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S u m m a r y .  We investigate the ergodic properties of Hamiltonian systems subjected 
to local random, energy conserving perturbations. We prove for some cases, e.g. 
anharmonic crystals with random nearest neighbor exchanges (or independent 
random reflections) of velocities, that all translation invariant stationary states 
with finite entropy per unit volume are microcanonical Gibbs states. The results 
can be utilized in proving hydrodynamic behavior of such systems. 
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1.1 Introduct ion  

There has been much progress during the past ten years in deriving hydrodynamic 
type equations for a variety of microscopic model systems; for a review (see [-Sp], 
[Fr4], [Y], [OVY]). A common feature of these models is the stochastic nature of 
their microscopic dynamics. This stochasticity plays a crucial role in various steps 
of the arguments leading from the microscopic evolution to the macroscopic one. It 
is therefore not clear just what are the requirements on particle systems evolving 
according to Hamiltonian dynamics to have the type of macroscopic behavior 
which are observed in nature, e.g. those described by the Euler equations. 

Recently Yau [Y] and Olla, et al. [OVY] made some important progress in this 
direction. They managed to reduce the problem of proving the hydrodynamic limit 
in some cases, including Hamiltonian systems, to a reasonable, ergodicity type 
condition on the dynamics. Roughly speaking, they require that every "regular" 
translation invariant stationary state be of Gibbsian type. Regularity here means 
that the state has finite relative entropy (per unit volume) with respect to a Gibbs 
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state. This requires in particular that the conditional distributions in any finite 
volume, A, given the configuration outside A, be absolutely continuous with 
respect to Lebesgue measure. 

To prove such ergodicity for deterministic Hamiltonian systems is unfortunate- 
ly still a formidable unsolved problem. Here too, the requirements on the Hamil- 
tonian are far from understood at the present time (see [Si]) for a try at this task. 
To overcome this problem, [OVY] added a diffusive noise mimicking "randomiz- 
ing collisions" between pairs of particles. This noise conserves momentum and 
energy, but otherwise uniformly spreads the relative momenta. It is sufficiently 
weak not to affect the hydrodynamic behavior on the time scale studied. To ensure 
that the system behaves ergodically, [OVY] require that the random force given by 
the noise is also acting between particles which are very far separated on a micro- 
scopic scale. Now it is clear that in real systems the effective (deterministic) 
randomness comes from the dynamics which are governed by local interactions. It 
is therefore interesting to investigate this ergodic problem for Hamiltonian systems 
with milder local random perturbations. Instead of diffusive forces, we consider 
randomized jumps, i.e. exchanges or reflections of velocities. In addition to its 
general interest in the hydrodynamic scaling limit, such local exchanges may be 
useful for computer simulation of hydrodynamic behavior. 

Our approach to the problem goes back to Gallavotti and Verboven [GV]. 
They noticed that solutions to the stationary Liouville equation with Gaussian 
velocities are canonical Gibbs states. We show that this strong requirement can be 
replaced by weaker symmetry properties of the stationary state. In fact, exchangea- 
bility or reflection symmetry of the velocity distribution are sufficient to yield the 
desired result for regular translation invariant states of the Hamiltonian dynamics. 
The problem is therefore reduced to finding the minimal amount of local random- 
ness which will force the stationary state to have the required symmetry. We 
investigate this problem here for a lattice system of coupled anharmonic oscillators. 
In this case the steps leading from the dynamics to the symmetry properties of the 
stationary state are simpler than for continuous particle systems. The results for the 
latter, which are currently proven only for the simplest type of Hamiltonian (ideal 
gas, see [ES]) will be described elsewhere; the part of the argument connecting 
symmetry with microcanonical Gibbs states remains unchanged. 

1.2 The model 

We consider a lattice system of coupled oscillators with self-potential U and 
symmetric nearest neighbor interaction V. Let pkelR and qkelR denote the velocity 
and the position of the oscillator at site k~2~ a. The formal Hamiltonian of the 
system can be written as 

H = k ~  ~pk+U(qk)+~ ~ V(qk--qj) , (1.1) 
a [ j - k [ = l  

and the underlying evolution is defined by an infinite system of differential equa- 
tions: 

t)k-- U'(qk)-- ~ V'(qk--qj), (tk---Pk for k6~ d (1.2) 
3qk I j - k l = l  
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We now add to this Hamiltonian dynamics some "noise". This consists of random 
exchanges of velocities between neighboring sites. These take place independently 
at each bond of the lattice with a constant rate a > 0. The proof of desired ergodic 
properties for this combined dynamics, which clearly conserves energy, proceeds in 
several stages. First we show that every regular translation invariant stationary 
measure for this system is actually separately stationary under the exchanges and 
the Hamiltonian dynamics. The latter implies that it satisfies the time independent 
Liouville equation or in short it is "Liouville stationary" (LS). We then prove the 
general result that every LS measure which is exchangeable, i.e. which is symmetric 
in the velocities for arbitrary values of the position variables, must in fact be 
a microcanonical Gibbs measure. This means that the distribution of the configura- 
tions in a box A, given the configuration outside A, and the energy in A, is 
"uniform" on each energy shell, that is configurations with the same energy in A are 
equally likely. Therefore the infinite volume stationary measure is a superposition 
of Gibbs states with different temperatures. The derivation of the Gibbs property 
for an exchangeable LS measure uses its invariance with respect to the infinite 
group of translations of ;ga. The existence of Gibbs states requires, of course, some 
conditions on U and V, which will be discussed in the next section. 

In the case where the one body potential U -  0, both the Hamiltonian evolution 
and the exchanges conserve momentum. We then obtain LS states which are 
superpositions of Gibbs states, defined now generally only on coordinate differ- 
ences, with different temperatures and different parameters 7 conjugate to the total 
momentum. In the case of an anharmonic chain, i.e. if d= 1, the coordinate 
differences are independent with respect to a Gibbs state, thus the [-OVY] methods 
can be applied to obtain Euler like equations for the conserved densities. Multi- 
dimensional models are more problematic because the coordinate differences are 
then subjected to constrains, thus the usual thermodynamic formalism is not 
available; we are going to discuss this question elsewhere. 

We also consider the case where the random noise simply flips velocities, 
Pk--* -Pk, at random moments of time independently for all k. This mechanism 
violates the law of momentum conservation, and its stationary measures are 
symmetric with respect to reflection of the velocity at any site. To show that such 
reflection symmetric LS measures are microcanonical Gibbs states with vanishing 
mean velocities we need the presence of a generic interaction V between neighbor- 
ing oscillators. 

The outline of the rest of the paper is as follows. In Sect. 2 we give precise 
definitions of the random evolutions and summarize the main ideas and results. In 
Sects. 3 and 4 solutions of the time independent Liouville equation (LS) are shown 
to be superpositions of Gibbs states with different temperatures under various 
symmetry properties of the solution. Existence and regularity of the random 
evolutions are proven in Sect. 5. Then the proofs of the main results are completed 
in Sect. 6 by using an entropy argument implying that translation invariant 
stationary states of the random evolutions satisfy (LS) and the symmetry condi- 
tions under which we have solved (LS) before. 

2 Mathematical formulation and main results 

For convenience we assume that U and V are non-negative with bounded second 
derivatives. Then the infinite system of Hamiltonian equations (1.2) has uniquely 



214 J. Fritz et al. 

defined global solutions for each initial configuration of subexponential growth. 
More exactly, let f2 denote the set of configurations CO=(pk, qk)k~g" such that 
[la)ll~< +oo for each ~>0, where 

~ =  e - a l k l v ~ 2  + ~2q (2.1) Ilcoll 2 ~ Le~ ~ J .  
keT/e 

We equip Q with its natural product topology and Borel field d ,  the set of Borel 
probabilities will be denoted by H(f2). The space of continuous and bounded 
cylinder functions O: Y2~--~IR will be denoted by Co(Q), while C~(O) is the set of 
peCo(O) having k continuous and bounded partial derivatives. If N c d is a cr- 
field, then ~0e~ indicates that rp is measurable with respect to N and if ~ is 
generated by some measurable map 0, then # [p 10 ] -  #[-(P IN] denotes the condi- 
tional expectation of ~0. Let A be a subset ofT/a, its complementary set is denoted as 
A c and 0A is the boundary of A, that is the set ofjf~A having a neighbor keA. The 
variables coa :=  (Pk, qk)keA generate a a-field dA; PA :-= (Pk)keA, qA : =  (qk)keA, and the 
notation tea =(c%1 ~on) is also used when A = A~B and AraB =0. 

Since U' and V' are uniformly Lipschitz continuous, the most standard iteration 
procedure yields existence of uniquely defined global solutions in f2 (see [LLL], 
[Frl],  [SS]). This flow is generated by the Liouville operator, ~ ,  

0~0 OH 0~o 
5f = ~ LPk, s if ~0ECo~(f2). (2.2) 

k ~  Oqk Oqk @k 

Stationary states of Hamiltonian dynamics are characterized by the so-called 
stationary Liouville equation: 

f~q~(co)#(&o)=0 for q~eC~(O). (LS) 

To give a meaning to this equation, we assume that # satisfies the following 
moment condition: 

f (,Pkl + O-?--~kqk ) d# < + o�9 for each ke;g ~ . (2.3) 

It is well known that Gibbs states and their superpositions are stationary states of 
Hamiltonian dynamics. Gibbs states are defined in terms of HA, which is defined 
for any finite AeTl a and e)ef2 by 

HA(CO)--HA(COAICOaA):=H~I(O))+ ~, ~, V(qk--qj), (2.4) 
k~A jeA ~ 

I j - k l = l  

H~(c~176 ~ ( j~A ~ V(qk--qj)). 
I j - k l = l  

Definition 2.1 A probability measure #ell(f2) is called a Gibbs state for H with 
inverse temperature f l>0 if its conditional distributions are specified as 
# [do)aI COAo] = 2p, z [alCOA ] #-a.s. for each finite A ~ 77 d, where 

1 
)'tJ, A [dCOA IOgaA ] .-- ZA(fl ' 09cA ) exp [ -- tibia ((DAIO)oA)] dCOA, 

and ZA is the normalization. 
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Since U and V are non-negative, the following simple condition is sufficient for the 
finiteness of ZA at any inverse temperature 0 < fl < oo: 

+ o o  

f e x p [ - f l U ( x ) ] d x <  +oo for all f l > 0 .  (2.5) 
- -00  

Let us remark that under (2.5), Gibbs states can be constructed for all fl > 0 as the 
limit of finite volume Gibbs distributions with periodic boundary conditions on the 
product space (IRxlR) 7zd. Moreover, if l im[x[exp(- f lU(x))=O for all f l>0  as 
[x] ~ + 0% then our configuration space t2 is of full measure with respect to such 
limiting Gibbs states. Nevertheless, we do not need at all the existence of any Gibbs 
state for H in this paper. Under a bit stronger condition on the growth of U the 
entropy argument of Sect. 6 yields existence of stationary states for a wide class of 
stochastic dynamics, whence the existence of Gibbs states and the equivalence of 
ensembles also follows from the results below. 

All superpositions of Gibbs states with different temperatures are microcanoni- 
cal states in the following sense. 

Definition 2.2 A microcanonieal Gibbs state with a fixed energy constraint is a Borel 
probability # ~ ( f 2 )  specified by #Ed~A[(OAc , HA]=2ILA[dCoAlCO~A, HA] p-a.s, for 
each finite A c Z d. 

Notice that )C~,A[dCOA[O~A, HA] is just the normalized surface measure (uniform 
distribution) on the corresponding energy shell 8, see (3.11). Under fairly general 
conditions, every microcanonical Gibbs state is a stationary measure of Hamil- 
tonian dynamics, but a rigorous proof of the converse statement seems to be 
extremely hard. Simple and more sophisticated examples show that it is even not 
true without some additional conditions. Indeed, if we choose the initial configura- 
tion such that Pk =Po and qk = qo for each k, then the resulting periodic orbits carry 
some stationary states, which are certainly not microcanonical Gibbs. Of course, 
such degeneracies are ruled out by local absolute continuity of the stationary state, 
but periodic initial configurations might yield even more complex, locally absolute- 
ly continuous stationary measures via KAM theory (see [A]) with further refer- 
ences. It is also known that harmonic oscillators have additional, and fairly regular 
stationary states [LS]. This is the reason why we introduce additional symmetries 
corresponding to randomized versions of classical dynamics. 

The following exchange symmetry (ES) of the velocity distribution is sufficient to 
solve (LS): 

f ~ j ~ o d # - - 0 ;  ~/p(~o):----~O(ogk'J)--~O(CO) for ~oeeo(f2), [ j - k [ - - 1 ,  (ES) 

where ~k,j is obtained from co by exchanging Pk and pj. In the next section we show 
that (ES) implies the conditional independence of velocities and positions, given 
di ,v,  the field of translation invariant events. Moreover, (LS) and (ES) yield some 
fl~dz,v such that almost every realization of p [&o[di,~] is a Gibbs state with the 
corresponding fl as its inverse temperature, that is we have a statement on the 
equivalence of ensembles, cf. [G]. The only condition we need is that our measure 
is non-degenerate in the following sense. 

Definition 2.3 We say that a state # ~ ( ~ 2 )  is disordered if 

#[pk[WJta i l ]2<#[p2k l~ :~ ta i l ]  < O0 #-a.s.for each k e ~  d , 

where dtaU is the tail field of ~2. 
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Let us remark that the periodic stationary states mentioned above are not dis- 
ordered, and in the first counter-example even the random exchange mechanism 
preserves the stationary state. 

Theorem 2.1 Suppose that # is translation invariant. Then (ES) implies the condi- 
tional independence of velocities and positions given ~i ,v,  i.e. #[dplq, xgi, v] 
=#[dpldi,~].  Moreover, if # is a disordered state, then (ES) and (LS) imply the 
existence of a translation invariant and #-a.s. positive random variable, fl, such that 
almost every realization of #[do~] s/i.~] is a Gibbs state with inverse temperature fl; 
therefore # is a microcanonical Gibbs state. 

The next symmetry property (RS) is related to random reflections of velocities: 

f~(pd~=O; Nff~o(oJ):=~o(co~)-~o(o)) for goeCo(f2), (RS) 

and co k is obtained from o)=(Pk, qk)k~Z ~ by replacing Pk by --Pk, other coordinates 
remain unchanged. In this case we need additional regularity conditions. 

Theorem 2.2 Let U and V be infinitely differentiable, and suppose that V"(x)=O 
implies V'"(x)+O for each xelR. I f  #~N(f2) is locally absolutely continuous, then 
(LS) and (RS) imply (ES). Therefore i f#  is also disordered and translation invariant, 
then it is a microcanonical Gibbs state. 

We turn now to the construction of random evolutions. We consider modified 
evolutions generated by N =  ~ +aN .... where a > 0  and ffra, describes random 
effects. Random reflections correspond to Nr,, = N R, while random exchanges are 
generated by N,a, = N E, where 

1 N =ZNL N Z NL (2.6) 
k s  77a I j - k l  = 1 

The associated random evolutions are defined as solutions to the integral equations 
(5.1) and (5.2), respectively. 

Theorem 2.3 Suppose that U" and V" are bounded, and let N - - ~ + a N  e or 
N = ~o.Qf + aN R, where a > O. Then there exists a Markov process, 2~t with phase space 
(2 such that the forward Kolmogorov equation holds true in the following form. I f  
# ~ ( f 2 )  and f II ~o It ~ d~ < oo for some ~ > O, then f II m I1~ d#t stays finite for all t> 0 
and 

f q~d#,=f ~od#+ f ds f N~odm for ~0~Cot(O), 
o 

where # t = # ~  t, t>O denotes the state of the process with initial distribution #. 
Stationary states satisfying the moment condition (2.3) are characterized by the 
stationary Kolmogorov equation: 

fN~o(co)g(dco)=0 for q~EC~(O). (SK) 

The derivation of the symmetry properties we used in solving the stationary 
Liouville equation is based on the notion of relative entropy; this is the point where 
we exploit the existence and regularity properties of randomized evolutions. As 
a family of reference measures we use finite volume Gibbs states 2 0 with free 
boundary conditions. More exactly, let A , -  [ -  n, + n ]ac~  a, n = 0, 1 . . . .  denote 
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a distinguished sequence of cubic boxes, then 2 ~ is a probability measure on 
d ,  -- S~A. such that 

d2~176 F ~ :=log f exp[--H~.(OOA.)]&OA.. (2.7) 

Definition 2.4 Let # and 2 be probability measures on the a-field ~,  then the entropy 
of #, relative to 2 is defined as 

I~ [# [2 ]=sup  t f hd#- log  f ehd2: f ehd2 < + 0o t" 
h e ~  ( ) 

I f  #eN(~?), 2 = 2  o and ~ = d ,  then the notation I , [ # ] - I d . [ # 1 2  ~ is used, and 

lim sup (1 + 2n)-dI, [#] : = / [ # ]  
,-~+oo 

is the relative entropy of# per unit volume. Let ~o(0) denote the set of translation 
invariant l~e~(f2) such that I [ / t ]  < + oo. 

It is easy to check that I , [# ]  < + oo implies that #, 4 2  ~ and I, [/~] = f l o g f ,  d#, 
wheref,=d#,/d2 ~ and #, denotes the restriction of # to d , .  Observe that if I, is 
finite then its definition yields an explicit bound for f H ] d # .  Since V>0, by the 
usual subadditivity argument (cf. [R]), it follows that the limit below exists and 

F ~ :=inf(2n + 1)-eF ~ = lim (2n + 1)-nF ~ . 
n n--+ oo 

Therefore if # is translation invariant then the sequence (1 + 2n)-dI,[It] converges 
to I [ # ]  as n ~  + o% and [ is a convex and lower semicontinuous function of 
#e~o(s with respect to the weak convergence of probability measures. We are 
looking for solutions to (SK) within the class ~o(~)  of probability measures. 
To control entropy of the evolved state, the following stability condition will be 
assumed. We have some constant K such that 

]V'(x-y)]2<K[1 + V ( x - y ) +  U(x)+ U(y)] for each x,y~IR. (2.8) 

In addition to (2.8) we suppose that 

]U'(x)]<K[1 + U(x)] for each x~lR, (2.9) 

then #~N0(f2) implies (2.3). In the following theorems the boundedness of U" and 
V" and conditions (2.5), (2.8), (2.9) are assumed. 

Theorem 2.4 Suppose that 1~o(s is a disordered stationary measure of the 
dynamics with random exchanges, then # satisfies (LS) and (ES), thus it is a micro- 
canonical Gibbs state. 

In the case of reflections we have: 

Theorem 2.5 Suppose that U and V are infinitely differentiable, and V"(x)=0 implies 
V'"(x) + O for each xelR. I f  #eNo (s is a disordered stationary state of the dynamics 
with random reflections of velocities, then # satisfies (LS) and (RS), thus # is 
a microcanonical Gibbs state. 

The derivation of symmetry properties (ES) and (RS) for stationary states of the 
random evolutions is based on an entropy argument that goes back to [Ho]. The 
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main steps can be outlined as follows, proofs are postponed to Sect. 6. Since 
Hamiltonian evolution does not contribute to entropy production, the temporal 
derivative of the relative entropy at a stationary state can formally be written 
as  

], = f  (#logf, d# = -aD,[#] + B,[/~] = 0 ,  (2.10) 

where B, is a boundary term, while D, is the essential, volume term of entropy 
production due to random effects. 
The volume term of entropy production caused by exchange of velocities is 

1 rl ~ f.(co) "do)" D.=Dff[#]:=~ Z E J g ~ # t  ). (2.11) 
keA. jeAn 

] j - k l = l  

In the case of velocity reflections we have 

D =DR[#I:= ~ r l~  f,(w) (2.12) 

The boundary terms B, will be specified and estimated in the last section. Since # is 
translation invariant by assumption, we have Dn~n d while Bn,~ n d- 1, thus from 
(2.12) we get D, [#] = 0 for each n. Each term of D, is again a relative entropy, which 
is non-negative and vanishes only if the related distributions coincide. Therefore we 
have (RS) and (ES), respectively, thus (SK) implies (LS), too. 

Partial information of this kind on the structure (symmetry) of our stationary 
measure # can now be fed back into the stationary Liouville equation, that is we 
have to solve (LS) under some additional symmetry property. In this way the 
problem can be reduced to KMS type conditions, which admit an easy solution, at 
least if the state is a disordered one. 

3 Symmetric solutions to the stationary Liouville equation 

In this section we initiate a systematic study of symmetry properties of probability 
measures that are useful in solving (LS). Gibbs states admit a nice characterization 
in terms of integration by parts, namely every Gibbs state with inverse temperature 
fl > 0 satisfies 

and 

f l  8cp 
~pkd#=fq)pkd# for q~eCo~(f2), ke2~ a if ~op, eCo(O) (KMSP) 

OH fill dp=fq) ~ d# for q)eC~(O), ke2g d if qOdkH~Co(f2) , (KMSQ) 

where 8kH = aH/Sq~:, and the converse statement is also true, see Theorem 3.1. On 
the other hand, (KMSQ) and (KMSP) imply (LS) under (2.3). 
An integration by parts formula for microcanonical Gibbs states is the following 
identity: 

fLPkCpd#=O for ke;E d and q~C~(f2). (MIP) 
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Let us remark that (MIP) does make sense even for a general #~#(f2) because here 
the boundedness of q~Pk and ~OOkH may be assumed without any confusion. We 
shall show later that (MIP) yields a differential characterization of microcanonical 
states. 
It is easy to check that (KMSP) and(KMSQ) together are equivalent to the classical 
KMS condition [GV], and each is implied by reversibility of # with respect to the 
generators ~ .p  and ~ a ,  respectively, where 

1 ~2~9 ~@ 
NkP.p~O=fl- @2 OpkPk for cpeCg(~), 

q 1 ~2(p ~{9 aH 
for q~eCo2((2). (3.1) 

t~Pk ~qk 

Since (KMSP) and (KMSQ) are statements on the local specifications Remark 3.1 
of #, in all results where (LS) has not been assumed, we can replace fi by 
a tail-measurable function, provided that it is positive #-a.s. 

Now we show that the (KMSP) and (KMSQ) conditions are equivalent to the 
DLR equations, which is the definition of Gibbs states. In view of the decomposi- 
tion dOA = dpAdqA, symbols like # [dpalOAo] or 2~,A [dqA[qaA] refer to the corres- 
ponding conditional marginal distributions. 

Theorem 3.1 (KMSP) implies #[dpA[PAo, q]=2p.A[dpA] #-a.s., while (KMSQ) 
implies fl[dqA]OOAc , p] =3%A [dqA[qOA] #-a.s. for each finite A c• d, and either of 
them together with (LS) imply that # is a Gibbs state with inverse temperature ft. 

Proof Let ~A(O)=exp[flHa(O~)] and introduce a a-finite measure #a by 
1 

d#A=-fl OAd#, then from (KMSP) or from (KMSQ) with ~0 =OOa we obtain that 

f-~pkdpA=O or f~qkd#A=O for k~A and OeCot(f2), (3.2) 

respectively. Because of integrability problems, we have to assume first that ~ has 
compact support, the general case follows then by continuity. Since (3.2) is a differ- 
ential characterization of Lebesgue measure dpA or dqA, we see in both cases that 
almost every projection of #A on IRA is invariant under Euclidean translations, 
which completes the proof of the first statement. 

Suppose now (KMSP) and (LS), and let ~o(co)= r where 0eC~(~2). From 
the first statement we know already that #(do))= #(dp)#(dq) and the velocities are 
independent Gaussian variables, thus from (LS) 

f O ( q ) ~-qi d#=k~g"2 f ~a-akqk PkP fl#= f ? -~--qjqj d# ' 

which is ju~ (KMSQ) for functions depending only on the q-coordinates. Using 
~=exp(flHA(q)) instead of 0A, where 

1 
~A(q)=HA(r • _~p2, 

ksA 

and substituting q~(q)=O(q)~A, in the same way as before we obtain that 
#[dqA]qao]=2~,A[dqAIqOA] #-a.s., thus we have a full description of the local 
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specifications of #. The case of (LS) and (KMSQ) is almost the same, then we 
choose our test function as q~=O(P)qk. [] 

(ES) and (LS) reduce to the KMS conditions as follows. 

Proof of Theorem 2.1 First we prove the conditional independence of velocities 
and positions given sJi,v, the field of invariant events. Let ~0o, OoeCo((2) be such 
that ~0o depends only on velocities, while 0o depends only on positions, and let ~0k 
and 0k denote their translates by k~f2. This means that if p =(p~)j~xd, q =(qj)j~d 
then q)k(P)= (Po( (Pj-k)jJZ ~) and ~lk( q)-= ~lo( ( qj-k)jsTZd ). Then we have 

f (Pk(P)Oo(q)d# =f  (po(p)t)o(q)d# =f  (pk(P)Ok(q)d#, (3.3) 

where the first equality follows from (ES), while the second one is a consequence of 
the translation invariance of #. Therefore, if Zk(q) = # [~0kl q] denotes the condi- 
tional expectation of q?k given q, then ~(k does not depend on k, and it turns out to be 
a translation invariant, i.e. an di,v-measurable function. Since q~0 and ~o are 
arbitrary cylinder functions, this implies the conditional independence of velocities 
and positions given d~,, .  

Now we can identify the distribution of positions as follows. Let 
u(q)-=#[pkl~inv] and define fi=fl(q) by fl-l+uE=#[p2l~c~inv]. In view of our 
previous observation, they do not depend on k. Now we put ~ = ~o(q)(pj- u). Since 
u is tail measurable, (LS) results in 

aH  .1 ~_~gd# + 2 z a~0 
f ~~ Tqj d#=J-fi oqj k . j f  (pkpj--U ) ~kqkd# . (3.4) 

On the other hand, ifj4=k and i~k, then from (ES) 

1 
f O(q)pkPjd#=f O(q)pkp, d#=f O(q)pk ~ ~, p~d# (3.5) 

leA 

whenever k r A, thus the Ergodic Theorem implies # [ Pk Pj I ~C~inv ] = u2 (q) whenever 
k +j, that is the sum on the right hand side of (3.4) vanishes. This means that we 
have a (KMSQ) characterization of the distribution of positions, it turns out to be 
a mixture of Gibbs states with random temperature, see the proof of Theorem 3.1. 

Now we can feed back this information into the stationary Liouville equation to 
conclude Theorem 2.1. We choose our test function as q~j = 4)(P)qj and exploit the 
conditional independence of the velocities and positions. From (LS) and (KMSQ) 
for functions depending only on positions we get 

~, f qj ~_~ ~H 1 gO(P), f c/)(p)pjd#= - -  a # ,  (3 .6 )  k~z cpk G d#= f -~ t?pj 

which is just (KMSP) for ~b=(b(p), and completes the proof by applying the 
previous argument to the ergodic components # [dqI~r of the joint distribution 
#[dq] of positions. [] 

Although (MIP) has no direct characterization in terms of reversibility of Nk R, cf. 
(3.1), it is related to random reflections of velocities via (LS) as follows. 

Theorem 3.2 (RS) and (LS) imply (MIP). 



Stationary states of random Hamiltonian systems 221 

Proof In view of (LS) 

~P �9 w r&p 0H 
Z f-~qkPka# = 2-,J~p~pk-~qkdp for ~oeClo(~?). (3.7t 

keZ n k~Z 

Let Co*(O) denote the space of r  such that either ~p(co k) = (p(co) for o ~ ,  or 
q~(~o k) = -9(~o) for each ~o~t2; the set of kE~ d satisfying the second relation will be 
denoted by A(~9)c~ d. If ~C*(~2)  is continuously differentiable, then both 
~lk=~@/Opk and ~l~=Oqg/Oqk belong to C*(t2), moreover A(~k)=A((p)\{k} if 
keA(~o), A(Ok)=A(~o)w{k} if k6A(q)), while A(0~, ) =A(~o) for all ke2U. Since (RS) 
implies f ~ d~ = 0 if ~o s c*  (g2) and A (~) =~ 0, we have 

f&o pk 0q) OH 
=f~Pk ~ d# =0  unless A(~0)= {k}, (3.8) 

thus comparing (3.7) and (3.8) we get (MIP) for q~eC*(f2). On the other hand, as 
any q) e Co ~ (~) decomposes into a finite sum of continuously differentiable functions 
from C*, thus we have (MIP) for all ~oeC01(f2). [] 

Our next observation is that (MIC) yields a differential characterization of the 
surface measure of energy shells, cf. (KMSP), (KMSQ) and (3.2). Suppose first that 
# admits smooth local densities fA=#[&OA]/dC~A, then (MIP) turns into 

OfA OI-I Of A 
@k Oqk--Oqk Pk for keA (3.9) 

and for each finite A c 2U. The characteristics of this system are trajectories solving 

OH 
pkdpk + ~qk dq~ = 0. (3.10) 

Therefore if we show that any pair of points on each energy shell HA = const can be 
connected by a finite chain of characteristics, then the continuity offA would imply 
that it is constant on the components of the energy shell. On the other hand, an 
energy shell may not be topologically connected if HA is not convex, thus we are 
faced with two difficulties. 
The problem of existence of smooth local densities can be solved as follows. Let 

denote the energy shell, 

g(e, O)A.)=$(e, t;OOA ) : =  {(~OAG(IR • JR)A;  HA(COAIO3oA)=e } (3.11) 

and denote L k the restriction of ~k  to this surface. Then the operator G, 

1 
G = ~  X (Lkl ~ (3.121 

k~A 

is a hypoelliptic one, thus by H6rmander's theorem (see e.g. [IK], [K]), G gener- 
ates smooth diffusions on each component of the energy surface. Since this 
diffusion, like the flow generated by any L k, preserves both the surface measure and 
the projection of # on the energy shell, the latter admits a smooth density, thus the 
previous argument applies. A first consequence of (MIP) and (LS) is the following. 

Theorem 3.3 Suppose that U and V are infinitely differentiable, and V" (x)= 0 implies 
V'"(x) 4= 0 for each xslR. I f  I~e~(f2) is locally absolutely continuous, and satisfies 
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(MIP), then its projection on almost every energy shell admits an infinitely differenti- 
able density with respect to the surface measure of the energy shell, and the density is 
constant on each component of g(e, COA~). 

Remark 3.2 The technical condition that V"=  0 implies V'":# 0 can be relaxed to 
the following one. For  each xslR there exists an n > 2 such that V(")(x)+0. 

Because of its technical nature, we postpone the proof of Theorem 3.3 to the next 
section. Of course, the energy shell is connected if both Uand Vare convex; then we 
have nothing more to do. Otherwise we conclude first (ES), whence Theorem 2.2 
follows from Theorem 3.3 by Theorem 2.1. 

Corollary 3.1 Under conditions of Theorem 3.3, (MIP) implies (ES). 

Proof To conclude the statement, it is enough to note that (o~ j and COA belong to 
the same component whenever k, jsA,  thus even the conditional distributions 
#[de)AICOAo, HA] satisfy (ES). [] 

4 The energy shell 

This section is devoted to an application of H6rmander's theorem and controllabil- 
ity theory of ordinary differential equations (see [El and [He]). The proof of 
Theorem 3.3 is based on a series of lemmas. 

Lemma 4.1 For #-a.e. (e, O~aA) we have 

do(e, coaA)~=Oand VHA:=( ~H3, O~H-zH-3 ~ *OonE(e,  coaA). 
\ t?pi oqi /i~A 

Proof Applying Sard's theorem to HA(COA]COaA) as a function of C0Ae(lR • IR) A with 
fixed ~OaA (see e.g. [St]), we see that the statement 

do(e, coaA)=O or VHA:~0 on do(e, COaA) 

holds for almost every eEIR and for every COaA. Especially, we see that the relation 
above holds for a.e. (e, COaA)elR x (IR x IR) aA with respect to Lebesgue measure, 
de&OaA. However, since #e~0  (f2), its restriction to ~Au~A is absolutely continuous 
with respect to Lebesgue measure dCOAu3A, thus recalling the concrete form of 
HA(O~AICOaA), we see that the joint distribution of e=HA(COAICOaA) and COdA is 
absolutely continuous with respect to Lebesgue measure, thus the previous relation 
holds for #-a.e. (e, O)aA). Since d~ COaA)~O #-a.e., this completes the proof. []  

Remark 4.1 Lemma 4.1 implies by the implicit function theorem that do(e, o~aA) is 
a compact (2]AI-1)-dimensional manifold for #-a.e. (e, COaA). [] 

Lemma 4.2 For #-a.e. (e, COAo), 

f L/cpd#e,~A~=0, q)sC~176 leA,  
g (e, O~A) 

where #e,,oA~ denotes the conditional distribution of# given O~Ao and HA = e. 
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Proof. This is an easy consequence of (MIP) by noting that 

Li~l=Ol~12Li@, i~A 

for any smooth O(CO)=~O(mA)Ol(HA(O~AlCOaA))r [] 

From now on we fix (e, ~0aA) such that the conclusion of Lemma 4.1 holds true, and 
denote simply by d ~ the corresponding energy shell. If X and Y are C ~-vector fields 
over d ~ then the Lie bracket [X, Y] = X Y -  YX is defined in the usual way. Let Lo 
be the Lie algebra generated by {Li}~A with real coefficients, i.e. Lo is the real 
vector space spanned by {L'; I~U~= 1A"}, where 

L ' = [ L  i', [L i~, [ ' ' ' ,  [L i"- ' ,L i"] ' '  " ] ] ]  

for I=(i t ,  i2 . . . . .  i,)eA'. We are going to verify the following H6rmander type 
condition: 

dimLo(o)A)=2lAI-- 1 for every COA~d ~ (4.1) 

where Lo(coA)={R(OOA)ETo~Ag; ReLo} and T~,A# denotes the space of tangent 
vectors at C0A. 

Proposition 4.1 I f  A c Z ~ is connected, then the family {Li}i~A satisfies (4.1). 

Remark 4.2 Let O be an open subset of # and denote L(O) the Lie algebra 
generated by {Li}i~A with coefficients from C ~ (O); namely 

L ( O ) = {  ~ ajRJlo~X(O);aj~C~176 n=l ,  2 . . . .  } ,  
j=l  

where 3f(O) is the family of vector fields on O. Then (4.1) is equivalent to the 
following condition: Each O~ASg has an open neighborhood O such that 
dimL(COA; O)--21A[-1 ,  where 

L(OA; O ) =  {R(OA)CTo~Ag; RcL(O)} . 

In fact, this is shown by means of an identity 

[ fX ,  gY] =fg[X, Y] +f(Xg) Y - 9 ( Y f ) X  for X, YeY((O),f, 9~C 0~ 

see Lemma 1.1 in [K], page 161. [] 

Let us introduce the following vector fields on 6~ 

a a : = H k a _ H ~  a ~ _ H . Z ~ _  yjk :=Pt~----Pj-2--, zJk xJk :=Pk Oqj J OPk' opj Cpk aq) ~qk ' 

for i,j, k~A; moreover 

Hi=--Hi(OgA):=~i (OOA[OaA), Hij=ttij(OA) 02HA �9 := aqi~qj ((DAIf'OOA)' 

and so on. Notice that L i = X u, ykj = _ yik and Z k~ = - Z jk. Then the proof of the 
proposition is concluded if we can verify that every COA~g has an open neighbor- 
hood 69 such that 

xJk, yik, z J k E L ( O )  for j, k~A. (4.2) 
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Indeed, the conclusion of Lemma 4.1 implies that for each (.0AE~ there exists an 
leA such that Pi 4 = 0 or Hi 4= O. Therefore, according as Pi + 0 or Hi +0, the families 

{ {xJi}jeA, (yji}jeA\(i} } or {{X ij}j~A, {zij}j~A\{i}} 

consist of (2IAI-- 1) linearly independent tangent vectors at ~OA, respectively, which 
proves (4.1), see Remark 4.2. Before proving (4.2), we summarize some fundamental 
commutation relations, they can be verified by simple calculations. 

Lemma 4.3 

(1) [U, X ~k] =Hij yik +3ikZiJ 
(2) [U, yjk]= _6i jx ik  +fikXiJ 

(3) [ yjk ytk] = yja if j, k, E are different, 

(4) [yjk, xga] = 0  if j, k, E are different. 

Remark 4.3 It can be shown that the Lie algebra generated by ( X  jk, YJg, zJk}j,k~A 
with C ~(O) coefficients coincides with the linear space over the module C ~ (O) 
spanned by (X  jk, yjk, z jk}j ,  keA, [] 

The following relations are also useful. 

Corollary 4.1 I f  i+k, then we have 

(5) Hik r ig= [L i, L k ] 
(6) X ik = _ [L i, yik] 

(7) X k~ = [L g, y~k ] 
(8) z ~ = [L i, X ~i] [ ]  

Now we prove (4.2) by induction. We fix COA~O ~ and i~A such that at least one of the 
relations Pi + 0 or Hi =~ 0 holds true at C0A. The first step of the argument is: 

Lemma 4.4 There exists an open neighborhood 6) of Oaa such that (4.2) holds for all 
j, k~F if F =  {i, m} with m~A: l i - m [ =  l. 

Proof Suppose first that Him+0, then (5) implies Yi"~L(6)), therefore 

X ira, X mi, zim~L(6)) 

by (6)-(8); provided that 6) is sufficiently small. Suppose now that Him = 0, then 
Hum 4:0 by assumption, thus from (2) we get 

[L i, [L i, L"] ] = [L i, Him yira] =piHii m yim Hi, ,Xi~eL(O ) , (4.3) 

while from (2) and (1) 

[L ~, [L ~, [L i, L" ]  ] ] 

= { -- H, Hu,, + p~ Hm,,-- Hi,~H~ } rgm _ 2piHu~X im eL(6) ), (4.4) 

finally 

[L', [L', [L', [L', Lm]]]] 

= { 3H, H,,m - 3p? n , . . .  + Him/-/,, } x '" + f ( p ,  q) g'"~ e e ( o  ) (4.5) 
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with some f e  C oo (O). Remember that Pi # 0 or Hi =~ 0 at O)A. If Pi + 0 and H, ,  = 0, 
then pill, m4:0, thus from (4.3) and (4.4) we obtain that YimeL(O) if O is small. On 
the other hand, ifpi = 0 and Hi 4= 0, then (4.4) and (4.5) imply yimeL(O) by a similar 
argument. Therefore, even if Him =0, the conclusion follows from (6)-(8) as be- 
fore. [] 

Consider now the set Fo={mEA; I i - m l = 0  or 1}, we have 

Lemma 4.5 (4.2) holds for all j, k~Fo. 

Proof From the commutation relation (3) and Lemma 4.4 we see that YJkeL(O) 
for every j, keFo. Therefore, from (6)-(8), X jk, ZJkeL(O) for every j, kelo.  [] 

To terminate the procedure of induction, suppose (4.2) for a connected subset F c A 
containing Fo. Choose deAkF and rneF such that ] d - m l = l .  We have the 
following lemma. 

Lemma 4.6 There exists a neighborhood 0 of e)A such that (4.2) holds true for all 
j, keru{~}. 

Proof Since the case of Hmt 4=0 can easily be treated as before by noting that 
[L m, f f ]  =Hml Y'~e yields Y'~eL(O), at least if O is sufficiently small, we may 
assume that//me = 0. We have 

[L m, [L '~, L~]] =P,,Hmmt Ymd-Hmg XmdeL(O ) . (4.6) 

However, H,,t = 0 implies Hmm~ ~= 0 at co A while Pm might vanish. To overcome this 
inconvenience, we choose a path {re=too, m1, m2 . . . .  , raN=i} in F such that 
Imp- mp + 11 = 1 for 0 =< p =< N - 1 and mp 4= mq if p 4= q. By induction we show that 

[y,  . . . . .  , [ym . . . . .  N-2, [ . . . .  [ y m , , ' , p m y " t ] . . .  ] ] ]  

= ( _  1)Npi yme +(_  1)Np,, yi~. (4.7) 

Since (4) yields [ym,,,, xme] =0, we obtain from (4.6) and (4.7) that 

( _  1)U[yi . . . . .  , [ y ,  nN-1 . . . .  , [ . . .  [ym,,m, [L", [Lm, L~]]] . . .  ] ] ]  

= piHmme ym[ + pmH,,me Yi~eL (0 ) .  (4.8) 

Hence by H,,me 4= 0 at COA we get 

Pi yml + P,n Yit6L(O ) (4.9) 

at least if O is sufficiently small. Furthermore, we have 

1 
[ yim, pi_ ym~+ g,,- yi~] =Pro Y'ne-pi Y i~L(O) ,  (4.10) 

[L i, Pm Ymf--Pi yiE] =Hi Yi~ q- piXig~L(6) ) , (4.11) 

and 

i iLl, Hi yid_t_piSi~] =pinu yie__HiXieeL(O) 
2 

(4.12) 
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again if O is sufficiently small. Now suppose pi#0,  then from (4.9) and (4.10) 

2 +  2~ yml {Pi Pm?. yml=pi{Pi +pmyit}+Pm{Pmyml-PiYi~}~L(O) 
so that Ym%L(O). On the other hand, ifpi--0 and H~+0, then we have Yi%L(O) 
from (4.11) and (4.12). Therefore by (3) we have in both cases YJ%L(O) for every 
j e F u { f } ,  which completes the proof as before. [] 

In view of (4.2) this completes the proof of Proposition 4.1. [] 

Now, we are in a position to complete the proof of Theorem 3.3 by means of 
Proposition 4.1. 

Lemma 4.7 Assume that A c 7Z a is finite and connected. Then, for #-a.e. (e, a)A~), 
P~,o~A~ admits a smooth density f=f~,o~A~eC~ COeA)) with respect to the surface 
measure dCSA on g(e, o)oA), namely #e,o~A,(dCSA)=f((OA)d(5 A. 

Proof. Consider the second order differential operator G on g=g(e ,  COOA), see 
(3.12). Then from Lemma 4.2 

f G~od#e,~o=O if q~eC o~(~). (4.13) 

Since the coefficients of G are smooth, the martingale problem associated with G is 
well-posed, thus from (4.13) we obtain that #~,o~a~ is an invariant measure of the 
diffusion generated by G: 

#e.oAo(dcbA) = f P(t, O~A, dcSA)pe,o~A~(dO~A) for t > 0 ,  
g 

where P(t, co A, dcSA) is the transition probability of this diffusion (see [El). How- 
ever, from Proposition 4.1 and H6rmander's theorem it follows that P(t, O)A, &SA) 
admits a smooth density p(t, teA, ~)A)~C ~ o0) x g x g) with respect to dcbA (see 
e.g. [IK]). [] 

The final step of the argument is based on 

Lemma 4.8 Assume that A is finite and connected. Then the density f introduced in 
Lemma 4.7 is constant on each connected component of g=E(e ,  coeA) for #-a.e. 
(e, ~oAo). 

Proof. We use the result of controllability of nonlinear symmetric systems of 
ordinary differential equations, which is known as a consequence of Chow's 
theorem (see [He] or [SJ]). In fact, H6rmander's condition (4.1) implies that the 
system 

dx(t) 
dt = F (x(t )' u(t) ) (4.14) 

with 

F ( ' ,  u)-- ~ uiL%W(g) for u=(ui)i~AelR A 
i ~A 

is controllable on each connected component of & Namely, for every pair co(A 1~ and 
co~ ~ belonging to the same component of g one can find a piecewise constant 
function u=u(t): [0 ,1]~IR A (i.e., u - c o n s t  on [t~-l,ti), 1<_i<_n-1, and on 
[tn- 1, t,] for some finite partition 0 = to < tl < . .  �9 < tn = 1 of [ 0 ,  1 ] )  such that the 
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corresponding solution of (4.14) connects co~) and co~ ) in the sense that x(0)= co~) 
and x(1)=co~ ). Since by Lemma 4.2 (Li)*f=O on ~, we have 

d f(x(t))= ~ ui(t)(L~C)(x(t))=O, t#ti ,  i = 1 , 2  . . . .  , n - 1  for 
i r  

along the controlled solution x(t) of (4.14), consequentlyf(co~ )) =f(co~)). Indeed, 
we have (U)* = - U  with respect to dcoA~A on (IR x 1R) A~aA thus it holds true on 
each energy shell d ~ with respect to d~A. [] 

Theorem 3.3 has only been proven for connected A c2g a, whence the general 
statement follows immediately. 

5 Construction of random evolutions 

The evolution with random velocity reflections, i.e. with ~ra, = ,~R, can be defined 
as follows. For each site keg  d we have independent Poisson processes Nk of 
intensity a>0 ,  where Nk(t) is the number of points in the interval (0, t]. Let 
~k(t)=(--1)  Nk(~ then for almost every realization of the random element 
N R= (Nk)k~Zd we have a set of integral equations: 

p,(t)=~?k(t pk(O)-- Yfk(S) 

t 

qk(t)=qk(O)+ f p~(s)ds for keZ e. (5.1) 
0 

The case of velocity exchanges is similar, but a little bit more complicated. Here we 
have independent Poisson processes indexed by the bonds of 7/d, i.e. Nk,j= Nj, k for 
[J--k[ = 1, where Nk,j = Nk, j(t) denotes the number of points in (0, t]; the intensity 
of each process is again a > 0. The following system is well defined for almost every 
realization of N ~ = (Nk,  j ) l j_k]  = 1" 

( p~(t)= 2 ~,j(t, 0)pA0)- f ~k,j(t, s) 0H(co(s)) ds~ 
j~z~ 0 eqj J '  

t 

qk(t)=qk(O)+ f pk(s)ds for kz iU,  (5.2) 
o 

where g is the fundamental solution to the trivial problem of U =  V=0 ,  i.e. then 
pk(t)=~iezd6k,j(t,s)pj(s ) for O<s<t < +o0 and k, jz:g d. More exactly, 3 is the 
permutation kernel of the stirring process induced by N E as follows. Let ~i(s) 
denote the walk started from i t  2g d at time 0 and jumping to the opposite end of the 
bond on which the next point appears. This system of random walks is uniquely 
determined by the requirements that (~(t) is a right continuous function of t > 0 
such that ( i ( t )=k at t>s if ~i(s)=j and NLk(t)-=Nj, k(S)+ 1 but Nj, l(t)=Nj, l(s) for 
l+k and [l-j[ = 1, while ~i(t)=~i(s) at t>s if ~i(s)=j and Nj, k(t)=Nj, R(S) for all 
k~Z d with [k - j ]  = 1. Let qi(j, s) = 1 if (i(s) =j and th(j, s) = 0 otherwise, then 

6k, j(t,s)= ~ rh(k, t)rh(j,s) N=-a.s. 
i ~ Z  d 
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Both (5.1) and (5.2) can be solved in f2 for almost every realization of N R and N ~, 
respectively, and the solution is a continuous and differentiable function of initial 
data. The basic tool of the derivation is the following system of integral inequali- 
ties for Uk>=O, k e ~  ~, where vk>0 and yk,j>=0 are given functions, and K is 
a constant depending only on U and V: 

t 

uk(t)<=Vk(t)+ K ~ f 7k4(t,s)uj(s)ds . (5.3) 
j e ~  d 0 

For example, if uk(t)= Ipk(t)[, then in the first case we have 7~4(t, s ) = K ( t - s )  if 
lj-kl_-< 1, and 7k4=0 otherwise, while 

Vk(t)=lpk(O)l+ ~ (g  +lqj(O)l)t. 
Ij-kl<l 

In the case of (5.2) we have again (5.3) for uk(t)=lPk(t)[ with the same constant 
K and 

~,j(t, s)= ~ f ~,~(t, ~)d~ 
l i - j l < l  s 

vdt) = ~ (~k,g(t, 0)lpg(0)l +Tk,j(t, 0 ) (K+ Iqj(0)l)). 
j ~  

Let us remark that the mean value of 6kd(t, S) is just the transition probability of 
a symmetric simple random walk with jump rate a, thus it is easy to get bounds on 
the integral operator with kernel ~ also in this case. 
The system above can be solved by a direct iteration procedure, we get 

uk(t)<=v~(t)+ ~ K "~ ~" f ?~':J(t,s)v~(s)ds, (5.4) 
m = i j~TE 0 

where 7(a)=?, and 

t 

(m), t ~2f'~(t, s)= Y~ j ~k,,t, ~)~i,j(~, s)d~ (5.5) 
i~2g ~ s 

Let X denote the space of real sequences X=(Xk)a~g~, a strong topology of X is 
defined by means of a family of Hilbert norms, [. [~ given for c~ > 0 by 

Ixl~= ~ exp(-~lkl)lXk[ 2, (5.6) 
k e Z  d 

thus L[ o II~= Ixl~ with Xk ----[~2~Fk -~- ~/k~2~1/2) if ~ =(Pk, qk)k~ ~. The convergence of a se- 
quence in the strong topology of ~ means convergence with respect to every norm 
II" I[~, ~>0; the space of strongly continuous ~: O ~ - ~  will be denoted by C~(~). 
The reason why we have introduced a whole family of norms instead of a single one 
is quite simple. The strongly bounded sets of X or those of ~ are weakly compact, 
and the relative weak topology coincides with the strong one on each strongly 
bounded set, thus moment conditions allow us to avoid a sharp distinction of weak 
and strong compactness. Now we show that the kernels y are contractive in the 
following sense. 

Lemma 5.1 For each T> 0 there exists a positive number c~(T), and for 0 < ~ < c~(T) 
we have also a random variable C(c~, T) such that if vk(t)<= gkfor all t <= T and k~77 d, 
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then (5. 4) and (5. 5) imply 

lu( t ) l~C(T)lgl~ for each O < t < T .  

C(c~, T) depends only on K and d in the case of(5.1); it does depend on the random 
element N E in the second case, but its second moment is finite. 

Proof. The first case is trivial, we can calculate each term of expansion (5.6), and we 
obtain a deterministic bound for every ct > 0. In the second case we can use the 
reflection principle to determine the distribution of (k.j(S, T), 

(k,j(S, T)=  sup 6k,j(t,s) for 0 < s < T .  
s < t < T  

In this way we obtain a bound 

EE(0<s<t<TSUp y k , j ( t , s ) ) < e x p [ - ~ ( T ) l k - j [ ] ,  

where E E denotes the expectation with respect to the random element N E. Observe 
now that the factors 7 of the terms of the expansion on the right hand side of (5,6) 
are independent, thus the proof is completed by the elementary fact 

sup ~ e x p [ - c ~ l k l + ~ [ j l - f l l k - j l ] < + o e  i f 0 < e < f l .  
j~7/d k ~  d 

Indeed, as Jk,j is either 0 or 1, we can use the Schwarz inequality with weights 2 -m 
for the sum, and with uniform weights for the multiple integrals to derive the 
conclusion from the above estimates by a direct calculation. [] 

This simple tool is sufficient to construct regular solutions in •. 

Theorem 5.1 I f  U" and V" are bounded, then both (5.1) and (5.2) admit uniquely 
defined solutions e~t = ~ ( ~  and (~t = ~ for every initial configuration (~o = ( ~ ,  
and for almost every random element N = N R or N = N E, respectively, The solutions 
remain in ~, and they are strongly continuous functions of initial data. 

Proof In view of Lemma 5.1 this argument is quite standard, so we sketch only the 
main steps. We start with a sequence of partial dynamics allowing only a finite 
number of coordinates to vary. Choosing Uk and V k as specified after (5.3) we show 
via Lemma 5.1 that the velocities are bounded on compact intervals of time. 
Therefore, by the Arzela-Ascoli Theorem we have limiting solutions for every 
initial configuration, and for almost every realization of the random elements N R 
and N ~, respectively. To conclude the uniqueness of solutions, as well as their 
continuous dependence on initial data, we define Uk(t ) a s  the magnitude of the 
difference of the velocities of two solutions, and use again Lemma 5.1. [] 

The Markov semigroups of our random evolutions are defined by 

~ ( ~ ) = E R ~ ( ~ o )  and ~ ( ~ o ) = E ~ ( r  for e~C~(t~ ), (5.7) 

respectively, where E R and E E denote expectations with respect to the random 
elements N R and N ~. It is easy to check that they are really generated by ~q' + af# R 
and by 2~ ~ + aN ~, respectively. In view of Theorem 5.1, both semigroups map Cs(f2) 
into itself. If the initial configuration is distributed by #E~(g2), then #t = #N~ and 
#t= #Nk denote the evolved states of the corresponding random dynamics. Since 
the dynamics preserve moment conditions, Theorem 2.3 is obtained as a direct 
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consequence of Theorem 5.1. Moreover, under the condition I - [ # o ] < K with 
K < oo being fixed, the evolved state depends in a weakly continuous way on the 
initial distribution #o, see the entropy bounds of the next section. 

The following form of differentiable dependence on initial data shall play an 
important role in estimating the boundary terms of entropy production, see 
(6.2)-(6.5), it is based on Donsker-Varadhan type rate functions of the following art. 

Definition 5.1 Suppose that F is the generator of a Markov process in f2 and ~ ~ sJ is 
a a-field such that the domain ofF consists of N-measurable functions, and F maps its 
domain, Dora F into ~-measurable functions. Then the rate of #e~(O ) with respect 
to F and J) is defined as 

D r [ # ] = 4 s u p  sup f -  d#:O>6 and -F#J<~ . 
6>0  ~,~DomF I 

I f  ~ = d ,  and F=fC#,l,for keA,  or F=fr for k~A,-a,  then the abbreviations 
P D,,k[#] and D~k[#] are used, cf. (3.1). I f  N =  d then the subscript n is omitted. 

Let us remark that the volume terms of entropy production D# and D, R are not rate 
functions of this kind. For a comprehensive study of rate functions see [DV] or 
[DS]. Monotonicity with respect to 2 ,  and convexity and lower semi-continuity in 
# are the most useful properties of D r. 
In particular, for keTZ/, 

b ~ ' [ # ] - D f [ # ]  = sup P D,,k[#] and b ~ [ # ] - D ~ [ # ] = s u p D ~ k [ # ]  (5.8) 
n_>_O n>=l 

and if #e~(Q)  is translation invariant, then 

/)P [#] := b~[-#] = sup (2n + 1) -d ~ P D,,~[#], 
n>=O keA. 

D a [ # ] : = b ~ [ # ] = s u p ( 2 n - 1 )  -a Z D~k[#]. (5.9) 
n>=l k~A._t 

Suppose now that d# =f.d2 ~ on ~/.  andf.eC~(Q) is bounded away from zero, then 
using (KMSP) or (KMSQ), we can replace the integrands in the definitions ofD P or 
D e by expressions like 

()) 0 , 2  < ! ( s - )  2 
\ f ,  ~ ~- L =  4 \~ , , j  f , ,  (5.10) 

where prime denotes the corresponding derivative. This means that the supremum 

is attained for ~ = x / f ,  consequently 

p ' 1 
O. k[#] =f ( f  af.']2d# for kEA. 

' apk/ ' 

D ~ k [ # ] = f ( } ,  af"~2d# aqk/ keA , -1 .  (5.11) 

It is less obvious, that the finiteness of D r implies the existence and the necessary 
smoothness off ,  (see [DV], [DS]). 

If the evolution does not create smoothness of local densities then the control of 
terms like D e and D a should be based on differentiable dependence of solutions on 
initial data. 
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Observe that uk(t)=[Opk(t)/Qpj(O)l and Uk(t)=l~?pk(t)/Oq3(O)] also satisfy (5.3) 
with suitably chosen Vk'S, thus Lemma 5.1 yields bounds for the derivatives of the 
evolved configuration with respect to its initial values. By means of this simple fact 
we prove: 

Lemma 5.2 Suppose that D~[#]+D~[#]<=M for each k~;g a, then we have an 
increasing function D(t), t > 0 such that b~ [ #~'] <= MD(t) both for ~t  = ~t  R as well 
as for ~ t  ~t  

Proof. First we consider a finite system restricted to A.. This means that we replace 
H by H~. both in (5.1) and (5.2), set Nk(t)--= 0 in (5.1) if k~A., while Nk,j--0 in (5.2) if 
the bond {k,j} is not contained in A.. The evolved configurations will be denoted 
by ~//~,.co and J//~,.co, respectively, and the initial distribution is #., such that 
d#. =f~d2 ~ wheref~ is a strictly positive and smooth sr density. Both 
evolutions preserve 2 0 for each realization N of our Poisson processes, thus the 
density f u of q/J~..e) or  G//~,n(D satisfies f,N.(co)=f.(q/s or ft~(co)=f.(~//Z~.co), 
respectively, whence 

N 
r 

C~pk(t) ~ \@j(O) @k(t) ~ - -  ~qj(O) @k(t) J 

Now we use the Schwarz inequality and the convexity of entropy production to 
estimate b~ [#~t ] .  Since the reversed random trajectories behave in the same way 
as the original solutions, we can use Lemma 5.1 to handle the right hand side. The 
situation is even simpler than it was in the proof of Theorem 5.1 because here we 
need L ~ bounds, and 6k,~ is a permutation matrix, thus randomness due to N = N e 
plays no role at all. The general case follows then by lower semi-continuity of 
entropy production. [] 

6 Boundary terms of entropy production 

A formal derivation of (ES) and (RS) for the associated random evolutions is almost 
immediate, but a priori we do not know that any translation invariant stationary 
state admits smooth local densities; the entropy condition I [ # ]  < ~ plays a crucial 
role here. Suppose first that #e~(f2) satisfies I [ # ]  < + oc and 

b~ [# ]+bkqEP]=<m< +oe for all k ~ _ Z  d , (6.1) 

then the evolved measure, # ~ N ( ~ )  admits smooth local densities,f. =f,(t, c~) with 
respect to our reference measures 2 ~ The rate of change of I, consists of the 
following terms. Since 20 satisfies (MIC) for keA, with H I ,  instead of H, an easy 
calculation shows that the Liouville flow yields only a boundary term: 

aS.  H f.)I f L~logL(t, co)#,(dco)= ~ f p~ 3qk Oqk ~p~ j f d#, 

= Z f l  Qf. j.,kd#t:=B~[pt]. (6.2) 
k~An\An a Jn ~Pk 

OH~ (~o) ~H(co) 
J.,k(CO):= 

~?qk ~qk 
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Note that J , ,k=0 if keA ,_  1. The contribution of random effects is the following, 
cf. (2.11) and (2.12), 

f C~Rlogf, d#t = - -  Dff [# , ] ,  (6.3) 

f ~ E l o g f ,  d#, = - D r [ # , ]  + B # [ # , ]  ; (6.4) 

. ,  L(t,  o Y )  
B f f [ # t ]  := E E Jlog -f-(t~-) #(dco). 

k~A. ]jj~k~n= 1 

Comparing the calculations above we get 

t t 
I , [# , l  +a f D,E#~]ds<I.[#o] + f B,[#~]ds, (6.5) 

0 0 

where D.=D~,  B , = B ,  L if ~ra,=~f R, see (2.12), (6.2) and (6.3), while D , = D .  ~, 
B,=B,L+aB~ if Nra,=N ~, see (2.11), (6.2) and (6.4). 
The boundary terms of entropy production can be estimated as follows. From 
Lemma 5.2 by the Schwarz inequality we get 

B, L, [ #] < MD (t)(z~+ 1 (t) - zL, (t) + [A, \ A, _, 1) ; (6.6) 

z~+l(t):= k 2 fJm.k(co)2#'(dco) 
m=I k~Arn\Am z 

= K1 (I, ,1 [#t] + K~ (1 + 2n) a) (6.7) 

where the second inequality follows immediately by the variational characteriza- 
tion of entropy (see (2.8) and Definition 2.4). 

The second boundary term B, E can be treated in the following way. Let 0 2 ,vj  be 
a joint distribution of coa. and pj forjCA, such that d2, vj = 9(pj)d2 ~ dpj, where g is 
the standard normal density, and letf. v~ denote the corresponding local density of 

40 #t. Since the velocities are independent with respect to ~,, we can use the related 
subadditivity and monotonicity of entropy to conclude that 

,, L(s, ~ 'J) . to  'd "' B.~[m]= Z ~ fLvj(S, CO)logr 's CO' ,vA u,j 
kEAn [jJ~kAn=l JnVj(, , ] 

r . . . .  f .vj(s ,  CO) 
+ Z Z jj.vjts, COj,og f-~,~o~ Z%(dCO) 

k~An ijJ~kA~ 1 

< I , ,  I [#~] - I,[#~] + F ~  F~ ~ . (6.8) 

At the last step we have exploited also that H~. < H I . . .  Therefore in both cases we 
have constants depending on a, T, U and V such that 

B, [#t ]  < z.+ l (t)-- z,(t), where 

O<z , ( t )<Z ,+l ( t )<K~( I .+~[# t ]+Kz(2n+l )  d) for 0 < t < T .  (6.9) 

We are facing with a situation described in Lemma 6.1. 
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Lemma 6.1 Let u., v. and z,, be non-decreasing sequences of non-negative functions of 
te [0, T] such that z. -= z.(t) < Ka (u.(t) + K 2 (2n - 1) d) and 

t 

u.(t)+ i v.(s)ds<u.(O)+ f (Zn+l(S)-Zn(S))ds , 
0 0 

then for all n>O and re(O, 1) we have 

t 

us(t)+ f v.(s)ds 
0 

+oo  

whence 

< ~, (1 -r)rm((1 +2n+2m)aK1K2(1 - r ) t + e x p [ ( 1  -r)Klt]Un+m(O)), 
m = 0  

l imsup(l+2n)-a(  u"(t)+ ; o ~ ~-~o~ 

Proof Using the method of generating functions, by a direct calculation we obtain 
that 

r ~ u.+~(t)+ v.+~(s)ds <= ~ r~u.+~(O) 
m = O  0 m = O  

+ K t ( 1 - r )  ~ r '~ K2(1 +2n+2m)e t+  f u.+m(s)ds , 
m = 0  0 

whence as u. and v. are non-decreasing sequences, by the Gr6nwall Inequality we 
get 

(l-r) u.(t)+ v.(s)ds <= Y. r m u.+m(t)+ v.+.,(s)ds 
m = 0  0 

+Qo 

< K 1 K 2 ( 1 - r ) t  ~ r"(1 +2n+2m) a 
m = 0  

+ m  

+exp[(1-r)Ktt]  ~ rmu.+m(O), 
r a = 0  

which proves the first statement. Let t7 := lira sup.-+oo(1 + 2n)-au,(0), then for any 
a > 0  we have an n, e N  such that for n>n, 

1 1 (u~(t)+iv~(s)ds) ( l--r)  ( + 2 n )  -a 

+~ [1 + 2 n + 2 m \ d  

-< : : : " t  ) - , = o  i+-~n (K1K2(1 -r ) t+expE(1-r)Kt t](~+O).  

Now we can send first n--+ + 0% then r-+l, finally e~0,  which completes the proof 
of Lemma 6,1. [] 
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Now we are in a position to prove 

Proposition 6.1 I f  #e~o(O)  is a stationary state of the evolution ~'R or ~ ,  then we 
have (RS) or (ES), respectively. 

Proof. We have to show that D~[# ]  =0  or D~[#]  =0,  respectively, for each m. 
Our starting point is the integrated version (6.5) of (2.10). Since our stationary 
measure, # need not be as smooth as desired for (6.6), we have to mollify it in such 
a way that we have (6.1) and }-[#e] < [ [ # ]  for its mollified version # e + p  as 6~0 .  
The easiest way is to use a reversible evolution as follows. 

Let Wk and #k denote independent Wiener processes for k~TZ d, and consider the 
following stochastic gradient system: 

dpk = -- crkPkdt + ~ d W k ,  

OH 
dqk = -- ak ~ dt+ X/2-~kd~k for k~aU, (6.10) 

where o-= (ak)k~Z" iS a bounded set of non-negative constants. For  the construction 
and regularity properties of such stochastic gradient systems see e.g. [SS]. Let 
#~ and f d  denote the state and its local 2 ~ at time t > 0 with initial value 
#g = #. First we assume that ak > 0 only for a finite number of sites, then we need 
not worry about smoothness off, .  We have a uniformly elliptic diffusion, and using 
(KMSQ), an easy calculation [Fr4] results in 

~kD,.k[#,]+ ~ ~kD~k[#~] 
keAn keA,, 

= y" a ~ f  ~kqk J,,k d#7 
k~A,\A,_, f,~ aqk/t 

ksA~\An  t 

see (6.6) for the definition of z,, where 6 > 0 is a common upper bound of the 
numbers O-k. 
From the first statement of Lemma 6.1 we obtain an explicit bound for entropy 
production, see (5.11), 

1 

f P,O" a" (D, [#~]+ D,e"[#~])ds, where 
0 

y, 
k~A~ keA,, 1 

Letting each ak go to their least upper bound, say 6>0 ,  this way we obtain 
a translation invariant measure #~ for each t >__ 0 with initial value #~o = #. Set 

1 

#a:= f #~ (6.12) 
0 

and remember that #a converges weakly to our stationary state # as 6~0 .  From 
Lemma 6.1 by convexity and lower semi-continuity of rate functions, cf. (5.8) and 
(5.9), we get 

[ [ f ie] + 6D v [#a] + 6D o. [fie] __< f [  #], (6.13) 
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thus we can apply Lemma 5.2 and Lemma 6.1 to the original, randomized 
evolutions with initial distribution rio. Let /~ denote the evolved state, we see 
immediately that (6.5) results in 

I , [ f i r  f D,[f i~]ds<I.[ra]+ (Zn+l(s)-z,(s))ds, 
0 0 

where 

z, (t) < K1 (I, [/~,] + K2 (1 + 2n) a) (6.14) 

constants  K1 and Kz.  The evolved measure #~ is a/so 
therefore for any fixed m > 0 by L e m m a  6.1 we get 

with some universal 
t ranslat ion invariant, 

r[fi~] +a(l +2m) -d j D,,[#f]ds<-[[# ~ <[ [#] ,  (6.15) 
0 

which completes the proof by letting 6 go to zero. [] 

Finally, Theorem 2.4 and Theorem 2.5 follow directly f rom Theorem 2.1, Theorem 
3.3 and its Corol lary  3.1 by Propos i t ion  6.1. 

Remark  6,1 The existence of translation invariant stationary states also follows by 
an entropy argument. Starting the process with a smooth # ~ o ( 0 )  we see that the 

i r t  d s  specific entropy -[[fit] of the time averaged distribution fit:=t- Jo #s remains 
bounded as t---too. Suppose e.g. that 

lim U(x)a - + co for all 6 > O, 
Ixl--,~ log(1 + Ixl) 

then the family fit, t > 0 is tight with respect to the product topology, and any limit 
distribution # is concentrated on f2. Since r is a stationary state of finite specific 
entropy, in this way it is possible to prove the existence of Gibbs states and 
a statement on the equivalence of ensembles, too. 
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