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Summary.  Given a convex domain of ~2, we show that a.s. the paths of two 
solutions of the Skorohod equations driven by the same Brownian motion but 
starting at different points do not meet at the same time. 

1. Introduction 

Given a convex planar domain D and a Brownian motion B in IR z, it is well 
known (cf. [1, 2, 4]) there is a strong solution to the Skorohod equation 

dXt(x)=dBt+n(Xt(x))d~o:[,  X o = x .  

Here, cp~ is the local time of Xt(x  ) on 0D and n(y) is the inward directed unit 
normal  vector at y~#D. Actually it has been shown by Tanaka  [6] and Lions- 
Sznitman [5] one can construct a solution to this equation for any continuous 
function B~. Also, one can note it is very easy (see Eq. (5) below) to prove 
pathwise uniqueness. Therefore, the existence of a strong solution follows from 
the existence of a weak solution, which can be obtained, by conformal mapping 
and time change, from a reflected Brownian motion in the half plane. 

Now consider two particles undergoing such a motion 

l l l d X t = d B t + n ( X t )  dcp t, XZo =xt,  I= 1, 2 

with x 1 :~=X 2 .  A moments  thought  reveals that there is much collapsing under 
the flow x ~ X t(x). If D is a square or even has two perpendicular flat spots, 
Weerasinghe (Ph D. thesis) observed that T= i n f{ t  >0 :  Xt ~ = X]} will be finite 
a.s. In [3], we showed that T is infinite a.s. when D is a disc. The proof  used 
the symmetry of the disc. In this work we show that the technique used in 
the disc can be extended to show 

Theorem 1. Let D be a convex planar domain with a C 2 boundary. Suppose there 
is some constant K > 0  so that K(x )>  K for x~c3D, where K(x) is the curvature 
of O D at x. Then P ( T = oe ) = 1. 
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The approach will be to approximate D near the points where X~ or X z 
hits 0D by a moving osculating circle. This leads to a moving frame in which 
a natural coordinate system for the disc is utilized together with the Frenet 
formulas for moving frames. 

2. Notation and definitions 

Following our previous work, we set 

and for t <  T, 

z~=l llX~-X~l[ 

mt = �89 (X 1 + X2t) 

x~-x~ 
i t = - -  

2zt  

j , = i ~  

where (x, y)_L= ( _  y, x). 
Suppose O e D  and that 3D is represented by the polar equation r = f ( O ) .  

Set 0 t = O(mt), the polar coordinate angle of mt and Pt= (f(O,), Or). 
Define Rt to be the radius of curvature of 0D at P~. For  the Frenet formulas 

it is convenient to introduce an arclength parameter st and use P(st) in place 
of P,. Next we denote the center of curvature at P~ (or st) by 

co, = Pt + Rt n (Pt) = P (st) + Rt n (st). 

In what follows an important  role is played by 

and 
xt -= (mr -- cot, Jr) 

Yt = (mr- -  mr, it). 

A fact that will often be used is that 

yt(dq)2t-dq)~)=lyt ldq~t ,  where q~t= q)l+ q~ 2. 

The idea of the proof of Theorem 1 is to show that T <  oo can only occur 

if the segment ~ strikes aD (i.e. on supp dq~t z or supp dcpt ~) at a right angle 
to the tangent of OD and it must do so repeatedly when z t is small. Next it 
is shown that in fact Xt ~ ~ will never strike a D at a right angle. 

3. Calculations and proof of the theorem 

When X z t e O D  and z is small, ~ will be at, or nearly at, a right angle 
to 0 0  if and only if L t =  x{  + ( y t - - R t )  2 will be O(z~). Similarly for Xt ~ ~ O ,  )f~ X 2' 
is nearly perpendicular to ~ D if and only if N~ = xt 2 + (Yt + Rt) 2 is O (Z2). 

We need to derive It6 expansions for xt, Yt, zt and R~ in order to examine 
the behavior of Lt and Nt. We begin with 
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L e m m a  1. On supp dqo~, I=  1, 2 

II R, n (X~) + (XZt-- co3ll = O (z~) 

and IJ Rt n (st) + X~-- 6o ill = 0 (zt). 
Consequently, on supp d ~o~, 1 = 1, 2. 

(1) (n(X~t), it) 4 Yt+(--Rt 1)'zt = O(zt2) 

(2) 

(3) 

(4) 

X .  

(n (X1t), Jr5 + Rt  = 0 (Z~t ) 

�9 X t 
( n ( s t ) , J t ) " l - ~ r  r = O(zt)  

(n(st), it5 +-~- = O(zt). 
lxt 

Proof. In t roduce  rectangular  coordinates  (u, v), centered at o2 t with the positive 
v-axis in the direct ion -n(st) .  Represent  8D near  st in this coordinate  system 
by v = g(u). Then  g(0)=  Rt, g ' (0)= 0, g ' (0)  = - ~ t  so that  

U 2 

g (u) = R t -  ~c t ~ -  + 0 (u3). 

Also, the unit  tangent  vector  at (u, g(u))= (u, v) is given by  

T(u, v)=  (1, g'(u)) 

and g' (u) = - ~c t u + 0 (u2). This gives 

n(u, v)= (g'(u), - 1 )  
1/1 + (g' (u)) 2 

as the inward unit  normal  vector�9 Not ic ing that  

1/1 + (g'(u)) ~ = 1 + ~ , 4  u 2 + O(u 3) 
it follows that  

n (u, v) = (g' (u), -- 1) + 0 (u2). 

On supp d q~Zt, for zt small enough,  the angle between P X  l and OP is bounded  
away from 0 so that  Pt X~ = O (zt). Now,  

Xlt - - fDt=(Ht ,  g(Ht) ) for some lutl <=O(z,)�9 
Hence 

R't-IJx~-cotll = R , +  O(z~), 
~o,- x', (ut, g(ut)) + O(u~) 

R~ = R, 
and 

cot-- X~ co t -  X~ + 0 (z~). 
R[ Rt 
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Therefore, on supp d ~0[, 

and 

n(x~) 

n(s,) 

o.,t- x't < ~ ,4 
Rt = 2 -  + 0 (z 2) = 0 (zZt) 

lt= gt II lik u. ,,:~, ~ )  +O(z~) 

= Kt lull + O(z~)-- O(z3 
(1),-~ (4) follow immediately. 

This enables us to derive formulas for dxt, dyt, dzt which are the same 
as in the disc up to O(zt) terms except for terms which arise from the moving 
frame. 

Considering z, first, for t < T, and with 

2ztdzt= l (n(X2) d(pZt -n (X~)  dq~t , X2t - Xtt ) 

= z t ( n  ( X  2) d q~{ - n (X~t) d @, it) 

by (2) so that 

=-zt(lYt]~tZt)dq~t+O(z~)d~o t 

_!r z 4 (5) dzt= 2 \  Rt ] dcp~+O(z~)dqgt" 

Next, <it, Jt>-~ 0 implies d it must be parallel to Jt so 

1 
(6) d i t = ~ z t  ( n  ( X  21 d (,o2 _ n ( X  1) d @t , Jr> Jr 

_ xt (dq~2 d(o~)j,+O(zt)dq~tjt, 
2Rt zt 

by (2) and automatically, 

�9 xt (dq~Z_dq~)i~+O(z,)dq~tit. 
(7) d Jr = 2 nt zt 

Recall the Frenet formulas, with T =  T(s), the tangent vector at s, 

d T  n dn T 
ds = R '  d s -  R" 

Thus, using Stratonovich differentials which will be denoted with o, 

dot = d(P(st) + etn(s~)) 

(8) = T(st) ods  t ~-n(st) od R,-- r(st) od st 

dolt = n(st) o d Rt. 



Skorohod equation in a convex domain of R z 245 

Using (2), (7), (8) and setting 

(9) 

d Wt* = (dB , , j t )  

dx  t = (d(m t -  cot),jt) + (vat--cot, d jr) 

Xt +/xt ly t l  ~R_)dcpt_(n(st)odRt,jt)+O(zt)d~ot" 
Using (1), (6), (8) and setting 

(10) 

d W t  2 = (dBt, i t )  

dyt = (d(mt-cot), it) + (mt--cot, dit) 

d w.  2 yt . [ x~t Z-R,) (dq, t - d = t - 2 R t  a~~ zt -- 2 (ptl ) 

- -  (n(s,) odRt, it) -'k O(zt) dot. 

Observe that (W~ 1 , Wt z) is a standard two-dimensional Brownian motion. 
The formulas (5), (9), (10) are similar to those from our previous work [3]. 

In the case of a circle of radius R, one would have Rt=-R and the O(z~)dot 
missing in (5). For  (9) and (10) in a circle of radius R, one would have R , - R  
and the terms involving n(st)odRt and O(zt)dq), would be missing. The trouble 
in extending the argument arises from the terms involving n(s t )odR t so we 
now devote a little time to discussing these. 

First, R,=R(O0, and Ot = O(mt) so 

(11) dR t = R' dOt + 1R" d (O)t 

and 

(12) 
m • 1 2 (rn{,n(X~)) 

Now a simple stopping time argument can be applied to prevent [[mt[[ from 
becoming too small (z t doesn't decrease when zt is small and llmtll is close to 
0). Also, since 8D is C 2, R' and R" are bounded continuous functions of 0 
so that the martingale and bounded variation parts of Rt are well-behaved. 

Next, n(s,)=F(Ot) where F: S 1 ~ S 1 is a C2-function, since 8D is C 2. Thus 

(13) 1 t t  dn(sO=dFt=F' dOt+~F d(O)t. 

By (11) and (13), we get 

(14) n(s~) od Rt = n(st) d Rt + �89 d (n(st), Rt) 

1 R ' F '  
= n ( s t ) d R t - F  2 HmtH 2 dt 

= n(st) dRt+ 0(1) dt. 
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These results are summarized by the next 1emma which is implied by Lem- 
ma 1, (11), (12), and (14). 

Lemma 2. For times T > t > 0  such that ]]mt]] -_> e > 0 

dRt  = 0(1) d Wt + 0(1) d~o t + o(1) dt  

m? 
where d Wt = ~  d Bt is a one-dimensional Brownian motion increment. 

Recall that L, = x 2 + (Yt - R f ,  N~ = x 2 + (y~ + R~) 2. 
With this background we can now establish 

Lemma 3. (a) L t Nt 4:0 for  t < T 
(b) On {T< oo}, inf Log(Lt Nt)> - oo a.s. 

t<T 

(These assertions valid modulo the stopping time argument.)  

Proo f  Let us admit (a) for a while. Then, (b) follows from an inspection of 
the It6 expansion of ut = Log(L~ Nt). 

The argument goes as follows. We shall show that for some % dr, et and 
local martingale Mr 

d ut = d M t  + ctd t + dtd q~t + e t d t, 

where 

(15) c t > c o > - O o ,  d t > d o > - O o ,  for all t<T ,  

T 

and on {T< oo}, ~ e t d t < o o .  
0 

Since (see [3]), lira q~t o-(OD) - - = - -  a.s. inf u t = - o o  can only occur on {T<oo} 
t ~  t m ( V )  t<T 

when inf M t ~ - -  o0. This last can only occur if sup Mt = oo (M is a time-change 
t<T t<T 

of Brownian motion). But ut is a quantity bounded from above so a contradiction 
T T T 

arises since on { T <  oo} the terms y dtd q~t, ~ ct d t, ~ e, d t can not  cancel the 
0 0 0 

arbitrarily large positive Mr values to keep u~ bounded. 
Lemma 3 will thus be proved once the bounds at (15) are established. This 

is done by writing out It6's expansion for ut=Log(LtNt ) .  In this expansion, 
regard f (xt ,  )i t + Rt) = Log(Lt), g(x t ,  y t - -  Rt) = Log(N). 
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Then 

f~x = 2 (y - R)2L2 - x2 , g:,x = 2 (Y + R)2Nz -- x2 

4 x ( y -  R) 4 x(y + R) 
fx, y-R -- L 2 , gx, y+R-- N 2 

fr_R,r_R_2 x2--(Y--R) 2 xZ--(y--R) 2 
L 2 ' gy+R.y+R =2 N 2 

The quadratic terms are 

d(x ,x>t=[ l+2 XR'(mZ, j> / xR' \21 
R'[m][ 2 + t ~ ) ] d t  

d (x, y -  R>,=[(Y-~ R' <m• xR' (m • i> x(y- R)(R') 2] 
ilmtl~ -~ Riim[i = + R~ilm]l= ]dr 

a<y-R, y-R>t=[1 +2 (y--R) R' <m • i) +((y--R)R'_] 2] at 
RIImll z \ RIIm]l } / 

d(x, y+ R>t=[(Y + ~R'  (m • xR' (m • i> x(y+ R)_R'qd t 
ilmtl 2 4 RIIm[I z + R ~llmll / 

d<y+ R, y+ R>,=[1 + 2  (y+ R)R Ilmll 2R'<m• • [(y+ I_~IR'X2]_) ]dt  

(see (9), (12)). 

Using the stopping time argument we have: 

(! 6 ) 

d (x, x> =(1 + 0 ( 1 )  x) dt 
d(x, y+ R> =(O(1)(y+ R)+ 0(1) x) dt 

d<y+_R, y+_R> =(1 +O(1)(y+_R)) dr. 

Hence we get the It6 expansion in the form 

(17) d ut = L ;  1 (2 xt d xt + 2 (Yt - Rt) d (Yt - et)) + N;- 1 (2 xt d xt + 2 (Yt + Rt) d (y, + et)) 
+ L  -2 [((y-- R) 2 -- x2)(0(1) x + O(1)(y--R)) 

+4x(y--R)(O(1)(y--R)+ O(1) x)] dt 
+ N-Z[((y + R)2--x2)(O(1)x + O(1)(y + R)) 

+ 4 x(y + R)(O(1) x + O (1)(y + R))] dt. 

Recalling the definitions of Lt and Nt, one sees immediately that [xtl L~ 1/2, 
[y--Rt[Lt 1/2, Ix,IN# 1/2 and [yt+Rr[Nt -1/2 a r e  bounded by 1. Hence the two 
last terms can be written 0(1) L~- 1/2 + 0(1) Nt- 1/2. 

Moreover, using the same stopping time argument as before we may suppose 
that mt lies at a distance from the boundary less than e and that zt < e. Note 
that the angle ~ between the tangent at P and OP is uniformly bounded away 
from 0 as well as the radius of the osculatory circle. 
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Hence, for e small enough, mr will be inside the osculatory circle i.e. 

(18) xZ + y2--R2<O. 

Also, if B~ is the band of width e and axis OP, the portion of B e limited 
by the tangent at P and the osculatory circle will be bounded, and Xtt will 
lie either in this portion or inside the osculatory circle�9 

Hence [[co-xlll will be at most VR z +(z/cos ~)2. 

Therefore ]/xZ+([y[+z)Z<R+O(z 2) and [y[+z<R+O(z z) which implies z 
<O(R-[y D. Thus ztL-[ 1/2 and ztNt -1/2 are also bounded, which proves (a) of 
Lemma 3. 

We use M~...M~ to denote local martingales�9 
First, by Lemma 2 and Eq. (9) 

2xL-~ dx=dMl + L - l \ - ~  z dq~+xL-~O(1)dt 

+(xL- 10(z)+x 2 L- ~ 0(1)) dcp 

x21yl ~)d~o+l /U  ~ O(1)dt+O(1)dq~+O(1)dt. 
-k7 z 

Using Lemma 2 and (10), 

I x  2 Z\ 
2 ( y -  R) L-ld(y--R)= dM 2 --L -1 y(y--R)R d~o - L- I(.V -R) .  ~ z  + ~ -) 

�9 (dq~Z-d~o 1) 

I x  2 Z~ 
=dM2 L_ 1 y(y--R)R dcp-L-~(y--RI~Rz+ R) 

�9 (dq~2-d~o 1) 

+ ] / ~  O(1)dt +O(1)dcp+O(1)dt. 
Similarly, 

l (x21yl 2 x N - l d x = d M 3 + N -  \-R~z dq~+ N]fN~O(1)dt+O(1)dcP 

2(y+R)g-~d(y+R)=dM4--g  -~ Y(Y+R--) dq~-g-~(y+R) + 
R 

�9 (dq~Z-dq~ 1) 

O(1)dt +OO)d o+O(1)dt. 
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On summing these terms and recalling that remaining (2nd order) terms are 
0 (1)/,71/2 + 0 (1) Nt- 1/2) d t, it arises, in view of y (d ~0 2 - d q~ 1) = lYt d q), that 

1 r/x2 lYl g2~ y2] X 2 ~_] du=dM+(C-'+N-)[t-~, z ~-)--~-ld,:,o-(L-l+N-1)lYll~-z+....,de 

1 N-1 )yaq ,  +(c-1- N - l )  (~_ + z)(dq)2_dq),) +(L-  

+ 0(1) dgo + 0(1) dt+(O(1) L- 1/2 .~_ 0(1) N -  1/2) dt 

1 1 4yR 
and since L N -  L ~  on Supp(dq~) 

(19) du= ( /~ / x /  - - ( L - t  (-xZ+YR+lY[Z)dq) 

+O(1) L-1/2 dt +O(1)N-1/Z dt +O(1)dq)+O(1)dt 

yZ+lylz (4R2_(L+N))dtp q 4R[y[ x 2 d o  (20) du=d M-I -~-L-~ . L N ~  

X 2 
R (L-l+X-1)dqg+(O(1)L-1/2+O(1)N-~/2)dt+O(1)dg~ 

Now the two first dq)~ terms have a nonnegative coefficient. (Recall (18)). Since 
X 2 < l  and x2-< l  Lt = Nt = the third d(pt coefficient is bounded from below by some 

negative constant. Thus from these remarks 

/0(1)  0 ( 1 ) \ .  
dut=d Mt + d t dq)t + 0 ( 1 )  dt + I----~+------~ }clt 

\VLt  VNt/  
where dt => do > - oo for all t. 

We can apply the argument mentioned at the beginning of this proof once 
we show 

Lemma4"On{T<~ , o ~o ~Ns - ~  ds < oo and ds < oo. a.s. 

Proof. It will do to consider w = ~/-L+ VN, w is clearly bounded. By It6's formula, 
for t<T,  

x y - R  x y--R 

L- 3/2 X - 3/2 
+ ( y + R )  2 ~ - - + ( y - - R )  2 ~ d(x ,  x )  

X 2 X 2 
-1- 7 L -3/2 d(y+ R, y+ R) +~-  N -3/2 d(y--R, y- -R)  

+ L  -3/2 x(y+ R) d(x, y+ R) + N -3/2 x(y--R) d(x, y--R).  
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Comparing with (17), we see the first order terms are obtained by multiplying 
the analogous terms in there by V~ or ~/N. 

It6 correction yields �89 1/2 +L-  1/2) dt+ O(1) dt. Hence 

x x x l y l  x 

+1(N-1/2 + L -i/2) dt + 0(1) dt +O(1) dq) 
_._ 1 [ xZ (y) x 2 y 2  

= c / M + 2 /  Rz  R ~)d~0 

/ x 2 z \  
-�89 + U-1/2)ly[ l ~ z  + R)  d~o + �89 N-1/2) yd q) 

X 2 
+ � 8 9  z)(d~oZ-dq)l)+O(1)dt + 0(1) d~o 

=d M + 2 ~  (L-1/2 + N -  ~/2)(- x2-[y  [ z -  y2) d q) 

+ [ x2 ly[ +, , 2R 
~ - -  lYl z + Y 2] (LN)- I/2(L+ X/2 + N1/2) d cp 

+�89 + L-1/Z) dt +O(1) d~o+O(1)dt. 

Compare this expression with (19). Call a(fl) the first two drp terms in du(dw). 
Then, 

(LN) 1/2 
fl-- 2(L112 + N1/2) c~ 

1 ( L + N  Li/2+Ni/2~ 
R .2(LN)-I/Z(L+a/2+Ni/2) 2L1/2Ni/Z] (x2+y2+zlyI) d~~ 

(LN) 1/2 1 
.~ (x2 + y2 + z lYl) d ~o. = 2(I~/2+Ni/2) R([_y2+N 1/2) 

Since L and N cannot become small simultaneously, we can conclude that 

dwt=dMt+qdq)t+O(1)dt +�89 + N-1/Z)dt 
with ct > -- c. T 

Since wt ifself is bounded, if T<oo and ~(Ltl/2+Nt-1/2)dt=0% then in 
0 

view of the bound ct>= - c  and the fact that the dt coefficient is 0(1), in fMt= 
t < T  

- - o o  must happen. Then, since M is a local martingale supM t = o0 must occur. 
t < T  

T 

However, this violates the boundeness of wt. Therefore S (L~-1/2+ N-a/2)dt  < oo 
0 
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on {T< oo} and the proof is complete. Recall this also completes the proof 
of Lemma 3. 

Proof of  Theorem 1. Now examine the It6 expansion ofvt = Log(Lt Nt zt 2) obtained 
from (5) and (20) 

lye] (4xZt RZ--ZtN~) 1 1 /x~ . y~'~ 
dv t=dMt+  

_+ (Y{ + [Y~I z,) (4 RZ~ - (Lt + Nt)) d q~t + (remaining terms at (20)). 
Rt Lt Nt 

The new and potentially troublesome term is 

[y,[ (_4xt 2 RZt - L t  Nt\ 
(21) 

However, this term only contributes on Supp dq~ and on this set of times 

4 x~ R z - L, Nt = 4 x{ R~ - (x 2 + y Z + RZ)Z + 4 y~ R~ 

= - ( x ~  + y ~  - R ~ )  2 

=O(z 2) (from Lemma 1). 

Thus the expression (21) is O(zt) dq~t. 

So proceeding as in the proof of Lemma 3, on {T< ~) ,  

d vz = d Mt + ct d q~t + et d t + (remaining terms at (20)) 

we see by Lemma 3 that c ~ > c o > - ~  on {T< ~}.  The term (remaining terms 
at (20)) were already found to be well-behaved in Lemma 3. 

Thus inf vt= - ~  is impossible on {T< ~}.  
t < T  

This proves the theorem since Mt Cannot explode towards - ~ only. 

Appendix 

The fact of noncoalescence may be used to derive an upper bound on the 
rate at which z~ tends of 0. Namely, 

lira 1--1ogz,=<- K2+m--~0 K(y)~(dy). 
t ~ m  t 

Begin by observing that z t is nonincreasing. This and noncoalescence, togeth- 
er with 

1 
z t = z ~  So o 
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imply 

(22) ~ lysl o ~ d~p,< oo. 

F r o m  the formula  for dyt,  it easily follows that  
2 2 

- y t  - [ x ,  lY, I [Yt[ zt] 
d(y~) = 2 y~ d W~2 + a t - - ~  - a ~ t - l ~ - - - - - e - w - -  l d ot 

l~t L l~t zt l~t .] 

which implies, with (22), 

7 0 R ~  d~ps= 1" 

N o w  the expression above  for z, makes it clear that  

1 t[ly~l+z~\ d +o 

whence 

1 1 i (  lysl lira 1 log z t = -  lim d(p~ 

1 < - - [ l i r a  - K 2 i x~lYsl 1 
= 2 b  t o zTkTaq's+g(No  I,:(y),,(ay 1[ ] 
< -  K 2 + ~ ( - ~ o  K ( y ) a ( d y )  

1 1 
where we have used2(23), the convergence of  the measure 7 q~t(') to ~ o-(.) 

~f2 2 > K 2  2 and the b o u n d  1 > = K 2 Xs x~ . 
e s  
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