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Summary. In the case of diffusions, we show that the isomorphism theorem 
of Dynkin and the Ray-Knight  theorems can be derived from each other. Our 
proof uses additivity properties of squared Bessel processes and an absolute 
continuity relation between +quared Bessel processes of dimensions one and 
three. 
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Introduction 

The isomorphism theorem of Dynkin [5] is an identity in law involving on 
one hand the local times of a given Markov process with a symmetric Green's 
function, and on the other hand the centered Gaussian process with this Green's 
function as its covariance. Using the properties of this Gaussian process, Shep- 
pard [15] recovered parts of the Ray-Knight theorems on the local times of 
a diffusion (cf. [14, 9]). Here we adopt a different approach based on the additi- 
vity properties of squared Bessel processes, to prove in a new way the general 
Ray-Knight theorems (see, for example, Jeulin [7]) and also the Markov proper- 
ties of the local times process. Conversely, our study allows us to establish 
Dynkin's isomorphism theorem as a simple consequence of the Ray-Knight  
theorems. Our arguments use the mutual absolute continuity between squared 
Bessel processes of dimensions one and three on every bounded time interval. 

In Sect. I, we introduce the isomorphism theorem and describe the processes 
involved in this identity. In Sect. II, we establish the equivalence between the 
isomorphism theorem and the Ray-Knight  theorems. Using the previous study, 
Sect. III translates the Ray-Knight  theorems in terms of infinitesimal generators. 
In Sect. IV we give, in a particular case, an unconditional version of the 
isomorphism theorem. 
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I The isomorphism theorem 

We start by introducing Dynkin's isomorphism. 
Let Y be a regular diffusion on an open interval E of R, admitting symmetric 

transition densities p~(x, y) with respect to a reference measure, with a finite 
+ o r  

Green's function g(x, y )=  f pt(x, y)dt for (x, y)EE 2 (It6 and McKean proved 
0 

in [-6, p. 149] that this hypothesis is always satisfied by a transient diffusion 
with its speed measure taken as reference measure). 

Let the probability ~b be defined by 

- g(Y~, b) P~l~t, P~bl~t- g(a, b) a, beE, 

where P~ is the distribution of Y starting at a, and P, Is~t is the restriction of 
P, to ~ the a-field generated by Y on the time interval [0, t]. We notice that, 
under P,b, Y is killed at b. As Y is regular, g(a, b) is strictly positive for every 
(a, b) in E ~. 

Let (L~, xEE) be the local time process of Y, evaluated at the life time q 
of Y. Let (~bx, xEE) be a Gaussian process with zero mean and with covariance 
equal to the Green's function (g(x, y), (x, y)EEZ), defined on an arbitrary proba- 
bility space unrelated to the path space of Y. The expectation with respect 
to the probability on this probability space will be denoted by ( - ) .  Note that 
~b is continuous (see Remark 1.3.1). Marcus and Rosen proved in [11] that 
the continuity of q5 is equivalent to the continuity of the process (L~, xEE). 

The isomorphism theorem of Dynkin can be expressed as 

for every positive measurable functional F. 
One of the surprising consequences of this identity is that the law of �89 q52 

/ q~b 
;\ is a probability measure. Proposition 1.1 under the signed measure \g(a, b) / 

gives an explanation of this in our case. 
From now we suppose that a < b. 
C(R+,  R+) is the set of the continuous functions on R+ to R+.  

Proposition 1.1 For every positive measurable functional F, we have 

and 

where 
(~b a q~b I(Iq~J; x e R + ) ) =  ]qSa q~b[ 1A([~bl) 

A = {OEC(R+, R+)" VuE(a, b), ~,  >0}. 
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Proof of Proposition 1.1 Let B = A c. By the isomorphism theorem, 

(~( l~ .F)(1~~ 

But under/3.b , our diffusion takes almost surely all the values between a and 
b. Consequently the support of E n contains (a, b) (see for example Jeulin [8]). 

I l J / t  \ x  

Henco have cootiouou , if it c, oos oot 
\gta,  o~ \z  1/ 

reach zero between a and b, we have sgn(4.)= sgn(q~b). Thus 

( q~. q5 b 1 2 Iq~. ~bbl 

Remark 1.2 If the original diffusion Y is obtained by killing a real Brownian 
motion B, at the first time it reaches zero, then, as: g(x,y)=2(xAy) for x, 

y > 0, if B starts from a positive value, ~b is equal to ~/2fi with fl a Brownian 
motion starting from zero. The previous equality then becomes, for s < t, 

E[flsflt l(a,<t)l(Jfl,[, u>0)]  =0  

where ds=inf{u>s:flu=O}. One can prove this equality directly by using the 
strong Markov property at time d,. 

Notation. We have to work with processes indexed on E. We can define the 
processes on R by taking them equal to zero when the index lies outside of 
E. We will use the canonical notation with probability measures on the space 
of continuous functions from R to R+ and (Xx, x~R) will denote the coordinate 
process. Let P be the law of 1 2 a b e l  ~ (~qSx, x~R), and the law of (L~, x~R) under 
Pab. 

With this notation, the isomorphism theorem of Dynkin becomes 

a b L , p =  2 (XaXb) 1/2 14 P 
g (a, b) 

where �9 denotes the convolution of two probability measures. Defining 

P =2  (X. Xb) 1/2 1A P 
g (a, b) 

we finally get the following formulation of Dynkin's isomorphism 

(I) ~  

From this it may be seen that, if we were able to describe precisely P and 
P, we could deduce "blL from (I) as the solution of a convolution equation. 
The Ray-Knight theorems would be obtained as a consequence of Dynkin's 
isomorphism. 

Conversely, suppose that ablL is known. As P is easy to describe (see Lemma 
1.3), the computation of "bL*P must give us P. Thus Dynkin's isomorphism 
appears as a consequence of the Ray-Knight theorems. 
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The claimed equivalence between the Ray-Knight theorems and Dynkin's 
isomorphism is based on a proper understanding of the probability measure 
P. That is why, it will be studied below, independently of those theorems. 

We need the following classical result (see for example Wong [17] or Neveu 
[12]). 

Lemma 1.3 Let (4)~, x~R) a Gaussian process with covariance (g(x, y), (x, y)~R z) 
and zero mean. Then: (4)~, x~R) is a Markov process if and only if there exist 
two functions f and h, such that g(x, y)= f (x) h(y) for x< y. When the last condi- 

~(xI f (x)  tion is satisfied, the function , , = ~ - ~  is increasing and 4) can be represented 

as 4)~=h(x)B~,), where B is a Brownian motion starting at zero. Consequently, 

for every atE,[\g(a,4)Xx) ; x> a) is a martingale. 

Remark 1.3.1 As 1"is a transient diffusion, there exist two continuous functions 
f and h such that 

g(x, y)=f(x)  h(y), x<y,  

(see [6, p. 160]). Consequently 4) is a Markov process. Moreover 4) is continuous. 

Any other choice for the pair ( f ,h) i s  of the form (2f, 2) with 2>0. Because 
[ 

] 

of scaling properties of Bessel processes, our results are independent of the 
choice of (f, h). 

Theorem 1.4 Under P, (X~, x e R) is a Markov process. In particular we have 

(1) P(X,+b ; t>OlXb=x)=P(Xt+b; t>OlXb=x) 

(2) P(X,-t  ;O<t<aIX ,=y )=P(X ,_ t  ;O<t<a[X,  =y). 

Proof of Theorem 1.4 Since B is a real valued Brownian motion, B 2 is a Markov 
process, and by the above lemma (X~,xeR) is also a Markov process under 
P. 

For every seR and every functional F of (X~,xER), we have for every 
2>0  

This is equivalent to 

p /2 (X,  Xb) 1/2 
p(e-~X~F)= \ �9 

+09 

0 

I e-axP 1AF[Xs= P(Xsedx). 
0 

Using the above equality with F equals to 1, it is easy to verify that 

p (_2(Xa Xb) 1/2 1a FIXs=x] P(Xs~dx) 
\ g(a, b) ) 

is equal to P(Xs~dx). 
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Arguing as above one also obtains 

, P((XaXb)I/ZlAFIXs=X) 
(i) P(rIXs=x)= ~ ~ A [ X ~ = - ~ "  

Substitute in (i) F = F~. F 2 with F 1 measurable with respect to the o--field generated 
by (X~;x<=s) and F2 measurable with respect to a(X~; x>s). It follows that 
for s<a or s>b 

i5(F1 FalX~= x)= P(F1 IX~= x) P(F21X~= x). 

If s ~ (a, b), then 

S P(Xla/21a'FllSs=x) P(X~/21AzFZIXs=X) 
P(F,/721 ~=x)=  P ~ . ~ / ~ - ] - A ~  x p(x~/2 1A~IX~=x) 

=P(F~ IX~=x) • P(F21X~=x) 
where A a = {Vus(a, s];X, > 0} 

A 2 = {Vue(s, b); X,  > 0}. 

This establishes the Markov property of (X~,xeR) under P. (1) and (2) are 
immediate consequences of (i). [] 

Let Q~ denote the law on ~g(R +, R +) of the squared Bessel process of dimension 
d > 0, starting at x > 0. 

The following theorem is the main tool used to prove the equivalence between 
the Ray-Knight theorems and the isomorphism theorem. It describes the law 
of (X~, x ~ R) under P. 

Theorem 1.5 Under P the law of (X~, x e R) is given by: 

(1) (Xt+b;t>--O[Xb=X) (a-=) Q 1 [h2(b+t) ) 
- h~b) k 2 X*(b+O-*(b); t>O 

(2) (X,+.;O<_t<_b-a)~ Qg(-h2(2+t) x,(.+t);O<t<b-a) 

[ h 2 ( a  - t) \ (a) 
(3) (X,-t ; t>OIX,=y) Q1 } = 2y ~ 2 Sz(a)-~(a-t)'t~OlX~(a)=O 

gC~(a)\ I 

where h and �9 are as defined in Lemma 1.3. 

Proof of Theorem 1.5 By Lemma 1.3, I 2 z ~qS~ =�89 0 where B is a real valued 
Brownian motion starting at zero. This means that 

P(Xt;teR) (~)= Q~(hZ~)X~(o;teR ). 

Under the conditions of Remark 1.2, this becomes 

p(x,; t>o) ~ O~o(X~; t>o). 
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Since z is an increasing continuous and positive function, it is enough to prove 
Theorem 1.5 for z as in Remark 1.2 and the result will follow by a time change. 

By Theorem 1.4(1), we have 

•(Xt+b ' l j ~ O [ X b = X )  = 1 . �9 Q~ (Xt ,  t >= O) 

which proves (1). 
By Theorem 1.4(2) 

P(X,-t ; O< t <alXa= Y)=P(X,-t ; O< t <alXa= Y) 
=Q~(X,_,;O<t<alX,=y) 
-Qy(Xt,O<t<=alXa=O) 

which proves (3). 
To prove (2), we use the absolute continuity of Q3 with respect to Q~ on 

~t=a(X,;s<t). It was proved by Knight 1-10, p. 124], Pitman and Yor [13] 
and Biance and Yor [1] that 

(*) X1/2 Qx["~'t 
Q~L.__(X'AT~O)) ~/2 , 

where T(0) = inf{u > 0; X.  = 0}. 
Let Fa,b = F (X(u+a) A b ; u ~ O ). Then ba, b = Fo,b_.oOa 

=Q~( (X~Xb)l/2 1AFt, b) 

IX l12  )) 
i'11 [y1/2  
'~d. xr k -~ (b - a)/x 

=Q, Ixo )) 1 I~'(b-a)A T(O) 
ol a Qxo  Fo,b-o 

, I X .  

where the third equality follows from the Markov property at time a and the 
fifth equality is thanks to (*). 

Since x Ql(X.~dx)= Qao (Xa~dx), it follows again from the Markov property 
a 

at time a that 

Q ~ ( ( X a X b )  1/2 laFa,o ) 3 =Qo(F.,0 a 

which proves (2). 
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II The equivalence between Dynkin's isomorphism theorem 
and the Ray-Knight theorems 

Assuming the isomorphism theorem, we shall prove the Ray-Knight theorems 
in the following form 

Theorem 2.1 Under "bL (or baL) (Xx, x~R)  is a Markov process. Its law is 
characterised by 

(1) (Xb+s;s>~OIXb=x) (a) Q ~ (h2(b2+s) O) = 2x X~(b+s)_~(b) ; S> 
~Tb) 

(2) (Xa+s;O<-s<-b-a) (a=-) Q~(h2(2+s)- - X~(a+s);O<-s<-b-a) 

(3) (Xa_s;s~OlXa=y) (a)= QO2y (h2(2-S) X~(a)_~(a_s);s~OiX~(a)=O)" U(a) 
Proof of Theorem 2.1 As in the proof of Theorem 1.6, it is sufficient to establish 
(1), (2) and (3) for the special case of Remark 1.2. The Markov property will 
be proved at the end. Assertion (2) follows easely from the relation Qg.  Qo 1 = Qo 3 
and from the fact that if X, Y, Z are independent random variables and X 

+ Y ~  X + Z  then Y ~  Z. 

To prove (1), by the isomorphism theorem, we have 

(abL*Q~)(F(X,; u>O)oOb)=Q~( -(XaXb)~/2 la F(X, ; u>O)) 

=Q (F(X.;u>O)oOb) 

using the Markov property at time b. 
The additivity property of squared Bessel processes 

Qo,Qr , =Q~+y Vx~R*,  V y e R +  

leads after integration with respect to the pair of probability measures (#, v) 
on R+ to 

o 1 1 
Qt~ * Qv = Q#,v .  

Hence 

ab L (F (X. ; u >_-- 0) 1Xb = x) = O ~ (F (X. ; u >_- 0)). 

Assertion (3) is obtained by the same arguments. 
We have thus shown that under ~blL, X is a Markov process on (--0% a], 

on [a, b] and on [b, + oo). This, however, is not enough to claim that X is 
a Markov process on R under ablL. To prove it, we shall need the following 
definition. 



328 N. Eisenbaum 

Definition. A probability measure P on C(R+, R+) has property (*) /f for every 
2 = (21,22 . . . . .  2,) 2i >>_ O, t = (tl, t2 . . . . .  t,) satisfying 0 < t I < t2 < ... < t,, and s >= 0 
there exist dp~(t, 2) and O~(t, 2) strictly positive such that 

P [exp ( - i ~ 1 2 i  Xt,+~) XsJ=e - x~~ q~(t, 2). 

Using the results of Pitman and Yor [13] the following lemma can be easely 
established. 

Lemma 2.2 (i) Squared Bessel processes satisfy property (*), all with the same 
r ,~). 

(ii) Squared Bessel bridges ending at zero satisfy property (*), all with the 
same r 2). 

Theorem 2.3 Let P and Q be two probability laws on C(R+, R+) satisfying proper- 
ty (*) with the same ~s(t, 2). Let Y and Z be two independent stochastic processes 
governed by the laws P and Q respectively. Then for every s >= 0 

(( Y + Z)(t + s), t~0[  Y (s), Z (s)) ~ (( Y + Z)(t + s), t~0l  Y (s) + Z (s)). 

Proof. By the independence of Y and Z, we have 

E[exp(-i~=121(Y+ Z)(ti+s)) Y(s),Z(s)] 

=E[exp(-i_~12i Y(ti+ s)) Y(s)].E[exp(-i~= 2i Z(ti + s) ) Z(s)]. 

Applying property (*) to each term of the above product, it follows that 

n 

is a function of Y(s)+Z(s) only. [] 

We now return to the proof of the Markov property. Toward this end it is 
easy to check, using Lemma 2.2, that the laws of (X,+s,s>O) and (Xb-s, s>0) 
under both P, P satisfy property (*) with the same ~s(t, 2). Since ablL*P=P, 
the same is true under ab/L. 

For the sake of clarity we shall return to the notation involving E~ and 
~b x introduced at the beginning of the paper. 

We first establish the Markov property at time a of E, under/~b. 
For fEC(R+,  R+), let 
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and F = F 1.Fz. We have to show that 

b (F (L,) [/Y,) = i~ b (F, (L~)l L"n). ~b (F2 (Ln) l L"~). 

Using the Markov property of L, +�89 obtained in Theorem 1.4, we have 

I/~,, +~ , ,  - x + y )  
= +~4,o = x + y ) .  

+ ~,r 
a ~ ~ ----- I~q~a = y ) ,  p~b(F,(L,)IE=x).P,b(Fz(L,)IE=x).(F(�89 , z 

where the last equality follows from Theorem 2.3. 
Set, 

f l  (X) = Pab(Fl  (L,) I L" . = x).Pab(F2 (L,)IL~, = x) 
f2(x) 1 2 1 2 = (F(Tq5)l~b,, = y )  

f3 (X) = P,b(F(Ln) IL% = x). 

Then 
1 2 a 1 2 (~r p~b(F(Ln+: ~ )[Ij,,l+~(Oa)=fl(L%)f2 1 2 

On the other hand 

1 2 a 1 2 P~b (F(L ,  +z(a )lEn+~qS.) 
=~b(P.b(F(Ln+�89 ~ 4 . )  ] Lan + ~(ba) 2 1 2 

=- P,,b ( f3 (L%) f2 (�89 I L",~ + �89 4,~ ). 

Thus we have 

p.~/f3(L".) o 1 ~\ 

In particular, for every 2 > 0, we have 

/ f3 \ 
\il(S ) / - - o , , o  ,, 

which is equivalent to 

4b{s3(e.)le.)=l, 
t f l  (L~) I 

and consequently fa (L",) = f l  (L",). 
The Markov property at time b can be established in the same manner. 
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To prove the global Markov property, let x be in ( - 0 %  a] and for f in 
C(R+, R+) let 

f 1 ( f ) = e x p  ( -  i fs dp(s)) 
- o o  

F2(f) = exp - s 
x 

+ c o  ox ( 
and F = F 1 F 2 F 3. We have to show that 

~b (F (L.)I L%) = ~b (F~ (L.)] L%). ~b (F2 F3 (L.)] L%). 

Using the Markov property at time a 

P~b(F(L,)IL%) = ~b(~b(F(Ln) la(U., y < a)) I L%) 

= ~ b (Fa F2 (L,) ~b (F3 (Ln)] a (LY, ; y < a))] L%) 

= ~b (F~ F 2 (L.) ~b (F3 (L.) I L". I L~) 

= eab(F1 (L.) [ L~) P~b (F2 (L,) ~b(F3 (L,) I L~.) I L%) 

where the last equality follows from the Markov property of (L~-Y,y>O) at 
time (a-x). The global Markov property at x in [a, + oo) is argued similarly. 
This finishes the proof of Theorem 2.1. [] 

For the other direction of the equivalence we assume now the Ray-Knight 
theorems and deduce Dynkin's isomorphism theorem. This amounts to showing 
that 

(I) ~blL* P = P 

is a consequence of Theorem 2.1. 

Proof of (I) On one hand, we described completely P in Theorem 1.4 (indepen- 
dently of the isomorphism theorem) and saw that it was markovian. On the 

other hand, using the equality P(Xt;teR)(a=-)Ql(h2~)X~(o;teR ), Theorem 2.1 

and the additivity property of squared Bessel processes, it is easy to obtain 
the precise expression of abI-* P on ( -  0% a], [a, b] and [b, + Go). Thus we check 
that 13 and "blL*P are equal on each of those three intervals. Now to see that 
they are completely equal, it is sufficient to prove that ablL,P is Markovian. 
We know already that abL and P are Markovian and that under those two 
probability measures the laws of (X,+s, s_->0) and (Xb_ s, s>0)  have property 
(*) with the same Os(t, 2). This is enough, thanks to Theorem 2.3 to prove 
the global Markov property of ~blL, P. We detail for example the computations 
for the proof of the Markov property at timea. We take the same notations 
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as in the proof of the Markov property of ~blI~ in Theorem 2.1. 
C(R+, R+) let 

F 1 ( f ) =  exp ( - _ Q  f~d#(s)) 

F 2 ( f ) = e x p ( - ! ~ f ~ d l ~ ( S ) )  

For f in 

and F = F 1 . F2. We want to show that 

1 2 a 1 2 

= ~ a b ( F  1 1 2 a 1 2 --  1 2 a 1 2 (L,+~b)I/4+eco.) .Pab(F2(Ln+zq5 )1/4+~q5.). 

Using the independence of L. and 4), we have 

~ b ( F ( L  ~ 1 2 ~ 1 2 ~ 1 2 

=~b(~b(F(L. )  I . 1 2 1 2 a 1 2 e.)(g(:4 )I:~o>[/~.+~CO.> 
~ 1 2 a 1 2 = Pab (P.b (F, (L, + ~q5 ) l /2. , :q~) 

~ a b ( F 2 ( Z q _ ~ _ � 8 9  1 2 a 1 2 

where the last equality follows from the Markov property of L, and �89 at 
time a. 

Now, by Theorem 2.3, we have for k = 1, 2 

p~b(Fk(L ~ 1 2 a l 2 _t.:C o )I[2n, :COa)= p.b (Fk(Ln + I CO2)II2n q_~CO~ 1 2 

which finishes to proof. 

III Use of the Ray-Knight theorems under the form given 
by the isomorphism theorem 

Using Theorem 2.1, we can immediately enunciate the following theorem 

Theorem 3.1 Assume that the functions f and h are continuously differentiable. 
Then the law of the processes 

(Xb+~;O<s<supE-b) ,  (Xs ;a<s<b)  and (X~_s;a- in fE<s<_a)  

under ~qL or b"L are respectively characterized by their strong generators defined 
as follows 

d 2 d 
Ab+s=c~(b+S)X d~x2 +f l (b+s)x  d-x' O < s < s u p E - - b  

d 2 d 
A.+s=c~(a+s)x~zxZ +(f l (a+s)x  +a(a+s ) )~x ;  a<_s<_b 

d 2 d 
A . _ ~ = e ( a -  s) x ~ +  ~(a-s )  x a - i n f  E < s < a  

dx '  a x  ~ 
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with 
~ ( s ) =  h~ (s) ~' (s) 

h' (s) 
fi (s) = 2 h (s) 

7 (s) = - 2 f ' ( s )  
f ( s )  " 

Example. In the case of a real Brownian motion killed at an independent expo- 
nential time of parameter 02/2, the Green's function of this diffusion is: g(x,y) 
= 1/0 e -  0(y- x) if x __< y so: e (s) = 2,/3 (s) = - 2 0, ? (s) = - 2 0. The formulation given 
by Theorem 3.1 of the Ray-Knight theorem in that case, has been found by 
Borodin [4]. (See also Biane and Yor [3].) 

Now setting: I, = inf Y~, and S , =  sup Ys; where Y is our original diffusion, 
s>_-O s>_0 

we have the following corollary of Theorem 3.1. 

Corollary 3.2 

p ,b ( l ,>m ) r(a)--~(m) 
-2z(a)--r(m) 

Pob(G < P) = ~ ( p ) -  z(b) 

with (m, p)eE 2. 

Proof of Corollary 3.2 By Theorem 3.1, 

for m<a 

for p >b 

hence 

Pab(In> mlL%= x)=~bL(Xm=OlXa= x) 

_QO \ ~-{hZ(m) x O) 
- -  2x I ~ z(a)-~(m)'~- 

h2(a) 

= e x p ( h 2 ( a ) ( z ~ _ z ( m ) )  ) 

X~ 
~b(I,  > m) ="blL [exp ( h2(a)(z(a))_.c(m)))] 

and by Theorem 3.I(2), under ~bL, X~ has an exponential law with parameter 
(g(a, a))-t .  For S~, the proof is similar. 

IV Unconditional version of the isomorphism theorem 

Suppose that Y is a diffusion such that the upper boundary point of the state 
space is the only absorbing point. In this case g(x, y) = h(x v y) (see [6, Chapt. 4]). 
The following theorem gives a simplified version of the isomorphism theorem. 
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Theorem 4.1 (1) I f  g(x, y)= h(x v y) for (x, y) in E 2 we set F~ = F ( X  u ; u< z). Then: 
V(a,z)eE 2 

P~(F~(L~+I ~)2)) =[~a~b"vz\ g(a,z) F~(l~b2))" 

(2) I f  g (x, y) = f (x A y), for (x, y) in E 2 we set G~ = G (X, ; u > z). Then: V (a, z) e E 2 : 

P~(G:( L"+l~)z~\:/-~"q3â z]/ \ g(a,z) G~(l~b2))" 

Proof of (1) We show first that 

~b(L~, ; u____ b) ~ P~(L~, ; u____ b). 

Let/~,(x, y) denote the transition density of Y under ~b, and ~(x, y) the Green's 
function under ~b, then 

p,(x, y)= g(b, y) g(b,x) Pt(x'y)=pt(x'Y) and ~(x,y)=g(x,y)  

for x, y<=b. 
We use now the following formulas established by Marcus and Rosen in 

[11]. For  a ~ x l  <=x2 ... <=x,,<=b. 

~b L~' = 3-' g(a, xm) ) x g(x , , ) ,  x,(2)).., x g(x~(,_ 1)' Xs(n)) 
i d se,9~ 

where ,9~ is the set of all the permutations of {1,2 . . . .  , n}. 
Hence for all (rex, ..., m,) in N" 

and thus 

i = 1  z i = 1  

On the other hand, by the isomorphism theorem 

~ab (Fz (L~ + 1 , 2 ' \  I ~, ~)b ~ z~(a, b). 



3 3 4  N .  E i s e n b a u m  

( Cx ; x > a )  is a martingale (see Since ( r  is a Markov process and \g(a, x) 
Lemma 1.3), we have 

r162 F~ 1 2 1 2 ff)b 

+2)) 
\g(a, z) 

Assertion (2) is obtained by the same way. [] 

The equivalence between the isomorphism theorem formulated that way for 
those diffusions and Ray-Knight theorems under P~ can be established by the 
same arguments. 

Example. We consider the process of the local times (L%, x >0)  of a Bessel 
process of dimension d=c~+2,  e > 0 ,  with respect to its speed measure. The 

Green's function with respect to the speed measure is: ~(x, y ) = Z ( x  v y)-=. By 
Theorem 4.1 

( '  ) Po (L~ ; x > 0) (=a) Qo2 ~-x2~ X~=; x > 0 . 

Let (U~, x > 0) be the process of the local times with respect to the Lebesgue 
measure, then (L~, x > 0) = (x "+ 1 ~ ,  x > 0). Therefore 

0) Po(U~o,x>O)=Q~ ~ = f  Xx , ;x> �9 

This result has been established by Yor [,-18]. (See also Biane and Yor [-2] 
for another description.) 

We end by a remark generalising a well-known result 

Theorem 4.2 Let Z be a homogeneous symmetric Markov process with finite 
Green's function. Then, for every (a, b) such that g(a ,b )>0  and g(a, a)>0,  the 
variable L"~(Z) has an exponential law with parameter 1/g(a, a) under P~b and 
Pba" 

Proof of Theorem 4.2 We use once more the isomorphism theorem 

,t 2 
;~ ~ / qSaCb e-~r176 ~bEe -zL~] X <e-g ~~ =\g(a, b) /" 

2 z 

On one hand, we have <e-~r176 +2g(a ,  a)) -1/2 ((% has a variance equal to 
g(a, a)). On the other hand 

\g(a,b) / \ g(a,b) - ( r 1 6 2  
/ . / .2  ,: 2~ 

=I ~~ e-2~.\ 
\g(a, a) / 

= (1 + 2g(a, a))- 3/2. 
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2 z 
(This last equality is obtained by taking the derivative of (e-~~ 

Consequently 

P~b(e -zL~) =(1 + 2g(a, a))- 2. 
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