
Probab. Theory Relat. Fields 99, 305 319 (1994) 

Probatory 
Theory 
�9 Springer-Verlag 1994 

Shock fluctuations in the asymmetric simple 
exclusion process 

P.A. Ferrari, L.R.G. Fontes 
Instituto de Matemfitica e Estatistica, Universidade de Silo Paulo, Cx. Postal 20570, 
01452-010 Silo Paulo SP, Brasil (e-mail: pablo@ime, usp. br, lenato@ime, usp. br) 

Received: 19 February 1993/In revised form: 11 November 1993 

Summary. We consider the one dimensional nearest neighbors asymmetric simple 
exclusion process with rates q and p for left and right jumps respectively; q < p. 
Ferrari et al. (1991) have shown that if the initial measure is vp, 4, a product measure 
with densities p and 2 to the left and right of the origin respectively, p < 2, then 
there exists a (microscopic) shock for the system. A shock is a random position Xt 
such that the system as seen from this position at time t has asymptotic product 
distributions with densities p and 2 to the left and right of the origin respectively, 
uniformly in t. We compute the diffusion coefficient of the shock D = 
limt.~ t - l ( E ( X t )  2 -- ( E X t )  2) and find D = (p - q)(2 - p)- l(p(1 - p) + 2(1 - 2)) 

as conjectured by Spohn (1991). We show that in the scale ~ the position of Xt is 
determined by the initial distribution of particles in a region of length proportional 
to t. We prove that the distribution of the process at the average position of the 
shock converges to a fair mixture of the product measures with densities p and 2. 
This is the so called dynamical phase transition. Under shock initial conditions we 
show how the density fluctuation fields depend on the initial configuration. 
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I Introduction 

Let r/re {0, 1} z be the asymmetric nearest neighbors one dimensional simple 
exclusion process (Spitzer (1970), Liggett (1985)). Its generator is given by 

Lf(tl) = ~ ~ p(x,y)q(x)(1 - q(y))[/(t l  x'') - f ( t / ) ] ,  
x E Z  y - x + l  

where f i s  a continuous function on {0, 1} z, the configuration tf'Y(z) is defined by 

l/(z) if z4=x ,y  
r f " ( z ) =  ~(x) if z = y  

t/(y) if z = x  
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and 

p if y = x +  1 

p (x , y )=  q if y - - x - 1  , 

0 otherwise 

p + q = 1. We consider without loss of generality, p > q => 0. Let S(t) denote the 
corresponding semigroup. In words, the process describes the evolution of particles 
in Z under the constriction that at most one particle is allowed at each site. 
Particles jump to left and right nearest neighbor empty sites at rate q and 
p respectively. No jumps are allowed to occupied sites. We consider as initial 
measure vp, 4, the product measure with densities P and 2 to the left and right of the 
origin respectively. We fix P < 2. We say that a random position Xt is a micro- 
scopic shock if the distribution of ~xJh has asymptotic distributions vp and vz to the 
left and right of the origin respectively, uniformly in t. The operator ~x is translation 
by x; vp and vz stand for product measures with density p and 2 respectively. Ferrari 
et al. (1991) showed that there exists a shock for this system. Ferrari (1992) showed 
that Zt, the position at time t of a second class particle with respect to qt is a shock. 
The motion of the second class particle can be described as follows. It jumps to 
empty left and right sites at rate q and p respectively and interchanges positions 
with left and right particles at rate p and q respectively. The process Zzt rlt is 
Markovian and under initial distribution vp,~ converges weakly to an invariant 
measure with asymptotic product distributions with densities P and 2. Write E and 
P for the expectation and the probability induced by the process with initial 
distribution vp, z. Our main result is the following 

Theorem 13 Assume that the process th has initial distribution vp,4. Let Zt be the 
position of the shock given by a second class particle initially put at the origin. Then 

EZt  = (p - q)(1 - 2 - p)t. (1.1) 

Diffusion coefficient 

D := lim E(Zt)2 - (EZt)2 = (p - q) 0(1 - 0) + 2(1 - 2) (1.2) 

t-~o t 2-p  

Dependence on the initial configuration. 

Let Nt(tl) ( p - q ) ( z - , ) t  o = ~x=o (1 - t/(x)) - ~x= -(p-q)(z-,)ttl(X) " Then 

lim 1 E[Zt  -- (2 -- p ) - '  Nt(~/o)] 2 = 0. (1.3) 
t ~ 0  t 

In Chap. 5 of Spohn (1991) (1.1) was proven and (1.2) conjectured. Boldrighini et al. 
(1989) performed computer simulations confirming (1.2). Gfirtner and Presutti 
(1989) showed (1.3) for P = 0 and p = 1. Ferrari (1992) showed that (1.2) and (1.3) 
are equivalent and that the right hand side of (1.2) is a lower bound for D and (1.3) 
for P = 0 and all p > q. We show (1.1) and (1.2) using recent results relating the 
expected value and the variance of a tagged particle with the variance of the current 
of particles through a fixed or travelling position (Ferrari and Fontes (1993)). The 
following Theorem is a corollary to (l.3). 
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Theorem 1.2 Convergence to the finite dimensional distributions of  Brownian 
motion. Let W(t) be Brownian motion with diffusion coefficient D. Then under the 
conditions of  Theorem 1.1 

lira e 1/2 (Z ~-  ~. - E Z ~ - ~ . )  = W ( . )  
~ 0  

weakly, in the sense of the finite dimensional distributions. 

It is well known that this process is related to the unviscous Burgers equation. This 
is the non linear partial differential equation for u(r, t) ~ [-0, 1], 

~?u _ 0 0[u(1 - u)] (1.4) 
& dr 

We are particularly interested in solutions to this equation when the initial 
condition assumes only two values: p < 2 to the left and right of the origin 
respectively (shock initial condition). The solutions of (1.4) are constant along the 
characteristics. For shock initial condition the characteristic emanating from a is 
the straight line a + ( 1 - 2 u ( a , 0 ) ) t  that equal a + ( 1 - 2 p ) t  for a < 0  and 
a + (1 - 22)t for a > 0. Since 2 > p, the characteristics emanating from the right of 
the origin meet those emanating from the left of it producing the shock (Lax (1972).) 
The (weak) solution of the Burgers equation (1.4) with initial shock condition 
u ( r , O ) = 2 1 { r > O }  + p l { r < 0 }  is just this shock translated by vt: u ( r , t )=  
21{r > vt} + p l {r  < vt}, where v = (p - q)(1 - 2 - p). 

The hydrodynamic limit plus local equilibrium give the following: Let uo(r) be 
a piecewise continuous function, and let V~,o be a family of product measures with 
marginals V~o(~/(e 1 r)) = uo(r). Then 

lim V~o S(e-  1 t)z~- ~, = v,(r,t) (1.5) 
e--+0 

in the continuity points of u(r, t), the unique entropy solution of (1.4) with initial 
condition u(r ,O)= uo(r). For general initial conditions this theorem is a conse- 
quence of the law of large numbers of Rezakhanlou (1990) and the proof of local 
equilibrium of Landim (1992). Before them and for shock initial condition, Liggett 
(1975, 1977) has shown this result for the case r = 0. Rost (1982), Benassi and 
Fouque (1987) showed (1.5) for decreasing initial profiles. Andjel and Vares (1987) 
proved the hydrodynamical limit for the increasing case. Then Benassi et al. (1991) 
computed the limit for monotone initial profiles. In the shock case (1.5) means that 
under initial distribution vp, z, a traveller moving at deterministic velocity r ob- 
serves asymptotically that the particles are distributed as v o for r > v and v~ for 
r < v, where v = (p - q) (1 - 2 - p). Indeed u(r, t) = pl  {r < vt} + 21 {r > vt} is the 
entropy solution of the Burgers equation when uo(r) = 2 for r > 0 and p for r < 0. 
It was conjectured that when r = v the system converges to a fair mixture of vp and 
v~. This was proven by Wick (1985) and De Masi et al. (1988) for p = 0 and by 
Andjel et al. (1988) for 2 + p = 1. Our next result shows the conjecture for all cases. 
The proof is based on the central limit theorem for Zt established in Theorem 1.2. 
Let w(r, t) = P(W(t )  < r) = ( 1 / ~ ) f "  exp( - s2/2Dt)ds, the normal distribu- 
tion with variance Dr. 

Theorem 1.3 Dynamical phase transition. Let  v = (p -- q)(1 -- 2 -- p). Then 

lim vp, ~S(t)zvt+,,l~2 = (1 - w(a, 1))vp + w(a, 1)v~ . (1.6) 
e ~ O  
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Let  F7 be the fluctuations fields defined by 

Y~(~) = e 1/2 ~ ~b(ex) [ t lc , t (x)  - Erl~ ,t(x)] , (1.7) 
x 6 Z  

where ~b is the indicator  of an interval. If the initial configuration t/o is distributed 
according to v,,~, 

lira Y~(~) = Y(~), (1.8) 
g--~O 

where Yis Gaussian white noise with mean zero and covariance 

E( Y(~ ' )  g(q))) = f uo(r)(1 - uo(r)) 7'(r)q)(r)dr, (1.9) 

where Uo(r) = 21{r > 0} + pl{r  < 0}. A more  intuitive description of the field r i s  
the following. Let Wl(r) and W2(r) be Brownian mot ion  with variances p(1 - p) 
and 2(1 - 2) respectively, where r plays the role of the time parameter .  Assume that  

is the indicator  of the interval (bl, b2), namely ~(r) = 1{bl < r < b2}, then 

W2(bz) - W2(bl) if 0 < bl < b2 

]~(~b)  = ~grl( -- b2) -- WI( - bl) if bl < b2 < 0 

- WI( - bl) + W2(b2) if bl < 0 < b 2 

So if we define the process W(r) = WI( - r) l{r < 0} + Wz(r)l{r > 0}, the field ]Cof 
the interval (a~, a2) is just the increment of W(r) in the interval (al, a2). 

To describe Y~(.), the limiting fields at time t, let us introduce some notation.  
Assume that  �9 is the indicator  of the interval (al, a2). For  i = 1, 2 let bi(t) = bi(t, a~) 
be defined by 

J" a i - ( p - q ) ( 1 - 2 p ) t  if a i < v t  
bi(t) (1.10) 

a ~ - ( p - q ) ( 1 - 2 2 ) t  if a i > v t "  

So that  b~(t) is the starting point  of the characteristic that  arrives at a~ at time t. Let  
be the indicator  of the interval (aa, a2) and assume a~ ~ yr. Define B t~  as the 

indicator  of the interval (bl(t), b2(t)). The field at time t is defined by 

gt(q~) = ]Co(B, q~). (1.11) 

So that  the field F, of the interval (a~, a2) is the increment of W(r) in the interval 
(bl (t), b2 (t)). 

Theorem 1.4 Convergence of  the fluctuationfields. Assume that the initial distribu- 
tion of  the process is vp, z. As e ~ O, the finite dimensional distributions of  the 
fluctuation fields Y~. defined in (1.7) converge in distribution to the fieId Y., where Yt is 
defined by (1.11). Namely, for all n >= 1, 0 <= tl < ... < t , ,  and q5 i indicator of  an 
interval whose extremes do not equal vh, i = 1, . . . ,  n, 

lim(X~,(O0, . . . ,  u = (~,(~bl), . . . ,  ~ . (~ , ) )  
~ 0  

in distribution. 

Remark. We can interpret  the result by saying that the fluctuations translate 
rigidly along the characteristics of the Burgers equation. When vt  E (al, a2) the 
characteristics to the right of the origin meet those coming from the left and then 
the fluctuations present in the interval ( - (p - q)(2 - p)t, (p - q)(2 - p)t) at time 
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b,(t) -b, o ~, b:(t) 

al vt  a2 

t i m e  0 

- -  t i m e  t 

Fig. 1. The fluctuations on intervals 
to the right ofbt = (p - q)(2 - p)t and 
to the left of - bt translate rigidly up 
to time t. Those on ( - bt, bt) concen- 
trate at vt 

zero concentra te  in the point  v t  = (p - q)(1 - p - 2)t at t ime t. Figure 1 illustrates 
this point.  
Let  u(r, t) = 21{r > vt}  + p l { r  < vt} ,  the solution of the Burgers equat ion (1.4). 
Formal ly ,  Theo rem 1.4 says that  the f luctuat ion fields (1.7) converge to a weak 
solution ~ of the nonhomogeneous  linear equat ion 

0 ~ ( r ) =  0 
& 7 ( 1  -- 2u(r, t)) Yt(r) ,  (1.12) 

with initial condi t ion r,, the Gauss ian  field with zero mean  and covariance given by 
(1.9), as conjectured by Spohn (1991). 

Fo r  p = 1 and p = 0 the convergence away  from the shock have been obta ined  
by  Benassi and Fouque  (1992). Theo rem 1.4 is a consequence of the L2 convergence 
of the f luctuat ion fields established in the next theorem where we also s tudy the 
f luctuations that  concentra te  in the point  vt. F o r m u l a  (1.14) below says that  these 

f luctuations are present  in the scale x/~. Indeed they reflect the shock fluctuations 
that  occur  in this scale. 

Theorem 1.5 L e t  E be the expec ted  value wi th  respect  to the process  wi th  initial 
measure  vo, 4. L e t  A~ = 7Z c~ (e-  1 a l, ~-  1 a2), Be (t) = Z c~ (e-  1 b l(t), e -  a b2 (t)). Then 

l imeE [ t / ~ - l t ( x ) -  E t h - l , ( x ) ]  - ~ [ t / o ( x ) -  E~o(x)] = 0. (1.13) 
e-~O \ x E A ~  xeB~(t) 

L e t  c > O, C~(t) = Z ~ ( e - t v t  - e -1/2c ,  e - t v t  + e-1/2c)  and K~(t) = 
�9 ~ ( -  e -  l t (p - q)(J. - p), ~ ; - l t (p  - q)(). - p)). Then 

l imeE [ ~ - , , ( x )  - Er l , - , t ( x ) ]  - T~ . . . .  ~ 2 [~0(x) - E~o(X)] = 0 ,  
0 \xeC~(t)  xeK.(t) 

(1.14) 

where  Tc is t runcat ion by  c: 

F ( . )  / f [ f ( . ) l  _-< c 
T c F ( . )  = c i f  f ( . )  > c 

- - c  / f F ( . ) < - c .  

No te  tha t  C~(t) is an interval  of length p ropor t iona l  to e-1/2 a round  the macro-  
scopic poin t  vt. When  c ~ ~ ,  (1.14) says that  the f luctuations at  t ime t in a region 

of length p ropor t iona l  to ~ a round  v t  are given by the f luctuations at t ime 0 in 
a region of length p ropor t iona l  to t. 
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2 Graphical construction and coupling 

The main tool to deal with this process is coupling, the joint realization of two 
versions of the process with different initial configurations. One way to define 
a coupling is via the joint generator (Liggett (1976), (1985)). Another way is by 
a graphical construction of the process. This is something like to use the same 
random numbers for different initial configurations. To describe the graphical 
construction attach two Poisson processes to each pair of sites (x, x + 1). One of 
rate p and the other of rate q. A Poisson process is a sequence of random times. To 
each time of the Poisson process of rate p an arrow going from x to x + 1 is drawn 
and for the times of the process of rate q an arrow is drawn from x + 1 to x. The 
product of these Poisson processes induces a probability space (fL ~-, P). We 
discard the null event "two arrows occur at the same time". Given an initial 
configuration t/, the configuration at time t for the set of arrows co, starting from t 1 is 
denoted t/t ~'~' and is constructed in the following way. When an arrow appears from 
site x to y, if there is a particle at x and no particle at y then, after the arrow the 
particle will be at y and x will be empty. We denote i/, n the random process defined 
on (g2, Y ,  P) with initial configuration q. 

Consider now two initial configurations t/~ and t/1 and write t/~ = r/7', for the 
configurations at time t. Use the same structure of arrows for r/t ~ and t/t ~. In this case 
(t/o, r/l) is the "basic coupling" (Liggett (1985)). If r/~ _-< t/1 (x) for all x e 2g (in this 
case we say t/o __< t/i) then for all times t/o __< t/]. This property is called attractivity. 
Let vp be the product measure with density p. Take p < 2 and realize jointly the 
measures vp and vx in the following way. Let U(x)e [0, 1] be i.i.d, uniformly 
distributed random variables. Then define t / ~  t / l (x)= 
1 {U(x) =< 2}. Hence, r/~ is distributed according to vp, t/1 is distributed according to 
vx and t /0< t/1. Define ~r(x)= t/~ and 4(x)= t / l ( x ) -  t/~ We say that the 
distribution of (o, 4) has the good marginals if the a marginal is v o and the o- + 4 
marginal is vz. Calling rc 2 the distribution of (o-, 4), we have that 

re 2 is a product measure with the good marginals.  (2.1) 

Define o-,(x)= t/t~ and 4,(x)= t/tl(x)- t/~ The motion of (a,, it) obeys the 
following rule. The o- particles have priority over the ~ particles: when an arrow 
from a a particle to a 4 particle appears, then after the arrow the particles 
interchange positions. Otherwise the particles interact by exclusion. We say that 
the ~ particles behave as "second class particles". If the distribution of (ao, 40) has 
the good marginals, the same is true for the distribution of (a,, {t). We call Sz(t) the 
corresponding semigroup. 

Let v2 be a translation invariant measure with the good marginals and 
v~ = v2 (.[~ (0) = 1). Let Xt be the position of the ~ particle initially at the origin. Let 
S'z(t) be the semigroup of the process as seen from the second class particle 
(ZxtCrt, ~x,4t). The key tool in Ferrari et al. (1991) to show that X, is a microscopic 
shock is the following. If va is translation invariant and has the good marginals, 
then 

(v2S2(t))'= v'2S'2(t). (2.2) 

In words, the law of the process as seen from the tagged second class particle looks 
as the law of the process seen from the origin conditioned to have a second class 
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particle at the origin. Ferrari (1992) showed the following law of large numbers. Let 
v2 have the good marginals, then under initial measure v~, 

lim X7 - -  = v almost surely. (2.3) 
t~0 t 

Let X 1 denote the position of the first ~ particle to the right of the origin. The 
following technical lemma will be used later on. 

Lemma 2.1 There exist positive constants c', c" such that 

sup v~ (X i > n) < c' exp( - c" n) 
V2 

where the sup is taken over {v2:v2 is translation invariant and has the 9ood 
marginals}. 

Proof Since v2(~(0) = 1) = 2 - p, 

v'z(X 1 > n ) ( 2 -  p) < VZ(x=l ~ ~(X): 0) 

) 12 2 ~(X) = O, a(X) -- < en, (a(x) + 4(x)) -- n2 < en (2.4) 
1 x=l 

-l-V2( x~=ltT(x)-- np ~ gn) --~- v2( x~,=l(ff(x)-+- ~(x))-- n)t ~ ~l'l) 
For z < (2 - #)/2, the first term in the right hand side of (2.4) vanishes. The second 
and third term depend only on the marginals v o and vx respectively. The result 
follows from large deviations of Bernoulli measures. ~ID 
Using the same arrows there is a natural coupling between (05, 4~) with initial 
measure zc~ and t h with initial measure vo, a. To describe it one let (a, ~) to be 
a configuration taken from the distribution zc~. Now mark independently the i-th 
4 particle as ? with probability (p/q)i/(1 + (p/q)i), otherwise as (. Then consider the 
process (o-, Yt, (7) with priorities ~r over 7 over ~. In this way o-t has distribution v o for 
all t, ~h = ot + 77 has distribution (absolutely continuous with respect to) vo, x S(t) 
and 05 + 7t + (7 has distribution va. See Ferrari et al. (1991) and Ferrari (1992) for 
details. 

3 Tagged second class particles and currents 

Consider the joint process (at, 4t) described in the previous section. Define the 
current of 4 particles as J2,t : = number of ~ particles to the left of the origin at time 
0 and to the right of the origin at time t minus number of 4 particles to the right of 
the origin at time 0 and to the left of the origin at time t. Analogously define J0,t for 
the current of a particles and J1,7 for the total current of a + ~ particles. 

Consider a configuration (o-, 4) taken from n~, the measure re2 conditioned to 
have a ~ particle at the origin. This configuration has ~(0) = 1 and a(0) = 0, i.e., it 
has a 4 particle at the origin. Let a*(x) = l{x 4= 0}a(x) + l{x = 0}(1 -- a(x)) and 
analogously ~*. Now, using the same arrows, couple (~rt, ~t) with (o5, 4*)- At time 
t the two processes will differ at only one site whose position is called Rt. Similarly, 
coupling (o-t, 4t) with (a*, ~*) we get only one discrepancy located at a position 
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denoted/~t .  In words, Rt is like a third class particle, while/~t  is a second class 
particle with respect to at but  has priori ty over 4t. 

Theorem 3.1 Let (at, 4t) be the joint process of first and second class particles with 
initial product measure 7c2 defined in (2.1). Let Xt be the position of the tagged second 
class particle put initially at the origin. Then it holds that 

EJz,t = (2 -- p ) e X t  (3.1) 

where the expected values are taken with respect to the process with initial distribu- 
tion n2. Furthermore, denoting the variance by V, 

VJ2.t = (2 - p)2 V X t -  (2 - p)(1 - (2 - p))E(X,) 

+ 2(2 -- p)(1 -- 2)(e(Rt)  + - E ( R t -  Xt)+) (3.2) 

+ 2(2 - p)p(E(•) + -- E(-Rt - Xt)+).  

Proof The proof  or (3.l) is the same as the proof  of (3.2) in Ferrar i  and Fontes 
(1993). The p roof  of (3.2) is very similar to the proof  of (3.10) in the same paper, 
where the variance of the current  of (first class) particles in simple exclusion is 
written as a function of rnoments  of a (first class) tagged particle and a discrepancy. 
We just sketch it, pointing out  the main different point, referring the reader to the 
ment ioned paper  for details. Write J2,t = (d2,t) + - ( J 2 , t ) - ,  where 

(Jz,t(a, ~))+ = ~ ~(x)l{X~(a, 4) > 0}, (Jz,t(a, 4))- = ~ ~(x)l{X~(o-, ~) < 0}. 
x ~ 0  x > 0  

Here X~[(a, 4) is the posit ion at time t of a tagged ( particle starting at x, when the 
initial condit ion is (G 4). The variance of J2,t is then expressed in terms of variances 
and expectations of (Ja,t) + and (J2,t)-.  The main calculation which follows is that  
of E((J2,t)+) 2 and E((J2,t)-) 2. The first one is expressed in various terms one of 
which is 

2 ( 2 - p )  ~ [ P ( X ~ > O , ~ ( y ) =  l ] 4 ( x ) =  1 ) - P ( X ~ > 0 , ~ ( y ) = I ) ] .  (3.3) 
y<x<O 

The sum in (3.3) can be rewritten as 

(1 - 2) ~ [P(XYt >0,4(y)  = 1]~(x) = 1) - P(X~ > 0,~(y) = ll~(x) = o-(x) = 0)3 
y<x<=O 

+ p y, [P(XY~ > 0 , ~ ( y ) =  1]~(x)= 1 ) -  P ( X f  > 0 , ~ ( y ) =  l la(x ) = 1)3. (3.4) 
y<x<~O 

These terms are reexpressed after a coupling argument  as 

(l--2)(1--2) ~P(X~[>0,R~=<0)+p(1--2) ~P(X~>0,/~'=<0). (3.5) 
x=<0  x_-<0 

The expression (3.5), when combined with expressions obtained similarly in the 
calculation of E( (J z , t ) - )  2, lead to the desired result in a straightforward man- 
ner. 

Theorem 3.2 Under the conditions of Theorem 3.1, it holds that 

l i m  1E(J2 ,  t --  Nz,t(ao, G o ) -  (P - q)( 22 - -  P 2 ) t )  2 = 0 ,  (3.6) 
t ___~ o o t 
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where N2,t(a, 4) is a random variable that does not depend on o.  It  depends only on 
the initial configurations a and ~ and it is given below by (3.12). 

Proof  By mass conservation: 

J l , t  = J o , t  Jr- J 2 , t .  (3.7) 

The current Jo,t depends only on the i marginal of the process, while J l,t depends 
on the i + 4 marginal. Hence, writing E for the expectation of the process with 
initial distribution ~z and noting that the distribution of (it, ~,) has the good 
marginals, 

EJ2,t  = (p - q)(2(1 - 2) - p(1 - p)) t .  (3.8) 

On the other hand, (1.5) of Ferrari and Fontes (1993) implies that 

lim E(Jo,t - No, t( io ,  4o) - (P - -  q ) p 2 t ) 2  = O, 
t ~ o o  t 

lim E ( J I " t  - -  Nl, , (ao,  ~o) -- (P - q ) ) ~ 2 t )  2 = 0,  (3.9) 
t ~ o o  t 

where o 

I Z i(x), 
x = - (p - q)(1 - 2p)t  

No,t(a, 4) = ~ __ (p-q)~o-1)t if(X),  

I E 
NI,,(o', ~.) = x =  - ( p - q ) ( 1 - 2 2 ) t  

L ( p - q ) ~ 2 - 1 ) t  

x = 0  

Define 

when 1 - 2 p > 0 ,  

when 1 - 2 p < 0 ,  
x = 0  

0 

(G(x) + 4(x)), when 1 - 2 2 > 0 ,  

(a(x) + 4(x)), when 1 - 22 < 0. 

(3.10) 

(3.11) 

N2,t(a, r = Nl, t(a,  4) - No,t(a, O. (3.12) 

The result follows from (3.7), (3.9) and (3.12). ~1~ 

Proo f  o f  Theorem 1.1 We first show (1.1) and (1.2) for Xt instead of Zt. It follows 
from (3.1) and (3.8), 

E X , =  ( p -  q)(1 - 2 -  p) t .  (3.13) 

From (3.10), (3.11) and (3.12), we have that N2,t(a, 4) equals 
- ( p  - q ) ( 1  - 2 2 ) t  0 

i(x) + ~ ((x), when 2 __< 1/2, 
x = - (p - q)(1 - 2p) t  x = - ( p  - q ) (  1 - 2 2 ) t  

0 ( p - -  q ) ( 2 2 - -  1 ) t  

o(x) + Y, 
x = - ( p -  q)(1 - 2p) t  x = 0 

(4(x) + a(x)), when p __< 1/2 < 2, 

( p - - q ) ( 2 p -  t ) t  ( p - q ) ( 2 2 -  1 ) t  

4(x) + ~ (4(x) + i(x)), when p > 1/2. 
x = 0  x = ( p - q ) ( 2 p "  1 ) t  
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Hence  limt_, o~ ( V J2, t/t) = limt-, oo ( VN2, t/t) equals 

2(p - q)p(1 - p)(2 - p) + (p - q)(2 - p)(1 - 2 + p)(1 - 22), when 2 < 1/2, 

(p - q)(1 - 2p)p(1 - p) + (p - q)(1 - 22)2(1 - 2), when p < 1/2 < 2, (3.14) 

(p - q)(1 - 2p)(2 - p)(1 - 2 + p) + 2(p - q)(2 - p)2(1 - 2), when p > 1/2. 

On  the other  hand,  it is p roven  by Ferrar i  and Fontes  (1993) that  

and 

E(Rt) + {(p  - q)(1 - 22) i f2  < 1/2 (3.15) 
lim ~ - 0 otherwise, 
t-+O0 

E(Rt) + {(p  - q)(1 - 2p) i fp  < 1/2 (3.16) 
lira ~- - 0 otherwise, 
t--+ aO 

E(Rt - Xt)  + 
lim - 0 (3.17) 
t ~ c O  t 

lim E(Rt -- Xt)  + = (p _ q)(2 - p) .  (3.18) 
t-,oo t 

Substi tut ing (3.13), (3.14), (3.15), (3.16), (3.17) and (3.18) in (3.2) we get 

E ( x D  z - ( E X 3  z p(1 - p) + 2(1 - 2) 
lira = (p - q) (3.19) 
t~o~ t 2 - p  

N o w  we show the theorem for Zt.  We consider the process (q ,  Zt), where Zt is 
a second class particle with respect to qt. Ferrar i  (1992) has shown that  it is possible 
to realize the processes (t/t, Zt) and (at, G, X t )  with initial distr ibution rc~, in such 
a way that  if one calls X~ the i-th ~ particle (X ~ = Xt), and let ~2. t  be the s igma 
algebra  generated by {(as, ~s): s < t}, then for all times 

P ( Z t  = X~] ~2,t) = re(i), where 

(( )( re(i) = M 1 + (p/q)i-1/2 1 + (q/p)i+l/2 (3.20) 

and M is a normaliz ing constant  mak ing  ~i~em( i )  = 1. The symmet ry  of re(i), (3.13) 
and (3.20) show (1.1). Since re(i) is a probabi l i ty  with exponential  decay, to show 
(1.2) it suffices to prove  that  

E ( x t -  x~) 2 
lim - 0, for all i e 7l,. (3.21) 
t ~ o O  t 

But (3.21) follows f rom L e m m a  2.1 and the fact that,  by t ranslat ion invariance,  the 
law of X~- 1 _ X~ is independent  of i. Ferrar i  (1992) showed that  (1.2) and (1.3) are 
equivalent. 

R e m a r k  3.1 Note  that  (3.14) implies that  l i m t ~  (VJ2,t/t) = 0 i f2  + p = 1. In  this 
case v = 0. We do not  use this. 
We finish this section with a l emma  to be used in Sect. 5. Let  Jt  b'a be the number  of 
t /particles to the left of  b at t ime zero and to the right of  a at t ime t minus  number  of 
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t / p a r t i c l e s  to  the  r igh t  of  b a t  t ime  ze ro  a n d  to  the  left  of  a a t  t ime  t. Le t  J~,'~' be  the  
a n a l o g o u s  c u r r e n t  for  pa r t i c l e s  a,  o- + ~ a n d  ~ for  i = 0,1,2 respect ive ly .  

L e m m a  3.1 Consider the process ~h with initial distribution vp,~ and the process 
(a~, (t) under initial distribution 7~ 2 coupled as described at the end of  Sect. 2. I f  b > 0 
and a > v then 

I f  b < 0 and a < v then 

E ( j b t t , a t  j b t ,  a t~2 

l i ra - 1,, J = 0 .  (3.22) 
t --* ct) t 

E(J~" ~' Tbt,ar~2 
l i ra - ~o.t ~ _ 0 .  (3.23) 
t ~ o O  t 

: r b t ,  at __ { l O , a t ] +  Proof  F i r s t  c o n s i d e r  p 1. F o r  b > 0 a n d  a > v ,  j~t, at al , t  _ t"2,t J : 

(Xt - at) + <-_ (Xt - vt) +. By (2.3) limt_+~P(((X~ - at)+)2/t > s) =- 0 for  al l  s __> 0. By 

T h e o r e m  1.2, l i m t - , ~ P ( ( X t -  vt)2/t > s) = 2(1 - w(~//s, 1)). W r i t e  

- at)+) 2 = f P((X, - a t ) + / , f i  >  )ds. 
t o 

N o w  PC(X, - at)+ /x/tt > x~ss) < P((X, - vt)/x~t > x//s) and 

7 l imt~  ~ P((Xt  - vt/x//tt) > x~ss)ds = f 2(1 - w(x//s, 1))ds = D < oe b y  T h e o r e m  
o 0 

1. By  d o m i n a t e d  c o n v e r g e n c e  we get  (3.22). A n a l o g o u s l y  we get  (3.23). I f  1 > p > q 
one  r epea t s  the  a r g u m e n t  us ing  Dr, the  p o s i t i o n  of  the  r i g h t m o s t  ( pa r t i c l e  a n d  the 
fact  t h a t  l i m t . ~ E ( D ,  - vt)2/t < oo.  F o r  (3.23) one  uses Gt, the  p o s i t i o n  of  the  
l e f tmos t  7 par t ic le .  ~ 

Remark  3.2 Since for  the  p roces s  (at, ~,) the  a m a r g i n a l  is vp a n d  the  a + ~ 
m a r g i n a l  is v~, i t  fo l lows f rom F e r r a r i  a n d  F o n t e s  (1993) t h a t  

Et jb,.., Ejb,..,~2 { ~ l im ' ~,t - ~,, , = - q)p(1 - p ) l l  - 2p - (a - b)l if i = 0 (3.24) 
, . ~  t q)2(1 - 2)11 2). - (a - b)l if i = 1. 

4 Dynamical phase transition 

In  o r d e r  to  p r o v e  T h e o r e m  1.3 we need  the  fo l lowing  resul t .  

L e m m a  4.1 Weak limits as t -~  o ~  Of Vp,.~S(t)Zvt+a,/7 are translation invariant. 

Proof  Since z 1 vo,aS(t ) = V p , A S ( t ) ' ~ l ,  i t  suffices to  s h o w  

l im Izl vp,zS(t)zv~+,./~f - vo,aS(t)zvt+,./;f I = 0 (4.1) 
t ~ o o  

for  a n y  e y l i n d e r f  Since  the  m e a s u r e s  vo. z a n d  z l  vp,x are  p r o d u c t ,  we can  c o n s t r u c t  
a p r o d u c t  m e a s u r e  ~ on  {0, 1} z x {0, 1} z w i th  m a r g i n a l s  vo, z a n d  z lv , ,x  in such  a w a y  
t h a t  if  (t/, t/*) is d i s t r i b u t e d  a c c o r d i n g  to  ~, t hen  r/(x) = q*(x) Vx :# 0 a n d  

~[q(O) = t/*(O)] = 1 - (2 - p), 5[t/tO) = 1,t/*(O) = O] = 2 - p .  (4.2) 
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Then we construct  the coupled process (t/t,/I*) with initial distr ibution ~, using the 
same arrows. If  t/(0) 4= t/*(0), then the processes t/~ and t/* differ at mos t  in one site. 
The posi t ion of this discrepancy behaves as a second class particle with respect to t/. 
We call it Zt .  At t ime 0, Zo = 0. I f f  depends on sites { - k . . . .  , k}, the expression 
inside the limit in (4.1) is bounded  above by 

(2 -- p)J[f[looP([Zt - v t  - axfftt [ <= k) . (4.3) 

The  probabi l i ty  in (4.3) converges to zero as t o  oe, by the convergence of 

(Zt - v t ) / x~ t  to a no rma l  r a n d o m  variable with nonzero  diffusion coefficient D, 
proven  in Theorem 1.2. ' t '  

P r o o f  o f  Theorem 1.3 We first show the result for p = 1. In this case Zt - Xt. To  
avoid heavy nota t ion  we prove  the theorem for a = 0. The extension is straightfor- 
ward. Assume f depends on the sites { - k, ... ,k}. Then by L e m m a  4.1 we have 
(along convergent  subsequences) 

n 

1 l i m v p z S ( t ) % t  2 "C(2k+l)xf" (4.4) l i m v o ' z S ( t ) % t f  - 2n~+ 1 t~oo ' x - - .  
t ~ o o  

for all n > 0. We choose to translate by (2k + 1)x because in that  way the suppor t  
of  "C(2k + ~)~ f is disjoint of  the suppor t  of  Z(2k + ~)y f if X 4: y. To  compute  the second 
limit in (4.4) write x'  = (2k + 1)x and 

1 1 
2n + 1 vp'xS(t)'rvt "C(2k+ 1)xf -- 2n + 1 E 

2n + 1 E f ( t / t ) l { X t  vt > t 1/4 

+ 2 n ~ E [ z v t  ~_ z~, f ( t / t ) l { X t - v t  < - tl/4}] 

+ ~ E  vt f ( t / t ) l{IXt  - v t l <  ?/4 

= I1 (t) + I2(t) + 13(0. (4.5) 

By Theo rem 1.2 limt-, ~ Ia(t) = 0. Couple  tlt with initial distr ibution vp,~ and (at, ~t) 
with initial distr ibution ~2 as described at the end of Sect. 2. Fo r  t t/4 > n(2k + 1), 
since p = 1, 

Now,  

1 E f ( a t ) l { X t  -- vt > t 1/4 Ia(t) = 2n-+ 1 

I tl/4}] 2 I i ( t ) -  E [ v p f  l { X t -  v t  > 

<= E zVt 2n + l x _ _  

L 1 q < E zvt 2n + 1 x = - (zx, f f frt) -- v ,  

(4.6) 
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Theorem 
Hence 

But {v(zk + 1)~ f (at)}~ are i.i.d, with distribution induced by v o, hence the r.h.s, of (4.6) 
does not depend on translations by v t  and equals v p ( f - v o f ) z / ( 2 n  + 1). By 

1.2 (central limit theorem for X t )  lim~_~oE[l{X~- vt > tl/~}] = 1/2. 

Analogously, 

- O 1 l imll( t )  ~ v p f  < 
t"* c~ 

I 1 0 1 lira 12(0 - ~ vz f < 
t--~ 

We get (1.6) for p -- 1 and a -- 0 by taking n to infinity. To obtain the result for 
a ~= 0 it suffices to make a partition inside the expectation in (4.5) according to 
{ X t  - vt > at 1/2 + tl/4}, {X ,  - vt  < at 1/2 - t 1/4} and {IX, - v t  - atl/2[ < ? /4}  

and observe that by Theorem 1.2, P ( X t  - vt  < at 1/2 - t 1/4) --~ w(a, 1), the normal 
distribution with variance D defined before Theorem 1.3. The proof goes then along 
the same steps than in the case a = 0. In the case p e (1/2, 1) one uses the three 
particle representation of the system given at the end of Sect. 2. By (3.21), Gt, the 
position of the leftmost ~ particle and Dr, the position of the rightmost ~ particle at 
time t satisfy (1.2), (1.3) and Theorem 1.2. From this it is not difficult to construct an 
argument similar to the case p = 1 to show (1.6) for all cases. 

5 F l u c t u a t i o n  f ie lds  

In this section we show the convergence of the density fluctuation fields in the case 
of a shock. We first prove Theorem 1.5 and then Theorem 1.4. The proof of (1.13) is 
based on the fact that the variance of the current through certain lines parallel to 
(t(1 - 2p), t) and (t(1 - 22), t) vanishes. The proof of (1.14) is based in Theorems 
1.1-1.3. 

P r o o f  o f  Theorem 1.5 We first show (1.13). Since the number of particles can 
change only on the boundaries, 

ri~-lt(x) - ~ rio(X) = j~-lbl(t), ,-l ,~ _ j~-~b2(,).~-,,2, (5.1) 
xEAo x~B~ 

where j~-lb,(t),~-~a, has been defined before Lemma 3.1. By (3.24) and Lemma 3.1, 

lim ~?E(J~ - lb i ( t ) 'e - la~ - -  E J ~ - a b i ( t ) ' e - ' a i )  2 --- 0 ,  i = 1, 2. (5.2) 
e ~ 0  

Then (1.13) is a consequence of (5.1) and (5.2). Now we show (1.14). We prove below 
that 

l imE e 1/2 ~ ri~-~t(x)- ( 2 ( c -  TcWe(O) + p(T~W~(t)  + c)) = 0 ,  (5.3) 
~ 0  xeCdt )  

where W~(t) = e i/2 ( Z , -  ,t - e -  1 vt)  and Tc is truncation by c defined in Theorem 1.5. 
Since ~Ko(t)Erio(x)  = ~-  l v t ,  (1.3) implies 

( / l imE ~1/2 T~ ~,~ ~ (rio(X) - Erio(x)) - ( 2 -  p)TcW~(t)  = 0 .  (5.4) 
e~O x e K d t )  
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By Theorem 1.3, 

l ime 1/2 ~ Et /~- l , (x)= 
e ~ O  xECdt )  
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(p(1 -- w(r, t)) + 2w(r, t))dr, (5.5) 
c 

where w(r, t) is defined in Theorem 1.3. Finally, by symmetry  of (r, w(r, t)) with 
respect to (0, 1/2), 

(p(1 - w(r, t)) + 2w(r, t))dr - (2(c - TcWe(t)) + p(rcw~(t) + c)) 
- c  

= (2 - p)T~W~(t). (5.6) 

Then  (1.14) follows from (5.3), (5.4), (5.5) and (5.6). 

Proof of  (5.3) We first show it for p = 1. Let C[( t )= [ -  e-1/2(T~W~(t)+ c), 
0] c~ Z, C + (t) = [0, e- 1/2 (c - T~W~(t))] c~ ~. Use the coupling described at the end 
of Sect. 2. Let q'r = Zxt~t, a~ = ZxtOS,~; = zxt~t. Then, 

x~Cdt )  x e C F  (t) x ~ C  { (t) 

= Z a;-~t(x) + Z (a'c~t(x) + ~'~-,t(x)). (5.7) 
x~Co- (t) x e C  + (t) 

The first marginal  of (at, ~t) is vp for all t and IC[ (t)l ~< 2ce-1. Hence, by (2.2), 

l ime ~/2 ~, a'~-~(x) - p(T~W~(t) + c)) = 0 a.s. (5.8) 
t ~ O  x s C 7  (t) 

Then (5.8) and dominated  convergence imply 

( l i m e  el/2 ~ o-;-~t(x ) -  p(T~W~(t) + c) = O. 
~:~0 xeC; -  (t) 

Analogously 

l ime  el/2 ~ (a'~-~t(x) + ~'~-~(x))-- 2 ( c -  T~W~(t)) = 0. 
0 \ x e  C. + (t) 

We leave to the reader the proof  for p e (1/2, 1). ~ID 

Proof of  Theorem 1.4 Let �9 be the indicator  of the interval (al, a2) and Btq~ be the 
indicator of the interval (bl(t), b2(t)) as defined in (1.10). By Theorem (1.5) we have 
that  for any fixed time t as e ~ 0, the fluctuation fields 1~(~) converges in L2(p) to 
]C(Bt~b), the Gaussian field with covariance (1.9). It is immediate  to extend this 
convergence to the finite dimensional distributions: Let t~ < ... < t,. Then (1.13) 
implies 

l ime E max I r~,(4~) - r(B~fl~)[ = 0. 
e~O \ ie{1, ...,n} 

This implies in part icular  the weak convergence claimed in Theorem 1.4. 
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