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Summary. The effect of long-range dependence in nonparametric probability 
density estimation is investigated under the assumption that the observed data 
are a sample from a stationary, infinite-order moving average process. It is 
shown that to first order, the mean integrated squared error (MISE) of a kernel 
estimator for moving average data may be expanded as the sum of MISE of 
the kernel estimator for a same-size random sample, plus a term proportional  
to the variance of the moving average sample mean. The latter term does not 
depend on bandwidth, and so imposes a ceiling on the convergence rate of 
a kernel estimator regardless of how bandwidth is chosen. This ceiling can 
be quite significant in the case of long-range dependence. We show that all 
density estimators have the convergence rate ceiling possessed by kernel estima- 
tors. 

1. Introduction 

A tremendous amount  of attention has been focused on the problem of nonpara- 
metric probability density estimation (see, e.g., [16] and references therein). Most 
of this attention has been directed to settings where the observations are indepen- 
dent random variables. However, starting with the work of Rosenblatt  [14] 
there has also been considerable interest in estimating the marginal density 
of a stationary stochastic process. The latter problem is the subject of the current 
paper. 

Suppose that one observes random variables X1, ..., X,  which are identically 
distributed, but not necessarily independent. Let each X~ have density f, which 
is to be estimated. By far the most popular estimator of f (x)  is the kernel 
estimator 

i = 1  

* The research of Dr. Hart was done while he was visiting the Australian National University, 
and was supported in part by ONR Contract N00014-85-K-0723 



254 P. Hall and J.D. Hart 

where K is usually taken to be a density function. In the context of dependent 
data, most of the results on estimating f have been of the following character: 
if the data satisfy an appropriate mixing condition (i.e., if dependence is sufficient- 
ly weak) then, as n + oo, the L2 error of f ( x )  is asymptotically the same as 
when the observations are independent. Examples of this type of result may 
be found in Rosenblatt [14], Chanda [4], Hart [10], Robinson [-13] and Castel- 
lana and Leadbetter [3]. A somewhat more pessimistic view on the effect of 
positive dependence in moderate-sized samples is given in Hart  [10]. 

In contrast with previous work in this area, our primary interest is to describe 
in a precise way how long-range dependence can affect the convergence rates 
of kernel density estimators. A popular example of a process with long-range 
dependence is a stationary time series whose autocorrelation function decays 
very slowly to 0. In such a series, data which are far apart in time may still 
be highly correlated. Practical examples of processes exhibiting long-range 
dependence exist in hydrology [11] and atmosphere physics [8]. It seems impos- 
sible to give a concise description of convergence rates in the most general 
setting. We shall focus on the important class of stationary, infinite-order moving 
average processes. To be more precise, we shall assume that the data X1 . . . . .  Xn 
are part of a process {X j} satisfying 

(1.2) X j = # +  ~ ak{k+j, - - c o < j < o o ,  
k =  - a t ]  

where # is a constant, the ~j's are independent, identically distributed random 
variables with mean 0 and finite variance, and ;s a~ < o0. Our results also apply 
to any infinite-order autoregressive process which can be inverted and put in 
the form (1.2). (See Priestley [12, pp. 144-145] for invertibility conditions.) 

Our main result is given in Sect. 2 and concerns the mean integrated squared 
error, ~ E ( f - f )  2, of f. Under mild regularity conditions on the characteristic 
function of 3o and on the sequence {ak}, we show that 

(1.3) I E ( f  - f )  2 "~ ~ E ( f  ~ - f )2  + E (X  - #)2 ~ (f,)2, 

where Jf is the usual sample mean and fo  is a kernel density estimator based 
on a random sample of size n from density f. This result makes it easy to under- 
stand how long-range dependence affects the rate of convergence of f to f. 
It is well known (see, e.g., Priestley [12]) that if the spectrum of the process 
Xj} is well-defined and finite at 0, then var(J~)=O(n -1) as n-*oo. Since 
E ( f ~  2 converges to 0 at a slower rate than n -1, it follows that when 

the spectrum of the process is bounded at 0 (and our other assumptions are 
met), the convergence rate of f is unaffected by dependence. On the other hand, 
if the spectrum is unbounded at 0, then the mean integrated squared error 
(MISE) o f f  can be dominated by the term E(X ' -#)  2 ~(f,)2. In Sect. 2 we give 
examples of processes of the form (1.2) for which the convergence rate of f 
is slower than it is in the case of independent data. 

Another important consequence of result (1.3) is that the bandwith h which 
is asymptotically optimal for minimising MISE of the estimator fo,  also produces 
asymptotic minimisation of MISE for f. This is true for both short- and long- 
range dependence, and is a consequence of the fact that the second term on 
the right-hand side of (1.3) does not depend on h. 
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In Sect. 3 we investigate the issue of how dependence affects the convergence 
rates of not just kernel, but all density estimators. We consider in some detail 
the parametric problem of estimating the marginal density of a stationary Gaus- 
sian process. This example illustrates that, under regularity conditions on the 
covariance function, all density estimators are subject to the same convergence 
rate ceiling encountered by kernel estimators. That is to say, none of them 
have a MISE which converges to zero at a faster rate than E(J(--/t) 2. 

Proofs of our results are given in Sect. 4. 

2. Convergence rates for kernel estimators 

We begin by defining the infinite order moving average process which generates 
our data. Let {~j, --oo < j <  co} be independent and identically distributed ran- 
dom variables with zero mean and variance o -2, and let {a i, - o e  < j <  0o} be 
real numbers satisfying Za~ < oo. Define 

X j = ~ + ~ a k C k + j ,  --00 < ] < 0 0 ,  
k 

where p is an arbitrary but fixed constant. Then {X~} is a stationary process 
with covariance function 

r (j) = E ( X o X j) = a z ~ a k ak + i, 
k 

and r ( j ) ~ 0  as j ~  oo. To avoid trivialities we assume that an infinite number 
of the aj's are nonzero; otherwise, the sequence {X j} is m-dependent, and then 
first-order properties of our density estimator are identical to those of an estima- 
tor based on an independent sample. 

Let f denote the density of Xj. We wish to estimate f from the sample 
{XI . . . . .  Xn}. To this end, define the kernel estimator f ( x )  as in (1.1), where 
K is a bounded, absolutely integrable function satisfying ~ K =  1. (Typically K 
is a probability density.) The quantity h > 0 is termed the bandwidth. Our aim 
is to compare the performance of f with that of an equivalent kernel estimator 
fo  computed from a random sample {X1 ~ ..., X ~ drawn from the distribution 
having density f and employing the same bandwidth as f :  

f o  (x) = (nh)-i ~ K { ( x -  X~ 
j = l  

Now, f and f0  have the same expected values, and so they have the same 
biases. Hence their mean integrated squared errors differ only in the variance 
components: 

(2.1) ~ E ( f _ f ) 2  = I var (f)  + ~ (E f - - f )  2, 

(2.2) ~ E ( fo  _ f ) 2  = ~ var (fo) + j ' (Ef_f )2 .  

Our first theorem compares the values of S var (f)  and S var (fo). 
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We shall impose the following conditions on the distribution of ~j- and on 
the sequence {aj}: E(~4)<oe, and the characteristic function Z of ~ satisfies 
either 

(2.3) C~(t+ltl)-~<[z(t)[<=Cz(I§ -~, all t, 

for positive constants C~, C2, el, C2, or 

(2.4) -[ t l -Cloglz( t ) l~C as I t l~oo ,  and Iz(t)l>0 foral l  t, 

for positive constants C, c; and as n ~ o% 

(2.5) 
n 

{(suplaka~+kl+ sup a~)+(~lakak+jl+ Y'. a~) 2} 
j =  1 k ]k[ ~ j / 2  k ]k] >=j/2 

=o{r(O)+2 ~ (1--n-lj)r(j)}+O(1). 
j = l  

Condition (2.3) is satisfied if, for example, the ~i's have an exponential or gamma 
distribution, while (2.4) holds if the Cj's have a normal distribution. To interpret 
the right-hand side of (2.5), note that 

(2.6) n - t  var Xj = r (0 )+2  (1-n- t j ) r ( j ) .  
\ j = l  / ) = 1  

Condition (2.5) holds in a wide range of circumstances; see Remark 2.6. 

Theorem 2.1. Assume that as n--+ o% h=h(n)~O and nh--* oo. I f  the conditions 
E((~) < 0% either (2.3) or (2.4), and (2.5) hold, then 

(2.7) ~var( f ) -~var( f~  -1 ~ Xj) ~(f') 2 
j = l  

as n---, oo. 

Condition (2.3) or (2.4), and the fact that an infinite number of afs are 
nonzero, imply that f is differentiable and S(f') e < oo. 

Remark 2.1. The variance o f f  ~ is of size (nh)-1, and in fact 

var (fo) ~ (n h)- i  ~ K 2 

(e.g. Silverman [-16, p. 40]). From this relation and formula (2.6) we see that 
(2.7) may be written equivalently as 

(2.8) ~var(f)~(nh) -1 ~ K2 +n -1 {r(O)+2 ~ (1--n- aj)rO')} I ( f ' )  2 
j = l  

as n ~  oo and h ~ 0 .  
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Remark 2.2. Results (2.1), (2.2) and (2.7) together imply that 

(2.9) f E ( f _ f ) 2  ~ I E (fo _ f ) 2  + E (J~-- #)a f (f,)a, 

where ) ( =  n -  t ~, Xj denotes the mean of the sample from which f was com- 
l < j < n  

puled. Thus, we have the following property: the L 2 rate of convergence of 
f to f equals the worst of the L 2 rates of convergence of fo  to f and of X 
to #. The presence of the term in E ( J f - # )  2 in (2.9) implies a ceiling to the 
rate at which f can converge, irrespective of how the bandwidth h is chosen. 

Remark 2.3. It is of interest to know whether the convergence rate ceiling of 
E ( X - # ) 2  is optimal in any sense-  that is, whether a different choice of estimator 
(e.g., a histogram estimator or an orthogonal series estimator) might be able 
to do better than a kernel estimator in the case of very-long-range dependence. 
We shall show in Sect. 3 that the answer to this query is, essentially, " n o "  

- any estimator experiences the same ceiling to convergence rates. 

Remark 2.4. To more easily appreciate the size of the convergence rate ceiling 
it is helpful to develop a simpler expression for the size of E(J( - -#)  2. To this 
end, define 

R n = r ( 0 ) + 2  ~ r(j), 
j = l  

and assume that for some C > 0 and all sufficiently large n, 

0 < C  -1 m a x ( R j + C ) < R 2 , + C < C  min (Rj+C). 
l < j < n  n<j<<_2n 

(These inequalities will certainly hold if r(j) is ultimately decreasing.) Then as 
n ---r oo,  

n + v a r  ~ n  +JR,  , 
j =  

where b ,~c ,  means that b~/c, and c,/b, are both bounded as n ~ oo. Therefore 
the convergence rate ceiling is n - l (1  +IN.I). However, we already know that 
the convergence rate must be slower than n-1, owing to the presence of the 
term (nh)-1 in (2.8). Therefore the convergence rate ceiling is actually n-1 [R,[. 
If the series Zr(j)  converges then this term is insignificant relative to (nh) -1, 
and therefore the ceiling has no impact on the rate of convergence off .  However 
if St(j) diverges then the impact can be significant. Divergence of the series 
Zr(j) is sometimes taken as the definition of long-range dependence; see Taqqu 
[18], Cox [5] and Beran [2]. 

For  example, if 

r(j)=Cj -~, j>=l, 

where 0 < a < 1, then we know that no matter how the bandwidth h is chosen 
(or indeed, no matter how the estimator is chosen, be it a kernel estimator 
or a histogram estimator or any other type - see Sect. 3), the L 2 convergence 
rate cannot be faster than n - ' .  
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Remark 2.5. If E(Jr 2 is of smaller order than the minimum MISE for an 
independent sample, i.e. of smaller order than 

(2.10) inf f E (?~  f)  z, 
h 

then the bandwidth which produces the minimum in (2.10) also produces asymp- 
totic minimisation of MISE for the dependent sample, and 

(2.11) inf ~ E ( f_ f )2  ~ inf I E (fo _ f )2 ,  
h h 

as n ~ oo. These results are immediate from (2.9). To give a specific example, 
suppose K is a symmetric probability density function. Then i f f  has two continu- 
ous, square-integrable derivatives, 

inf S E ( fo  _ f ) 2  ~ C1 n-  4/s 
h 

as n ~ ~ ,  where C, > 0 [16, p. 41]. Hence, if the dependence is sufficiently weak 
to ensure that E(X-#)2=o(n -4Is) (in particular, if ~>4/5  in the example in 
Remark 2.4, or if fl > 9/10 in the example in Remark 2.6 below) then (2.11) holds, 
and the same bandwidth produces asymptotic minimisation of MISE for both 
f and f o  This bandwidth is the traditional one of size n- t / s ;  see [16, pp. 40-4 t ]  
for a detailed discussion of minimising MISE in the case of independent data. 

Remark 2.6. Condition (2.5) holds for a wide variety of different choices of the 
weight sequence {at}. For  example it holds if a t = 0 for j < 0 and a t is regularly 
varying at infinity as j ~ oo ; and it holds if a t = a_j  and aj is regularly varying 
at + oo. To illustrate why, let us assume for simplicity that a t = 0 for j < 0 and 
aj~Caj -t~ a s j ~  0% where fl>�89 and C1#0.  Then 

{ C2j a-2~ for � 8 9  

r( j )~lagak+il~ C2j -1 logj  for f i = l  
k C2j -p for f l > l ,  

ak = O ( j  ), suplakak+j]+ sup ak2=O(j-P), ~ 2 .1-~-~ 
k Ik[ >=j/2 [k[ >=j/2 

[~Can 2(1-~) for } < / 3 < 1  ?1 

~=l(1--n-lj)r(j)l,,,Ca(logn)2 for f l = l  

J= [ = 0 ( 1 )  for f l > l ,  

and the left-hand side of (2.5) equals O(n 1-~) for � 8 9  O(logn) for /3=1, 
and O(1) for t3> 1. Condition (2.5) now follows immediately. 

It may be shown that if aj vanishes on one side of the origin or is an 
even function of j, and if aj is regularly varying on the side where it does 
not vanish, then the condition E(~ 4) in Theorem 2.1 may be replaced by 
E([ ~j ]z + 9 < ~ for arbitrary e > 0. 
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Remark 2.7. Entirely analogous results may be developed for estimators of deriv- 
atives of densities. For example, writing f('), for,), ftr) for the r 'th derivatives 
off ,  f o  and f respectively, we may obtain the following generalisation of (2.9): 

j" E (f(r) __f(r,)2 ~ ~ E ( fo  (~) __ f(,))2 + E (X --/~)2 5 (f(, + 1))2, 

for each r > 0. The conditions of Theorem 2.1 are sufficient for this result, pro- 
vided K has r continuous derivatives. 

3. Issues of optimality 

In classical studies of optimality for density estimators, one examines the perfor- 
mance of general density estimators over classes of densities which have only 
limited smoothness properties. For example, attention usually focusses on the 
performance of estimators when the true density has only k bounded derivatives, 
for some fixed k [6, 7, 17]. This approach is of limited scope in the context 
of infinite moving average processes and infinite autoregressions, since the un- 
known density f will very often be exceptionally smooth. To more fully appreci- 
ate this point, let us return to the model in Sect. 2, where 

Xj=12+~,ak~k+j, --o0 < j < o 0 ,  
k 

and { ~ j , - o o  < j < o o }  is an independent and identically distributed sequence 
with zero mean. Even if the distribution of ~k is very non-smooth, the distribution 
of Xj can be exceptionally smooth. For example, suppose ~j has the discrete 
two-point distribution given by P(~i= _+ 1)= 1. If aj is regularly varying in j 
as j ~ ~ then Xj is absolutely continuous and its density has an infinite number 
of bounded derivatives. (See the end of Sect. 4 for a proof.) Less strikingly, 
if ~j has a density which admits only a Lipschitz condition (without having 
so much as a single derivative) then the density of Xj has an infinite number 
of bounded derivatives. In view of these properties it seems pointless, in the 
case of data generated by infinite moving average processes, to assess optimality 
the traditional way. 

One might argue that it is best to use an estimator which takes full advantage 
of the smoothness possessed by the underlying density. If the density has an 
infinite number of derivatives, one might wish to use, for example, a kernel 
estimator with K(y)=  sin y/(~zy). However, practitioners usually insist on using 
estimators (as in Remark 2.5) which are guaranteed to be densities, even though 
such estimators may not achieve the optimal convergence rate. 

We have already noted in Remark 2.4 that, provided the dependence of 
the moving average process is not too long-range, the convergence rate of a 
kernel estimator applied to moving average data is identical to the rate obtained 
for a sample of the same size from an i.i.d, process having the same marginal 
distribution as the moving average. Our remaining problem is to determine 
the way in which very-long-range dependence affects a general estimator, not 
just a kernel estimator. It turns out that in the case of very-long-range depen- 
dence, the convergence rate ceiling for kernel density estimators is virtually 
identical to a ceiling which arises for general parametric or nonparametric den- 
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sity estimation in a Gaussian moving average. This relationship is the subject 
of Theorems 3.1 and 3.2 below, which treat the special case where the underlying 
process is Gaussian. 

To state Theorem 3.1, let r(j), j > 0 ,  be a sequence of real numbers with 
the property that for some mo > 1, 

(3.1) r (0 )+2  ~ r(j) cos {27cjk/(2m+1)} >O, all O<_k<_2m and 
j = l  

m ~ > m o  . 

Define r ( - j ) = r ( j ) .  Then there exists a zero mean, stationary Gaussian process 
{ Yj, - oo < j  < oo } with covariance function r: 

r(j)=E(Yk Y~+j.), all j, k. 

Let # be a real number and put 

(3.2) Xj = # + Yj., -- oo < j  < oo. 

Then Xj has the normal N{#, r(0)} distribution, with density f , .  We assume 
that the sequence {r(j)} is known, so that /~ is the only unknown quantity. 
Let jr denote any estimator of f , .  (For example, we might have f = f ~ ,  where 
/~ is the maximum likelihood estimator of #.) Let J denote a nondegenerate 
interval within which # might lie. Theorem 3.1 shows that no matter how f 
is chosen, the mean integrated squared error of f may converge to zero no 
more rapidly than 

n- l {r(O) + 2 j~= l r(J) } 

as n ~ o% uniformly in # e J .  We note that the results of Grenander and Rosen- 
blatt [9, pp. 88-90] are similar in spirit to Theorem 3.1, but do not yield the 
rate which we provide. 

Theorem 3.1. Assume that the function r satisfies (3.1). Then 

(3.3) lim inf n { ~ r(j)} -1 sup ~ E( f - f~ )  2 > O. 
n--,oo iJl<n Ue: 

Theorem 3.2 will provide a lower bound to the convergence rate without 
assuming (3.1). 

Remark 3.1. In most cases of interest the quantity n - l { r ( 0 ) + 2  ~ r(j)} con- 
l < j < n  

verges to zero at the same rate as the "extra term" in the variance expansion 
(2.7), whenever this term dominates the right-hand side of (2.7); see Remark 2.4. 
Therefore Theorem 3.1 shows that the convergence rate ceiling for kernel estima- 
tors, arising from the extra term, is in fact an intrinsic part of the problem 
of density estimation for dependent data, and is not an artifact of kernel estima- 
tors. 

Remark 3.2. It is particularly interesting that the convergence rate ceiling exists 
even in the context of parametric density estimation, where the density f is 
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completely specified except for the single unknown parameter/~. This demon- 
strates that the ceiling arises because of considerations which are of a parametric, 
rather than a nonparametric nature. 

Remark 3.3. The argument leading to (3.3) may be used to show that if/~ is 
any estimator of # then 

(3.4) lim inf n { ~ r(j)} -1 sup E(/~- #)2 > 0. 
n --* o~ iJl < n /ze ~ 

Indeed, in both (3.3) and (3.4) we may allow J to shrink tO a point #o as 
n increases, without upsetting either result. We may even replace J by the 
two-point set {#o + cl 6, #o + c2 6}, where #o and c 1 =~ c2 are any fixed numbers 
and 6={n  -1 2 r(J)} 1/2" 

[jl<-n 

Remark 3.4. If f denotes the kernel estimator discussed in Sect. 2 then S var (f), 
and also ~E(f-- f )  2, may be described very easily when the data are Gaussian. 
Indeed, making use of Lemma 4.1 from the next section we may prove that 

Svar ( f ) =  (2~n) -a ~log(ht)12(1 _e-,2) dt 

+(nn) -1 i (1 - n - l  j) yle)(ht)l a e-t2(e rti)tz- 1) dt 
j = ~  

=(nh)-~ y K 2 + 2 n - 1  (l_n-~j)r(j) (f,)2 

+O[n -~ ~ {r(j)e+helr(j)l}], 
j=l 

where ~o denotes the Fourier transform of K. Compare this formula for ~ var (f) 
with (2.8). 

Remark 3.5. Condition (3.1) obviously holds if S Ir(j)l < ~ and r(0) is sufficiently 
large. It also holds if r(j) is ultimately convex in j (e.g. r(j)=CllJl -~ where 
0 < e < 1) and r(0) is sufficiently large. This follows from the oscillating character 
of the cosine function, and the fact that convexity entails 

r(j)-r(j  + k)-r( j  + 2k)+ r(j + 3 k)>O. 

Note that r(j) = C1 ~1-~ implies 

�9 f C  3 n -  ~ (3.5) n -1 ~ r ( j )~ if 0 < ~ < 1  
IJl<=n l C 3  n - t  logn if e = l .  

The right-hand sides represent convergence rate ceilings for general density esti- 
mators when r(j)=CaljI-L The same setting was discussed in Remark 2.4, 
although there with a different import. 

Remark 3.6. The analysis in this section is vacuous if the population mean # 
is known. It may happen that the availability of extra information (such as 
values of moments) will, for certain types of processes, lead to improved conver- 
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gence rates of estimators which are capable of utilising the extra information. 
However, few of the standard nonparametric density estimators have provision 
for the incorporation of information which would improve the convergence 
rate. 

Remark 3.7. In some instances, where properties of the spectrum are available, 
the following theorem can prove useful. Again, f denotes a general estimator 
of the marginal density fu for the Gaussian process {X j} defined at (3.2), based 
on the sample X~, ..., X, .  Let p be the spectrum. 

p(O)=r(O)+2 ~, r(j) cos(jO), -~c<0<~z.  
j = l  

Theorem 3.2. I f  r is a covariance function then 

l i m ~ f { f  min(n2,0-2)p(O)-ldO}sup~E(f-fu)2>O. 

Once again, the theorem may be strengthened and generalised as indicated 
in Remark 3.3. To illustrate the application of Theorem 3.2, suppose r ( j )~  C~ j ~ 
as j -~ oe, where 0 < c~ < 1. Then as 0 $ 0, 

{C20 
c~-I if 0 < e < l  

p (0) ~ C2 log 0-1 if a = 1, 

and as n ~ 

{ m i n  (n 2, 0 -2) p(O)- 1 dO,,~{C3 n~ if 0 < e <  1 
C 3 n/log n if c~ = 1, 0 

where C2, C3 >0.  Therefore ~E( f - - f )  2 may converge to zero no more rapidly 
than n -~ (in the case 0 < e < 1) or n-1 log n (if e = 1). This is also the conclusion 
reached in Remark 3.5, for the case r ( j ) = C l j - ~ ;  see (3.5). See Adenstedt [-1] 
and Samarov and Taqqu [15] for related work on estimating the mean. 

Remark 3.8. There exist versions of all these results in the context of density 
derivative estimation. In particular, we have the following analogue of Theo- 
rem 3.1: if the function r satisfies (3.t), and if f~r) denotes any estimator of 
f(r) then 

lim inf n { 2 r (j)} -1 sup ~ E (f(r)_f(~))2 > 0. 
n - ~  ~ ij] < n # e J  

Compare Remark 2.7. 

4. Proofs 

Proof of Theorem 2.1. Our proof  is by a sequence of three lemmas. Let Re 
denote "real part",  and define 

(_o (t) = ~ eit. ~ K (X) dx, ~p(t)=E(eUX), (p~(t)=n -1 ~ exp (itXj). 
j = l  
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Lemma 4.1. I f  {X  j, - oo < j < co } is stationary then 

21t ~ var {f(x)} d x = n  -~ I[co(ht)]2{1 -]~o(t)] 2} dt 
- o o  

+ 2 n - '  ~ (1 -n- l j )S Ico(h t ) [  2 
j = l  

�9 [ReE exp { i t (Xo - -X j )  } -- lip(t)[ 2] dt. 
Proof  By Fourier inversion 

f ( x ) - -  E l ( x )  = (2 ~z)-t S e-itx co (h t) { q~n ( t ) -  q0 (t)} d t, 

and so by Parseval's identity, 

E { f ( x ) -  El (x ) }  2 dx = (27z)-1 ~ Ico (h t)] z E ltpn(t)-- qo (t)[ 2 dt. 
Since 

Elq~n(t)-q~(t)[E=n -1 {1 - I ~o(t)l 2} 

+ 2 n  -1 ~ ( 1 - n - ~ j )  [ R e E  exp {it(Xo-Xj)}-l~o(t)12-1 
j = l  

then the lemma is immediate�9 [] 

Recall that )~ is the characteristic function of ~ ,  and put 0 = Izl 2 Define 

a=suplakl ,  B~ a-- inf IZ(t)[, a(t ) -=l-[O(akt)=lE{exp( i tXj)}[  2, 
k Itl <=aT k 

~j(t) = Re I-I )~ {(ak-- ak + j) t} = R e E  [exp { i t (X  o - - X  j)}]. 
k 

Lemma 4.2. There exist constants A1, A2>0  , depending on t) and the sequence 
{ak} but not on j, t or T, such that if 

BTT4{suplakak+j[+ sup a2+(~lakak+j]+ ~ ak2)2}=<A1 
k Ikl >=j/2 k ]kl >=j/2 

then 

[~i(t)- ~(t) {1 +r( j )  t2}l _-<A2 t4~(t) {BT(SUp [ak ak+j] + sup a 2) 
k Ikl>=j/2 

+ ( ~ l a k a k @ +  ~ a2) 2} 
k Ikl >=j/2 

uniformly in 0 <__ t <_ T. 

Proof. In the proof, C, C~, C2, ... denote generic positive constants not depend- 
ing on j, k, t or T. The value of C differs from one appearance to another. 
We assume throughout that 0 _< t _  T and j > 1. 

Define Zj(t)= ZcJ)(t)/Z(t). Then by Taylor expansion, 

Pljk(t) ~ Z {(ak -- ak + j) t}/z(ak t) 

= 1 -- ak + j t Z 1 (ak t) + �89 (ak + ~ t)2 Z2 (ak t) -- ~(ak + j t) 3 Z3 (ak t) + g 4 (t) 
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where I R4 (t)[ < C [ak + j t[ 4 BT. Furthermore,  writing fi = E (r 3) we have 

[ZI (ak t) + a 2 a k t + �89 ifla 2 t 2 ] ~ C l a g  t[ 3 Br,  

lzz (ak t) + a 2 + i fl ak t[ < C lag t[ 2 B T  , 

IX3 (a~ t)+ i fil < C lak t] BT. 
Therefore 

where 

Similarly, 

where 

puk(t)= l_i_a2 2 1 2 t (ak ak+j--zak+j) 
�9 3 1 2 k + j _ _ ~ t , k ~ k + j ~ _ ~ a k + j ) _ ~ R 2 ( t  ) +tilt (~aka 1 .  _2 - - 1  3 

[R2 (t)[ <- C2 Br  t4 {([ak + jl + ]ak[)4--a4}. 

P2jk(t) =- Z { -- (ak-- ak-j) t } /z ( - -  ak t) 
= l + a 2 t 2 ( a k a k _ j  1 2 ak - j) 

�9 3 1 2 1 2 1 3 
- - t i l t  ( ~ a  k a ~ - j - - ~ a k  a k - j + ~ a k - j ) +  R 3 ( t )  

I R3 (t)]~ C1 BT t 4 {(1 ak- j l+lak I) 4 -- a4}. 

Hence if j, t, T are such that  

(7 2 t 2 ([ ak a~ +_ i l + a2• j) + I fl t3 I { (t ak +_ ~ l + [akl) 3 - - ]ak l  3} 

+ C~ By t 4 {(lak+iI + [akl) '--at} <�89 

for both choices of the + ,  - signs, and for all [k[<j/2; and if also 

t2Elakak+il  + E a 2 < l ;  
k [k[>-_j/2 

then 

where 

{ak(ak +j + ak-j) -- Z(ak+ j + ak-j)} 1-I + t E 
Ikl <j/2 Ikl <j/2 

-}-ifl t3 Z la2  
Ikl <j/2 

1 2 2 1 3 3 
- -  ~ ak (ak + i - -  a k -  j )  - -  ~ ( a k  + j - -  a k  - j)} + R~ (t) 

[R4(t)[ =< CBr t 4 ~ {(la, +a[ + lak I) 4 +(lak-j l  + [ak l) ~ -  2a~} 
Ik] < j /2 

a k )  �9 +Ct4(y.lakak+jl  + Z 2 2 
k ]kl >=j/2 

Recall that  ~=[Z[  2 and let ~ d e n o t e  the set of indices k such that  either 
ikl <j/2 or [k+jl  <j/2. Then 

]k] < j / 2  kE,Yj 

{ I-[ ~b(akt)} l-[ Pljg(t)pzjk(t) = I-[ x{(ak--ak+j) t}" 
Ik] < j /2  ]k[ < j]2 kes 
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Therefore 

(4.1) I-I z{(ak--ak+j) t }={  H ~(akt)} 
keSQ Ikl <j/2  

�9 E1 ~_ 0-2 t 2 E 1 2 t 2 2 ak  ak  + j - -  2 tT E ak  
k~,Saj [k + j] < j /2 or [k-  j] < j /2  

+iflt  3 ~, Yl aZta a ~ 1 0 [ .2  . 2  [ 2  k I, k + j - -  k - j ) - - 2  k ~ t * k + j - - t * k - j ]  
[kl < j /2  

1 3 3 
- - g ( a k  + j - -  a k - i ) }  q- R 4  ( t ) ] .  

Write J~ for the set of indices k such that [k]>_>_j/2 and ]k +j[ >=j/2. Then 
is the set of all integers not in ~ .  Note  that 

[Z( t ) - (1 - �89  0 -2 t 2 __1 iflt3)] < C2 t4. 
If j, t are such that 

�89 a 2 {(ak-- ak +i) t} 2 + ~[fl {(ak-- ak + j) t} 31 + C a {(ak-- ak +i) t} 4 <= �89 

whenever k e ~ ,  then 

~" log z{(ak--ak+~) t} = --�89 2 t 2 Z (ak--ak+j) 2 - ~ i f l  t3 ~, (ak--ak+j) a +Rs( t )  
kEJj k~Jj k~J~ 

where 

If in addition 

then 

where 

IRs(t)] ~ Ct 4 ~ (ak--a~+j) 4. 

t 2 ~, (ak--ak+j)2<= 1 
k~J j  

1-[ z{(ak--ak+)t} = I  +a2tz  Z akak+j 
k~J j  k e J j  

�89 ~ t~ ( Y, + 
[k[ >j/2  and Ik+j] >_-j/2 

- - l  iflt3 ~, (ak--ak+ j)a + R6(t), 
ke.~j 

Z )a~ 
[k[ >=j/2 and [k-j[ >j/2  

IR6 (01---- Ct ~ { E (a~- a~+)~}~. 
k~J~ 

If j, t are such that 

�89 o -2 (ak 02 + ~[fl(ak 03[ + C2 (a, t)* <= �89 

whenever [kl >j/2, then 

Z l~ a = - a 2 t 2  Z a~+R7(t) 
Ikl _>_j/2 Ik[ =>j/2 



266 P. Hall and J.D. Hart 

where 

If in addi t ion 

then 

where 

4 [Rv(t)l<=Ct 4 ~ ak. 
Ik[ >=j/Z 

t 2 2 <  1 Z.~ ak  = 
[kl >j /2  

{ I-[ ~k(akt)} - 1 = l + a 2 t 2  ~, a~+Rs(t), 
Ikl ~ j / 2  Ikl >->_j/2 

IRs(t)[<Cr ~ a~)2 2. 
Ikl _-> j /2 

Combining the results f rom (4.1) down, and not ing that  the summat ion  oper- 
a tor  

Z + Z 
I k + j l < j / 2 o r l k - j l < j / 2  I k l > j / 2 a n d l k + j [ > j / 2  

+ Z --2 2 
[k] >_j/2 and I k - j l  >=j/2 ]k[ >=j/2 

is identically zero, we see that  if j, T are such that  

BrT4{suptakak+jl+ sup a~+(~Iakak+~[+ Z aZ)Z}<C3 
k Ikl >=j/2 k tk] >-j/2 

then 

l-I z {(ak-- ak + j) t} = {I] ~ (ak t)} { 1 + r (j) t z + i?j t 3 + g (t)}, 
k k 

where 7~ is a real number  depending only on j and 

[R (t)[ < Ct 4 [B T Z {([ak+j[q-lak 1) 4 q- ([ak-j[-]-[ak 1) 4 --4a~} 
k 

+ ~ a~+(~[akak+jl+ ~ a2)2]. 
[kl >=j/2 k Ikl >=j/2 

Now, for I=  1, 2 or 3, 

Fur thermore ,  

Therefore  

~lakl*lak+_214-1<=(sup lak ak + jl) ~ a 2. 
k k k 

Z 4 ak < ( sup a~) ~ a~. 
lkl >_-3/2 Ikl >=j/2 k 

I R (t) l <= Ct 4 {B T (sup ]a k a k + j I + sup a~-) 
k [kl ~=j/2 

+(Elakak+al+ E akZ)2} �9 [ ]  
k Ikl _-> 1/2 
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Define 
2 Ar--su p [ a k a k + j [ +  sup a k + ( E l a k a k + j [ - + -  

k Ikl >j/2 k 

Lemma 4.3. Assume that either 

(4.2) C1 (1 +ltl)-~' < ~,(t) < c 2 (1 + l t l ) -~  

where 0<Ca  < C z <  oe and O<c z <c 1< oe; or 

(4.3) -Itl-~log~b(t)--+C as I t l~oo  and 0 ( t )>0  

where C, c > O. Then 

as  n--~ oo. 

267 

[k[ > j/2 

all t, 

for all t, 

i ( 1 - - n - l  j) ~ [r at 
j = l  0 

= (1--n- l j ) r  co(ht)12t2c~(t)dt+O A 
j 0 j 1 

Proof. We prove Lemma 4.3 by applying Lemma 4.2 with T=t. Throughout 
the proof, symbols C1, C2, ... denote generic positive constants. 

If (4.2) holds then since ak@O for an infinite number of k's, and since a(t) 
=IIO(a, t), given any c 3 > 0  we may find C3,Jo>0 such that for a l l j> jo ,  

(4.4) ~(t)+l%(t)l<C~(l+lt[)-% all t. 

Since B t__< C~- l (1 + t) cl then by Lemma 4.2, 

(4.5) I~r(t)- ~(t ) {1 +r(j) t2}l <=A2 C; 1 C3(1 4- t) ~' -c3+4A r 

provided that 0 _< t_< Tj where Tj is the solution of 

(I + Ty4=Aa Ca A;  1 

and e 1 + 4 < c 4 < c  3 - 3 .  By (4.5), ire 3 >c~ +7, 

T~ 
1%(t)--a(t) {1 +r( j )  t2}[ dt< C4Ar, 

0 

and by (4.4), 

Therefore 

(4.6) 

{I ~j(t)] + ~ (t) ll + r(j) t 2 I} dt ~ C5 A} c3- 3)/c4 
r~ 

C 6 A j .  

o~ Ico(ht)l 2 Ear(t)- ~(t) {1 + r(j) t2}] dt <= C7 dj 
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fo r j> jo .  
If (4.3) holds then for each ~/> 0, 

C1 exp (-(C+tl) lat[~}<O(t) ,  all t, 

where a = sup l ak [ and C1 = C1 (~) > 0. In place of (4.4) we bave for all j >Jo, 

( 4 . 7 )  e(t)+[~j(t)[<C2 exp(-C31atlC), all t, 

where C3 > C. Since B t < C[- 1 exp {(C + ~/) (a t) c} for t > 0 then by Lemma 4.2, 

(4.8) I~i(t)--e(t) {1 +r( j ) t z } l~A2  C1-1C 2 t 4 exp { (C+t l -Ca)(a t )  ~} Aj 

provided that 0 < t _< Tj, where Tj is the solution of 

Tj" exp {(C+r/)(aTy} =A~ C~ A: -~. 

Take tl =(C3 - C)/2. Then by (4.8), 

and by (4.7), 

]~j(t)- c~(t) { 1 + r(j) t=}l dt <= C4 A j, 
0 

c~ 

{[~j(t)[ +~(t)] l  +r(j)tzJ} d t ~ C 5  Tj 3 exp { -  C3(aTy } 
Tj 

< C  6 A~ 
for j > j l ,  say. Result (4.6)follows. 

It is a trivial matter to establish (4.6) in the case l<=j<max(jo,Jl).  This 
completes the proof. [] 

Theorem 2.1 follows from Lemmas 4.i and 4.3, on noting that 

ylco (h t)l z {1 - I  ~o (t)l 2 } dt ~ ~ Ico(ht)] 2 dt = 2zch -x ~ K z, 

y[co(ht)[ 2 t 2 o~(t) d i ~ y  t; ~(t) at = 2 g  y(f,)2. [~ 

Proof of  Theorem 3.1. We prove the stronger variant described in Remark 3.3, 
in which the interval J is replaced by {p0+c~ c~,/2o+C 2 c~}, and t~o, c~ +c2 are 
constants. Without loss of generality we may take kto=C~---0 and %=1 .  This 
reduces the problem to one of estimating 0 in the model 

(4.9) Xj=OcS+ Yj. l <=j<n, 

where 0 = 0  or 1 and c~=6(n)~0 as n--, 0% with 6>0.  Write fo and P0 for 
the probability density of X i and the probability measure under model (4.9), 
respectively, when the parameter value is 0. 

Our proof is in a sequence of four steps. 
Step (i): A likelihood ratio rule. Put X=(X1, ..., X,) T and Y=(Y~, . . . ,y , )r ,  let 
1=( I  . . . . .  1) r be a vector of length n, and let V denote the n x n variance matrix 
of Y. The likelihood of 0 under the model (4.9) is proportional to 

L(0) = exp { - � 8 9  V - l ( X - 0 ~ l ) } ,  
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the constant of proportionali ty not depending on 0. Hence if 0 is the likelihood 
ratio rule for discriminating between 0 = 0 and 0 = 1 then 

Po (O= 1) = P {L(O)/L(1) < 1 [ 0 = 0} 

= P ( y T V -  11> �89  -1 1) 

= i - -  ~ {21 (5(1T V - 1  1) 1/2} = P1 ( 0 = 0 )  �9 

If ~ is any rule for discriminating between 0 = 0 and 0 = 1 then, by the Neyman- 
Pearson lemma 

(4.10) Po(0 "= 1) + Pa (0= 0) > Po(O= 1 ) + P  1 (O=0) 

= 2 [ 1 - ~ { � 8 9  -1 1)1/2}]. 

Step (ii): Estimating truncated moments. Consider the problem of estimating 
the truncated moment 

1 1 

v(0)= ~ xfo(x)dx= ~ xp(x-(50)dx,  
- 1  - 1  

where p denotes the N{0, r(0)} density. Note that v(0)=0 and v(1)~(sC 1 as 
(5 ~ 0, where 

1 

CI=--  ~ xp'(x)dx>O. 
- 1  

Let C2 > 0 be a constant such that v(1)> C2 (5 for all 0 _< (5 _< 1. Put 

1 

- 1  

and define 0 t o  equal 0 or 1 according as g is closer to v(0) or v(1). Now, 

1 2 

1 

<= f {f(x)-fo(x)}2]x[dx 
--1 

~ { y ( x )  - - f o ( x ) }  2 d x  ~ I o ,  

say. If 04= 0 then 

{ ~ -  v(0)} 2_-> k {V(0)-- ~(1)} 2 = �88  U(1) 2 > C3 (52, 

where C3 = C~/4, Therefore 

(4.11) max P0 (Io > Ca (52) > max P0 (~ 4 = 0) 
0=o,  1 0=0,  1 

__> l{po(0= 1)+ 8 (0= 0)}. 
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Combin ing  (4.10) and  (4.11) we deduce that  

(4.12) m a x  E(Io)>__ C a 32 m a x  Po(Io> Ca 62) 
0 = 0 , 1  0 = 0 , 1  

C 3  1~2E1 - -  (j) { I { ~ ( 1 T  V -  1 1 ) 1 / 2 } ~ .  

Step (iii)." A circulant moving average process. Put  N = 2n + 1 and 
.... (r(min{lj[,N-[j]}) for 0__<[j[=<g- 1 
ru) = ~.f(j m o d  N) for general  j .  

Let  ao, . . . ,  a n_ 1 be constants ,  let ~o . . . . .  ~N- t  be independent  s t andard  n o r m a l  
r a n d o m  variables,  and define the circulant  mov ing  average  process 

N - 1  

tli= ~. ak~a+j, - - o o < j < o 0 ,  
k = 0  

where the subscript  of ~k+; is to be in terpreted m o d u l o  N. In this step we 
show tha t  under  condi t ion (3.1), there exist real numbers  % ,  ... ,  a N_ 1 which 
give the s ta t ionary  Guass ian  process r/j the covar iance  funct ion f(j): 

(4.13) 

Observe  tha t  

E (t/j r/k ) = f ( j  -- k), --  oo < j, k < oo. 

N 1 

E(~jr/k) = ~ a~aj_k+f, 
•=0 

where (here and below) the subscript  of  a t is to be interpreted m o d u l o  N. There-  
fore we wish to choose  the a j s  such tha t  

N - 1  

~, ajaj+k=f(k), 
j = 0  

O G k ~ N - 1 .  

Mult ip ly  bo th  sides by e 2~ku/N, where O<_I<_N-1 and i = ( - 1 )  1/2, and add 
over  0 < k < N - l :  

tha t  is, 

(4.14) 

where 

N - 1  N - 1  N - 1  

aje 2~jum ~. aj+kea~(j+k)U/N= y. f(k) ea~kU/N; 
j=O k=O k=O 

[AI(2UI/N)12=A2(2ul/N), O<_l<_N- 1, 

N--1 

A I ( 0 ) =  ~ ake ik~ 
k = 0  

A2(O)=r(O)q-2 ~ r(k) cos(kO). 
k = l  
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By hypothesis, 
n 

r (0)+2  ~, r(k) cos (2~kl/N)>O, 
k = l  

O<_I<_N--1. 

Hence A2(2n l/N)>= 0 for 0_< I_< N - 1 .  In this event we may solve the N simulta- 
neous equations at (4.14) for the N real numbers ao . . . .  , aN-1. (Considerations 
of symmetry dictate that aj=aN_; for l<j<n, so that there are in fact only 
n + 1 aj's to be determined, and 

Al(O)=ao+2 ~. ajcos(jO) for O=2rcl/N, O<_l<_n.) 
j = l  

The numbers aj will, by construction, satisfy (4.13). 

Step (iv): Inference for the circulant moving average process. Let {q~, - o o  < j  
< co} denote the circulant moving average process introduced in Step (iii), with 
f (0)>2B.  Let ON denote the likelihood ratio rule for discriminating between 
0 = 0 and 0 = 1 in the model 

XNj=O(~+tlj, O<=j<=N--1. 

Write V N for the N x N  variance matrix of t/=(t/0, ...,r/N_1) T, and put YN 
=(I7o . . . . .  YN_I) r and 1N=(1 . . . .  ,1) T, both being column vectors of length N. 
The argument which formerly led to (4.10) now shows that 

P0 (0N = 1)+PI(ON=O)=2[1 -- cb {�89 6(lur V~ 1 1 N ) 1 / 2 } ] .  

Since the sequence XN, o,---,  XmN-1 contains a subsequence having the same 
distribution as X1, ..., X,  then 

Po(0= 1) + P1 (0= 0) > Po(0N = 1) + P~ (0N = 0). 
That is 

( 4 . 1 5 )  l _~{ �89  V-11)~/2} > 1_ ~ 1 T - = {]- ~ (1N VN 1 1N)1/2}. 

The matrix VN = (vi i) is a circulant, and has 1N as an eigenvector. The corre- 
sponding eigenvalue is 

N - 1  N - 1  

2 =  ~ v i i=f (0)+  ~ f ( j ) = r ( 0 ) + 2  r(j). 
j = O  j = l  j = l  

Therefore 

(4.16) {r(0) + 2 j__~l } - t  1TVN 1 1N=N2 - I  = N  r(j) 

Combining (4.12), (4.15) and (4.t6) we obtain 
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Taking 6 = { n  -1 ~ r(j)} 1/2 in this inequality, and letting n---,co, we deduce 
that IJl < n 

liminf4n/ ~ r(j)~maxE(Io)>C3{1-~b(~/2)}. 
n~oo  L /IJl<=n ) 0 = 0 , 1  

Theorem 3.1 is immediate. [] 

Proof of Theorem 3.2. The proof  of this result is identical to that just given, 
except that we replace Steps (iii) and (iv) by a new Step (iii)', below. 

Step (iii)' : Making use of extra information. Suppose that instead of the process 
Xj = # + Y~, 1 < j  < n, we observe X i = vj + Yj; - co < j  < ~ ,  where vj = # for 1 < j  
__<n and v j = 0  otherwise. The class of all estimators f based on the greater 
information in this extended sequence includes the class of estimators based 
on the subsequence X 1 . . . . .  X n. Therefore the argument  which formerly led 
to (4.12) now produces the inequality 

(4.17) max E(Io)>C3 6211 - -  ~ b { � 8 9  -1  u)1 /2}3 ,  
0 = 0 ,  1 

where u is the doubly infinite vector with 1 in positions 1, ..., n and zero else- 
where, and U = ( r ( j - k ) )  is the doubly infinite variance matrix of the sequence 

If  the sample size is odd, say n = 2m + 1, then we may write 

where 

u r U - l u = ( 2 ~ )  -1 ~ u(t)2p(t) -1dr 

u(t)= e'J'=l+2 cosjt 
j =  - m  j = l  

= cos (m t) + (1 - cos t)-  1 (sin t) sin (mt). 

Now, lu(t)l<=C4 min (n, t - l ) ,  and so 

u T U -  1 U < (C~,/~) ~ min (n e, t-2) p (t)- 1 d t. 
0 

Hence by (4.17) 

(4.18) m a x E ( I o ) > C  362 1 - - ~  C56 min(n 2 , t - 2 ) p ( t ) - l d t  , 
0 = 0 ,  1 ' - 0  

where C5=  C4/(2~zl/a). The case of even n may be treated by considering the 
enlarged sample X 1, ..., X,+  1- Taking 

 ={/min In2 ld } ,,2 
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in (4.18) we deduce that 

l iminf  y m i n ( n  2 , t - 2 ) p ( t ) - l d  maxE(Io)>C3{1-~b(Cs)} .  [] 
n ~ o o  k O  0 = 0 , 1  

Finally we verify a claim made in the first paragraph of Sect. 3, by showing 
that if the sequence aj satisfies 

2 (4.19) (log x)-  1 x 2 ~ aj ~ + oe 
J: laA--< x- 1 

as x --. + o% and i f  

Xo=#+~aj~  
J 

where the ~'s are independent and identically distributed with the distribution 

v ( ~ j  = _+ 1) = 21, 

then Xo has an absolutely continuous distribution with a density that admits 
an infinite number of uniformly bounded derivatives. Condition (4.19) is satisfied 
in a variety of circumstances, for example if aj is a regularly varying function 
of j  as j ~ Go. 

Observe that X o has characteristic function f( t)  = e itu ]-l)~(aJ t), where 
J 

Z(t) = E {exp (it ~j)} = cos t. 

Since cos 0<1-C1 02_-<exp ( -  C1 02) for [0]<1 then 

If(t)[< I-I cos(ajt)<exp{-Cl ~ (ajt)2}. 
j :  ]a j  t[ < 1 J:  lad tl <= 1 

Hence by (4.19), ]taft(t)[ ~0  as It]--* ~ ,  for each 2>0 .  It follows that the density 
of Xo is infinitely differentiable. 
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