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Summary. Given two points x, y ~ S 1 randomly chosen independently by a mixing 
absolutely continuous invariant measure # of a piecewise expanding and smooth 
map f of the circle, we consider for each e > 0 the point process obtained by 
recording the times n > 0 such that I f " ( x ) - f " ( y ) l  < ~. With the further assumption 
that the density of p is bounded away from zero, we show that when e tends to zero 
the above point process scaled by e-  1 converges in law to a marked Poisson point 
process with constant parameter measure. This parameter measure is given ex- 
plicitly by an average on the rate of expansion of f 

Mathematics Subject Classification." 60F05, 60G55, 34C35 

I Introduction 

Consider the times when two orbits of a circle mapping get e close. If the base 
points are randomly chosen independently by an invariant probability measure of 
the map considered, we obtain a point process. We are interested in the asymptotic 
limit law when e tends to zero for the above process (when scaled by e 1). In the 
following we give the precise definitions and statement of results. 

Let f :  S 1--,S 1 be a piecewise expanding and smooth map of the circle, i.e. there 
exists a partition d of the circle given by 0 < ao < . . .  < ar < 1, such that f is smooth 
on each open interval (a~21,a j) and there exist a power m > 1 and a number p > 1 
satisfying ess sup I ( f  )11/ >P.  We shall assume f i s  topologically mixing 
and hence f admits a unique absolutely continuous invariant measure # (cf. 
[-LY, HK]) .  The density of # will be denoted by h(x) and we recall that h is 
a function of bounded variation. 

* Partially supported by FAPESP grant number 90/3918-5 
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Let the torus be denoted by 3 -2 =S  1 x S 1 and let fi be the product measure # x #. 
Define the point process r~ : 3-2--*///d~[0, oo) by 

y ) =  Y, 6 = ,  
{n>O: If"(x)-f"(y)l <~} 

where ~ [ 0 ,  m) denotes the a-finite measures on [0, ~ )  and ~,,~ denotes Dirac 
measure at the point he. If we consider the product map F : 3 - 2 ~ 3 -  z given by 
F(x, y )=( f ( x ) , f ( y ) )  and define the e-neighbourhood of the diagonal by 

A~ = {(x, y)e3-  2: I x - y l  < e}, 

then v~ can be written as 

�9 
n>0  

where Zao denotes the indicator function of A~. The latter expression defines the 
process of visits to an e-neighbourhood of the diagonal. Similarly 

�9  (co) = Z " , - 1  ( c o ) ) 6 = ,  
n>O 

defines the process of entrances to an e-neighbourhood of the diagonal. 
Let 9 be a continuous function with compact support on [0, ~).  Following [Ne], 
we integrate g by the point process ~ to obtain the random variable 

(g)(co) = 
~>O 

We recall that convergence in law of N~ (g) for every g implies converge in law of the 
point process v~ (cf. [Ne]). We shall be using the following notation for the 
expectation with respect to the measure fi, 

(N~(g))  = f N~(g)(co) dfi(co) . 

We now formulate our main result. 

Theorem. Let f be a piecewise expanding and smooth map of the circle with a unique 
and mixing absolutely continuous invariant measure which has a density bounded 
away from zero. There are a positive number/r and a probability measure on the 
positive integers n =  {~rk}k>O such that for any continuous non-negative function 
g with compact support on [0, c~), the random variable N~(g) converges in law when 

tends to zero to a random variable X(g) whose characteristic function is given by 

( e iCx(g) ) = e ~y2=~ n~f~ (e'ek~ . (1) 

The general expression of 2 and nk in terms of the density of the absolutely 
continuous invariant measure and in terms of the expansion of f is given at 
the end of the paper. For the special case when f is uniformly expanding (i.e. 
ess sup ]f'] > p  > 1) the expressions simplify to 

for k = l ,  

1 I dx " s  1 If'(x)l ' 

2n l=2 fhg(x )  1 ]f,(x)j ~ l(fg),(x)--i l dx ; 
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and for k> 1, 

2 r C k = 2 f h 2 ( x ) I 1  2 1 ] 
i(fk_l),(x) [ [(fk),(X--------~l-[ l(fk+l),(X)[ dx .  

The proof of the result implies, through an indirect argument, that the above 
quantities are non-negative. It would be interesting to find a direct proof of this fact 
using basic properties of piecewise expanding maps of the circle. 

In the particular case of the/3-transformations, i.e. f (x )= fix (mod 1) with/3 > 1, 
which are used in most "random" number generators, we obtain 

2=2c(/3-1)/3 -1 and 7Ck--=(/3--1)/3 - k  

for k> 1, where c=fh2(x)dx. 
Now in order to interpret the limiting process we recall from [DV] the 

definition of a process whose characteristic function is given by (1). Consider an 
independent sequence of non-negative random variables X1, X2,... such that 
X1 and Xn+l--Xn for every n> 1 have Poisson distribution of density 2 and 
consider an independent sequence of positive integer valued random variables 
K1, K2,... such that IP {K, = k} = rCk for every n, k >= 1 and K, independent of Xj for 
every n and j. Then (1) is the characteristic function of the point process 

t t>O 

The above is the definition of a marked Poisson point process with constant 
parameter measure (cf. [DV]). Therefore we obtain the following immediate 
consequence of the Theorem. 

Corollary I Under the hypotheses of the Theorem, the process of successive visits to 
an e-neighbourhood of the diagonal scaled by ~-1 converges in law to a marked 
Poisson point process with constant parameter measure 2zt. 

Using a general description of the limiting process given in [DV], the next result 
also follows from the Theorem. 

Corollary II Under the hypotheses of the Theorem, the process of successive entran- 
ces to an e-neighbourhood of the diagonal scaled by e- 1 converges in law to a Poisson 
point process with density 2. 

We should note that Poisson limit laws have been established for processes of visits 
to a set (when the measure of the set tends to zero) in various contexts. For Markov 
chains (and hyperbolic automorphisms of the torus) Pitskel [Pi] proves that given 
a sequence of cylinder sets in a neighbourhood basis of a given point with the 
measure tending to zero, the process of visits to each cylinder set converges in law 
to a Poisson point process of density 1 when the process is normalised by the 
measure of the cylinder (for almost every base point). Independently, Hirata [Hi] 
proves this result for a shift of finite type with a stationary equilibrium state of 
a H61der continuous function. In the context of the present paper, i.e. for a piece- 
wise expanding and smooth map of the circle with an absolutely continuous 
invariant measure, Collet and Galves [CG] prove a Poisson limit law of density 
1 for the process of visits to a sequence of intervals with diverging time of 
self-intersection, with the process being normalised by the measure of the interval. 
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Here we prove that a similar (but different) regime occurs when we consider the 
close approach of two trajectories of such a map. 

The ideas involved in the proof of the theorem follow the technique developed 
in [CG]. First we show convergence of the factorial moments of N~(9) and then 
identify the limit as the derivatives at the origin of an analytic function. This 
analytic function is shown to have an analytic extension to a half-plane containing 
the origin which is then the Laplace transform of the desired marked Poisson point 
process. 

II Convergence of factorial moments 

The main property of such a piecewise expanding map f, which we will use in the 
sequel, is the exponential decay of correlations, i.e. there exist C > 0 and 0 < 7 < 1 
such that for every u, v ~ L 1(#) with u of bounded variation we have 

i .oi.d,-iud, (2) 

where V(u) denotes the variation of u (cf. [HK]). 
Let d be the defining partition of f and denote by cg the critical set of f, i,e. the 

set of points x E S 1 such that x or f(x) belongs to {a0,..., a, }. For n > 0, define the 
partition d ,  whose atoms are sets of the form ~ . = o  f-J(Iij), where each Lj belongs 
to d .  

Let 8 ~ (n) be the smallest diameter of the atoms of the partition d , .  Let 62 (n) be 
the smallest distance between the points in U ~= o fJ(~). These two functions 61 and 
62 are nonincreasing and 61 tends to zero when n tends to infinity. For e small 
enough, we denote by l(e) the largest integer N < ~ e  such that 

min {61 (N), be (N)} > x/~.  

Note that this implies that l(e) diverges when e tends to zero. 
We will first estimate the variation in the horizontal (and vertical) direction of the 
characteristic function of sets of the form 

• F-iJ A~ , 
/=o 

where io = 0 < il < . . .  < is is an increasing sequence of numbers which will appear in 
the proof of the main result. If q) is a function on the torus we shall denote 
respectively by 

Vq~(. ,y)  and Vq~(x, ' ) ,  
1 2 

the variation of the function ~oy(x)=cp(x, y) for fixed y and the variation of the 
function ~0x(y) = q)(x, y) for fixed x. 

Lemma I If  the increasin9 sequence of numbers io=O<il<. . .<is  satisfies 
i~+1-is<l(e)/s for O<-_j <s, and e is sufficiently small, then 

sup V X(~=oF-isd. (' '  Y) ~ 6(S + 1) 
y 1 
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and 

sup y ZO~=oF-,,A,(x,')<=6(s+ 1). 

Proof If suffices to prove the first inequality since the second one is analogous. For 
s = 0 the result is obvious and we observe that for s > 1 

Since 

ZN~=0F-',A. = f l  XA~nF-',A~" 
j = l  

V(g~g2)~ I[g~ Iloo Vg~ + IIg~ IlooVg2, 
the result will follow from the estimate 

V z ~ v  'A,(',Y) <6  , 
1 

provided i < l(~) and e is small enough. The following is devoted to the proof of this 
inequality. 
First we divide the diagonal into the upper and lower parts, namely 

A~=A+~A7 , 

where 

A+=A,n{(x,y)[x<y} and A ; = A , n { ( x , y ) l x > y } .  

We have 

A~c~F-IA~ = U ((I• �9 
I, Jr162  

We now observe that because of our choice of l(e) any horizontal line meets at most 
three sets of the form (I • J)c~A~ with I and J in ~'i. It is easy to verify that the 
nonempty sets (I • J)nA~- and (I • J)nA + are either triangles or trapezes (the 
latter with I =J) .  We shall need a precise description of the sets (I • J ) n A j  nF-iA~ 
(similar arguments can be developed for the sets (I • J)nA + nF-iAA. 

An important remark is that F i restricted to any of the above triangles or 
trapezes is a diffeomorphism onto its image. 
We will first analyse the triangles. The triangles contained in A~- are of the form 

"r~= { (x, y ) l x - ~ <  y<=z<=x} , 

where z is a boundary point of the partition d~. For each triangle T~ there are 
several possibilities according to the behaviour of the map f~ at the point z. 
When f i  is discontinuous at z, it follows from our choice of l(e) that 

TznF-iA~=O . 

When f~ is continuous at z the most involved case is when the two branches of f~ 
which meet at z have slopes of opposite signs. We will discuss in detail the case 
where f l  is increasing on the left of z (and decreasing on the right). The opposite 
case can be treated similarly. 
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f i ( z )  

f~(z) -- C 

/ 
r ~ r 

Zl z Z2 
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z z2 z + ~  

Z - - C  

Fig. 1 

We will denote by ~ 1 and ~12 the local inverse maps of f i  on the left and the right of 
z respectively (see the picture). Let zl = ~1 ( f i ( z ) - e ) ,  and z2 = O2( f i ( z ) -e ) .  
We first describe the set T2c~F-iA~c~{ (x, y)lz~x<=z2} which is equal to 

T ~ { ( x , y ) [ z < x < = z 2 ,  f i ( x ) - e<=f i ( y )<=f i ( z ) } .  

Since IPl is monotone increasing the above set is equal to 

Tz~{(x,y)lz<-_x<-_z2, ~l(f'(x)-~)<y<z}. (3) 

For  z < x < z2, the curve x ~ O l ( f ~ ( x ) -  e) is monotone  decreasing with a slope 
bounded away from zero and infinity. Therefore the intersection of the set (3) with 
any horizontal line is a compact  interval if it is nonempty. 
We next describe the set T~ c~F- iA~ c~ { (x, y) l Z 2 ~ X ~ Z -{- g} which is equal to 

T z n { ( x , y ) l z 2 < x < z + e ,  f i ( x ) - e < = f i ( y ) <  f i ( x ) + e }  . 

As above, this set is equal to 

Tzc~{(x,y)]z2<_x<z+e,  ~ l ( f i ( x ) - ~ ) < y < ~ a ( f i ( x ) + e ) } .  (4) 

For  z z < x <_ z + e, the curves x ~ ~ 1 ( f i ( x ) - ~) and x ~-+ ~ 1 ( f i ( x) + ~) are monotone  
decreasing with slopes bounded away from zero and infinity. Therefore the inter- 
section of the set (4) with any horizontal line is also a compact  interval if it is 
nonempty. 

The cases where the slopes of the branches of f~ are of the same sign on both 
sides of z require a similar and simpler argument, as does the case of trapezes. Thus 
the Lemma follows. [] 

For  the next result we need a lower bound on the density h(x) of p. Therefore we 
shall assume throughout  that ess sup h(x ) -1> O. 

Lemma 2 There is a positive constant C and a number y with 0 < y < 1 such that if  the 
increasing sequence of numbers i o = O < i l < . . . < i s  satisfies i j+ l - i j< l ( e ) / s  for 
0 <j  < s, and e is sufficiently small, then for any measurable set B in ~ and for any 
integer q 

[( Z(~=oF-i,A, ZB~ vq+i*>--()~(~_oF i,A~) ()~B >] <_~ C(s + I)(ZB ) Y q+i" 



Limit law for the approach of two trajectories 2 4 3  

j 2  such that 

where 

,.,x,,<c(y... ,+0. 
Similarly we have 

fh(y) h(z) pfh(X)ZA(X, y)z.(fq(x), z)dx] dy S dz= 

iih(ylh(.)[ fh(t)Z.(t,.)at fh(x)z.(x, y)dx + s.(y) f z.(t,.)at]aydz , 

where 

Isq(Y)I<=C(VzA(',Y)+I)7q. 

The above would give the result except that in the remainder term we get the 
Ll-norm of ;~s instead of the expectation. Since the density is bounded below away 
from zero we get the desired estimate. [] 

We now prove a Lemma about the convergence of the mean intermediate n times of 
visit to the e-neighbourhood of the diagonal which happens within the scale l(0. 

Lemma 3 For any positive integer n the following limit exists 

Z 
~:~O 0 = q o < q i  < "'" < :q . -~  \ s = O  

q . - - q ,  t <=I(8)/(n--1) 

Moreover there are two positive numbers C and 0 such that for n >-_ 1, 

0 < C. < C O". 

We have also 

C1 = 2 f h  2(x) dx , 

Proof. We shall prove that for any measurable set A in 
supx V2 ZA(X, ") and supy ~/1 ZA(', Y) are finite we have 

[<ZAx~~ <ZB>f< 

y 1 

Then this Lemma follows from Lemma 1. In order to prove the above inequality we 
use the decay of correlations of f (see (2)) in the horizontal and vertical direction as 
follows: 

< ZA ZB ~ F q > =ffzA (x, y) zn(fq(x), fq(y))h(x) h (y) dx dy 

= f  h(x) ] f h(y)ZA (x, y) fh(z)ZB (fq(x), z) dz dy 

+ rq (x) f z~ ( f q (x), z) dz  ] dx , 
A 
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and f o r  n > 2, 

C . = 2  Z f h Z ( x ) I q  ...... q.-l(x) dx  , 
0 < q x  < "'" < q . - x  

where  Iq  ...... q.-1 is the posi t ive  f unc t ion  defined by 

Iq ...... q. , (x)=min 1,1(fq,),(x) I . . . .  ,l(fq~ I . 

Proof.  We will first prove a uniform bound on each term of the sum. We have 
obviously from our choice of l(e) 

n - - 1  

where B is the intersection of the set A~ ~ F - q " - I A ~  with the union of the triangles 
defined in Lemma 1, and K appears due to the fact that f is not necessarily 
uniformly expanding. It is easy to verify that for each triangle T 

f i ( r c~  A~ c~ F-q"-~ Ae) < (9(1)e2p -q"-~ . 

We now observe that the number of triangles is at most (2[cg[)q.-~, and since 
q . -  1 < l(e) we obtain for e small enough 

It is now enough to prove the convergence of 

\ s = 0  

for fixed integers 0 __< qo < ql < "'" < q , -  1. For  n > 2, let lq  ...... q.-t be defined as in the 
statement of the lemma. It is easy to verify that away from the e-neighbourhood 
De of the boundary points of dq._ 1 (which contribute (9 (e z) to the measure), we have 

D C ~ . - 1  e i Is=0 F q~A~= 

D e C c ~ { ( x , y ) ] x - e I q  ...... q . _ , ( X ) - - ( 9 ( g 2 ) < y ~ x - } - g l q  . . . . . .  q._ z (X) -~- (9 (e2)  } . 

This implies that 

8 - 1  ) ~ o F  q" =fh(x )e  -1 f h ( y ) d y d x + ( 9 ( e ) ,  
\ s = o x-elq,,...,q. ,(x) - O(e 2) 

and the convergence follows from the fact that almost surely 

x + g.lq,. . .q._ , ( x )  + (9(e 2) 

lime -~ f h ( y ) d y = 2 h ( x ) l q  ...... q._~(x) . 
~-oo x-~I~,,. ,~._,(x)-(9(e 2) 

Replacing Iq ...... q. ~ by the constant function 1 in the above argument we also 
obtain the proof of the convergence for the case n = 1. 



Limit law for the approach of two trajectories 245 

We finally prove the bound on C.. We have from the uniform bound on the 
terms of the sum 

C.=<(9(1) E p-q"-'=(9(1) ~ (q--1)...(q--n+2)p_q 
O=qo<q~ <...q. ~ q=.-1 (n -2 ) !  

1 t n - 1  �9 =o(1) ( si- 1 [] 

In the next result we obtain the convergence of the factorial moments of the process 
of visits to the e-neighbourhood of the diagonal, and we also get an explicit 
formulae for the limit. 

Proposition 4 For any continuous non-negative function g with compact support on 
[0, oo), the moments of the random variable N~(g) converge, and for any integer k > 0, 
we have 

k k! 
lim (N~(g)k)= ~ ~ I x , ,  
e~O p = l  O<tl , . . . ,O<tp t l : ' " t P :  

tl + ... + t~=k 

E Z ~ C'n ' jg[E)  ~_ ~ +n,-1+1 
b = l  O<nl,...,O<nb i=1 

nl+.. .  +nb=p 

where the numbers C, are defined in Lemma 3. 

Proof. From the definition of N~(g) it follows at once that 

(N,(g))=(ZAo) ~ g(ne) 
n=O 

which converges to 

2 f h  2(x) dx fg(y)  dy,  

since g is continuous with compact support and Lemma 3. 
Let now k be an integer larger than 1. We have 

We now rearrange the sum into a sum over different indices, obtaining 

k k~ 
( N~(g)k) = ~, ~ p! 

p=l O<t~ ..... O<r~ tx!...tp! O<h ..... O<L 
t l+ "" +tp=k j~#j~ for q # r 

(s=~-I1 gt~ ~ F J" I . 

Now ordering the indices js we get 

k k~ 
= Z Z Z 

v=l o<q ..... o<t~ t l ! '" t f l  
t 1 + ... +tp=k O<=jl <j2< ... <jp 
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We will prove convergence of 

2 
0 <=Jl <J2 < ... <Jp 
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for fixed integers t~,..., tp. We decompose the above sum into clusters of consecu- 

O~JI <J2 < "'" <Jp 

P 

tive indices differing by at most l(e)/k 

=2 2 2 
b = I  O<nt,...,O<nb 

nL + " "  + n b = p  (Jl  . . . . .  j p ) e ,~ (n t  . . . . .  nb) 

where 

Is=[I1 gt~(J~z)Zz, ~ FJ">, 

9 (n l , . . . ,  rib)= {(j l , . . .  ,j,~+ ... +,~)l j l  <Ja < " "  <j,~+ ... +,~, 

Jq + t -J~ < l(e)/k if q (~ {nl, nl + n2 . . . . .  nl + ' "  + rib- ~ } 

and else jq+ 1 --jq > l(e)/k} . 

We now use the decay of correlations between the different clusters. We first fix the 
positive numbers nl , . . . ,nb  and then we fix the numbers (Jl,---,J,~+...+,b) in 
~(n l ,  . . . ,  r ib ) .  We then write 

1-I z oF"= z ooF" I] Z ooF' ..... lq z ,oF" 
S= 1 $=/~1 q- 1 S=n l + ... +rib_ 1 + 1 

The estimate will be done recursively and we need only to do one step. The above 
expression can be written as 

( , ,H , ,  o S = l  )~A, oFJ~>=<s~=IZA~ FJs J1ZBoFJ ..... -jl> . 

Applying Lemma 2, we get the estimate 

(s~=I)~AoFJ~ JlzBoFJ Jl>~_.((s~=I Ogj~ Jl > .Jt_Fj 1 ....... J +2)<)~B> , 

where 

~. . < Cnl ,~Jn ,+ l  Jl I j . . . . . .  : . . . .  I =  

Finally we obtain for b > 1, 

Jn~+-,.+nb-2+l,...,Jnl +.--+nb-t+l 
\ \ s = n t +  ".- + n e - 2  + l 

X l  .... II+IH+I?~I+IZA~~ " 

(5) 

(6) 
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F r o m  the above expression we see that  ( N ~ ( g )  k )  can be written as a sum of two 
quantities. The first one is 

k k! v 
E 2 E 2 E 

v=l O<t~ ..... O<tp t a ! ' " t f l  b=l O<n~ . . . . .  O<nb (Jl ..... Jv)e~(nl ..... nb) 
t l+ . . .  +tp=k n l+ "" +nb=p 

x ZAo ~ FJ~ I~  gt"(J~ e) , 
m = l  \ \ s = n l + . . . + n ~ - l + l  s=nl+. . .+n~- l+l  

where we defined no = 0, and the second quant i ty  is essentially a remainder.  Fo r  
fixed indices p, t l , . . . , t v ,  b, n l , . . . , n b  and for ( j l , . . . , j p ) e ~ ( n l , . . . , n b )  we define 
a double  sequence of integers (q,,,~) with 1 <_m<_b and O < - s < - n m - 1  by 

We have 

qm,s=Js+n,+ ... +n~-l+ 1 --Jn~+ ... +n~-i + 1 " 

( j l , . . . , jp )~(n~, . . . ,nb)  r n = l  X \ S = n l + . . . + n ~ _ l + l  ! s = n l + . . . + n , ,  1 + 1  

= 2 
0 < q m , 1  < . . .  <qm,,,.-a 

m = l , . . . , b  
qm, ~ + 1 - qm,~ <= l(~)/k 

b / n~ 1 \ 

~ - b , ~ - i  I H s = o  
) 

x E 
J l  < J n l +  1 < "'" <]nl+...+nb-[+l 

J,~+...+n,+~+l-Jn~+...+n~+~+l>q,,n~ l +l(e)/k 

b 

i = 1  

(7) 

n i - -  1 

X ~I gt~+,~+...+n,_~+l((j,~+...+,~ ~+,+qi,  s ) e ) .  
s = O  

Using L e m m a  3 and elementary properties of  the Riemann integral it is easy to 
prove that  the above quant i ty  converges to 

b Yb 

, dybg(yb)Z . . . . . . . . . . . . . . . .  +' f d y b - l g ( y b  1) Z~=~ ~+ . . . . . . . . . . .  
i = 1  0 0 

Yz ~nl_ l t 
... f d y l g ( y l ) z .  . . . . . .  . 

0 

N o w  we must  estimate the remainder.  F r o m  Eq. (6) we see that  this remainder  is 
a sum of products  o fb  terms each of  the form ( H z ~  ~ o F ' )  or r... and there is at least 
one of  the latter type. The summat ion  over the indices will be performed as before 
introducing the indices m, s and qm, s. We then obtain an expression similar to Eq. 
(7) except that  we multiply and divide by a power of  e which is equal to the number  
of factors of the form ( H z ~  o F ' ) .  Using the estimate (5) for the terms r... one can 
readily see that  the remainder  tends to zero with e. This finishes the p roof  of  the 
proposit ion.  [ ]  
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III Proof of the Theorem 

Let q)g be the function defined by 
~| C.f(e~g(~l-1)"dt 

% ( z ) =  e "~ 

which is analytic on a disc around the origin (whose radius depends only on the 
number 0 in Lemma 3 and on II g It co). This implies that the k-th derivative #k of this 
function at the origin satisfies 

lira sup ~ < oe . 
k'-* oo 

One can verify that 

k 

 k=2 2 
p = l  0 < t t , . . . , 0 < t  p 

t 1+ ... + t p = k  

k! P b 

t l [ ' " t v !  b=l O<n~ ..... O<nb i=1 
n~+"" +nb=p 

N,n~- 1 t Y2 

x dybg(yb) ~ . . . .  +,,+...+,,_~+1... f dylg(yl)E"L-olt,+l, 
0 0 

and by Theorem 8.48 and Proposition 8.49 of [-Br], this implies convergence in law 
of the sequence N,(9) .  

Now we proceed to interpret the limiting process. Let �9 below be the analytic 
function defined on a small disc around the origin, 

�9 (u)= ~ C.u". 
n = l  

Consider the function Iq ...... q.-1 defined in Lemma 3. For  0<p~ < .-- <p ,  define 

Dp ...... p .=2 f h 2(x)Ip ...... p.(x) dx . 

Recall that m > 0 is the smallest k > 0 such that ess sup [(fk),l 1/k > p. Then for n > m 
we have 

Cn = ~ 2 f h Z ( x ) I q  ...... q._,(x) dx 

0 < q l < . . .  < q , - m  < q n - ~ +  l < ""  < q , - 1  

= ~ Dv '''''' p. ( p l - - 1 ) . . . ( p l - - n + m + l )  

. . . .  l < p  . . . . . .  p ,  ( n - m -  1)! 

Hence the function 

can be written as 

Urn+ 1 

n = m + l  

n : l  n : m + l  

D u € (pl--1)!  
. . . .  l<p~<...<p, p ...... P~ ( n - - m - - 1 ) ! ( p l - - n + m ) !  

= u  m§  ~ /Spl(l+u);1-1, 
p t = l  
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where we have defined for p > O, 

Dp= E Op, p ...... p . 
p < p z < . - - < p ~  

Now let 2 and r~k (such that ~rCk= 1) be a formal solution of 

�9 (u)= ~ C , ( l + u - 1 ) " + ( l + u - 1 )  'n+l 
n 

Since Dp ...... p. < 6(1)p -p" we conclude that 

2 ...... 
P < P 2  < "'" < P ~  

Therefore we obtain the estimate 

[~k l <= (9( l )p  - k  . 

This shows that the function 

~(u) = 2 rck(1 +u)  k -  1 
k 

(1 + u ) P l - t D p  ...... p .  

0 < P l  < ' "  <P~ 
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(8) 

+ Z m 1 (_1)  i Z Dj_,,+~,p ...... p . ;  

j = m  j - - r a +  l < p 2 <  ...  <Pro 

For  k = 1, 

2 u ~ = 2 f h 2 ( x ) d x +  ~, n 1 ( - 1 ) "  ~, Dq ...... q. 
n = l  0 < q l  < . "  < q .  

is analytic on a disc centered at - 1 and of radius 1 + 6 (6 > 0). From (8) we know 
that �9 and ku coincide on a small disc around the origin. Therefore, taking 
u = e ~g(y)- 1 we deduce that the function 

0o (z) = e "~ y'k~= 1 ~kfo (ezko(y) - 1 )  dy 

coincides with ~0g on a small disc around the origin. Since q)o is positive definite, we 
conclude that 0o is positive definite and hence necessarily we must have rCk > 0 for 
all k > 0, and 2 > 0 (cf. [Do]). This finishes the proof of the Theorem. []  

Here we give the explicit solutions for 2 and rCk defined by Eq. (8). In the case m > 1, 
we have 

m - - 1  

2 = 2 f h 2 ( x )  d x +  Z ( - 1 ) "  Z Oq ...... q. 
n = l  0 < q l  < . . .  < q .  

+ ( - 1 )  m Z Dl, p ...... p . 

1 < p 2 <  ... <p= 
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for l <k<m, 

and for k > m, 

m - 1  

~7Ck = 2 
n = k - 1  0 < q l  < .-. < q .  

m+l (m+l) 
+ Z ( - -  1) j Z Dk-m+j ,p  ...... p, ; 

j = m - k + l  J k--m+j<p2<...<p~ 

27Zk= ~ m 1 (_1)  j 2 
j = O  k-m+j<p2< ... <p~ 

In the case m = 1, we obtain the expressions 

2--2fhZ(x) 1 if,(x) I dx; 

for k = l ,  

I 2 2 l d  x ; 
27tl=2fh2(x) 1 if,(x)l b l(fz),(x)~l 

and for k > 1, 

2rck= 2 f h2(x) [ 1 
I(fk- 1)'(x)l 

D k - m + j ,  p2,...,pm �9 

2 l j  
i(fu),(x)[ § l(fk+l),(x)l dx. 
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