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Summary. We study the problem of estimating an unknown function on the unit 
interval (or its k-th derivative), with supremum norm loss, when the function is 
observed in Gaussian white noise and the unknown function is known only to obey 
Lipschitz-fl smoothness, fl > k > 0. We discuss an optimization problem associated 
with the theory of optimal recovery. Although optimal recovery is concerned with 
deterministic noise chosen by a clever opponent, the solution of this problem 
furnishes the kernel of the minimax linear estimate for Gaussian white noise. 
Moreover, this minimax linear estimator is asymptotically minimax among all 
estimates. We sketch also applications to higher dimensions and to indirect 
measurement (e.g. deconvolution) problems. 

Mathematics Subject Classifications: 62G07, 62C20, 60G70, 41A25 

1 Introduction 

A.P. Korostelev, in Khas'minskii's seminar in Moscow, has recently presented an 
evaluation of the precise constants in the asymptotic minimax risk, with supremum 
norm loss, for estimating a fi-Lipschitz regression function, fie(0, 1], from n noisy 
samples yi=f(i/n)+ azi, zi ~ N(O, 1) (Korostelev, 1991). 

This result joins a very short list of exact asymptotic results about the minimax 
risk for estimating infinite-dimensional parameters. It bears especial comparison 
with results of Pinsker (1980), Efroimovich and Pinsker (1981, 1982), and 
Nussbaum (1984). Those results concern minimax risk with squared-error loss and 
smoothness assumed in an L2-Sobolev sense. Korostelev's result concerns instead 
the L~176 and L~~ smoothness. Hence the result may be viewed as the 
L~~ of the L2-work just mentioned. 

The form of Korostelev's result is interesting for several reasons: 
(a) The asymptotic minimax risk is attained by a certain linear (kernel) estimator 
j;(t) = n-1 E, y , K . ( t -  i/,O. 
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(b) The optimal kernel and the constants in Korostelev's solution were known 
previously as the optimal kernel and constants in some (apparently different) 
problems (Donoho and Liu 1991, Donoho 1994). 
(c) The minimaxity for risk E / ( l l f , - f l l ~ )  does not depend on [reasonably 
chosen] f(-). 

The subject area is appealing because L ~-loss has special importance in connection 
with setting fixed-width simultaneous confidence bands for an unknown regression 
function. 
The purpose of this article is threefold: 

(A) To describe a more general result, encompassing estimation of k-th derivatives 
k >0  of fl-Lipschitz regression functions fl > k, of which Korostelev's result is the 
special case for k = 0, fl __< 1. This more general result derives from a general method, 
absent in Korostelev's solution; the general method may also be used to treat 
indirect observations, such as deconvolution, as well as higher-dimensional prob- 
lems. 
(B) To describe the family of optimal kernels which arise in the minimax linear 
estimators. 
(C) To show that the constants in the asymptotics of the minimax risk are precisely 
the same as the constants arising in certain problems of optimal recovery, and that 
the optimal procedures are the same as well - when the noise levels in the two 
problems are calibrated appropriately. 

The paper makes heavy use of ideas of renormalization and optimal recovery. See 
Donoho and Low (1992) and Donoho (1994). 

2 Preliminaries: optimal recovery of linear functionals 

We begin by turning away from statistical estimation and consider instead a prob- 
lem of recovering f in the presence of nonstochastic noise. Suppose we observe 

y(t)=f(t)+e'z(t), te(-oo, oo), (2.1) 

where f is an unknown function, which is known to belong to the Lipschitz class 
~(fl ,  C). This is the set of all functions f such that, with re=I_ fl J and e=f l -m ,  

If(m)(t)-ftm)(u)t<Clt-u[ ~, t,u~lR. 

The term z(t) is a nuisance term which is chosen by a malicious opponent, subject 
to the constraint that I]zllz-I[z[lL2(-~,~)< 1; e>0  is a known "noise level". 

We are interested in recovering the linear functional T(f) = Tk(f) =f~k)(0), and 
we evaluate performance of a rule ~(y) by the worst-case principle. We assume that 
our opponent chooses z in the most skillful way possible, i.e. our measure of risk is 

Err~ (T, f )  = sup { [ T(y) - T(f)[: 11 y - f l l  2 < ~}. 

Moreover, we assume f is chosen from ~-(fl, C) to make life difficult. Our best 
possible performance is then the minimax error: 

E* (e) = E* (e; T, ~-) = inf sup Errs(T, f) .  
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A rule jr(y) attaining E*, i.e. 

sup Err,(ir, f )  = E*(5), 

will be called minimax. [The general setting we are discussing is one of optimal 
recovery: Micchelli (1975), Micchelli and Rivlin (1977), Traub et al. (1988). In such 
a setting, when the available data are finite in number, a minimax rule is generally 
called an optimal algorithm.] 
Applying the optimal recovery theorem of Micchelli (1975) in the present setting 
yields the formula 

E* (e) = val (P~, c), 

where (P,,c) denotes the optimization problem: 

IIfll~ =<e, 
(P~,c): sup Tk(f) subject to [ f e ~ ( f l ,  C). 

Here we are suppressing mention of k and fi from the problem label, but the actual 
problem being solved depends on those parameters. Also, val(P,,c) is finite for all 
5 > 0 and C > 0 if and only if fl > k. 

2.1 Renormalization 

Our assumption that data are available on 
following pleasant consequence. 

Lemma 2.1 Let k > O and fi > k. Then 

where val(Pl,1)< oc and 

the domain t e ( - o o ,  oo) has the 

val(P~, c) = val(P1, t ) C1  - r  5r 

2f l -  2k 
r =  

2B+ 1 

The importance of this lemma comes in isolating the single optimization problem 
(P1,1) as of fundamental interest. Once val(P1,1) is known, E*(5) is known for all 
C, 5. 
[The constant val(P1,1) has an interpretation outside optimal recovery. Suppose 
we wish to know the smallest constant A(k, fl) such that the inequality 

lif(~)]i <=A(k,~)[lfli~2 H/0R 1-r oo Lip (/i') 

holds, where 

If(") (t) - f  Im)(u)l 
f[ f I lLip (fl) = sup ~,, l t - u l  ~ 

Then A(k, 8)=  val(P1,1). Compare also remarks in Donoho and Liu (1991), Sect. 4 
and references there.] 

Proof. This has essentially been proved in Lemma 1 of Donoho and Low (1992). 
The key idea is to define the renormalization operator (q/a, bf) ( t )=  af(bt) and note 
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that  whenever f is feasible for (P~, 1), then, defining a and b by 

e=ab -1/2, C=ab ~, 

the renormalized function ~a, bf  is feasible for (P~,c). Hence, 

val(P~, c) < ab k val(P L l) = e rC1 -~ val(Pi ,  1). 

On the other hand, if f is feasible for (P~,c) then ~'a-~ b-~fis feasible for (PI, 1); so 

val(P1, i ) > (g C i -~)- 1 val (P~, c). 

2.2 Solutions to (P i , i )  

It is easier to discuss solutions to the optimization problem (Q,, ~) dual to (Pt,  ~): 

(Qi,1): inf[lfll2 subject to 
Tk(f) = 1, 

[ f e Y  (fi, 1). 

If 91 is a solution to (Q~, 1) then a solutionf~ to (P~, 1) is obtained by renormaliz- 
ation: 

where 

It follows that  

f l  =~lla,bgi , 

abl~=l, ab-i/2[lglH2=l. 

val(P1,1) = (val(Qi, i ) ) - r  = (H gl II 2) (2k- 2p)/(2p + i) 

The case k = 0 and 0 < fl__< 1 is particularly easy to solve. Set 

gl (t) =(1 --I tie)+. 

Then T o ( g l ) = q l ( 0 ) = l ,  g l e ~ ( f i ,  1), and if f is some other element of ~(~ ,1) ,  
satisfying T o ( f ) =  1, then 

f(t)>gi(t),  t e l -  1, 1]. 

Consequently, f~_ ~ f 2(t) dt > f~-i g ~ (t) dt = [I g~ II 2, and so 9~ is the solution to 
(Q~,~). Now [Ig, II ~=4flz/[(Rfi+ 1)(fi+ 1)3, and so 

val(P~, ~ ) = ((2fi + 1)(fl + 1)/4fl2) rig. 

The cases where fl > 1 are by no means so simple as the case fl < 1. In the case fl = 2, 
more precisely, 

J ( 2 ,  1 ) = { f : f  (2) exists in measure, f (i) continuous, If(2)l < 1 a.e. [dx]}, 

we have considered the cases k = 0  (estimating a function) and k =  1 (estimating its 
derivative). In both cases the solution 91 has the following qualitative behavior: 
ga is piecewise quadratic; each piece has I g'~ I(t) = 1 throughout.  However, we do not 
have explicit formulas for gt.  Correspondence with Linda Zhao,  a student at 
Cornell University, and with A.P. Korostelev, reveals that  an exact solution to the 
problem with/3 = 2, k = 0 can be had. It is a piecewise polynomial  with an infinite 
number  of knots and it is not  of compact  support. 
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Numerical evaluations of val(P~.a) for a range of k and fl are reported in 
Donoho (1991). 

2.3 Optimal kernels 

The solution of (P~,~) is important not just for determination of E*(e), but also 
because it yields optimal kernels. Let f l  be a solution to (PL ~), and set 

t = k ! / f f ~  (t)t k dt. 
/ 

Then 

01 =,~ "fl 

furnishes a minimax procedure in the sense that T I ( y ) = f 0 1  (t)y(t)dt has a worst- 
case error at the theoretical minimum level: 

sup Err~ ( ~ , f )  = E*(1). (2.2) 
~(tJ, 1) 

[-This follows by applying the optimal recovery theorem of Micchelli (1975) and 
Micchelli and Rivlin (1977) to the case at hand: compare also Donoho (1994).] 

Optimal kernels for other values of e and C may be obtained by renormaliz- 
ation of 01- 

Lemma 2.2 Set ~ = 2/(2/3 + 1) and 

h = h(~, C) = (~/C)'. 

The procedure ?~(y) =f Oh(t)y(t) dt with kernel Oh(t) = h -k -  101 (t/h) has 

sup Err~(~,f ) - -E*(0.  
~(/L c) 

Proof Let a and b satisfy 

Set 2i(t)= ay(bt). Then 

ab- 1/2e = 1, (2.3) 

ab p C = 1. (2.4) 

y(t)=g(t)+E(t), 

where g(t)=af(bt) and 3(t)=saz(bt). Because of (2.3) and (2.4), g ~ ( f i ,  1) and 
I1E I[ 2 _-< 1. Consequently, if we apply T1 (Y')=.f~'l (t)2i(t)dr, we have by (2.2) an error 
not larger than E*(1). Now note that T~(y)=a-lb-kT~(2i), Tk(f)=a-Lb-kTk(g), 
and a - t b - k = e ' C  ~-'. Thus, 

l T,(y)-- Tk(f)[ = a  - I  b -g I T1 (2i)-- Tk(g)[ 

=er C~-'l ~x (y')-- Tk(g)], 
and 

sup Err~(T~,f)=E*(1) ,~rcl-r=E*(,~). 
.~(p,c) 



150 D.L. Donoho 

2.4 Optimality for other purposes 

The kernels obtained in this way are also optimal for the problem of optimal 
recovery with globN L~-loss. Indeed, apply the kernel Oh of Lemma 2.2 in the 
convolutional fo rmf( t )=  f y ( u ) G ( u - t ) d u .  Then, because of the translation invari- 
ance of the class o~(fl, C) and the translation invariance of the L 2- and L~ 

sup sup IIf-fllL=(_o~,oo~= sup sup sup] f ( t ) - f ( t ) l  
o~(/LC) [Izki~< 1 ~ ( / L C )  Ilzll~< 1 t 

=sup sup sup If( t)-f( t) l  
t ~ ( / L C )  Izil2-<l 

= sup sup I J(0)-f(0)[ 
~ ( / L C )  Ilzll:~ < 1 

= E* (e). 

Hence the problem of optimal recovery at a point and in global L~-norm have the 
same minimax error and "same" optimal strategies. 

Because it derives from optimal recovery, the family Oh is known to be optimal 
for several problems of statistical estimation at a point. The general reasoning is 
explained in Donoho (1994). Specific examples are given in Donoho and Liu (1991), 
Sect. 4. 

3 Statistical estimation in global supremum norm 

We now turn to problems of statistical estimation. Initially, we consider the "white 
noise" model, with continuous observations. Compare Ibragimov and Has'minskii 
(1984), Donoho and Liu (1991). Sections 6 and 7 below will explain that results in 
this model immediately yield similar results in the nonparametric regression model. 
We suppose that we are given data 

Y(dt)=f(t)dt +~W(dt), t~(-oo, oo), (3.1) 

wheref is  again an unknown element of ~(f l ,  C), W is now a two-sided Brownian 
motion W (0) ~ N(0, "c 2), m ( t )  - -  W (0)  ~ N(0, I t I), and the "noise level" is ~ (presum- 
ably small). 
Our goal is to estimate the whole object (f(k)(t);te[O, 1]), with supremum-norm 
loss 

blf(k)--f (k) II ~ - sup [f(k)--f(k)(0l. (3.2) 
t~[O, 11 

The basic principle we wish to establish is the following. Set the pseudo-noise level 

g = g ( e ) = x / - ~ ~ e  , (3.3) 

where again 7=?(fl)=2/(2fl+l). Take the kernel family (q/h) designed for the 
optimal recovery problem, and use it in the statistical estimation problem to 
generate a curve estimate via the convolutional form 

f(k)(t) = f ~,~(u - t)Y (du), (3.4) 
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where h'is the bandwidth which would be optimal for dealing with deterministic noise 
of size g: 

h= h(g, C) = (g/C)L 

Basic idea. The random variable [I iftk)_f(k)I] ~ is not essentially larger than E*(e') 
and for no estimator could this random variable be essentially smaller. The optimal 
procedure in this statistical problem is the same as in the optimal recovery problem 
after an appropriate recalibration of noise levels. 

To make this idea precise, let f(.) be a continuous, monotone increasing 
function, satisfying, with Z,,~N(0, 1), 

(L)" Et~ +o(1)+o(1)[Zl)~U(1). 

Define the minimax risk 
/llf(k)--f(k) ) .  

Jg*(e)=inf  sup E f t -  7E*--~ lID (3.5) 
f~k~ ~ (t~, c) 

Theorem A. 

lim ~'*(e) < E(1) (3.6) 
e-+O 

and a procedure with worst-case risk obeying this bound is the kernel estimator (3.4) 
deriving from the optimal recovery problem at noise level g. 

Theorem B. 

l im~o  ~ '*  (0 > f(1); 

hence the optimal recovery kernel is asymptotically minimax among all estimates. 

The remarkable aspect of this result, besides the connection with optimal recovery, 
is certainly the nonstochastic nature of the limiting result. It implies for example 
that for each t/> 0 

sup inf P { [I ilk)_f(k)[[ ~o < (1 -- t/)E* (g)} -*0, 
f~k~ g (p, c) 

inf sup P{ Hffk)--f (~) II~ >(1 +q)E*(g)}~0.  
fck~ ~ (/L c) 

This quasi-deterministic nature of the loss is somehow responsible for the connec- 
tion between optimal recovery (i.e. a problem with deterministic nuisance) and the 
problem of estimation with Gaussian white noise. 

4 An upper bound via optimal recovery 

We now prove Theorem A. We are again in the white-noise model with data (3.1) 
and we wish to hound the worst-case risk ofJ  ~(k), (3.4). Set 

Bias (t) = Bias [ f(k), f (k)] (t) = E jY~k)(t) --f~k)(t). 

Define the noise process 

z (t) = E 
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We have, trivially, the decomposition 

ftk)(t) --f(k)(t) = Bias(t) + eZ~(t), 

into bias and noise. It follows that 

II f(g)__f(k)]1 ~ =< ]l Bias ]] ~ +e  ]l Z, ]1 ~. (4.1) 

The idea in this section is to show that the random variable ]1 f(k)_f(k)H o~ satisfies 

med( I1 f(k)__f(k)II ~) -<__ E* (g)(1 + o(1)) 

and then to show that the deviation above its median is of negligible size. To show 
the relation between the median of the random variable and E*(~, we analyze the 
two right-hand side terms of (4.1), separately. 

4.1 Bias term 

Let i~(y)=f O~(u)y(u)du be a minimax procedure in the optimal recovery model of 
Sect. 2, with noise level g, and define the pseudo-bias 

B(T,f) = 2~(f)- r ( f ) .  

Due to the identities 

E f(k~(O) = E f O~(t) Y (dt) = f ~,a(t) f (t) dt = T( f ) 

we have the identity 

B ( T, f ) = Bias [ f(k), f (k)] (0) 

relating a pseudo-bias in the optimal recovery model to a bias in the function 
estimation model. Now the class Y(fl, C) is translation invariant: 
f e g = ~ f ( . - t o ) e ~ .  It therefore follows that 

sup sup ]Bias [f(k),f(k)] (t)] = sup ]Bias if(k), f(k)] (0)]. 
t ~ -  

(Indeed, if the worst bias f o r f i s  attained at to, the worst bias for f ( . - t o ) e o  ~ is 
attained at 0.) Hence, we arrive at 

sup ]] Bias(.)II co =sup  tB(T,f)I, (4.2) 
y o ~ 

equating a worst-case bias in the statistical estimation problem to a worst-case 
pseudo-bias in the optimal recovery problem. 

4.2 Noise term 

In the optimal recovery model, it is useful to define a pseudo-standard-deviation, 
reflecting the range of values a procedure can assume under various choices of 
noise by the opponent. For the procedure T(y)=ftp(t)y(t)dt we define 

S~ (T, f )  = (sup { T(y): 11Y--f ]I 2 < e} --inf{T(y): II y - f  [l 2 < e})/2, 
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where the last step follows by Cauchy-Schwartz. In particular, the pseudo- 
standard-deviation does not depend on f, and we write simply SAT). 

We will now show that the stochastic term [J Z~ II | is essentially not bigger than 
s~(h. 

Note that 

Z~(t) = f  Or,(u- t) g,'(du) 

=fi-k-l f O, ( ~ - )  W(dy) 

Consequently, 

~- ~ -  k-1/2  f O~ (v - t/~) W (dr) 

II r z,(t/fi). = . ~  

II r [IZ~ ~ = . ~  Ill1 IIL~to,~-,]. (4.3) 

Now the norm I[ Z1 IIL~Eo,~-~j is easily understood using known results in the theory 
of extreme values of stochastic processes. For the following result, note that if X is 
a random variable, we denote by med(X) a largest median, i.e. a value such that 
P{X>med(X)} <~. 

Proposition 4.1 Let OeLa~Lzch~(fl, C). Then with o=l]@ll2 and Zl ( t )=  
f O(u-t) W(du) 

med(ll Zl  [ I L ~ t o , A l ) ~ ~ A ) ' o  ", as A~oe. (4.4) 

This follows from Theorem 8.2.7 in Leadbetter et al. (1983, Chap. 8) and the 
regularity assumed for ~. 
It follows immediately from this proposition that 

med( I] Z~ II ~) = ~ II Ca II 2 (1 + o(1)). 

Moreover, with 

we have 

We conclude that 

or, equivalently, 

fi=h(~, C) (=(~/C)') 

= x/7 log(e- 1)(1 + o(1)). 

med(e JJ Z. ]p ~):~rl r + o(1)), ~-~0, (4.5) 

med(e II/,rloo) ~ &(~,  5--*0. 

This equation is crucial: the definition (3.3) of the pseudo-noise-level g was chosen 
expressly to make this relation true. It is important to note that (1 + o(1)) in (4.5) 
stands for a term which is (1 + o(1)) independent o f f e Y .  
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4.3 Bounds on reed( tJ f(k)_f(k)II ~) 

In the optimal recovery model, we have the general relation for ~(y)=ftp(t)y(t)dt  
that 

Err~(~,f) = [B(T,f)l + S~(T). 

From the definition of ~ as minimax for noise level g, we have 

E*(g) = sup B(I',f) + S~(T). (4.6) 

We now combine the analysis above: 

med( 1] f(k)_f(k)11 ~o) < [I Bias ]1 ~ + med(~ ]1Z, [I ~) 

< sup B(T,f)  + Si(T)(1 + o(1)) 

= E*(g)(1 + o(1)). (4.7) 

The second step follows from (4.2) and (4.5); the middle step follows from the fact 
that (1 + o(1)) in (4.5) does not depend onfe~- ;  the final step follows from our use of 
the optimal kernel, which guarantees (4.6). 

4.4 Bounds on the tails of Hf(k)--f (k) [Iv 

The median performance (4.7) o f f  (k) tells nearly the entire story. This is most easily 
seen using a special case of Borell's inequality; compare Talagrand (1988). 

Proposition 4.2 Let Z(t) be a stationary, zero-mean Gaussian process, with 

P{llZIIL~[O,Aa>med(llZNL~to,Aa)+az}<2P{g(O,l)>z}, z > 0 .  ( 4 . 8 )  

To apply this, note the following relationship: set 

2 = Var(f(k)(t) _f(k)(t)) a~7 

(this does not depend on t). Then 

= ]L01 LI/7-k-1/2~ 

= Const '  (~ ) -  k- 1/2. e 

= Const" er [log(e - 1)](- k- 1/z)~/2 

= o ( 1 ) ~  r . 

Hence, 

a~/E* (3 = o(1). (4.9) 
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Combining this with (4.7) gives, with Z a standard normal random variable, that 

EE ( ll f(k)--f'k)]'~~ )<  EE ( E*(g)(l (g) E* (g) + ah- ,Z[/I 

= Eve(1 + o(1) + o(1)[ZI) (4.10) 

--,~(1) 

for loss functions 6(.) satisfying assumption (L). As the o(1) terms are independent 
o f fe~- ,  this proves Theorem A. 
As an example, set •(t)= It f ,  p > 0; we have 

sup E [1 f(k)_f{k)II ~ <E*(g)P( 1 + o(1)). 
.~ (#, c) 

5 Lower bounds via hypercubes 

We now prove Theorem B. Our approach is to find the hardest cubical subproblem 
of ,~(fl, cg); we develop an optimization problem to find the hardest cubical 
subproblem and then apply Korostelev's lemma on the difficulty of standard 
hypercubes for the max-norm loss. 

5.1 Optimization under support constraints 

Consider now an optimization problem akin to (P~,c) only with the additional 
constraint that f be supported in [ -  A, AJ. 

f I l f l l 2 ~  g , 

(P~,c,a): supf{k)(0) subject to {fe~,~(fl, C), (5.1} 
/ 

supp(f )  c I - A ,  AJ. 

Evidently, as every f feasible for (P~,c,a) is also feasible for (P~,c), 

v al(P~, c, A) < val (P~, c), (5.2) 

but not necessarily vice versa. 
By methods of Donoho and Low (1992, Theorem 3) we can establish asymptotic 
equality. 

Lemma 5.1 Let 0 < k < ft. Then 

val(Pl,c,A)~Val(P~,c), A ~ .  (5.3) 

5.2 Minimax risk for hypercubes 

Consider the following problem: we observe 

Yi = Oi + aNZi, i = 0, ..., N- -  1, (5.4) 

where IOi[<ZN and Zi~iidN(O, 1). We wish to estimate (Oi)~=o 1, and evaluate 
success in max-norm loss If 0 -  0 [It~. What is the minimax risk over the hypercube? 
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Let ~~ and set 

m * ( g ) = i n f  sup E~N(I[O--OII~). (5.5) 
]1011| 

Proposition 5.2 (Korostelev 1991). Let (zN, aN) be a sequence satisfying 

(5.6) 
GN 

for all sufficiently large N and some Ii > O. Then 

m* (N)-~EI(1). (5.7) 

In words, if zN is not too large relative to aN, the max-norm of any estimator's error 
is almost certain to be at least of size zN as well. 

Korostelev's proof is analytical, but we sketch an intuitive argument which can 
easily be made rigorous. Because the coordinates are independent and the Gaus- 
sian law has monotone likelihood ratio, the minimax behavior is attained within 
the class of coordinatewise rules Oi = 5i(y~) which are odd and monotone increasing. 
Hence, y~>O=~Oi>O. For any such rule 0, the event 

{some Yi has the opposite sign of the corresponding 0~} 

implies, if all 10d =~N, 

{ II 0 -  0 [l~ _-__~N}. 

If we use the coin tossing prior 0i iid with {+zN, -zN} equiprobable, then the 
former event is essentially the same as 

{~N II Z tlt~ ->_~N}, 
where Z=(Zi)f=o iid N(0, 1). Elementary results for Normal extremes (see again 
Leadbetter et al. 1983) show that if c N - < _ ~  I ~ N  then 

P{llz[lt~>cN}--,1 

as N-~oo. Hence, if Z~/aN <= ~ ~ N we are practically certain, for large N, 
that a coordinatewise application of odd, monotone rules will make an error of size 
~N in some coordinate. 

5.3 Cubical subproblems of Y (fi, C) 

Fix A > 0. Letfo be a function supported in [ -A/2 ,  A/2] and satisfyingfo ~ff(fl, C). 
Set q~i(t) = f o ( t -  A(i + 1/2)). Then for any sequence (si) of multipliers I sil< 1 we have 

si4~e~(~,C) 
i = - - o o  

as well. Let 4h, M(t)=M-~oi(Mt), for M, an integer > 1. Then, similarly 

i =  o~ 

In words, ff(fi, C) contains the hypercube generated by the vertices ~b~,M. 
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hypercube 

where 

Oi : ~i(Yo, �9 "" , YN - 1 ), 

for measurable functions &~(-) and 

i = 0 , . . . , N -  1 

If we define the loss function 

y~=fr i = 0  . . . .  , N -  1 

with ~i = r M/II r M II 2. 
Let ffk) be any such estimate. Then putting ti= A(i + 1/2)/M, i= Of .... N - l ,  

II f<k)--fek) N~o ~ max Iffk)(h)--f(~)(ti)l 
i = 0 , . . . , N -  1 

= I r ~o~,!M(to)l II 0 -  0 Ilt~ 

= Mk-~Tk(fo)II 0 -  0 I1~- 

the condition 

EM (t) = •1 (M a- k t) 

then, provided (1 is increasing and continuous, we get 

inf sup EEM(llffk)--f(k)lloo)>inf sup E~l(Tk(fo)llO-OIIt~), (5.9) 
f Cd(N, fo,fl) 0 101_-<1 

In short, the risk over the Hypercube gives a lower bound on the minimax risk over 
cg(fo, N, fl). Suppose now that with A fixed, we pick M depending on e in such 
a way that M(e)~oo as e--+0. Let N(0 be the largest integer satisfying 
N" A/M(e) < 1. We may apply Korostelev's Lemma with 

�9 N=sup{l[01[~}= 1, a~=Var(yi)=e2/ll(Oi, Ml[2; 

implies, by Proposition 5.2 above, 

lirn~_+o inf sup E(M(llffk)--f (k) II~o)>fl(Tk(fO)) - 
f ~ (N, fo ,fl) 

(5.10) 

Suppose now that N . A / M < I .  There is an N-dimensional 
~g(fo, N, fl) defined by the finite sum 

N - 1  

f=  ~ Oi(Oi, M, (5.8) 
i = 0  

where each 10il ___< 1. Suppose we have white-noise data (2.1), and that we wish to 
es t imatef  (k) in supremum norm. By an argument based on sufficiency, a complete 
class of estimators for estimating f6cg(fo, N, fl) consists of all procedures of the 
form 

N - 1  

;,k,= E 
i = 0  
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5.4 Hardest cubical subproblems 

We now choosefo so that (5.10) is most effective. We first address the value of M(0. 
We need to have a~ 1 __< ~ ~ Equivalently, 

o r  

~-~" M-:-~i2.1ifo I1~<~ ~N. 
We now adopt the normalization I[fo H 2 = 1. Hence, we need to choose M(e) so that 

M - n -  li2 == ~ l ~ N e .  (5.11) 

Let, as before, 7 = 1/(fl + 1/2). For an appropriate choice of 6, depending on ~ > 0, 
and 7, (5.11) can be arranged by picking 

M - l ~  ~ . 

If M is chosen in this way, then for all sufficiently small e > 0 and each fixed A > 0 it 
satisfies (5.11). Moreover, there is no essentially better choice of M: anything 
essentially smaller (e.g. by constant multiples significantly different from 1) would 

k - fl *~, ~ r  2 7  - r / 2  

and so 

Mk_ ~'( 27 ~,12 val(Pl.c)~E*(g), e--+0. (5.12) 
\ 2 7 - 6 J  

Suppose that, given a loss function E(t), we define (l(t) so that 

f l ( t ' (  \ 2 y - 3 J  27 ~r/2"val(Pl'c)-l) =:(t)" 

Then, as M(g) obeys (5.12), 

: (11 f(k)--f(k) 11 ~) g*(e3 ~ f l ( M  e-k II f(k)_f(k)II ~o). 
Recalling the convention 

:1 (M u-k IIf (k) _f(k)II co)-- :M( N f'~k)__f(k)[I oo) 

and applying the bound (5.10), we reach the following conclusion: 
Let II No II 2 = 1, let fo be supported in [-  A/2, A/2], and let M satisfy (5.12). Let : be 

a continuous increasing loss function. Then we have the lower bound 

( ,, f(k)_f(k),[~ ) 
lim,~o inf sup Ef >=:~(ITk(fo)[) 
- -  :(k) : E * ( ~  

\val(P, ,c)  \ v / ~  / / "  

fail to satisfy (5.11). 
This choice of M(e) gives 
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To make this bound most effective, we should choose f0 to maximize Tk(fo) 
subject to the constraints we have assumed for it, namely, II f ][2 < 1, feo~(fl, C), 
supp( f )~[-A/2 ,  A/2]. When we do this, we will have achieved the most clever 
application of the hypercube lower bound. 

However, the optimization required is the same as requiring that fo solve 
(PI,c,A/2). When we choosefo in this way, we get the bound 

l im~o jg , ( e )>  f (val(Pl,c,A/2) { x /~TZS]r )  
_ \ ~ "\ , f ~  / J '  (5.13) 

This bound is valid for each 6 > 0; continuity of E(') furnishes the conclusion 

. ~, p fval(Pl.c,a/2)'~ 
l i m ~ 0 J / /  (~,>v ~, ~ ] .  (5.14) 

Picking A large, Lemma 5.1 shows that the right-hand side can be made arbitrarily 
close to t'(1). Theorem B is now proved. 

6 Data available only on [0, 1] 

The alert reader may have noted that the result of Sect. 3 applies to the problem 
where data Y(t) are available for all t e ( -  0% oo), but only for te[0, 1] do we attempt 
to reconstructf  We now suppose that data are available only on [0, 1]: 

Y(dt)=f(t)dt+eW(dt), te[O, 1]. (6.1) 

Theorem C. For the problem of estimation off(t), tel0,  1],from data Y (t), te[0, 1], 
we have, under the same interpretation of 1[" I[ ~, E('), and E* as in Theorem A, the same 
conclusions about the risk asymptotics and bounds. However, the estimator which 
attains the asymptotics is no longer of pure convoIutional form but instead takes the 
form 

fck)(t) = f ~(s ,  t) Y (ds) (6.2) 

for a kernel qJ~ to be specified below, which is supported on (s, t)e [-0, 1]2 for sufficiently 
small e. 

Theorem C is the counterpart for this setting of Theorem A; it furnishes upper 
bounds. There is no need for a counterpart of Theorem B, because Theorem 
B holds in the present setting (6.1) - intuitively, this is because "throwing away" 
data Y (t), tr [0, 1], only makes the estimation problem more difficult. The next two 
subsections describe the construction of the kernel ~g~. The proof of Theorem C is 
given in the Appendix. 

6.1 Optimal kernels under support constraints 

A modification of (P1,1) allows us to derive kernels which are optimal under 
support constraints. Compare also the section on "boundary kernels" in Donoho 
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and Low (1992). Let a < 0, A > 0, A - a > 0. Define the optimization problem 
A 

f fz<=e2, 
(P,,c[a,A]): supTk(f) subject to 

fe~(/~,  C). 

As fAfZ <f~_~f2, every f feasible for (P~,c) is also feasible for (P~,c[a, A]) and 

val(P~, c) _-< val(P~, c l-a, A]). (6.3) 

In the cases we usually have in mind, [a, A] is a compact interval. However, we 
remark that a = - o o ,  A = + o o  gives us (P~,c); and a=0 ,  A = + o o  gives us an 
optimization problem on the half-line. 

Note well that there is no restriction for the solution to be supported in [a, A]. 
This problem is therefore different from (5.1). Compare (5.2) and (6.3). 

Let f l  be a solution to the problem, f l  may be used to construct an optimal 
kernel 0t,,A1 = 2fa lt,,A ] for a certain 2 = 2(fl, C, k, a, A). Optimality is in the sense of 
the optimal recovery theorem, see Donoho (1994) and literature referred to there, 
such as Micchelli and Rivlin (1977). Suppose we are given data y(t), te [a, A] and 
that 

y(t)=f(t)+ez(t), t6[a,A] 

where f is an unknown element of ~(f i ,  C) and f2 Z2(t)dt ~ 1. Our objective is to 
develop a procedure ~Jy) attaining the minimax error 

E*(e; [a ,A])=  inf sup ErrjT, f) .  
~(y) ~(tL c) 

The kernel t)1 is optimal for this problem at noise level 1: with irl(y ) 
=f2 01(t)y(t)dt we have 

sup grrt  (Tl,f)  = E* (1; [a, A]). 
~(t~,c) 

Moreover, val(Px,c[a, A]) is the minimax error E*(1;[a, A]) = val(P1 c[a, A]). An 
easy renormalization argument shows that the kernel ~ 'At(t)= h -k'-'l t)~ "'a~ (t/h) 
with bandwidth h = e ~ gives a procedure ~ =f~2 Oh(t)y(t)dt with worst-case error 

sup Errj'F,,f)=val(Pl,c[a,A])e r, e>0. 
~(/Lc) 

Moreover, this behavior is optimal among kernels with support limited to [ah, Ah], 
since renormalization shows that 

E* (~; [ah, Ah]) = val (P 1, c [a, A] )e~. 

Hence, the family of kernels 0~a,AI is in some sense optimal among compactly 
supported kernels. 

In this connection, it is interesting to study the behavior of val(Pl,c [a, A]) as 
a function of [a, A]. By methods of Donoho and Low (1992, Theorem 3) one may 
prove the following lemma. 
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Lemma 6.1. 

val(Pl,c[-A,A])-*val(Pl,c), A--,o% (6.4a) 

val(Pl,c[0,A])--~val(Pl,c[0, co)), A--+oo, (6.4b) 

val(Pl,c[- A,O])~val(Pl,c(-oo, O]), A---~oo. (6.4c) 

Since E*(e)=val(Pl,c)e', these relations show that for sufficiently large A, 

E*(e; [ - A ~ , A ~ ] ) < ( 1  +tl)E*(e), e>0,  (6.5a) 

E*(e; [0, Ae~])<(1 +t/)E*(e; [0, oo)), e>0,  (6.5b) 

E*(e; [-Ae~,O])<(l+q)E*(e; [0, oe)), e>0.  (6.5c) 

6.2 Construction of the kernel T~ 

We now describe the kernel T, of Theorem C. With parameters t/~(0, 1/2) and A >> 0 
selected as described later, we set h = e ~ and 

{ 0~ ~ (s-t),  0=_<t<~, 

T~(s,t)= I[t[h-A'A](s--t), tl<-t<-l--th 

't't-A'm(s--t), 1- r /< t_<  1. ~/" h 

The kernel results from splicing together the boundary kernels O~~ and ~'[h-A,O] at 
the "edges" of [0, 1] with a traditional compactly supported kernel $[h -A' A] in the 
"middle" of [0, 1]. 

The key point is that as soon as e~A <r/, the kernel T, is supported in [0, 1] 2. 
The key parameters t/and A are arrived at as follows. First, we pick t/so small that 

r/(k+ t)r val(Pl,c [0, oe]) < (1 -- t/)val(Pl,c). (6.6) 

Second, we pick A =A(t/) so that 

val(Pl,c [ -  A, A]) < (1 + t/)val(P1, c) (6.7) 

and also 

r/(k+ 1)~ val(Pl,c [0, A]) < (1 - t/)val(Pl,c). (6.8) 

These choices are all possible because of the Lemma 6.1 given above, (6.4) and (6.5). 

6.3 Proof of Theorem C 

The proof, given in the Appendix, uses a set of simple calculations based heavily on 
earlier techniques, and (6.6)-(6.8). 

7 Nonparametric regression 

We now consider an apparently different problem: we observe n noisy samples 

yi=f(ti)+azl, i=  1 , . . . ,n  (7.1) 
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with z~ ~ N(0, 1) and t~=i/n. We wish to estimate f with sup-norm loss. In the 
special case k = 0,/3 < 1, this is the problem originally considered by Korostelev 
(1991). 

Despite appearances, we will see that this is essentially the same as the white- 
noise model with e=a/v/-n. For this section only, set g,=g(e)= 

x / ~  x/ l~ -~, and define the minimax risk 

Theorem D. 0 _<_ k < fl,/3 > 1/2. 

~ ( n ) -  JZ(n; G,/3, c, k) 

(l/j-filoo'  
=inf  sup EE E*(~,) ,/ ' 

f. ~(fl,C) 

lim ~ ( n )  = E(1). 
n --~ oo  

Informally, there exists an estimator having 

II f(k)_f(k)]l ~ < E* (g,)(1 + O(1)) (7.2) 

with very high probability, and no estimator can do substantially better than this. 

Written in the form (7.2), the risk asymptotics are seen to be again closely 
connected with the problem of optimal recovery. 
It is instructive to express this result in terms of n. 

E*(g,) = val(P1,1)C 1-r g~ 

=Ap,k Cl-r" "~r r, say. 

Corollary Let 0 <= k < fl, 1/2 < ft. Set 

Ap, k = val(P1,1 ) ( , ~ y  (7.3) 

as above. Then 

/ n ~f l -k/(2f l+l) \  

inf sup E~(ll f , - f l ioot~21-~g(n))  )~E(A~,kCI- ') .  
], ~(t~,c) \ 

In the case k=O, 1 /2<f l<  1, we get 

A~,o = val(Pl, x)(,,/y) r 

= [ (2fl + l )(fl + l )14flz]'12 " ( 2~+ l ) ~/2 

=r ltV, - , 
\ 2/32 J 
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and so we recover the result of Korostelev (1991): 

inf sup E: IIJ~-fllo~ ~ :  C 2~1 
: ,  ~(#,c) ~r 2 log(n) ~ " 

We now recognize that Korostelev's "optimal constant" ((/3 + 1)/2fl2) #/(2[j + 1) for the 
problem of nonparametric regression derives from the optimal constant for opti- 
mal recovery. Of course, our approach also gives results for a general range of k 
and/3; the optimal constant for any of these problems is determined, through (7.3), 
by val(P1,1), the optimal constant in the corresponding optimal recovery problem. 

Theorem D follows from a general principle: that white-noise data (3.1) and 
nonparametric regression data (7.1) are essentially equivalent, when noise levels are 
calibrated so that e = a/x/n. 

Theorem 7.1 Let 0 < k </3,/3 > 1/2. Then for every bounded loss function :, 

]~ (n) -~ /* (o /~-n)[~O,  n ~ .  (7.4) 

This equivalence principle may be established as follows. The minimax risk for 
observations on [0, 1] is asymptotically equivalent to the minimax risk for observa- 
tions on ( -  ~ ,  ~) ,  by Theorem C. So it is enough to show that observations (6.1) 
are equivalent to observations (7.1), from the point of view of minimax risk. 

To do this we use the following criterion, due to Brown and Low (1994). Given 
a continuous function f on [0, 1], let f ,  denote the step function approximation 

f,(t) = ~ f(ti) l~t~_l <,=<n~" 
i = 1  

Proposition 7.2 (Brown and Low 1994). Suppose that 2 is a class of continuous 
functions obeyin9 

1 

sup n f (f(t)-f,(t))Zdt-*O, n--,oo 
o ~ 0 

Let :n(' , ") be a measurable functional, bounded by M independently of n. Let 

m, = inf sup E : , ( f , , f )  

denote the minimax value in the nonparametric re#ression model (7.1); and let 

m* = inf sup E : , ( f , f )  
4 : 

denote the minimax value in the white-noise model (6.1), at noise level e = ~r / x//-s Then 

Ira . -re* l - -*0 ,  n ~ o o .  

We briefly mention the principle behind the proof. Define the process Y, by 

r.(i/n) -1- Z Yi. 
- - n  j<__ i 

Interpolate between these values with independent Brownian Bridges Wo,: if 
i/n < t <(i + 1)In 

Yn (t)= Y,(i/n) + (t--i/n)y, + ~  Wo, i(n(t--i/n)). 
,/n 
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Let P. denote the probability law of {Y(t), t~[0, 1]} at noise level e=a/~/~:  let 
Q. denote the probability law of {Y.(t), t~[0, 1] }. The Hellinger distance between 
these probabilities is 

H2(pn, Q.)= 2 - 2  exp(-1[ f - f .  Ih 2 / 8 e 2 )  �9 

Hence sufficient LZ-closeness o f f  and f., uniformly in f~Y,  implies the Hellinger 
closeness of the two probability laws P. and Q,, uniformly in ~ .  In particular, the 
Brown-Low condition n f ( f ( t ) - f . ( t ) )  2 d t~O uniformly in ~- implies H2(P., Q.) 
~ 0  uniformly in f t ,  

To see the implications, we use the language of Le Cam (1986). The problem of 
estimating properties o f f  from data Y(t) according to (6.1) is a statistical experi- 
ment go = (y, p.,  if).  The problem of estimating from data (7.1) is another statis- 
tical experiment gn ~ = (Y., Q., ~ ) ,  with other data, but the same parameter space 
f t .  Suppose that HZ(P.,Qn)--+O uniformly in ~-. Then it follows from Le Cain's 
theory that the experiments are asymptotically indistinguishable: for every risk 
function available in one problem, there is an estimator giving essentially the same 
risk function in the other problem. In particular, the minimax risks must coincide 
asymptotically. 

To apply this, we invoke the following lemma. 

Lemma 7.3 Let fie(l/2, 1]. Then 

Proof 

sup n f ( f ( t ) - f . ( t ) )  2 dt< CZn - 2(~- t/2). 
~ (~, c)  

i/n 

n 2 n f (f-L) at= ~ f (f(t)-f(t~)) 2 & 
i = 1  ( i - 1 ) / n  

iln 

<n f (Cn-~)2dt=C2n-2P'n. 
i = 1  ( i - 1 ) / n  

We conclude that Brown and Low's criterion holds for fl~(1/2, 1], and Theorem 7.1 
follows in this case. 

For fl> 1, however, the criterion of Brown and Low (1994) does not hold. 
Intuitively, polynomials of extraordinarily large energy but vanishing fl-Lipschitz 
seminorm prevent the criterion from working. 

We develop a different argument. Every f e ~ ( f l ,  C) can be written f=Tz o +f0 
where 7to is a polynomial of degree m, and fo is orthogonal (with respect to 
Lebesgue measure) to all polynomials of degree < m. Let ~-o (fl, C) be the collection 
of all such )Co arising from an f e ~ ( f l ,  C). The following 1emma is proved in the 
technical report of Donoho (1991). 

Lemma 7.4 For each fl > 1, there exists C' < ~ with 

go(/~, c) ~ ~(1,  c 'c) .  

We conclude immediately that for estimating f(k), the experiments go, o= 
(Y, P., ~o(fl, C)) and g l,o =(y . ,  Q.,~o(fl ,  c)) - with parameter spaces ~o(fl, C) 

- are risk-equivalent as n ~  ~ .  Hence, they have the same asymptotic minimax risk 
for every bounded loss function. 
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To extend this conclusion to the experiments with full parameter space Y(fl, C), 
we need the concept of a polynomially equivariant estimator. Suppose that we have 
two types of data: Y(dt)=f(t)dt+eW(dt) and Y(dt)=(f(t)+rc,,(t))dt+eW(dt), 
where re,, is a polynomial of degree m, and the two noise terms are the same 
realization. Then the estimator ~(Y) is called polynomially equivariant if 

for every such polynomial re,, of degree m. Similarly, if we have sampled data 

Yi =f(i/n) + azi, 

Yi = f (i/n) + ~z,~(i/n) + azi 

for i=  1, . . . ,  n, and again the noise realizations are the same, and if 
A 

"In@)- Tn(y)= Tk(ZCm) 
A 

for all such polynomials, then we say that T, is polynomially equivariant. 
Now the minimax risk, both for experiment gO=(y, P,,~(fl ,  C)) and for 

experiment g~=(Y, Q,,y(fl ,  C)) is attained within the class of polynomially 
equivariant estimates. (The argument is the usual one based on placing increasingly 
diffuse priors on ~z,~ in the decomposition f =  7c,, +fo. Compare the abstract dis- 
cussion of the Hunt-Stein Theorem of Strasser (1985, Sect. 39).) 

But polynomially equivariant estimates have the same worst-case risk over 
o~o(fl, C) as they do over ~-(fl, C)! We have seen that the two experiments with 
Yo(fl, C) as parameter space are asymptotically risk equivalent. The experiments 
with parameter space ~(f l ,  C) have the same minimax risk as the o~o(/~, C) counter- 
parts, so we conclude that the minimax risk of the experiments with parameter 
space ~'(fl, C) are also asymptotically equivalent. This proves (7.4) for all bounded 
loss functions f. Theorem 7.1 is now proved. 

8 Generalizations 

8.1 Deconvolution 

Suppose that in the white-noise model we have observations 

Y (dt)=(K , f)(t)& + eW (dt), te ( -  oo, oe), 
with 

(K,f)( t )= f K( t -u l f (u)du 
- - c o  

for some convolutional kernel K(u). We wish to recover f(k)(t), re[-0, 1], with 
L~-loss. 
To analyze this, consider the analogous optimal recovery problem: we observe 

y(t)=(K , f)(t)+ez(t), t~(- o% oo), 

we know thatf~W(fl,  1), and we wish to recover Tk(f)=f(k)(0). The minimax error 
E*(e) is the value of a certain optimization problem (P~,c): 

IFK*fll2Ne' 
(P~,c): supTk(f) subject to [f~o~(fl, C). 
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The problem, however, no longer renormalizes exactly. As in Donoho and Low 
(1992), if the Kernel K behaves like a power law in the frequency domain, 
K(co) ~ I col-",  as  I~o1-, oo, then we have a kind of asymptotic renormalization, and 

where now 

val(P~,c)~val(PT,1)e~C 1-~, ~---,0, 

2 / ~ - 2 k - 2 a  

2/~+1 

and we use the optimization problem 

(P*~): supTk(f) subject to 
IlK,file_-< 1, 

(feg(/~, 1), 
with/s (co) = [co[ -~ the Fourier transform of a homogeneous Schwartz distribution 
which one might call "the equivalent renormalizing kernel". 
In general, one obtains, without difficulty, results such as 

sup E II Y<~>-f<~> II oo ~ E* (g)(1 _c o(1)), 
y(~,c) 

only now for an estimator f which is not defined by renormalization of a fixed 
kernel; instead, one needs a kernel which derives from the solution of (P~, c), and so 
is changing slightly in shape as ~ decreases. The asymptotic shape of the kernel is 
proportional to the solution of (P* ~). 

Other questions, such as optimality of the estimator, are problematic, and 
require treatment elsewhere. 

8.2 Higher dimensions 

Theorem A generalizes easily to the case of observations 

Y(dt)=f(t)dt +eW(dt), t~R d 

with W a d-dimensional Brownian sheet, where we know that f ~ n ( / ~ ,  C), the 
/LLipschitz class on R d. We l e t f  ~k) denote some specific partial derivative of index 
k. In this case the optimal recovery model is 

y(t)=f(t)+ez(t), t~R a, 

and E* (~) is the value of the optimization problem 

(P~,c): supf(k)(0) subject to [feo~a(/3, C). 

First, the renormalization lemma goes through for d-dimensional t, giving the 
same results, but with different values for the exponents 7=2/(2fi+d), r= 
(2~-2k)/(2/~+ d). Second, we should define our estimate in convolutional form, 
using a kernel which derives from the optimal recovery problem at a certain noise 
level 
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Without much additional work we get that the estimator defined in this way 
obtains the analog of Theorem A, and so for example 

sup EII j'lkl _f(k)1[ oo < E* (ga)(1 + o(1)). 
.~(/L c) 

This claim can be justified as follows. The generalization of Proposition 4.1 to 
maxima of stationary Gaussian random fields has been made by Bickel and 
Rosenblatt (1973) and by Qualls and Watanabe (1973); see Adler (1981) for an 
expository treatment. For a stationary Gaussian field Z( t )= f~ (u - t )W(du ) ,  
W a Brownian sheet on R d, ~ sufficiently regular, we have 

med( II Z IIL~ ~ ~ a  
as A~oe ,  where o-= 1[ 0 J[2. The key equation which must hold for our pattern of 
reasoning to go through is 

med(e H z~ II 0o)~ &~(T) 
which can be rewritten as 

ex/2 d? log(e-1)rl 0~ 112 "~ ga[I 0KILN, 

hence the justification of our calibration. 
Incidentally, the analog of Theorem B can be carried through simply by 

following the proof in Sect. 5 step-by-step and making obvious adjustments here 
and there. Hence analogs of Theorems A and B hold in dimensions d > 1. 

9 Discussion 

9.1 Comparison to Korostelev's work 

Korostelev achieved an important breakthrough by deriving precise asymptotics 
for the minimax risk in L~-norm loss in the nonparametric regression problem. His 
lower bound via hypercubes is a particularly striking innovation. 

However, Korostelev did not have available to him the concept of the optimiza- 
tion problem (P1,1), of optimal recovery, of optimal kernels, and of renormaliz- 
ation. By introducing these concepts into the subject we have been able to get 
results covering (k>0, fl > 1), and to establish that the optimal constants in this 
statistical estimation problem derive from the theory of optimal recovery. 

9.2 Directions for Improvement 

9.2.1 Solutions of(P1.1) It would also be useful to have more information about 
solutions of (P1,1) - explicit formulas for the knots of the piecewise polynomials, 
and explicit formulas for the coefficients of the polynomials. 

9.2.2 Other problems The success obtained in this setting makes it seem plausible 
that a wide variety of minimax problems in sup-norm could be treated by these 
methods. A next candidate for treatment would be the case where the noise process 
Z~ is nonstationary and possesses a unique point of maximal variance, in which 
case the results of Talagrand (1988) would apply. 
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Appendix: proof of Theorem C 

We consider behavior in the three separate zones [0,11],[~, 1-~/] , [1-~/ ,  1] of 
[0, i ] .  
First, the middle zone. By repeating the argument of Sect. 4, we easily conclude that 

][ f(k) _ f (k) II L~(.,1 - . )  ~ < ((1)  
lim~oSUp sup~ E(  E - * - ( ~ ; - ~ - A ~  ] = " "" 

As E*(g; I - -A( ,  A d ] ) < ( 1  +~1)E*(g), we conclude that 

lim sup sup Ed(Ilyak'--f(k'IPL~("'*-"') <((l ~ E*(e') (A.1) 

Now we consider the zone [0, t/). We remark that the process !7(0 = g(t/tl) lives on 
[0, 1], and that 

Y (dt) = D f (t/tl)dt/tl + e~f~ W (dt). 

Hence, putting g(t)=f(t/tl)fll and 6 = ex/-q we may write 

Y (dt) = j)g(t)dt + b W (dt). 

Consider now the problem of estimating g(k) from the data 17. As gE~.---~(fi, Ctl -p- 1) 
and the noise level is 6, we argue as in Sect. 4 that if we used a one-sided kernel 
supported in [0,A], with bandwidth h=(6/~-t~-l)  ~, and if all data IT(t), t > 0  were 
available, we would have 

lim~-+o sup E( ([lO(k)--g(k)[[~176 ~ < ((1t E(a) } . . . .  

where E(O=val(P~,c[O,A])(tl-P-')~-"d and 6 = ~ / ~ ~ ' ) ' a .  On the 
other hand 

~k+ ~ll 0 (k) -r  II L~ Eo, ~ = II ya~)_f(k)[IL*EO,nl 

and so 

sup~ E( (][ ilk)~_f(k)IIL~ Eo.,l ~j=..< ((1~ l im~o 

By the assumption (6.6), 

rlk + 1 val(Pl,c[O, A])(17 ~- 1)1 - r ~,. < (1 -- t/)val (P 1,c)U(1 + o(1)) 

as e--*0, and so 

E(  (II yak)_f(k)]]L~O,~) 
lim,~o sup ~ \ ~ ] <( (1  = - t/). 

(A.2) 
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An exactly parallel  a rgument  handles the case t e ( 1 -  r/, 1]; 

li---m~_m sup E~ ( [[ f~k) --~--~k,) ~ ~(1-"'11 ~ ( )  ) _  _<E(1-r/).  

By technical means  parallel ing the deve lopment  near  (4.9) and (4.10), we can get 
tha t  for At = [0,r/), A2 = [r/, 1 - r / I ,  A3 = ( l - r / ,  1] 

l i -m~o sup~ Eg ( m a x / =  1,2,3 E~I} f(k)_f(k)IIL| v~(1 -k-r/). 

As r /> 0 was arbi t rary,  this completes  the p roo f  of  T h e o r e m  C. 
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