 4'2(0) if 4'"(0 > 0 for t �9 Ij ,  

and 

(o,(t) = ~"(t) - b_(4,"(t), 4,z(t)) if 4,"(t) < 0 for t �9 Ij 

with the initial condition cp,(0) = 4,"(0). 
Under  our assumptions ltd,(t)] > 2Co, so relation (3.1) is valid for functions 

cp., 4'" if we replace l, 4'i by q~, and 4'" respectively. Now, if we introduce the 
function 

#,(t) = mes(s: s < t, 4,"(s) > 0) ,  

then Gcp, = (4'", #,), and the following relation is valid: 
t t 

(p.(t) = f ~.(s)fi(4,z(s))ds + 4 ' " ( t ) -  f f(4'n(s), 4'2(s))ds . 
0 0 
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Since sequence ~" uniformly converges to ~,, it suffices to prove that 

t 

sup f [ l i , ( s ) - # ( s ) ] f l ( O 2 ( s ) ) d s - - , 0  as n - , o o .  (A2) 
t_<rlo 

To prove (A2), we remark that the function z (s) = fl (~2 (s)) is uniformly continuous 
in the interval [0, T ]. Therefore, z (s) may be approximated by a broken line zo (s), 
so that 

Ilz-zallo,  r < l / n ,  supl26(t)l<(1/n)/~, Ilz~l[o,r<B. (A3) 
t 

Further, it is obvious that 

j f~.(s) - ~(s)] z(s) ds 

~(s)3 z~(s) =< f [#.(s) - #(s)] [z(s) - z~(s)] ds + [#.(s) - ds 
o O 

Since I/in(s)[ < i, [/i(s)[ =< 1, the first integral term on the right-hand side is not 
greater than (2T)/n. It follows from Lemma 3.1 and (A3) that the second integral 
term may be estimated as follows: 

t d s  f [#n(s) - ~(s)] z~(s) = Ira(t) - ~(t)] z~(t) 

-- f [#n(s) -- #(s)]~(s)ds <= B6 + 6T(1/n)/3 = B6 + T/n . 
0 

This proves (A2) and completes the proof of the lemma. 

Proof of  Lemma 3.4 We use a construction from the proof of Lemma 3.2. Let the 
function g(t) = ~t 1 ( t )  - ~/ t  1 ( t )  be positive for t e (uj, uj+ 1 ). Using the abbreviation 
b(Ol, ~'2) instead of b(Ol(s), 02(s)), we get from (3.1) 

0 < g(t) = f [b(01, ~k2) - b(O'~, O'2)]ds 
uj 

j = f [ b ( ~ , l , O 2 ) - b ( ~ , ' ~ , O 2 ) ] d s +  [ b ( O i , O z ) - b ( g , ' l , 0 1 ) ] d s .  
Uj Uj 

The function g(t) is absolutely continuous and its derivative satisfies the equality 

0(s) = [b(gq, ~2) - b(O'~, ~2)3 + [b(Oi, ~2) - b(O'~, ~ ) ] .  (A4) 

Denote Ab(s) = b(~91, @ 2 )  - -  b(O'l, @ 2 ) '  To prove the lemma, it suffices to show 
that 

) IAb(s)lds < K1 f 11~'2 -- ~'h Ilo, sds , (A5) 
Uj Uj 



330 A.P. Korostelev and S.L. Leonov 

with some positive constant K1. Indeed, integrating (A4) within the interval (u j, t), 
t e (uj, ui+ 1 ), we get from (A5) 

IO(s)lds< IAb(s)lds + f lb(O'~,O2)-b(0'~,0'2)lds 
uj uj uj 

t 

< (Kx + L) f II 02 - 0~ IIo,sds, 
uj 

where L is the joint Lipschitz constant for b+_ (x.y). Thus, Lemma 3.2 and (3.2) 
imply that 

f I~(s)- ~'(s)lds < I f (01 ,02) - f (0 i ,02) lds  
0 0 

, ) 
+ f If(Oi, 02) - f ( 0 ' ~ ,  01 ) lds  + 10(s)l ds 

0 0 

< L  f (101(s ) -Oi ( s ) l+ lO2(s ) -Oi ( s ) l )ds+(g~+L)  [102-Oillo, sds 
0 0 

t 

<= (LKT+ 2L + K1) f II 02 - 01 IIo, sds, 
0 

where K is the constant from Lemma 3.2. 
To prove (A5), we introduce sets 

Then 

Sl = {se uj, uj+l):01(s) > 0 i ( s ) >  0 } ,  

S 2 = {s e (/,/j, b/j+1):0 ~ 01(3) > 0rl(s)} , 

$31 = {s s (u j, u j+l):  01 (s) > 0 > 0'1 (s), A b(s) > 0} , 

S32 = {s~(u~,uj+l):Ol(s) > 0 > Oi(s),Ab(s) < 0 } .  

r IAb(s)lds : f IAb(s)[ds-- f Ab(s)ds 
Uj S1 u S 2 u S 3 1  $32 

= - ? Ab(s)ds + f [_[Ab(s)l + Ab(s)]ds .  
Uj S1 u S 2 u S 3 1  

It follows from (A1) that for s s $31 

0 < Ab(s) = IAb(s)l < t101(s)  -- 0 i ( s ) [ .  

Further, 

-- ) Ab(s)ds <= Ig(t)l + L ? 1~2(s ) -  ~'2(s)lds, 
uj uj 

and it follows from the proof of Lemma 3.2 that 
t 

10(01 -<_ g f t02(s) - 01(s)l ds, 
uj 
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Thus, we finally get 

Idb(s)lds < (K + L) f 1O2(s) - Oi(s)lds + 2L f 1 4 , 1 ( s ) -  ~,i(s)lds 
u d Itd uj  

t 

< (K + L + 2LKT) f 11~2 - 4'~ !lo, sds. 
uj  

Lemma 3.4 is proved. [] 

Proof of Lemma 3.5 Define functions 

D +_ (x, y) = B+_ (x, y)/fl(y) 
where fi(y) is introduced in Assumption 1.1. Then, according to (3.3), the following 
identity holds: 

B+ (~1(s;~2(') ,  ~01 (')), ~2(s))d#(s;~2('), (o1(')) 
0 

: ? O_+ (~ / l ( s ;  ~12( ') ,  q ) l ( ' ) ) ,  ~ 1 2 ( s ) ) d 9 ( s ; ~ 1 2 ( ' ) ,  ~01(')) - 
0 

So, further on all integrals are considered over dv instead of dp. Let cp~ be an 
arbitrary fixed broken line from 5o0 and let ~o2 be an arbitrary fixed continuous 
function. Define the sequence {~(2 ") } recursively: 

O~~ = 0 for 0 _< t _< T, and 
t 

r = f D+ (01(s;~(2 "), q01), ~t(2n)(s))dv(s;t~(2n) , (Pl) 
0 

+ f D_ (~1(s;0(2 "), ~01) , O(2")(s))d(s - v(s;O(2 "), ~01) ) + (p2 (t) 
0 

for n = 0, 1 , . . . .  Since the function (pl(t) is the same in the non-anticipating 
functionals ~1(t;~(2 ~), ~ol) and v(t;O(2"),cpl) for all n, Lemma 3.4 leads to the 
inequality 

1O(2"+l)(t) - 0(2")(01 < C ? I[ ~(2")(.) - O(2"-~)(.)[lo, sds. (A6) 
0 

Here and below C denotes some positive constant which is not necessary the same 
in different expressions. Inequality (A6) guarantees the existence and the unique- 
ness of the solution ~/2 of equation (3.6) with (p~ ~ 5oo by the routine recursion. 

The second step of our proof is to verify the continuity 

11@2 -- O2 [10, t '~ '0 as [[(Pz--(P*tH0, t-[- ]1(/92 - -  @2110, t - ' ~0  (A7) 

where ~o~, ~o~ ~ 5~ q)2, q~h ~ ~2t0, TJ; ~2 and r are the solutions of Eq. (3.6) 
corresponding to the pairs (r r and (cp'~, ~oh) respectively. Convergence in (A7) 
is assumed to be uniform over t ~ [0, T ]. Indeed, 

[02(t)--0~(t)[=< f D + ( ~ l , ~ 2 ) d v -  fD+(O'~,~'2)dv' 
o 0 

+ of D-(~l ' t~2)d(s--v)--  of D - ( ~ q ' O i ) d ( s - v ' )  

+ I(p2(t) -- ~o~(t)l (A8) 
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~ = ~ ( s ; 4 ' ~ ( . ) ,  ~o~(.)), 4'i = 4 " ~ ( s ; ~ i ( . ) ,  ~oi( . ))  

v = v (s ;4 '~ ( . ) ,  ~o~(.)), v' = v ' ( s ;4 '~ ( . ) ,  r  �9 

Since the integrals containing functions D + and D_ on the right-hand side of (A8) 
admit the same upper bounds, it suffices to scrutinize only one of them. It is 
obvious that 

j D+(~I ,  4 ' 2 ) d r - o ] O + ( 4 " ~ ' 4 ' i ) d v '  

<= f (D+( I / l l ,4 '2) -  D+(I/fl,I/f2))dv' -t- f D+( I / l l ,4 '2)d(v-  v') 
0 0 

'( 
< C f tl 4'~ - 4 ' i  IIo,s + II 4'2 - 4'h I I0,s)ds  

0 

+ j 0+(4'1, 4 ' 2 ) d ( v ( s ; 4 ' 2 ,  q~l) - v(s;4"2, q~)) 
0 

t f + D+ (4'1,4'2)d(v(s,4'2," ~ol) - v(s;4'2, e l ) )  �9 
0 

The latter inequality together with (A8) and Lemma 3.4 entails 

 C(o ) 114'2-4' 1to,., 
+ I1~o~ - q~i Iio,, + II ~o2 - q~i I[o,~) 

+ ] O+(4',,4'2)d(v(s;4'i,q~l)- v ( s ; 4 ' ~ , q ~ i ) )  
0 

+ ) D - ( 4 ' l , 4 ' z ) d ( v ( s ; 4 " 2 , q ) l ) - v ( s ; O ' 2 , q ~ ' ~ ) )  �9 (A.9) 
0 

Note that the functions D+ (4'1 (s), 4'2 (s)) and D_ (4'1 (s), 4'2 (S)) may be approxim- 
ated to within an accuracy e by functions which are piecewise constant in intervals 
of length 3 (e). Hence 

t t 

D +_ (4'1, 4'2 ) d(v(s," 4'2, ~Pl ) - v (s; 4'2, (P'l)) 
0 

" ! . ! < c((1/,5(~))[ I  v( - ,  4 '2,  ~ol) - v ( . ,  4'2, , ;ol) I io,,  + ~) 

<= C((1/6(e))II ~o, - ~o'~ Iio,, + ~ ) .  (A10)  
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I t  is of  pr incip le  impor t ance  tha t  there  is no difference [ ] 0 2 -  0h Ho.t on  the 
r igh t -hand  side of (A10), so tha t  (A9) and  (A10) imply  

(, 
102(0-01(t)1 < C  fl102-011lo,  s& 

0 

(Pl --  ~Otl ][O,t + g -it- [] (~02 --  (~0~ [[O,t) , + (1/6(0) II 

and  we get f rom Gronwa l l ' s  l emma  

102(0 - 0 ~ ( t ) J  < eC'((1/a(O)II ~ol - (p'~ iJo,,  + ]l (#2 - ~o~ IIo,,  + e). 

The l emma follows f rom the last  inequal i ty  and L e m m a  3.1. 

Acknowledgement. We are grateful to the referee for many useful and constructive comments. 
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