Asymptotic limit law for the close approach of two trajectories in expanding maps of the circle

Zaqueu Coelho ${ }^{1}$, Pierre Collet ${ }^{2}$, ${ }^{\star}$
${ }^{1}$ Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 20570 (Ag. Iguatemi), 01498 São Paulo SP, Brazil (e-mail: zaqueu@ime.usp.br)
${ }^{2}$ Centre de Physique Théorique, Ecole Polytechnique, Laboratoire UPR 14 du CNRS, F-91128 Palaiseau Cedex, France (e-mail: collet@orphee.polytechnique.fr)

Received: 21 May 1993/In revised form: 8 December 1993

Summary. Given two points $x, y \in S^{1}$ randomly chosen independently by a mixing absolutely continuous invariant measure μ of a piecewise expanding and smooth map f of the circle, we consider for each $\varepsilon>0$ the point process obtained by recording the times $n>0$ such that $\left|f^{n}(x)-f^{n}(y)\right| \leqq \varepsilon$. With the further assumption that the density of μ is bounded away from zero, we show that when ε tends to zero the above point process scaled by ε^{-1} converges in law to a marked Poisson point process with constant parameter measure. This parameter measure is given explicitly by an average on the rate of expansion of f.

Mathematics Subject Classification: 60F05, 60G55, 34C35

I Introduction

Consider the times when two orbits of a circle mapping get ε close. If the base points are randomly chosen independently by an invariant probability measure of the map considered, we obtain a point process. We are interested in the asymptotic limit law when ε tends to zero for the above process (when scaled by ε^{-1}). In the following we give the precise definitions and statement of results.

Let $f: S^{1} \rightarrow S^{1}$ be a piecewise expanding and smooth map of the circle, i.e. there exists a partition \mathscr{A} of the circle given by $0 \leqq a_{0}<\cdots<a_{r}<1$, such that f is smooth on each open interval $\left(a_{j-1}, a_{j}\right)$ and there exist a power $m \geqq 1$ and a number $\rho>1$ satisfying ess sup $\left|\left(f^{m}\right)^{\prime}\right|^{1 / m}>\rho$. We shall assume f is topologically mixing and hence f admits a unique absolutely continuous invariant measure μ (cf. [LY, HK]). The density of μ will be denoted by $h(x)$ and we recall that h is a function of bounded variation.

[^0]Let the torus be denoted by $\mathscr{T}^{2}=S^{1} \times S^{1}$ and let $\bar{\mu}$ be the product measure $\mu \times \mu$. Define the point process $\tau^{\varepsilon}: \mathscr{T}^{2} \rightarrow \mathscr{M}_{\sigma}[0, \infty)$ by

$$
\tau^{\varepsilon}(x, y)=\sum_{\left\{n>0:\left|f^{n}(x)-f^{n}(y)\right| \leqq \varepsilon\right\}} \delta_{n \varepsilon},
$$

where $\mathscr{M}_{\sigma}[0, \infty)$ denotes the σ-finite measures on $[0, \infty)$ and $\delta_{n \varepsilon}$ denotes Dirac measure at the point $n \varepsilon$. If we consider the product map $F: \mathscr{T}^{2} \rightarrow \mathscr{T}^{2}$ given by $F(x, y)=(f(x), f(y))$ and define the ε-neighbourhood of the diagonal by

$$
\Delta_{\varepsilon}=\left\{(x, y) \in \mathscr{T}^{2}:|x-y| \leqq \varepsilon\right\},
$$

then τ^{ε} can be written as

$$
\tau^{\varepsilon}(\omega)=\sum_{n>0} \chi_{\Delta_{\varepsilon}}\left(F^{n}(\omega)\right) \delta_{n \varepsilon},
$$

where $\chi_{A_{\varepsilon}}$ denotes the indicator function of Δ_{ε}. The latter expression defines the process of visits to an ε-neighbourhood of the diagonal. Similarly

$$
\tau_{e}^{\varepsilon}(\omega)=\sum_{n>0} \chi_{\Delta_{\varepsilon}}\left(F^{n}(\omega)\right) \chi_{\Lambda_{\varepsilon}}\left(F^{n-1}(\omega)\right) \delta_{n \varepsilon}
$$

defines the process of entrances to an ε-neighbourhood of the diagonal.
Let g be a continuous function with compact support on [$0, \infty$). Following [Ne$]$, we integrate g by the point process τ^{ε} to obtain the random variable

$$
N_{\varepsilon}(g)(\omega)=\sum_{n>0} \chi_{\Delta_{\varepsilon}}\left(F^{n}(\omega)\right) g(n \varepsilon)
$$

We recall that convergence in law of $N_{\varepsilon}(g)$ for every g implies converge in law of the point process τ^{ε} (cf. [Ne]). We shall be using the following notation for the expectation with respect to the measure $\bar{\mu}$,

$$
\left\langle N_{\varepsilon}(g)\right\rangle=\int N_{\varepsilon}(g)(\omega) d \bar{\mu}(\omega) .
$$

We now formulate our main result.
Theorem. Let f be a piecewise expanding and smooth map of the circle with a unique and mixing absolutely continuous invariant measure which has a density bounded away from zero. There are a positive number λ and a probability measure on the positive integers $\pi=\left\{\pi_{k}\right\}_{k>0}$ such that for any continuous non-negative function g with compact support on $[0, \infty)$, the random variable $N_{\varepsilon}(g)$ converges in law when ε tends to zero to a random variable $X(g)$ whose characteristic function is given by

$$
\begin{equation*}
\left\langle e^{i \xi X(g)}\right\rangle=e^{\lambda \sum_{k=1}^{\infty} \pi_{k} \int_{0}^{\infty}\left(e^{i \xi \xi(y)-1}\right) d y} . \tag{1}
\end{equation*}
$$

The general expression of λ and π_{k} in terms of the density of the absolutely continuous invariant measure and in terms of the expansion of f is given at the end of the paper. For the special case when f is uniformly expanding (i.e. ess $\sup \left|f^{\prime}\right|>\rho>1$) the expressions simplify to

$$
\lambda=2 \int h^{2}(x)\left[1-\frac{1}{\left|f^{\prime}(x)\right|}\right] d x
$$

for $k=1$,

$$
\lambda \pi_{2}=2 \int h^{2}(x)\left[1-\frac{2}{\left|f^{\prime}(x)\right|}+\frac{1}{\left|\left(f^{2}\right)^{\prime}(x)\right|}\right] d x
$$

and for $k>1$,

$$
\lambda \pi_{k}=2 \int h^{2}(x)\left[\frac{1}{\left|\left(f^{k-1}\right)^{\prime}(x)\right|}-\frac{2}{\left|\left(f^{k}\right)^{\prime}(x)\right|}+\frac{1}{\left|\left(f^{k+1}\right)^{\prime}(x)\right|}\right] d x
$$

The proof of the result implies, through an indirect argument, that the above quantities are non-negative. It would be interesting to find a direct proof of this fact using basic properties of piecewise expanding maps of the circle.

In the particular case of the β-transformations, i.e. $f(x)=\beta x(\bmod 1)$ with $\beta>1$, which are used in most "random" number generators, we obtain

$$
\lambda=2 c(\beta-1) \beta^{-1} \quad \text { and } \quad \pi_{k}=(\beta-1) \beta^{-k}
$$

for $k \geqq 1$, where $c=\int h^{2}(x) d x$.
Now in order to interpret the limiting process we recall from [DV] the definition of a process whose characteristic function is given by (1). Consider an independent sequence of non-negative random variables X_{1}, X_{2}, \ldots such that X_{1} and $X_{n+1}-X_{n}$ for every $n \geqq 1$ have Poisson distribution of density λ and consider an independent sequence of positive integer valued random variables K_{1}, K_{2}, \ldots such that $\mathbb{P}\left\{K_{n}=k\right\}=\pi_{k}$ for every $n, k \geqq 1$ and K_{n} independent of X_{j} for every n and j. Then (1) is the characteristic function of the point process

$$
\tau(\omega)=\sum_{n>0} K_{n}(\omega) \delta_{X_{n}(\omega)}
$$

The above is the definition of a marked Poisson point process with constant parameter measure (cf. [DV]). Therefore we obtain the following immediate consequence of the Theorem.

Corollary I Under the hypotheses of the Theorem, the process of successive visits to an ε-neighbourhood of the diagonal scaled by ε^{-1} converges in law to a marked Poisson point process with constant parameter measure $\lambda \pi$.

Using a general description of the limiting process given in [DV], the next result also follows from the Theorem.

Corollary II Under the hypotheses of the Theorem, the process of successive entrances to an ε-neighbourhood of the diagonal scaled by ε^{-1} converges in law to a Poisson point process with density λ.

We should note that Poisson limit laws have been established for processes of visits to a set (when the measure of the set tends to zero) in various contexts. For Markov chains (and hyperbolic automorphisms of the torus) Pitskel [Pi] proves that given a sequence of cylinder sets in a neighbourhood basis of a given point with the measure tending to zero, the process of visits to each cylinder set converges in law to a Poisson point process of density 1 when the process is normalised by the measure of the cylinder (for almost every base point). Independently, Hirata [Hi] proves this result for a shift of finite type with a stationary equilibrium state of a Hölder continuous function. In the context of the present paper, i.e. for a piecewise expanding and smooth map of the circle with an absolutely continuous invariant measure, Collet and Galves [CG] prove a Poisson limit law of density 1 for the process of visits to a sequence of intervals with diverging time of self-intersection, with the process being normalised by the measure of the interval.

Here we prove that a similar (but different) regime occurs when we consider the close approach of two trajectories of such a map.

The ideas involved in the proof of the theorem follow the technique developed in [CG]. First we show convergence of the factorial moments of $N_{\varepsilon}(g)$ and then identify the limit as the derivatives at the origin of an analytic function. This analytic function is shown to have an analytic extension to a half-plane containing the origin which is then the Laplace transform of the desired marked Poisson point process.

II Convergence of factorial moments

The main property of such a piecewise expanding map f, which we will use in the sequel, is the exponential decay of correlations, i.e. there exist $C>0$ and $0<\gamma<1$ such that for every $u, v \in L^{1}(\mu)$ with u of bounded variation we have

$$
\begin{equation*}
\left|\int u v \circ f^{n} d \mu-\int u d \mu \int v d \mu\right| \leqq C \gamma^{n}\left(\vee(u)+\int|u(x)| d x\right) \int|v(x)| d x \tag{2}
\end{equation*}
$$

where $V(u)$ denotes the variation of u (cf. [HK]).
Let \mathscr{A} be the defining partition of f and denote by \mathscr{C} the critical set of f, i.e. the set of points $x \in S^{1}$ such that x or $f(x)$ belongs to $\left\{a_{0}, \ldots, a_{r}\right\}$. For $n>0$, define the partition \mathscr{A}_{n} whose atoms are sets of the form $\bigcap_{j=0}^{n} f^{-j}\left(I_{i_{j}}\right)$, where each $I_{i_{j}}$ belongs to \mathscr{A}.

Let $\delta_{1}(n)$ be the smallest diameter of the atoms of the partition \mathscr{A}_{n}. Let $\delta_{2}(n)$ be the smallest distance between the points in $\bigcup_{j=0}^{n} f^{j}(\mathscr{C})$. These two functions δ_{1} and δ_{2} are nonincreasing and δ_{1} tends to zero when n tends to infinity. For ε small enough, we denote by $l(\varepsilon)$ the largest integer $N<\sqrt{-\log \varepsilon}$ such that

$$
\min \left\{\delta_{1}(N), \delta_{2}(N)\right\}>\sqrt{\varepsilon}
$$

Note that this implies that $l(\varepsilon)$ diverges when ε tends to zero.
We will first estimate the variation in the horizontal (and vertical) direction of the characteristic function of sets of the form

$$
\bigcap_{j=0}^{s} F^{-i_{j}} \Delta_{\varepsilon}
$$

where $i_{0}=0<i_{1}<\cdots<i_{s}$ is an increasing sequence of numbers which will appear in the proof of the main result. If φ is a function on the torus we shall denote respectively by

$$
\bigvee_{1} \varphi(\cdot, y) \text { and } \bigvee_{2} \varphi(x, \cdot)
$$

the variation of the function $\varphi_{y}(x)=\varphi(x, y)$ for fixed y and the variation of the function $\varphi_{x}(y)=\varphi(x, y)$ for fixed x.

Lemma 1 If the increasing sequence of numbers $i_{0}=0<i_{1}<\cdots<i_{s}$ satisfies $i_{j+1}-i_{j}<l(\varepsilon) / s$ for $0 \leqq j<s$, and ε is sufficiently small, then

$$
\sup _{y} \bigvee_{1} \chi_{\bigcap_{j=0}^{s} F^{-i j_{\varepsilon}}}(\cdot, y) \leqq 6(s+1)
$$

and

$$
\sup _{x} \bigvee_{2} \chi_{\bigcap_{j=0}^{s} F^{-i j_{A_{e}}}}(x, \cdot) \leqq 6(s+1)
$$

Proof. If suffices to prove the first inequality since the second one is analogous. For $s=0$ the result is obvious and we observe that for $s \geqq 1$

$$
\chi_{\bigcap_{j=0}^{s} F^{-i} \Delta_{\varepsilon}}=\prod_{j=1}^{s} \chi_{\Lambda_{e} \cap F^{-i} \Lambda_{\varepsilon}} .
$$

Since

$$
\vee\left(g_{1} g_{2}\right) \leqq\left\|g_{2}\right\|_{\infty} V g_{1}+\left\|g_{1}\right\|_{\infty} \vee g_{2}
$$

the result will follow from the estimate

$$
\bigvee_{1} \chi_{\Delta_{\varepsilon} \cap F^{-i} \Delta_{\varepsilon}}(\cdot, y) \leqq 6
$$

provided $i<l(\varepsilon)$ and ε is small enough. The following is devoted to the proof of this inequality.
First we divide the diagonal into the upper and lower parts, namely

$$
\Delta_{\varepsilon}=\Delta_{\varepsilon}^{+} \cup \Delta_{\varepsilon}^{-},
$$

where

$$
\Delta_{\varepsilon}^{+}=\Delta_{\varepsilon} \cap\{(x, y) \mid x \leqq y\} \quad \text { and } \quad \Delta_{\varepsilon}^{-}=\Delta_{\varepsilon} \cap\{(x, y) \mid x \geqq y\} .
$$

We have

$$
\Delta_{\varepsilon} \cap F^{-i} \Delta_{\varepsilon}=\bigcup_{I, J \in \mathscr{A}_{i}}\left((I \times J) \cap\left(\Delta_{\varepsilon}^{+} \cup \Delta_{\varepsilon}^{-}\right) \cap F^{-i} \Delta_{\varepsilon}\right)
$$

We now observe that because of our choice of $l(\varepsilon)$ any horizontal line meets at most three sets of the form $(I \times J) \cap \Delta_{\varepsilon}$ with I and J in \mathscr{A}_{i}. It is easy to verify that the nonempty sets $(I \times J) \cap \Delta_{\varepsilon}^{-}$and $(I \times J) \cap \Delta_{\varepsilon}^{+}$are either triangles or trapezes (the latter with $I=J$). We shall need a precise description of the sets $(I \times J) \cap \Delta_{\varepsilon}^{-} \cap F^{-i} \Delta_{\varepsilon}$ (similar arguments can be developed for the sets $(I \times J) \cap \Delta_{\varepsilon}^{+} \cap F^{-i} \Delta_{\varepsilon}$).

An important remark is that F^{i} restricted to any of the above triangles or trapezes is a diffeomorphism onto its image.
We will first analyse the triangles. The triangles contained in Δ_{ε}^{-}are of the form

$$
T_{z}=\{(x, y) \mid x-\varepsilon \leqq y \leqq z \leqq x\},
$$

where z is a boundary point of the partition \mathscr{A}_{i}. For each triangle T_{z} there are several possibilities according to the behaviour of the map f^{i} at the point z.
When f^{i} is discontinuous at z, it follows from our choice of $l(\varepsilon)$ that

$$
T_{z} \cap F^{-i} \Delta_{\varepsilon}=\emptyset
$$

When f^{i} is continuous at z the most involved case is when the two branches of f^{i} which meet at z have slopes of opposite signs. We will discuss in detail the case where f^{i} is increasing on the left of z (and decreasing on the right). The opposite case can be treated similarly.

Fig. 1

We will denote by ψ_{1} and ψ_{2} the local inverse maps of f^{i} on the left and the right of z respectively (see the picture). Let $z_{1}=\psi_{1}\left(f^{i}(z)-\varepsilon\right)$, and $z_{2}=\psi_{2}\left(f^{i}(z)-\varepsilon\right)$. We first describe the set $T_{z} \cap F^{-i} \Delta_{\varepsilon} \cap\left\{(x, y) \mid z \leqq x \leqq z_{2}\right\}$ which is equal to

$$
T_{z} \cap\left\{(x, y) \mid z \leqq x \leqq z_{2}, \quad f^{i}(x)-\varepsilon \leqq f^{i}(y) \leqq f^{i}(z)\right\} .
$$

Since ψ_{1} is monotone increasing the above set is equal to

$$
\begin{equation*}
T_{z} \cap\left\{(x, y) \mid z \leqq x \leqq z_{2}, \quad \psi_{1}\left(f^{i}(x)-\varepsilon\right) \leqq y \leqq z\right\} \tag{3}
\end{equation*}
$$

For $z \leqq x \leqq z_{2}$, the curve $x \mapsto \psi_{1}\left(f^{i}(x)-\varepsilon\right)$ is monotone decreasing with a slope bounded away from zero and infinity. Therefore the intersection of the set (3) with any horizontal line is a compact interval if it is nonempty.
We next describe the set $T_{z} \cap F^{-i} \Delta_{\varepsilon} \cap\left\{(x, y) \mid z_{2} \leqq x \leqq z+\varepsilon\right\}$ which is equal to

$$
T_{z} \cap\left\{(x, y) \mid z_{2} \leqq x \leqq z+\varepsilon, \quad f^{i}(x)-\varepsilon \leqq f^{i}(y) \leqq f^{i}(x)+\varepsilon\right\}
$$

As above, this set is equal to

$$
\begin{equation*}
T_{z} \cap\left\{(x, y) \mid z_{2} \leqq x \leqq z+\varepsilon, \quad \psi_{1}\left(f^{i}(x)-\varepsilon\right) \leqq y \leqq \psi_{1}\left(f^{i}(x)+\varepsilon\right)\right\} . \tag{4}
\end{equation*}
$$

For $z_{2} \leqq x \leqq z+\varepsilon$, the curves $x \mapsto \psi_{1}\left(f^{i}(x)-\varepsilon\right)$ and $x \mapsto \psi_{1}\left(f^{i}(x)+\varepsilon\right)$ are monotone decreasing with slopes bounded away from zero and infinity. Therefore the intersection of the set (4) with any horizontal line is also a compact interval if it is nonempty.

The cases where the slopes of the branches of f^{i} are of the same sign on both sides of z require a similar and simpler argument, as does the case of trapezes. Thus the Lemma follows.

For the next result we need a lower bound on the density $h(x)$ of μ. Therefore we shall assume throughout that ess sup $h(x)^{-1}>0$.

Lemma 2 There is a positive constant C and a number γ with $0<\gamma<1$ such that if the increasing sequence of numbers $i_{0}=0<i_{1}<\cdots<i_{s}$ satisfies $i_{j+1}-i_{j}<l(\varepsilon) / s$ for $0 \leqq j<s$, and ε is sufficiently small, then for any measurable set B in \mathscr{T}^{2}, and for any integer q

$$
\left|\left\langle\chi \bigcap_{j=0}^{s} F^{-i, \Lambda_{\varepsilon}} \chi_{B} \circ F^{q+i_{s}}\right\rangle-\left\langle\chi_{\bigcap_{j=0}^{s} F^{-i_{j}} \Delta_{s}}\right\rangle\left\langle\chi_{B}\right\rangle\right| \leqq C(s+1)\left\langle\chi_{B}\right\rangle \gamma^{q+i_{s}} .
$$

Proof. We shall prove that for any measurable set A in \mathscr{T}^{2} such that $\sup _{x} \bigvee_{2} \chi_{A}(x, \cdot)$ and $\sup _{y} \bigvee_{1} \chi_{A}(\cdot, y)$ are finite we have

$$
\begin{gathered}
\left|\left\langle\chi_{A} \chi_{B} \circ F^{q}\right\rangle-\left\langle\chi_{A}\right\rangle\left\langle\chi_{B}\right\rangle\right| \leqq \\
C\left(2+\sup _{x} \bigvee_{2} \chi_{A}(x, \cdot)+\sup _{y} \bigvee_{1} \chi_{A}(\cdot, y)\right)\left\langle\chi_{B}\right\rangle \gamma^{q} .
\end{gathered}
$$

Then this Lemma follows from Lemma 1. In order to prove the above inequality we use the decay of correlations of f (see (2)) in the horizontal and vertical direction as follows:

$$
\begin{aligned}
\left\langle\chi_{A} \chi_{B} \circ F^{q}\right\rangle= & \iint \chi_{A}(x, y) \chi_{B}\left(f^{q}(x), f^{q}(y)\right) h(x) h(y) d x d y \\
= & \int h(x)\left[\int h(y) \chi_{A}(x, y) \int h(z) \chi_{B}\left(f^{q}(x), z\right) d z d y\right. \\
& \left.+r_{q}(x) \int \chi_{B}\left(f^{q}(x), z\right) d z\right] d x
\end{aligned}
$$

where

$$
\left|r_{q}(x)\right| \leqq C\left(\bigvee_{2} \chi_{A}(x, \cdot)+1\right) \gamma^{q}
$$

Similarly we have

$$
\begin{gathered}
\iint h(y) h(z)\left[\int h(x) \chi_{A}(x, y) \chi_{B}\left(f^{q}(x), z\right) d x\right] d y d z= \\
\iint h(y) h(z)\left[\int h(t) \chi_{B}(t, z) d t \int h(x) \chi_{A}(x, y) d x+s_{q}(y) \int \chi_{B}(t, z) d t\right] d y d z
\end{gathered}
$$

where

$$
\left|s_{q}(y)\right| \leqq C\left(\underset{1}{\bigvee} \chi_{A}(\cdot, y)+1\right) \gamma^{q}
$$

The above would give the result except that in the remainder term we get the L^{1}-norm of χ_{B} instead of the expectation. Since the density is bounded below away from zero we get the desired estimate.

We now prove a Lemma about the convergence of the mean intermediate n times of visit to the ε-neighbourhood of the diagonal which happens within the scale $l(\varepsilon)$.
Lemma 3 For any positive integer n the following limit exists

$$
C_{n}=\lim _{\varepsilon \rightarrow 0} \varepsilon^{-1} \sum_{\substack{0=q_{0}<q_{1}<\ldots\left(\ldots<q_{n}-1 \\ q_{s}-q_{s} \leq-1\right.}}\left\langle\prod_{s=0}^{n-1} \chi_{\Delta_{s}} \circ F^{q_{s}}\right\rangle .
$$

Moreover there are two positive numbers C and θ such that for $n \geqq 1$,

$$
0<C_{n} \leqq C \theta^{n}
$$

We have also

$$
C_{1}=2 \int h^{2}(x) d x
$$

and for $n \geqq 2$,

$$
C_{n}=2 \sum_{0<q_{1}<\cdots<q_{n-1}} \int h^{2}(x) I_{q_{1}, \ldots, q_{n-1}}(x) d x
$$

where $I_{q_{1}, \ldots, q_{n-1}}$ is the positive function defined by

$$
I_{q_{1}, \ldots, q_{n-1}}(x)=\min \left\{1, \frac{1}{\left|\left(f^{q_{1}}\right)^{\prime}(x)\right|}, \ldots, \frac{1}{\left|\left(f^{q_{n-1}}\right)^{\prime}(x)\right|}\right\}
$$

Proof. We will first prove a uniform bound on each term of the sum. We have obviously from our choice of $l(\varepsilon)$

$$
\left\langle\prod_{s=0}^{n-1} \chi_{A_{\varepsilon}} \circ F^{q_{s}}\right\rangle \leqq\left\langle\chi_{A_{\varepsilon}} \chi_{A_{\varepsilon}} \circ F^{q_{n-1}}\right\rangle \leqq\left\langle\chi_{B \cup d_{s K^{-1}-\rho^{-s^{m}}}}\right\rangle
$$

where B is the intersection of the set $\Delta_{\varepsilon} \cap F^{-q_{n-1}} \Delta_{\varepsilon}$ with the union of the triangles defined in Lemma 1, and K appears due to the fact that f is not necessarily uniformly expanding. It is easy to verify that for each triangle T

$$
\bar{\mu}\left(T \cap \Delta_{\varepsilon} \cap F^{-q_{n-1}} \Delta_{\varepsilon}\right) \leqq \mathcal{O}(1) \varepsilon^{2} \rho^{-q_{n-1}} .
$$

We now observe that the number of triangles is at most $(2|\mathscr{C}|)^{q_{n-1}}$, and since $q_{n-1} \leqq l(\varepsilon)$ we obtain for ε small enough

$$
\left\langle\prod_{s=0}^{n-1} \chi_{\Delta_{\mathrm{t}}} \circ F^{q_{s}}\right\rangle \leqq \mathcal{O}(1) \varepsilon \rho^{-q_{n-1}}
$$

It is now enough to prove the convergence of

$$
\varepsilon^{-1}\left\langle\prod_{s=0}^{n-1} \chi_{\Delta_{\varepsilon}} \circ F^{q_{s}}\right\rangle
$$

for fixed integers $0 \leqq q_{0}<q_{1}<\cdots<q_{n-1}$. For $n \geqq 2$, let $I_{q_{1}, \ldots, q_{n-1}}$ be defined as in the statement of the lemma. It is easy to verify that away from the ε-neighbourhood D_{ε} of the boundary points of $\mathscr{A}_{q_{n-1}}$ (which contribute $\mathcal{O}\left(\varepsilon^{2}\right)$ to the measure), we have

$$
\begin{aligned}
& D_{\varepsilon}^{c} \bigcap_{s=0}^{n-1} F^{-q_{s}} \Delta_{\varepsilon}= \\
& D_{\varepsilon}^{c} \cap\left\{(x, y) \mid x-\varepsilon I_{q_{1}, \ldots, q_{n-1}}(x)-\mathcal{O}\left(\varepsilon^{2}\right) \leqq y \leqq x+\varepsilon I_{q_{1}, \ldots, q_{n-1}}(x)+\mathcal{O}\left(\varepsilon^{2}\right)\right\}
\end{aligned}
$$

This implies that

$$
\varepsilon^{-1}\left\langle\prod_{s=0}^{n-1} \chi_{\Delta_{\varepsilon}} \circ F^{q_{s}}\right\rangle=\int h(x) \varepsilon^{-1} \int_{x-\varepsilon I_{q_{1}, \ldots, q_{2}-1}(x)-\mathcal{O}\left(\varepsilon^{2}\right)}^{x+\varepsilon I_{q_{1}, \ldots, q_{-1}}(x)+\mathcal{O}\left(\varepsilon^{2}\right)} h(y) d y d x+\mathcal{O}(\varepsilon)
$$

and the convergence follows from the fact that almost surely

Replacing $I_{q_{1}, \ldots, q_{x-1}}$ by the constant function 1 in the above argument we also obtain the proof of the convergence for the case $n=1$.

We finally prove the bound on C_{n}. We have from the uniform bound on the terms of the sum

$$
\begin{aligned}
C_{n} \leqq \mathcal{O}(1) \sum_{0=q_{0}<q_{1}<\cdots q_{n-1}} \rho^{-q_{n-1}} & =\mathcal{O}(1) \sum_{q=n-1}^{\infty} \frac{(q-1) \cdots(q-n+2)}{(n-2)!} \rho^{-q} \\
& =\mathcal{O}(1)\left(\frac{1}{\rho-1}\right)^{n-1} \cdot \square
\end{aligned}
$$

In the next result we obtain the convergence of the factorial moments of the process of visits to the ε-neighbourhood of the diagonal, and we also get an explicit formulae for the limit.

Proposition 4 For any continuous non-negative function g with compact support on $[0, \infty)$, the moments of the random variable $N_{\varepsilon}(g)$ converge, and for any integer $k>0$, we have

$$
\begin{array}{ll}
& \lim _{\varepsilon \rightarrow 0}\left\langle N_{\varepsilon}(g)^{k}\right\rangle=\sum_{p=1}^{k} \sum_{\substack{0<t_{1}, \ldots, 0<t_{p} \\
t_{1}+\cdots+t_{p}=k}} \frac{k!}{t_{1}!\cdots t_{p}!} \times \\
\sum_{b=1}^{p} \sum_{\substack{0<n_{1}, \ldots, 0<n_{b} \\
n_{1}+\cdots+n_{b}=p}} \prod_{i=1}^{b}\left(C_{n_{i}} \int g(t)^{\sum_{s=0}^{n_{i}-1} t_{s}+n_{1}+\cdots+n_{i-1}+1} d t\right),
\end{array}
$$

where the numbers C_{n} are defined in Lemma 3.
Proof. From the definition of $N_{\varepsilon}(g)$ it follows at once that

$$
\left\langle N_{\varepsilon}(g)\right\rangle=\left\langle\chi_{\Lambda_{\varepsilon}}\right\rangle \sum_{n=0}^{\infty} g(n \varepsilon)
$$

which converges to

$$
2 \int h^{2}(x) d x \int g(y) d y
$$

since g is continuous with compact support and Lemma 3.
Let now k be an integer larger than 1 . We have

$$
\left\langle N_{\varepsilon}(g)^{k}\right\rangle=\sum_{0 \leqq j_{1}, \ldots, 0 \leqq j_{k}}\left\langle\prod_{s=1}^{k} g\left(j_{s} \varepsilon\right) \chi_{\Delta_{\varepsilon}} \circ F^{j_{s}}\right\rangle .
$$

We now rearrange the sum into a sum over different indices, obtaining

$$
\left\langle N_{\varepsilon}(g)^{k}\right\rangle=\sum_{p=1}^{k} \sum_{\substack{0<t_{1}, \ldots, 0<t_{p} \\ t_{1}+\cdots+t_{p}=k}} \frac{k!}{p!t_{1}!\cdots t_{p}!} \sum_{\substack{0 \leq j_{1}, \ldots, \ldots, j \leq j_{p} \\ j_{q} \neq j_{r} \text { for } q \neq r}}\left\langle\prod_{s=1}^{p} g^{t_{s}}\left(j_{s} \varepsilon\right) \chi_{A_{\varepsilon}} \circ F^{j_{s}}\right\rangle .
$$

Now ordering the indices j_{s} we get

$$
\left\langle N_{\varepsilon}(g)^{k}\right\rangle=\sum_{p=1}^{k} \sum_{\substack{0<t_{1}, \ldots, 0<t_{p} \\ t_{1}+\cdots+t_{p}=k}} \frac{k!}{t_{1}!\cdots t_{p}!} \sum_{0 \leqq j_{1}<j_{2}<\ldots<j_{p}}\left\langle\prod_{s=1}^{p} g^{t_{s}}\left(j_{s} \varepsilon\right) \chi_{\Delta_{\mathrm{s}}} \circ F^{j_{s}}\right\rangle .
$$

We will prove convergence of

$$
\sum_{0 \leqq j_{1}<j_{2}<\ldots<j_{p}}\left\langle\prod_{s=1}^{p} g^{t_{s}}\left(j_{s} \varepsilon\right) \chi_{\Delta_{\varepsilon}} \circ F^{j_{s}}\right\rangle
$$

for fixed integers t_{1}, \ldots, t_{p}. We decompose the above sum into clusters of consecutive indices differing by at most $l(\varepsilon) / k$

$$
\begin{aligned}
& \sum_{0 \leqq j_{1}<j_{2}<\ldots<j_{p}}\left\langle\prod_{s=1}^{p} g^{t_{s}}\left(j_{s} \varepsilon\right) \chi_{d_{\varepsilon}} \circ F^{j_{s}}\right\rangle \\
= & \sum_{b=1}^{p} \sum_{\substack{0<n_{1}, \ldots, 0<n_{b} \\
n_{1}+\cdots+n_{b}=p}} \sum_{\left(j_{1}, \ldots, j_{p}\right) \in \mathscr{2}\left(n_{1}, \ldots, n_{b}\right)}\left\langle\prod_{s=1}^{p} g^{t_{s}}\left(j_{s} \varepsilon\right) \chi_{\Delta_{s}} \circ F^{j_{s}}\right\rangle
\end{aligned}
$$

where

$$
\begin{aligned}
\mathscr{2}\left(n_{1}, \ldots, n_{b}\right)= & \left\{\left(j_{1}, \ldots, j_{n_{1}+\cdots+n_{b}}\right) \mid j_{1}<j_{2}<\cdots<j_{n_{1}+\cdots+n_{b}},\right. \\
& j_{q+1}-j_{q} \leqq l(\varepsilon) / k \quad \text { if } q \notin\left\{n_{1}, n_{1}+n_{2}, \ldots, n_{1}+\cdots+n_{b-1}\right\} \\
& \text { and else } \left.j_{q+1}-j_{q}>l(\varepsilon) / k\right\} .
\end{aligned}
$$

We now use the decay of correlations between the different clusters. We first fix the positive numbers n_{1}, \ldots, n_{b} and then we fix the numbers $\left(j_{1}, \ldots, j_{n_{1}+\ldots+n_{b}}\right)$ in $\mathscr{2}\left(n_{1}, \ldots, n_{b}\right)$. We then write

$$
\left\langle\prod_{s=1}^{n_{1}+\cdots+n_{b}} \chi_{\Delta_{c}} \circ F^{j_{s}}\right\rangle=\left\langle\prod_{s=1}^{n_{1}} \chi_{\Delta_{\varepsilon}} \circ F^{j_{s}} \prod_{s=n_{1}+1}^{n_{1}+n_{2}} \chi_{\Delta_{\varepsilon}} \circ F^{j_{s} \ldots} \prod_{s=n_{1}+\cdots+n_{b-1}+1}^{n_{1}+\cdots+n_{b}} \chi_{\Delta_{\varepsilon}} \circ F^{j_{s}}\right\rangle
$$

The estimate will be done recursively and we need only to do one step. The above expression can be written as

$$
\left\langle\prod_{s=1}^{n_{1}+\cdots+n_{b}} \chi_{\Delta_{e}} \circ F^{j_{s}}\right\rangle=\left\langle\prod_{s=1}^{n_{1}} \chi_{\Delta_{e}} \circ F^{j_{s}-j_{1}} \chi_{B} \circ F^{j_{n_{1}+1}-j_{1}}\right\rangle
$$

Applying Lemma 2, we get the estimate

$$
\left\langle\prod_{s=1}^{n_{1}} \chi_{d_{\varepsilon}} \circ F^{j_{s}-j_{1}} \chi_{B} \circ F^{j_{n_{1}+1}-j_{1}}\right\rangle=\left(\left\langle\prod_{s=1}^{n_{1}} \chi_{A_{e}} \circ F^{j_{s}-j_{1}}\right\rangle+r_{j_{1}, \ldots, j_{n_{1}+1}}\right)\left\langle\chi_{B}\right\rangle
$$

where

$$
\begin{equation*}
\left|r_{j_{1}, \ldots, j_{n_{1}+1}}\right| \leqq C n_{1} \gamma^{j_{n_{1}+1}-j_{1}} \tag{5}
\end{equation*}
$$

Finally we obtain for $b>1$,

$$
\begin{align*}
& \left\langle\prod_{s=1}^{n_{1}+\cdots+n_{b}} \chi_{\Delta_{s}} \circ F^{j_{s}}\right\rangle=\left(\left\langle\prod_{s=1}^{n_{1}} \chi_{\Delta_{\varepsilon}} \circ F^{j_{s}-j_{1}}\right\rangle+r_{j_{1}, \ldots, j_{n_{1}+1}}\right) \cdots \tag{6}\\
& \left(\left\langle\prod_{s=n_{1}+\cdots+n_{b-2}+1}^{n_{1}+\cdots+n_{b-1}} \chi_{\Delta_{\varepsilon}} \circ F^{j_{s}}\right\rangle+r_{j_{n_{1}}+\cdots+n_{b-2}+1_{1}, \ldots, j_{n_{1}+\cdots+n_{b-1}+1}}\right) \\
& \quad \times\left\langle\prod_{s=n_{1}+\cdots+n_{b-1}+1}^{n_{1}+\cdots+n_{b}} \chi_{\Delta_{s}} \circ F^{j_{s}}\right\rangle
\end{align*}
$$

From the above expression we see that $\left\langle N_{\varepsilon}(g)^{k}\right\rangle$ can be written as a sum of two quantities. The first one is

$$
\begin{aligned}
& \sum_{p=1}^{k} \sum_{\substack{0<t_{1}, \ldots, t_{0}<t_{b} \\
t_{1}+\cdots+t_{p}=k}} \frac{k!}{t_{1}!\cdots t_{p}!} \sum_{b=1}^{p} \sum_{\substack{0<n_{1}, \ldots, 0<n_{b} \\
n_{1}+\cdots+n_{b}=p}} \sum_{\left(j_{1}, \ldots, j_{p}\right) \in 2\left(n_{1}, \ldots, n_{b}\right)} \\
& \times \prod_{m=1}^{b}\left(\left\langle_{s=n_{1}+\cdots+n_{m-1}+1}^{n_{1}+\cdots+n_{m}} \chi_{s_{s}} \circ F^{j s}\right\rangle_{s=n_{1}+\cdots+n_{m-1}+1}^{n_{1}+\cdots+n_{m}} g^{t_{s}}\left(j_{s} \varepsilon\right)\right),
\end{aligned}
$$

where we defined $n_{0}=0$, and the second quantity is essentially a remainder. For fixed indices $p, t_{1}, \ldots, t_{p}, b, n_{1}, \ldots, n_{b}$ and for $\left(j_{1}, \ldots, j_{p}\right) \in \mathscr{Q}\left(n_{1}, \ldots, n_{b}\right)$ we define a double sequence of integers $\left(q_{m, s}\right)$ with $1 \leqq m \leqq b$ and $0 \leqq s \leqq n_{m}-1$ by

$$
q_{m, s}=j_{s+n_{1}+\cdots+n_{m-1}+1}-j_{n_{1}+\cdots+n_{m-1}+1} .
$$

We have

$$
\begin{aligned}
& \sum_{\left(j_{1}, \ldots, j_{p}\right) \in \sum_{\left(n_{1}, \ldots, n_{b}\right)}} \prod_{m=1}^{b}\left(\left\langle\prod_{s=n_{2}+\cdots+n_{m-1}+1}^{n_{1}+\cdots+n_{m}} \chi_{A_{s}} \circ F^{j_{s}}\right\rangle_{s=n_{1}+\cdots+n_{m-1}+1}^{n_{1}+\cdots+n_{m}} g^{t_{s}}\left(j_{s} \varepsilon\right)\right) \\
& =\sum_{\substack{0<q_{m, 1}<\ldots<q_{m, n_{m}-1} \\
m=1, \ldots, b}} \varepsilon^{-b} \prod_{i=1}^{b}\left\langle\prod_{s=0}^{n_{i}-1} \chi_{\Delta_{\varepsilon}} \circ F^{q_{t, s}}\right\rangle \\
& q_{m, s+1}-q_{m, s} \leq l(\varepsilon) / k \\
& \times \quad \sum_{j_{1}<j_{n_{1}+1}<\cdots<j_{n_{1}+\ldots+n_{b-1}+1}} \\
& \varepsilon^{b} \prod_{i=1}^{b} \\
& j_{n_{1}+\cdots+n_{r+1}+1}-j_{n_{1}+\cdots+n_{r+1}+1}>q_{r, n-1}+l(\varepsilon) / k \\
& \times \prod_{s=0}^{n_{i}-1} g^{t_{s+n_{1}+\cdots+n_{i-1}+1}}\left(\left(j_{n_{1}+\cdots+n_{i-1}+1}+q_{i, s}\right) \varepsilon\right) .
\end{aligned}
$$

Using Lemma 3 and elementary properties of the Riemann integral it is easy to prove that the above quantity converges to

$$
\begin{gathered}
\prod_{i=1}^{b} C_{n_{i}} \int_{0}^{\infty} d y_{b} g\left(y_{b}\right)^{\sum_{s-0}^{n_{s}-1} t_{s+n_{1}+\cdots+n_{s-1}+1}} \int_{0}^{y_{b}} d y_{b-1} g\left(y_{b-1}\right)^{\sum_{s=0}^{n_{s}-1} t_{s+n_{1}+\cdots+n_{s-2}+1}} \\
\cdots \int_{0}^{y_{2}} d y_{1} g\left(y_{1}\right)^{\sum_{s=0}^{n_{1}-1} t_{s+1}}
\end{gathered}
$$

Now we must estimate the remainder. From Eq. (6) we see that this remainder is a sum of products of b terms each of the form $\left\langle\Pi \chi_{\Delta_{t}}{ }^{\circ} F^{\circ}\right\rangle$ or r... and there is at least one of the latter type. The summation over the indices will be performed as before introducing the indices m, s and $q_{m, s}$. We then obtain an expression similar to Eq. (7) except that we multiply and divide by a power of ε which is equal to the number of factors of the form $\left\langle\Pi \chi_{A_{\varepsilon}}{ }^{\circ} F^{*}\right\rangle$. Using the estimate (5) for the terms $r \ldots$ one can readily see that the remainder tends to zero with ε. This finishes the proof of the proposition.

III Proof of the Theorem

Let φ_{g} be the function defined by

$$
\varphi_{g}(z)=e^{\sum_{n=1}^{\infty} C_{n} \int\left(e^{\tau g(t)}-1\right)^{n} d t}
$$

which is analytic on a disc around the origin (whose radius depends only on the number θ in Lemma 3 and on $\|g\|_{C^{0}}$). This implies that the k-th derivative μ_{k} of this function at the origin satisfies

$$
\limsup _{k \rightarrow \infty} \frac{\left|\mu_{k}\right|^{1 / k}}{k}<\infty
$$

One can verify that

$$
\begin{aligned}
\mu_{k}= & \sum_{p=1}^{k} \sum_{\substack{0<t_{1}, \ldots, 0<t_{p} \\
t_{1}+\cdots+t_{p}=k}} \frac{k!}{t_{1}!\cdots t_{p}!} \sum_{b=1}^{p} \sum_{\substack{0<n_{1}, \ldots, 0<n_{b} \\
n_{1}+\cdots+n_{b}=p}} \prod_{i=1}^{b} C_{n_{i}} \\
& \times \int_{0}^{\infty} d y_{b} g\left(y_{b}\right)^{\sum_{s=0}^{n_{s}-1} t_{s+n_{1}+\cdots+n_{b-1}+1} \cdots \int_{0}^{y_{2}} d y_{1} g\left(y_{1}\right)^{\sum_{s=0}^{n_{1}-1} t_{s+1}},}
\end{aligned}
$$

and by Theorem 8.48 and Proposition 8.49 of [Br$]$, this implies convergence in law of the sequence $N_{\varepsilon}(g)$.

Now we proceed to interpret the limiting process. Let Φ below be the analytic function defined on a small disc around the origin,

$$
\Phi(u)=\sum_{n=1}^{\infty} C_{n} u^{n}
$$

Consider the function $I_{q_{1}, \ldots, q_{n-1}}$ defined in Lemma 3. For $0<p_{1}<\cdots<p_{n}$ define

$$
D_{p_{1}, \ldots, p_{n}}=2 \int h^{2}(x) I_{p_{1}, \ldots, p_{n}}(x) d x
$$

Recall that $m>0$ is the smallest $k>0$ such that ess sup $\left|\left(f^{k}\right)^{\prime}\right|^{1 / k}>\rho$. Then for $n>m$ we have

$$
\begin{aligned}
C_{n} & =\sum_{0<q_{1}<\ldots<q_{n-m}<q_{n-m+1}<\cdots<q_{n-1}} 2 \int h^{2}(x) I_{q_{1}, \ldots, q_{n-1}}(x) d x \\
& =\sum_{n-m-1<p_{1}<\cdots<p_{m}} D_{p_{1}, \ldots, p_{m}} \frac{\left(p_{1}-1\right) \cdots\left(p_{1}-n+m+1\right)}{(n-m-1)!} .
\end{aligned}
$$

Hence the function

$$
\Phi(u)-\sum_{n=1}^{m} C_{n} u^{n}=\sum_{n=m+1}^{\infty} C_{n} u^{n}
$$

can be written as

$$
\begin{gathered}
\sum_{n=m+1}^{\infty} u^{m+1} \sum_{n-m-1<p_{1}<\cdots<p_{m}} D_{p_{1}, \ldots, p_{m}} u^{n-m-1} \frac{\left(p_{1}-1\right)!}{(n-m-1)!\left(p_{1}-n+m\right)!} \\
=u^{m+1} \sum_{p_{1}=1}^{\infty} \widetilde{D}_{p_{1}}(1+u)^{p_{1}-1}
\end{gathered}
$$

where we have defined for $p>0$,

$$
\tilde{D}_{p}=\sum_{p<p_{2}<\cdots<p_{m}} D_{p, p_{2}, \ldots, p_{m}} .
$$

Now let λ and π_{k} (such that $\sum \pi_{k}=1$) be a formal solution of

$$
\begin{align*}
\Phi(u) & =\sum_{n=1}^{m} C_{n}(1+u-1)^{n}+(1+u-1)^{m+1} \sum_{0<p_{1}<\cdots<p_{m}}(1+u)^{p_{1}-1} D_{p_{1}, \ldots, p_{m}} \\
& =\lambda\left(\sum_{k=1}^{\infty} \pi_{k}(1+u)^{k}-1\right) . \tag{8}
\end{align*}
$$

Since $D_{p_{1}, \ldots, p_{m}} \leqq \mathcal{O}(1) \rho^{-p_{m}}$ we conclude that

$$
\tilde{D}_{p}=\sum_{p<p_{2}<\cdots<p_{m}} D_{p, p_{2}, \ldots, p_{m}} \leqq \mathcal{O}(1) \rho^{-p} .
$$

Therefore we obtain the estimate

$$
\left|\pi_{k}\right| \leqq \mathcal{O}(1) \rho^{-k} .
$$

This shows that the function

$$
\Psi(u)=\lambda\left(\sum_{k=1}^{\infty} \pi_{k}(1+u)^{k}-1\right)
$$

is analytic on a disc centered at -1 and of radius $1+\delta(\delta>0)$. From (8) we know that Φ and Ψ coincide on a small disc around the origin. Therefore, taking $u=e^{z g(\nu)}-1$ we deduce that the function

$$
\psi_{g}(z)=e^{\lambda \sum_{k=1}^{\infty} \pi_{k} \int_{0}^{\infty}\left(e^{\left(e^{2(v)}\right)}-1\right) d y}
$$

coincides with φ_{g} on a small disc around the origin. Since φ_{g} is positive definite, we conclude that ψ_{g} is positive definite and hence necessarily we must have $\pi_{k} \geqq 0$ for all $k>0$, and $\lambda>0$ (cf. [Do]). This finishes the proof of the Theorem.

Here we give the explicit solutions for λ and π_{k} defined by Eq. (8). In the case $m>1$, we have

$$
\begin{aligned}
\lambda= & 2 \int h^{2}(x) d x+\sum_{n=1}^{m-1}(-1)^{n} \sum_{0<q_{1}<\cdots<q_{n}} D_{q_{1}, \ldots, q_{n}} \\
& +(-1)^{m} \sum_{1<p_{2}<\cdots<p_{m},} D_{1, p_{2}, \ldots, p_{m}} .
\end{aligned}
$$

For $k=1$,

$$
\begin{aligned}
\lambda \pi_{1}= & 2 \int h^{2}(x) d x+\sum_{n=1}^{m-1}\binom{n+1}{1}(-1)^{n} \sum_{0<q_{1}<\cdots<q_{n}} D_{q_{1}, \ldots, q_{n}} \\
& +\sum_{j=m}^{m+1}\binom{m+1}{j}(-1)^{j} \sum_{j-m+1<p_{2}<\cdots<p_{m}} D_{j-m+1, p_{2}, \ldots, p_{m}} ;
\end{aligned}
$$

for $1<k \leqq m$,

$$
\begin{aligned}
\lambda \pi_{k}= & \sum_{n=k-1}^{m-1}\binom{n+1}{k}(-1)^{n-k+1} \sum_{0<q_{1}<\cdots<q_{n}} D_{q_{1}, \ldots, q_{n}} \\
& +\sum_{j=m-k+1}^{m+1}\binom{m+1}{j}(-1)^{j} \sum_{k-m+j<p_{2}<\cdots<p_{m}} D_{k-m+j, p_{2}, \ldots, p_{m}} ;
\end{aligned}
$$

and for $k>m$,

$$
\lambda \pi_{k}=\sum_{j=0}^{m+1}\binom{m+1}{j}(-1)^{j} \sum_{k-m+j<p_{2}<\ldots<p_{m}} D_{k-m+j, p_{2}, \ldots, p_{m}} .
$$

In the case $m=1$, we obtain the expressions

$$
\lambda=2 \int h^{2}(x)\left[1-\frac{1}{\left|f^{\prime}(x)\right|}\right] d x
$$

for $k=1$,

$$
\lambda \pi_{1}=2 \int h^{2}(x)\left[1-\frac{2}{\left|f^{\prime}(x)\right|}+\frac{2}{\left|\left(f^{2}\right)^{\prime}(x)\right|}\right] d x
$$

and for $k>1$,

$$
\lambda \pi_{k}=2 \int h^{2}(x)\left[\frac{1}{\left|\left(f^{k-1}\right)^{\prime}(x)\right|}-\frac{2}{\left|\left(f^{k}\right)^{\prime}(x)\right|}+\frac{1}{\left|\left(f^{k+1}\right)^{\prime}(x)\right|}\right] d x .
$$

Acknowledgements. This work is part of Projeto Temático de Equipe "Transição de Fase Dinâmica em Sistemas Evolutivos" financially supported by FAPESP grant number 90/3918-5. Pierre Collet thanks the Instituto de Matemática e Estatística da Universidade de São Paulo (São Paulo) for their hospitality and the financial support from FAPESP. Zaqueu Coelho thanks the Centre de Physique Théorique at Ecole Polytechnique (Palaiseau-Paris) and the Instituto de Matemática Pura e Aplicada (Rio de Janeiro) for their hospitality and financial support.

References

[Br] Breiman, L.: Probability theory. Addison-Wesley 1968
[Co] Collet, P. Some ergodic properties of maps of the interval. In: Bamon R. et al.: Dynamical Systems and Frustrated Systems. (to appear)
[CG] Collet, P. and Galves, A.: Asymptotic distribution of entrance times for expanding maps of an interval. (Preprint 1992)
[DV] Daley, D.J. and Vere-Jones, D.: An introduction to the theory of point processes (Ser. Stat.) Berlin Heidelberg New York: Springer 1988
[Do] Donoghue, W.F., Jr.: Monotone matrix functions and analytic continuation (Grundlehren Math. Wiss. B207) Berlin Heidelberg New York: Springer 1974
[Hi] Hirata, M.: Poisson law for Axiom A diffeomorphisms. University of Tokyo (Preprint 1991)
[HK] Hofbauer, F., and Keller, G.: Ergodic properties of piecewise monotonic transformations, Math. Z. 180, 119-140 (1982)
[LY] Lasota, A., and Yorke, J.A.: On the existence of invariant measures for piecewise monotonic transformations. Trans. Am. Math. Soc. 186, 481-488 (1973)
[Ne] Neveu, J.: Processus pontuels. (Lect. Notes in Math., vol. 598, pp. 249-445) Berlin Heidelberg New York: 1976
[Pi] Pitskel, B.: Poisson limit law for Markov chains. Ergodic Theory and Dyn. Syst. 11, 501-513 (1991)

[^0]: * Partially supported by FAPESP grant number 90/3918-5

