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Summary. Markov branching processes with instantaneous immigration possess 
the property that immigration occurs immediately the number of particles 
reaches zero, i.e. the conditional expectation of sojourn time at zero is zero. 
In this paper we consider the existence and uniqueness of such a structure. 
We prove that if the sum of the immigration rates is finite then no such structure 
can exist, and we provide a necessary and sufficient condition for existence 
for the case in which this sum is infinite. Study of the uniqueness problem 
shows that for honest processes the solution is unique. 

1. Introduction 

In this paper the continuous time homogeneous Markov branching process 
is considered exclusively and is abbreviated to CMBP. A CMBP is a temporally 
homogeneous Markov chain whose states are nonnegative integers and whose 
transition probabilities are a solution to the forward equations 

j+ l  
(1.1) dpij(t)/dt= ~ pik(t) kbj_k+ 1 ( i=>0, j>0,  t>=0) 

k=l 

where {b j; j> 0} are constants and satisfy the conditions 

(1.2) bl<0,  bj>O ( j # l )  and ~ bj=O. 
j=o 

Details of definitions and related results can be seen both in Harris (1963) and 
Athreya and Ney (1972). In particular, the transition probability of CMBP is 
uniquely determined by its infinitesimal generator and is the Feller minimal 
solution. The associated infinitesimal generator, the so-called Q-matrix Q = (qlj; 
i, j => 0), is given by 

~ibj_i+ 1 if j__>i--1 
(1.3) qi j - ~ 0 otherwise 

where {bj ; j>0} satisfy (1.2). 



210 A.Y. Chen and E. Renshaw 

Models with state-dependent immigration were first considered by Foster 
(1971) and Pakes (1971, 1975, 1978). They studied a modification of the Galton- 
Watson process which admits an immigration component only in the state zero. 
The continuous time analogue of this process in the Markov case was investigat- 
ed by Yamazato (1975). Further discussion is contained in Mitov et al. (1984). 

In Yamazato's model, the transition probability is uniquely determined by 
its infinitesimal generator and is the Feller minimal solution. The generator 
Q = (qi~ ; i, j => O) now becomes 

{ c~ if i = 0  and j_>-0 

(1.4) qij = j -- i+1 if i=>l and j > = i - 1  

otherwise 

where 

(1.5) bl_-_0, bj__>0 ( j+ l )  and ~ bj=0,  
j = 0  

oo 

(1.6) So__<0, sj>=0 ( j> l )  and ~ s j=0 .  
j = 0  

Note that {sj ; j  > 1} denotes the immigration rates, and condition (1.6) requires 

(1.7) So > - oo 

o r  

(1.8) • S j <  -{- 00.  
j = I  

Intuitively, condition (1.8) means that the sum of the immigration rates is 
"small";  the process will stay in state 0 for some positive time. It is therefore 
both natural and interesting to ask what will happen if the sum of the immigra- 
tion rates is not "small", i.e. if 

(1.9) ~ sj = + ~ .  
j = l  

Note that (1.9) automatically forces the condition 

(1.10) s o = -- 0% 

which means that immigration will occur immediately the number of particles 
reaches zero. More precisely, let Z(t ,  co) denote the number of particles at time 
t (assuming that such a process exists). Since the transition function of Z(t, 
co) is standard, we may assume that the process Z(t ,  co) is separable. Hence 
by a well-known theorem (see, for example, Theorem 5.5, II, of Chung 1967) 
for any s => 0 and t > 0 we have 

(1.11) Pr {Z(u, co)~ O, s < u < s +  tiN(s,  co) =0} = e x p ( -  So t ) 
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irrespective of whether eo is finite or not. Let z be the sojourn time at zero, 
and Eo(.) be the conditional expectation of staying at state zero. Expressions 
(1.10) and (1.11) then lead to 

(1.12) Eo [z] = O. 

We shall call such a process a continuous time homogeneous Markov 
branching process with instantaneous immigration and abbreviate it to CMBP- 
II. An exact definition will be given in Sect. 2. 

Note that the case of instantaneous immigration produces a new phenome- 
non since the powerful result of Feller's minimal solution is no longer valid. 
Not only do we not now know whether there exists a transition function P(t) 
which satisfies the branching property, but we also do not even know if the 
Q satisfying (1.9) is now an infinitesimal generator for general Markov chains 
(not necessarily branching chains). Indeed, from the point of view of Markov 
chain theory (see, for example, Chung 1967), zero is now an instantaneous state 
and, as is well known, few results have been obtained for such instantaneous 
chains. Although there is a long history of development associated with construc- 
tion theory for Markov chains, i.e. existence, uniqueness and the construction 
of the transition function for a given Q-matrix, most of the results and methods 
are concerned only with the so-called totally stable case, i.e. the case where 
there exists no instantaneous state. Moreover, generalization of these results 
to cover the instantaneous case seems to be very difficult, As far as we know, 
only two examples have been considered for the mixed-state case, i.e. the case 
where there are both instantaneous and stable states, to which our CMBP-II 
belongs. (See the discussion of Kendall and Reuter (1954), Reuter (1969), Chung 
(1967) and Williams (1967)). Thus our CMBP-II problem cannot be covered 
by known general theorems of Markov chain theory, and so we need to proceed 
from a fresh start. 

2. Definitions and basic results 

Let E={0,  1, 2 . . . .  } and N = E \ { 0 }  ={1, 2, 3 . . . .  }. 

Definition 2.1. A matrix Q =(qi~) defined on E x E is called a C M B P - I I  pre- 
generator, or a C M B P - I I  pre-Q-matrix, if 

(2.1) 
i ~ if i = j = O  
a s if i = O , j =  1 

qis= " j ,+1 if i>=l,j>=i--1 

otherwise, 

where 

(2.2) 

(2.3) - ~ < b ~ < O ,  

~j_->O (j__> 1), 

bj=>O (j:#l) and • bj=O. 
j=O 
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Remark. {a j; j_> 1} denotes the "immigration rate" whilst {b j; joe 1} denotes 
the "branching rate". Note that both the cases 

~ e j  = + oo and ~ aj < + oo are allowed for the time being. 
j=l j=l 

Definition 2.2. A continuous time homogeneous Markov branching process with 
instantaneous immigration (CMBP-II) is a Markov chain whose state space 
is the set E of nonnegative integers and whose transition function P( t )=  {pij(t); 
i, j~E} satisfies the following two conditions: 

(2.4) lim P ~ 1 7 6  0% 
t-.0* t 

(2.5) dpii(t)/dt= ~ Pik(t) qk~ (i>=O,j>= 1, t>O), 
lceE 

where Q = {qij} is a CMBP-II pre-generator. 

Remark 1. As in Harris (1963), we have defined the CMBP-II only in the sense 
that we have defined the transition function P(t). We shall therefore call the 
transition function P (t) a '~ process". 

Remark 2. Note that the inequality P(t) 1 < 1 is allowed for transition functions. 
If the equality P(t) 1 = 1 holds, then we call the transition function (or process) 
"honest".  

Remark 3. The customary method of studying ordinal branching processes (with 
or without immigration) by introducing a generating function through (2.5) can- 
not be applied to our case, at least for the time being, since the immigration 
generating function ~ aj s ~ (Isl < 1) is not well-defined because ~ ei = + ~-  

J J 
For each CMBP-II pre-generator Q defined in (2.1), we associate two other 

matrices Q*= {q~} and Q =  {q,i} defined on E x E and N x N, respectively, as 
follows: 

, ~0 if i = 0  
(2.6) qlJ= Jq~ if i > l  

(2.7) 77,j=qij (i> 1,j> 1). 

That is, Q is the restriction of Q on N x N, whilst Q* is the corresponding 
branching generator without immigration related to Q. 

Since both Q* and Q are totally stable, they are certainly generators. Let 
F*(t) and F(t) denote the Feller minimal transition functions (see Feller 1940) 
of Q* and Q, respectively. Note that F* (t) is the transition function of a branching 
process without immigration, so we know its properties quite well (see, for 
example, Harris 1963 or Athreya and Ney 1972). We shall call F*(t) the corre- 
sponding branching process without immigration related to the original CMBP- 
II. 
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For a transition function P(t), we can introduce the resolvent, i.e. its Laplace 
transform R(2)= {rii(2); i, j eE} ,  where 

(2.8) rlj(2)= ~ e-Ztp,i(t) dt (2>0). 
o 

It is well-known that there is a 1-1 correspondence between the transition 
function P(t) and its resolvent R(2). Thus, following Reuter (1957), we shall 
call a resolvent R(2) a "process" just as we call a transition function P(t) a 
"process". 

Similarly, for a CMBP-II pre-generator Q, we shall use r and q~(2) to 
denote the Feller minimal resolvent of (2* and Q, respectively. We call r 
the corresponding branching process without immigration related to the original 
CMBP-II. 

The main results of this paper are contained in the following three theorems 
which discuss the existence and uniqueness of CMBP-II. 

Theorem 2.1. For a given pre-generator defined in Definition 2.1,/f 

(2.9) i ~J< + 0% 
j = l  

then there exists no branching process with instantaneous immigration (CMBP-II).  

Theorem 2.2. For a given pre-generator defined in Definition 2.1,/f 

(2.10) i ctj = + 0% 
j = l  

then there exists a CMBP- I I  if and only if 

(2.11) i i ~Jgb*k(2)< + ~  (2>0) 
k = 0 j = l  

where (o* (2) = {~b*(2); i, j eE}  is the corresponding branching process without immi- 
gration. Furthermore,/f(2.11) holds then there exists an honest CMBP-II .  

A direct consequence of Theorem 2.2 is: 

Corollary 2.3. I f  there exists a CMBP-II ,  then the corresponding C M B P  without 
immigration must be an explosive one, i.e. 

2 ~ r (Vi4:0,V2>0); 
j=O 

(2.12) 

or, equivalently, 

(2.13) i f/*(t) < 1 (Vi40, Vt>O). 
j=O 

Here F* (t) = { f/* (t); i, j e E} denotes the Feller minimal transition function of  Q*. 
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As regards the uniqueness problem, we have: 

Theorem 2.4. In the case of(2.10), if the existence condition (2.11) holds, then 

(i) there exist infinitely many CMBP-IIs, 
(ii) there exists only one honest CMBP-II, 

i.e. uniqueness holds true for the honest process. 

The proofs of Theorem 2.1, Theorem 2.2 and Corollary 2.3 are given in 
Sect. 3, whilst the proof of Theorem 2.4 is given in Sect. 6. 

3. Proof of existence theorem 

Before reading Sects. 3 to 6, readers are requested to skim over the terminology, 
notation and basic conclusions of Sect. 7, especially Theorems 7.7, 7.8 and 7.10. 
We shall use these basic results without further explanation. 

The main task of this section is to prove the existence theorem of CMBP-II, 
i.e. Theorems 2.1 and 2.2. Let Q, Q* and ~) be given as in (2.1), (2.6) and (2.7). 

Lemma 3.1. The equation 

(3.1) (O<v~l 

has only the zero solution where I, as usual, denotes the space of summabIe vectors. 
Hence veI means v= {v~ ; j e N }  and S [vii < oo. 

Remark 1. Although the idea surrounding Lemma 3.1 has been considered by 
Harris (1963) using generating functions, here we shall give a direct proof. 

Remark 2. By Reuter (1957), we know that the dimension of the solution space 
of Eq. (3.1) is independent of 2>0 ,  i.e. Eq. (3.1) has only the zero solution 
for each 2 > 0 if and only if it has only the zero solution for some 20 > 0. 

Proof of Lemma 3.1. Suppose (3.1) has a non-zero solution v={vj;  j >  1} for 
some 2o > 0, then 

j+ l  
2o vj--- ~ vkkbi-k+l ( j > l ) ;  

k=l 

or, if we let ci=b i (i=~ 1) and c 1 = - b l ,  

j+ l  
(3.2) (2o+2jcOv~= ~ kVkC~+1-k ( j> l ) .  

k=l 

Now on noting that ci>O (Vi>0) and vi>O (Vi> i), we have from (3.2) that 

( ~ + 2 C l )  J k , j + l  
�9 V j = k ~ = I ~ - V k C j + I - k " [ - - ~ - V j + l C o  (j>l), 
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whence 

(3.3) 
2 J . , j + l  

O>l ) .  

Summing over j=> 1 in (3.3) then gives 

(3.4) 
j : l  j = l k = l  j : l  

o9 cJo 

\ j =  1 

As ~ vj < + oe (see (3.1), v ~l)and ~ cj = 2c 1 < oc (see (2.3)), we therefore have 
j = l  j = O  

2oj~1 "J<c < 2 c  o Y' (3.5) v j+ 1 
�9 = j = o j= 1 J i=1 J 

Since vj < + o% it follows that _ < + 0% and hence by (3.5) that 20 < 2 Co, 
j=t j=l  J 

contrary to the fact that the dimension of the solution space of (3.1) is indepen- 
dent of 2. [] 

We shall now prove Theorems 2.1 and 2.2 simultaneously. 

Proof Suppose there exists a CMBP-II, say R(2)= {rij(2)}. Then according to 
Theorem 7.7 it can be uniquely decomposed into 

0 1 
(3.6) R(2)=[~ ip(2)]+rbb(2)[r q(2)], 

and all the other conclusions of Theorem 7.7 are also satisfied. In particular, 
it follows from (7.32) that 

(3.7) t/(2) e H  o. 

Since R(2) is a CMBP-II, we have, by (2.5) of Definition 2.2, that 

(3.8) 2rlj(2)--bij= ~, r~k(2)qkj (i>O,j_->l, 2>O) 
k=O 

where Q=(qij ;  i, j > 0 )  is the given CMBP-II pre-generator. (Note that (3.8) 
is the Laplace transform version of (2.5)). Substituting (3.6) into (3.8) yields 

(3.9) 2~h,j(2)--6ij= ~ ~p,k(2)qkj ( i > 1 , j > 1 , 2 > 0 ) ,  
k = l  
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and so ~k(2)= {~ij(2); i,j> 1} satisfies the forward equation for (~. Now according 
to Lemma 3.1, Eq. (3.1) has only a zero solution. Hence by Theorem 6.10 of 
Reuter (1957) - which implies that if Eq. (3.1) has only a zero solution then 
there is exactly one process, namely the Feller minimal process qS(2), which 
satisfies (3.9) - we know that ~k(2) must be the Feller minimal process qS(2), i.e. 

(3.10) ~ (2 ) -~(2 ) .  

Thus (3.7) becomes q(2)eH~, or by (7.17) 

(3.11) { ~(2)-~(u)=(a-,~),(,~) ~(a) (2, a>0) 
0__< ~/(2)el. 

Note  that by Lemma 2.2 of Reuter (1959), (3.11) is true if and only if q(2) 
has the form 

~(x)=a~(~)+O(x) (~>o) 

where ~=  lim 2t/(2) and 0(2) is a solution of Eq. (3.1). 
~.--* oo 

Using Lemma 3.1 once again, we obtain 6(2)=0, and so t / ( 2 )=~(2 ) .  Now 
Theorem 7.7 (see (7.34)) and lira 2t/(2)=~ combine to show that ~ is the first 

,~. ---~ cO 

row excluding the first element of CMBP-II  pre-generator Q. So if we let ~ = {c 9 ; 
j >  1} stand for the vector in Definition 2.1, then ~-c~. Hence 

(3.12)  . (,~) = ~ ~;(~). 

Moreover, if ~ c~j< + oo as in (2.9), then it is easy to show that 
j = l  

lim 2t/(2)1= lim 2 c ~ ( 2 ) 1 =  ~, ~j< +oo 
j = l  

which contradicts Theorem 7.7 (see (7.38)). This ends the proof of Theorem 2.1. 
To prove Theorem 2.2 we note that if there is a CMBP-II  then q(2)e/(see 

(3.11)) is just e~(2)e / ( see  (3.12)), i.e. 

(3.13) ~ ~ C~#~jk(2)< +c~ (2>0). 
k = l j = l  

Now it is easy to show by the existence theorem of Feller (1940) that the Feller 
minimal processes r and q5(2) (related to Q* and (~, respectively) have the 
following relations because of the special form of Q* and (~: 

(3.14) 

1/2 if i = j = O  

0 if i=O;j>=l 
r ~ij(~) if i>=l,j>=l 

bo q5~1 (t)/2 if i=> 1,j=O. 
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Thus (3.13) holds true if and only if 

(3.15) ~ ~ ejr +co (2>0). 
k = O j = l  

This ends the necessity part of Theorem 2.2. We shall now prove sufficiency. 
Suppose (2.11) is true. Then by (3.14) we have 

(3.16) ~ ~ ej/~k(2)< +o0 (2>0). 
k = l j = l  

If we define q(2)=aqS(2) where qS(2) is the Feller minimal process related to 
and ~= {~i; j >  1} is the first row of Q excluding the diagonal element, then 

it is easy to show that 

(2) - ~ (u) = ( u -  2) ~ (2) qS (u). 

Combining this result with (3.16) yields 

(3.17) q(2)eH~. 

By Reuter (1962) we know that 

(3.i8) lim 21/(2)= lim 2e~(2)=~. 

By (3.18) and Fatou's lemma we have 

lim inf2q(2)l> ~ lim inf2qj(2)= ~ e j= +oo. 
2---*oo ~,--* oo j=t j=l 

Hence 

(3.19) lim 2q(2) 1 = + oo. 

Note also that ~(2) is the Feller minimal solution related to Q. Following Reuter 
(1962), we therefore have 

] }im 2 1 ~ij(2) =dl (i> 1) 
-=  

where d i is the "deficiency" of Q in its i-th row. Thus 

(3.20) lim 2 1 1 - 2  ~, ~ii(2)]={~ ~ (i=1) 
~-~ j=l (i>2) 

is just the first column (excluding roo ) of the given Q. 
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As expressions (3.17)-(3.20) show that al l  the conditions of Theorem 7.10 
are satisfied, there exists an honest Q-process where Q is just the given CMBP-II 
pre-generator. By the same theorem, this honest Q-process R(2) is constructed 
(using the Feller minimal (~-process ~(2) and ~/(2)= ~ ~(2)) as follows: 

(3.21) roo(2) = [2 + 2q(2) 13-1 

(3.22) R(2)= [00 ~(O)]+roo(2)[l_21~(2)l][1, rl(2)] �9 

It is easy to verify that this honest Q-process R(2)={rij(2); i, j > 0 }  is a 
CMBP-II. The Laplace transform version of (2.4) is 

( 3 . 2 3 )  lim 2(2roo(2 ) -  1 )  = - o o .  
~ - ~ o o  

This follows since, by (3.19), (3.21) and Lemma7.2 (ii), lim 2(2roo(2)-1 ) 
; t  --+ oO 

= lim - 2 t/(2) 1 
~oo 1+t/(2)1 

- - 0% whilst (2.5) is equivalent to 

(3.24) ).rij(2)-6U= ~ rlg(2) qkj (i=>0,j=>l,,~>0). 
k = 0  

The truth of (3.24) may be shown througk the following argument (here Q = (qij) 
is the given CMBP-II pre-generator Q). 

Since ~(2) is the Feller minimal (~-process; ,by Feller (1940) or Reuter (1957) 
it must satisfy the forward equation related (o ~, viz. 

,(3.25) 2~, j (2) - - f i j=  ~ ~ik()L)~lkj ( i> '1 , j>1 ,2>0) .  
k = l  

Moreover, since q (2)= e ~(2), we have by (2.14) of Reuter (1957) that 

(3.26) t / (2)(2I-  Q)= c~.' 

Note that the component form of (3.26) is 

oo 

(3.27) 2qj(,~) = c~j+ ~ ,  ~/k(2) qkj. 
k = l  

Substituting both (3.25) and (3.27) into (3.22) and considering (2.7), then yields 

2rij(2 ) gij= ~ rik(2) qkj (i__>0,j__>l, 2>0),  
k = O  

where Q=(q/j) is the given CMBP-II pre-generator. Thus (3.24) is proved to 
be true. [] 
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Remark 1. In the proof of Theorem 2.2 we note that the existence condition 
(2.11) is equivalent to 

(3.28) ~ ~ aj~jk(2)< +oe (2>0), 
k = l j = l  

due to the form of (3.14). This representation is sometimes easier to use than 
(2.11). 

Remark 2. It is easy to prove the following results by the resolvent equation: 

~>o, ~ i ~ <  +~=~o>0, s ~ ~(~o~ + ~ ,  
k = l j = l  k = l j = l  

~>o, ~ ~ ~ < + ~ o ~ o > O ,  ~ ~ ~ o ~ < + ~  
k = O j = l  k = O j = l  

Thus in the existence conditions (2.11) and (3.28) 2 can be replaced by some 
fixed 2o > 0. 

Proof of Corollary 2.3. Suppose (2.12), or equivalently (2.13), is not true. Then 
there exists to > 0 and io > 0 such that 

~o 
(3.29) }', f~*j(to)= 1, 

j=O 

where F*(t)= {fi*(t); i, j__> 0} denotes the Feller minimal transition function of 
Q*. By L~vy's (1952) dichotomy, we conclude from (3.29) that for this fixed 
i o and all t > 0 

(3.30) ~ fi*j(t) = 1 (Vt >0). 
j=O 

Note that F* (t) = {fi* (t)} is an ordinary branching process without immigration, 
SO 

(3.31) 
oo / co \k 
~, /~( t )  = (  2 f~(t)) (Vk>O, Vt>O). 

j=O \ j = O  / 

Thus, by combining (3.30) and (3.31), we get 

f~(t) = 1, 
j=O 

which on using (3:31) again yields 

AT (t) = 1 
j=O 

(Vk__>O, Vt=>O). 
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Hence 

2 ~ q~'j(2)=l (Vk=O, V2>O). 
j=O 

As ~ a j =  + o% we therefore have 
j = l  

A.Y. Chela and E. Renshaw 

which contradicts the existence condition (2.11). Corollary 2.3 now follows. [] 

4. Feasibility 

In Sect. 3 we proved that there exists a CMBP-II if and only if 

(4.1) ~ ~ ~jqS*k(2)< +00 (s 
k = 0 j = l  

where a = {ai} is the immigration rate satisfying 

(4.2) ~ c~j = + o% 
j = l  

and q~*(2)={~b*(2)} denotes the corresponding CMBP without immigration. 
We have proved that as a direct consequence of (4.1) 

(4.3) 2 ~b* (2)1 < 1 (2 > 0), 

i.e. the corresponding CMBP without immigration is an explosive one. Here 

(4.3) means that 2 ~ q5"(2)< 1 for all ieE except state 0. 
j = 0  

However, until now, we have not shown that there exists a sequence ~ = {a j} 
which can satisfy both (4.1) and (4.2). Indeed, given a CMBP q5"(2) without 
immigration, does there exist a sequence {c~i} which represents the instantaneous 
immigration rates of some CMBP-II whose corresponding CMBP without immi- 
gration is precisely q~*(2)? Let us call this the "feasibility problem". Note that 
this is different from the existence problem, since in the latter the immigration 
rates {aj} are fixed, whilst in the former we are trying to determine the {e j}. 
If we cannot solve the feasibility problem then the existence condition is mean- 
ingless. Fortunately, we have 

Theorem4.1. There exists a sequence {aj} which satisfies both (4.1) and (4.2) 
if and only if (4.3) holds. 



Markov branching processes with instantaneous immigration 22t 

Proof The necessity follows directly from Corollary 2.3, so we need only to 

prove sufficiency. Suppose (4.3) is true. Then if we denote a (0=  ~ f~(t)  where 
j=O  

F*(t)={f~*(t); i, j>0} is the Feller minimal transition function of the CMBP 
without immigration, we have 

(4.4) O<a(t)< 1 (Vt >0). 

On using (3.31), 

(4.5) e -~' * f~(t) dt ~*j(2) = ~ f i i ( t )d t= e -~t 
j = 0  j = 0  0 0 j =  

= e -~' Z f S ( t  d t=  e-Z'(a(tl)kdt. 
0 \ j = O  / 0 

Now, for every fixed t > 0, we have from (4.4) that 

(4.6) (a(t))k~0 (k ~ + o0). 

So by the monotone convergence theorem, we obtain in virtue of (4.5) 

(4.7) lim ~ ~*,(2)=lim ~e-Z'(a(t))kdt= ;e-~ '[ l im(a( t ) )k]dt=O.  
k-+eo k ~ c o  k ~ c o  j = 0  0 0 

Result (4.7), combined with 

(4.8) ~ 4,*j(,~) > q~*k(,~) > o 
j=O 

(Vk>0,V2>0), 

(4.9) 

Let 

shows that there exists an infinite set N o N - {  I, 2, 3 . . . .  } such that 

k~N j=O 

Then 

and 

1 if j e N  
0 if j e N \ N .  

~. aj-- ~ aj--- ~ 1 = + o o  
j =  1 j~N j6N 

k = 0 j = l  "= k 

= Z  ~*k(x <+0o 
jEN k 

(by (4.9)). [] 
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Theorem 4.1 shows that for any given explosive Markov branching process 
without immigration, and only for explosive ones, there exists a Markov branch- 
ing process with instantaneous immigration whose corresponding CMBP with- 
out immigration is the given one. Thus the discussion of Markov branching 
processes with instantaneous immigration is both meaningful and necessary. 
Note that we know when a Markov branching process is explosive, since it 
is easy to check whether (4.3) holds. We may use, for example, the "canonical" 
condition of Harris (1963) or the more recent results of Doney (1984) and Schuh 
(1982) (see next section for details). 

5. Some corollaries 

Although the existence criterion for CMBP-II has been given in Sect. 2, it is 
not easy to apply in certain cases. Let us therefore provide some necessary 
conditions which are more convenient to use. 

Suppose the CMBP-II pre-generator Q is given by (2.1) with 

(5.1) ~ c~j = + oo. 
j = l  

(5.2) 

where 

(5.3) 

Corollary 5.1. I f  there exists a CMBP-II  then 

j = l  

(Vt>0),  

a(t)= )' f~(t)  (Vt>0), 
j=O 

and F* (t)= {fi* (t)} is the transition function of the corresponding branching process 
without immigration. 

Remark. From Corollary 2.3, we know that 

(5.4) a ( t ) < l  (Vt>0). 

Proof of Corollary 5.1. Suppose there exists a CMBP-II. Then by Theorem 2.2 

j = l  k = O  

i.e. 

But 

~=lo~j ~ e -x' t d t< +oo (V}~>O). 
j =  0 \ k  = 0 / 

fj~(t) = A*, (t) =(,~(t))J, 
k = O  k 
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and so 

e -zt  aj(a(t))J 
0 1 

d t <  + oo (v;o>0). 

Thus 

(5.5) aj(a(t))J< + oo (a.e. t>O). 
j = l  

Since it is easy to show that a(t) is nonincreasing, we obtain 

 cg#(t)<+oo (Vt>O). [] 
j = l  

Corollary 5.2. I f  there exists a CMBP- I I  then 

(5.6) ~ c~jsJ< +oo ([s[<l). 
] = 1  

So if we define the immigration generating function as h(s)= ~ ajs j then h(s) 
is welI-definedfor each [sl < 1, whence lim sup (~,)1/, = 1. j= 1 

n ~ o 9  

Proof This result follows directly from Corollary 5.1 and the fact that a(t) ~ 1 
as t ~ 0 .  That lim sup (a,)l/n= 1 then follows from (5.6), the Cauchy-Hadamard 

n -+ ~x3 

formula, and the fact that ~ a j=  + m. [] 
j=l 

Remark. In Remark 3 following Definition 2.2 we pointed out that the immigra- 
tion generating function could not be used straightaway. However, since we 
have now proved that the immigration generating function h(s) is well-defined 
(as long as the CMBP-II exists), we are now justified in using the generating 
function approach to study the CMBP-II. 

Corollary 5.3. I f  there exists a CMBP-1I  then the corresponding C M B P  without 
immigration is explosive, i.e. 

(5.7) ~, f f f  (t) < 1 (Vt > O, V i >  0). 
j = O  

Condition (5.7) is equivalent to each of the following statements 

t ds 
(i) the integral S g(s)---~s converges for each small e>O, i.e. 

1--6 

1 d s  
(5.8) I 

1 - - e  
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in particular, by Harris (1963) we have g'(1)= + oo where g(s) is the generating 
function of the corresponding CMBP without immigration. 

(ii) ~ {nl(n)}-~ < + oo where/(n)= ~ P r ( M > r )  and M denotes the typical 
n = l  r = O  

family size of the corresponding CMBP without immigration. 

(iii) The equation f (2I  - Q) U = 0 has a non-zero solution. 
[ 0 _ < U _ I  

Proof. Result (5.7) is just (2.13) of Corollary 2.3. That (5.7) is equivalent to (i) 
follows from Harris (1963), to (ii) from Doney (1984) and Schuh (1982), and 
to (iii) from Reuter (1959). []  

Corollary 5.4. I f  there exists a CMBP-II  then 

(5.9) ~ ~ " <  + oo. 
n 0 = 1  

In particular, 

(5.10) lim inf (~,) = 0. 

So if l i m a ,  exists then it must be zero. 
n-'~ oo 

Proof From the existence condition (2.11), we have ~ ~ ~b*j(2)< oe. Now from 
j = l  

the well-known inequality pu(t)>= e x p ( - q i  t) we know that 

and so 

~ j ( 2 )  ~_ [ 2  Jc q j ]  --1 = [ 2  - t - j ( -  bt)] - 1,  

(5.11) ~ ~J 
j=l 2 + ( - - b O J  < + ~ "  

It is easy to see that (5.11) is true if and only if 

(5.12) J < + oo. 
J 

Hence (5.9) is proved true, whence (5.10) follows as a direct consequence. []  

Remark. Result (5.10) means there exists an infinite subset K c E  such that 

~ ,<  + ~ .  Thus although ~ c~, is divergent, it cannot diverge " too much". 
neK n = 1 
For example, if V nct, >__ C > 0 (where C is a constant) then there will be no CMBP- 
II. Therefore Williams's (1979) famous "S"  condition holds for CMBP-II,  though, 
as is well known, it need not hold for general uni-instantaneous state Markov 
chains. 
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6. Proof of uniqueness theorem 

In this section we prove the uniqueness criterion reported in Theorem 2.4 under 
the assumption that the existence condition (2.11) holds. 

Proof of Theorem 2.4. We prove (ii) first. Suppose there are two honest CMBP-IIs 
R(2) and R'(2) having the same generator Q. Then by resolvent decomposition 
Theorem 7.7 we must have 

0 1 
~(2)] + roo(2)[~(2)] [1, q(2)], 

Because both R(2) and R'(2) are honest, applying Theorem 7.7 yields (see (7.39) 
and (7.40)): 

( 6 . 3 )  ~ (2 )=1-20(2)1  and r0o(2)=(2+2<q(2), 1)) -1, 

( 6 . 4 )  ~'(2)=1-21p'(2)1 and r;o(2)=(2+2<t/ '(2 ), 1>) -1. 

From the proofs of Theorems 2.1 and 2.2, and considering the fact that 
the decomposition forms of (6.1) and (6.2) are unique, we must have (see (3.10) 
and (3.12)) ~ , (2 ) -~(2) -  0'(2) and I/(2)- c~ ~(2)-= t/'(2). Thus from (6.3) and (6.4) 
we further obtain ~ (2)= ~' (2) and too (2)= r~o (2), and so R (2 ) -R '  (4). Result (ii) 
follows. 

Let us now prove (i). First, for a given CMBP-II pre-generator Q, we see 
by Corollary 7.9 and the remark immediately preceding it that there exist infini- 
tely many such Q-processes each one of which corresponds to a choice of the 
constant C (see the proof of Theorem 7.8). 

Second, it is easy to prove that each of these Q-processes is actually a CMBP- 
II. This proof is the same as the sufficiency part of Theorem 2.2. Indeed, when 
we prove (3.24) we use only (3.25) and (3.27) neither of which depends upon 
"honesty"; i.e. (3.25) and (3.27) are true for each of the above Q-processes. 
Result (i) then follows. 

Remark. Theorem 2.4 shows that uniqueness is true in the sense of honest CMBP- 
II, though there exist infinitely many non-honest CMBP-II. Since we are mostly 
interested in honest processes, the conclusion of Theorem 2.4 is perfectly satisfac- 
tory. We shall discuss further properties involving recurrence, positive-recurrence 
and the use of generating functions for this unique honest CMBP-II in a subse- 
quent paper. 

7. Resolvent decomposition theorem 

This section digresses from the main topic, but it serves to introduce a fundamen- 
tal tool, namely the resolvent decomposition theorem. This theorem is useful 
not only in CMBP-II, but also in general continuous time Markov chains. The 
basic idea of this powerful result, due to J. Neveu, K.L. Chung and D. Williams 
concerns exit and entrance decomposition (see, for example, Williams 1979). 
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Here we shall provide some important  refinements, and a new proof  which 
is analytic and algebraic rather than probabilistic. 

Following Reuter (1957), define a process as a set P(t) = {pij(t)} of real-valued 
functions defined on [0, oo), where i and j range over the countable set E, 
which satisfy the following four conditions: 

(7.1) P(t)=>O; 

(7.2) P(t) l =< 1; 

(7.3) P(t + s) = P(t) P(s); 

(7.4) lim P(t)=P(O)=I.  
t--~O + 

The process P(t) is called honest if (7.2) becomes an equality, i.e. if 

(7".5) P (t) 1 = 1. 

It is well-known (Doob 1945; Kolmogorov 1957 and Kendall 1955) that if P(t) 
is a process then the limit 

(7.6) lim P ( t ) - I _ Q  
t ~ 0  + t 

exists, and that Q = (q~j; i, j eE) satisfies 

(7.7) O<=qij< + oo (i:#j; i, jeE);  

(7.8) -- co <quNO (icE); 

(7.9) ~, qij < --qu (icE). 
j , i  

Q is called the density matrix of P(t) and, conversely, P(t) is called a Q-process 
if its density matrix is Q. We shall let ql denote -qi~. 

Definition 7.1. A matrix Q=(qij) defined on E x E is called a pre-generator if 
(7.7), (7.8) and (7.9) hold. Furthermore,  a state icE is called stable if q~ < + ~ ,  
and instantaneous if q~= + az. If all states are stable then Q is called totally 
stable. 

Definition 7.2. A matrix Q = (qi~) defined on E x E is called a generator if there 
exists a process such that (7.6) holds. 

A generator must therefore be a pre-generator, but the converse is not always 
true. For  a process P(t) denote the resolvent 

(7.10) ~0(2)= ; e-~tP(t)dt. 
0 

Then the following theorem can be proved by using the Hille-Yosida theorem 
(Hille 1948; Yosida 1948). 
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Theorem 7.1. 0(2) is a resolvent if and only if the following four conditions hold 
simultaneously: 

(7.11) 

(7.12) 

(7.13) 

(7.14) 

0 (2) >= 0 (2 > 0) (non-negative condition), 

2 0 (2) 1 < 1 (2 > 0) (norm condition), 

0 ( 2 ) -  ~(#) = ( # -  2) 0(2) 0(#) (2, # >  0) (resolvent equation), 

lim 2 0 (2) = I (standard condition). 

Moreover, (7.5) is true if and only if 

(7.15) 2~(2) 1=1 ;  

whilst the density matrix of P(t) is Q if and only if 

(7.16) lira 2 (2 0 (2 ) -  I) = Q. 
2---~ oo 

Since there is a 1-1 correspondence between the transition function P(t) 
and resolvent ~(2), we shall call ~(2) a process from now on; again following 
Reuter if conditions (7.11)-(7.14) hold. Similarly, we shall call the process 0(2) 
honest if (7.15) holds, and 0(2) a Q-process if (7.16) holds. 

We shall now give some simple lemmas which are extensions of Reuter's 
(1962) result. These results are the Laplace transform versions of exit and 
entrance laws (Chung 1970). 

Suppose 0(2) is a process, i.e. it satisfies conditions (7.11)-(7.14). Let 

(7.17) Hq,= {q(2); 0 < ~/(2)e/, ~ (2)--~/(#) = ( # -  2) q(2) 0(#); 2, # > 0 }  

(7.18) KO= {~(2); 0 < ~(2)< 1, r ~(#) = (# - -  2) 0(2) ~(#); 2, # >  0}. 

Note  that for each 2 >0,  q(2) is a non-negative summable row vector whilst 
(2) is a non-negative bounded column vector on E. Moreover, 

q (2) 0 (#) = q (#) 0 (2) and 0 (2) ~ (#) = 0 (#) ~ (2). 

Lemma 7.2. Suppose 11 (2)eHo. Then 

(i) t / (2)-O (V2>O)cz-q(2o)=O (320>0);  
(ii) t/(2)$O (2T oo); ~/(2) 1 $0 (2T oo); 

(iii) 2t/(2) 1 $ (21" c~). 
1hus lim 2t/(2)1 exists but may be infinite. 

Proof (i) follows directly from Definition (7.17). That t/(2)$ also follows from 
(7.17), together with the non-negativity of t/(2) and ff (2). Hence q(2)1 $. 

Again using (7.17) we have 

(7.19) 1/(2) 1 - I/(#) 1 = [(#-- 2)/#] t I (2) # 0 (g) 1. 

Let # ~ + oe. Then by the dominated convergence theorem we obtain 

t/(2) 1 - lim q (#) 1 = q (2)( lira # 0 (#) 1) = q (2) 1. 
,u --* c:O / L ~ o o  
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Thus 

and so 

This proves (ii). 
By (7.19) we have 

.(2)150 (2T oo) 

.(2)~o (21" ~). 

(7.20) 2 r/(2) 1 - #~/(#) 1 = ( 4 - # )  ~/(2)(1 - #~9 (#) 1). 

Combining (7.20) and the fact that (1 -# r  is non-negative, we have (iii) 
2q(2)1T (2T oo), as required. [] 

Lemma 7.3. Suppose ~ (2) ~Kr Then 

(i) 4(~)--o (v2>o)~,4(2o)=O (32o>O); 
(ii) 4(2)+0 (2T oo); 

(iii) lim 4 (2) = 4 exists and 0 < 4 < 1 ; 
, I  ---+ 0 

(iv) r - r (4) = 2 0 (4) 4. 

Proof. Both (i) and the conclusion that 4 (2) is a decreasing function when 2 ~ oo 
are obvious. Result (iii) therefore follows immediately. We only need to prove 
lim 4 (4) = 0 and (iv). 

) ,  ---~ oO 

By definition (7.18) we have 

(7.21) ~ ( 2 ) -  ~(#)= [(#-4) /2]  ~ 2~k(2) 4k(#). 
k ~ E  

But since 4(2)< 1, we have that V i c e  

~, ---~ oo 

< lim inf ~, 2t/lik(2 ) 4k(#) <= lim sup ~ ,~r 4k(#) 
A ~ ~ k ~ E  2 ~ ~ k ~ E  

< lim 20u(2) 4~(#)+lim sup ~ 2•ik(2 ) 
2 - - - * 0 0  .~ ---~ oo 

k * i  

< ~(#) + lim sup (1 - 2 Ou (2)) = 4~(#). 
2 - ' * 0 0  

Thus lim 
) ,  ---~ oo 

201k(2) ~k(#)= 4i(#). Hence on letting 2 ~ + oo in (7.21), we obtain 
k e E  

lim 4~(2)- 4~(#) = - 4~(#). 
)~ " *  o0 

Thus 

lim ~,(2)=0 (Vi~E) 
2 ~ o o  

o r  

r (~T ~). 
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By letting # ~ 0 in 

(2) - ~ (u) = (u - 2) 0 (2) ~ (u), 

and using the monotone convergence theorem together with conclusion (iii), 
we obtain (iv). []  

Lemma 7.4. Suppose fl(4)eH0, ~(4)eKo. Let 4 =  lim 4(4). 
2 ~ 0  

Then 

(i) (4 - tt) (q (#), ~(4)}=2(r/(4), r  r 
(ii) 4(q(2), 1} and 4(q(4), ~} are increasing functions of 4>0 .  Under the 

additional assumption ~ (4) < 1 - 4 0(4) 1, 
(iii) 4 (r/(2), 1 - ~} is increasing. 

Hence the limits 

lim 4(r/(2),1}, lim 4Q1(2),~} and lim 4 Q / ( 2 ) , 1 - ~ }  

exist but may be infinite. 

Note. Here and elsewhere ( . ,  �9 } denotes the product of a row and a column 
vector, in order to emphasise that the result is scalar. 

Proof (i) follows from the fact that 

= 2 (~ (u), ( /+  ( u -  4) 0 (4)) ~) 
=2<~(~), 
=4(~(#), 

We shall now prove 
1) see Lemma 7.2. That 
just proved in (i), namely 

(see (7.17) and its note) 

4) + (#-4)<n(#), 40(4) 4) 
) + ( u -  2) (n (~), r - ~ (2)) 

> - ( ~ -  4) (~(t0, ~(4)). 

(see Lemma 7.3 (iv)) 

(ii) and (iii). For the increasing property of 2(q(2), 
2(q(2), 4) increases follows from the result we have 

(7.22) 2 (r/(2), ~ ) -- # (r/(#), ~) = (2 -- #) (r/(#), ~ (2)). 

Note  that (7.20) can be re-written as 

(7.23) 2 QI(2), 1 ) - #  (r/(#), 1 ) =  ( 2 - # ) ( ~  (#), 1 - 2 0 ( 2 ) 1 ) .  

By subtracting (7.22) from (7.23) we get 

(7.24) 2 (q(2), 1 -  ~)- -  # (q(#), 1 -  r  = (2-- #) (q(#), 1- -20(2)1--4(2)) .  

The increasing property of 2(q(2), 1 -  4) then follows from (7.24) and the addi- 
tional condition ~(2)< 1 - 2 0 ( 2 ) 1 .  []  

Remark. In proving this lemma we have used the associative and distributive 
laws for the infinite matrix, the permissibility of which needs to be verified 
since they do not hold in general. Verification under our conditions can be 
obtained by using Propositions 1.2 and 1.5 of Kemeny et al. (1966). 
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Lemma 7.5. Suppose 4'(2) is a process and q(2)eH 0. Let 

~~ 1-24 , (2)  1. 

Then 
(i) 4~ and so 4 ~  lira 4~ exists, 

~ 0  

(ii) 2(q(2), 1--4 ~ is independent of 2 and finite, i.e. 2(t/(2), 1 - ~  ~ is a 
finite constant. 

Proof Since 4' (2) is a process it follows that 0 < 1 - 2 4' (2) 1 < 1, i.e. 

(7.25) 0 < 4 ~ (2) < 1. 

Moreover, ~(2) is a process satisfying the resolvent equation (7.13), i.e. 

4, (2) - 4, (#) = ( # -  2) 4, (#) 4, (2). 

Hence 

(1-24 ' (2)  1) - (1  - # 4 ' ( # ) 1 ) =  (#-- 2) 4,(#)(1 - 2~(2) 1), 

o r  

(7.26) 4 ~ (2) - 4 ~ (p) = (#-- 2) 4' (#) 4 ~ (2). 
r 

Combining (7.25) and (7.26) then shows that 

r176 

Now by Lemma 7.3, 4~ enjoys each property of Kq,. In particular 

4~ = lim (1--24,(2) 1) exists and 0=<4~ 
2 ~ 0  

By (7.24), it is easy to see that 2 (t/(2), 1 -  4 ~ is a constant. []  

In order to prove the resolvent decomposition theorem below, we require 
certain inequalities. 

Lemma 7.6. Suppose R(2)= {rij(2); i, j eE}  is a process. Then 

(i) rij(2) rkk(2) >= rik(2) rkj(2) (i, j, keE,  2 > 0), 
(ii) rkk (2) d~(2) > rlk (2) dk (2) (i, k �9 E, 2 > 0) 

where di(2)= 1 - 2  ~ rij(2 ) (icE, 2>0),  and 
j s E  

(iii) rlk (2)_--< rkk (2) (i, k e E, 2 > 0). 

Proof If i=  k or j =  k then (i) is trivial. Otherwise (i) follows from well-known 
properties of transition functions (see, for example, Lemma 11.8 (II) of Chung 
(1967), or (83.13) of Williams (1979)), i.e. 

(7.27) pij(t)>= i pkj(t--s)dFik(s) (iJek, t>0 )  
0 
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and 

t 

(7.28) p,k(t)= ~ Pkk(t--s)dF~a(S ) ( i*k , t>O)  
0 

where F~k(t ) is the conditional distribution of the hitting-time of k. Note that, 
for i4: k, there exists a finite continuous functionf~k(.) on [0, oo) such that 

t 

~ ( 0  = ~ f,~(s) ds. 
0 

(ii) is a corollary of (i). 
By s u m m i n g j e E  in (i) and using (ii), we get (iii). []  

We shall now prove the basic resolvent decomposition theorem. Suppose 
Q={ql j ;  i, j e E }  is a pre-generator defined on E x E  (see Definition 7.1), and 
let b e e  be a singleton state with N = E \ { b } .  Q denotes the restriction of Q 
on N x N. We shall further assume that qb = + Oe since this is the case of interest. 

Theorem 7.7 (resolvent decomposition theorem). Suppose R(2)={ri~(2); i, j e E }  
is a Q-process defined on E x E where E = N u {b} and the generator Q satisfies 

(7.29) qs =- - qbb = + ~ .  

Then R(2) can be uniquely decomposed into 

(7.30) R(2)=[00 O~2)]+rbb(2)[~i2)][1,~(2)] 

where: 

(7.31) 0(2) is a Q-process; 

(7.32) r/(2)eH 0 and ~(2)eKv, ; 

(7.33) 4(2)=< 1 - 2 0 ( 2 )  t; 

(7.34) lira 2q(2)=~ and lim 2~(2)=fl  

where 

= {qbj; jeN} and fl = {q~b ; j e N } ;  

(7.35) r ~  (,0 = (C + ,~ + ,~ <,~ ('0, ~>) -  

where r = lim 4(2) and C is a finite constant such that 
3 , ~ 0  

(7.36) C >  lim 2(q(2), 1 - -4 ) ;  
3 , ~ o o  
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and 

(7.37) 

(7.38) 

l f  R(2) is honest then: 

(7.39) 

(7.40) 

and 

(7.41) 

lim 2(7(2), 4} = + ~ or, equivalently, 

lim 2 (r/(2), 1 } = + oo. 

~(~)= 1-20(2) 1; 
rbb (4) = (4 + 2 (7  ('~), 1 >) -  ~ ; 

C - 2 ( 7 ( 2 ) ,  1--~}, 

A.Y. Chen and E. Renshaw 

i.e. 2 (7(2), 1 -  {) is independent of 2. 

Proof Suppose R(2)= {ri~(2); i, jEE} is a Q-process. Then since rbb(2 ) is strictly 

greater than zero we may let {~(2)= rib(2) rbj(2) Now, if we denote and 7j(2)= rbb(2). 

~(2) = {{~(2); i~N} and 7(2)= {qj(2); j~N}, then we have 

(7.42) 0 < 7 (2) e l (2 > 0) 

and, by (iii) of Lemma 7.6, 

(7.43) 0 < ~ (2) < 1. 

Let r and ~(2)= {r i, j~N, 2>0)}. Then 
(i) of Lemma 7.6 guarantees that 

(7.44) r  

Now R (2) has been written as 

0 1 
(7.45) R(2) =[00 ~ (2)] + rbb(2) [~ (2)] [-1, 7 (2)]. 

Whence on substituting (7.45) into the resolvent equation (see (7.13)) 

(7.46) R (2) -- R (#) = (# -- 2) R (2) R (#), 

we obtain, by some cumbersome but easy algebra, the following four equations: 

(7.47) 

(7.48) 

(7.49) 

(7.50) 

rbb ( 2 ) - -  rbb (#)  = (#  - -  2) r bb (2) r b b (#)  + ( # - - ) 0  rbb (2) rbb (#)  r/(2) ~ (#),  

(~) - -  ~ (~)  = (~  - -  ~) n (~) q' (~), 

4' (~) - -  4' (U) = (~  - -  2) ~, (~) ~ (~). 
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From lim 2R(2)=I ,  we easily obtain lim 4(4)= lim q(2)=0, and so 
~---r oo 2"-* oo ,~ ---~ oo 

(7.51) lim 2~(2)=I. 
2 . ~ o o  

Substituting (7.45) into the norm condition 2R(2)1 < 1 (see (7.12)), yields 

(7.52) 

and 

(7.53) 

2 rbb (2) + 2 rbb (2) q (2) 1 ~ 1 

A ~ (2) 1 + 2 r bb (A) 4 (A) + 2 r b b (4) 4 (2) q (2) 1 ~ 1. 

Whilst on introducing di(2) = 1 - 2 ~, rij(2) (i~ N), db(2) = 1 -- 2 rbb(2)-- 2 rbb(2) q (2) 1 
jeE 

and D(2)--{di(2); ieN}, we see that inequalities (7.52) and (7.53) can be written 
as the equalities 

(7.54) 2 r b b (2) + 2 rbb (4) q (2) 1 +db (2) = 1 

and 

(7.55) 2 r (4) 1 + 2 rbb (2) ~ (2) + 2 rbb (2) 4 (4) r/(2) 1 + D (4) = 1. 

Substituting (7.54) into (7.55), and using (ii) of Lemma 7.6, yields 

(7.56) 4 (4) + 2 ~9 (4) 1 < 1 

and so 

(7.57) 2~(2) 1 < 1. 

Combining (7.44), (7.50), (7.51) and (7.57) shows that ~b(2) is a process on N x N 
(see (7.11)-(7.14)). Whilst (7.32) and (7.33) follow from (7.42), (7.43), (7.48), (7.49) 
and (7.56). 

On substituting (7.45) into the condition lira 2 (2R(2 ) - I )=  Q, we easily get 
(7.34) together with ~-~ o0 

(7.58) lim 2(2~.ki~(2)-- 6~) = q~ (i, jeN). 
2--+ o0 

This shows that if(2) is a Q-process, i.e. the density matrix of ~(2) is just the 
restriction of Q on N • N. 

Since we have proved (7.31)-(7.33), we have by (i) of Lemma 7.4 that 

(7.59) (2 - # )  (t/(2), 4(#)) = 2 (~ (2), 4> - # (q (#), 4>. 

On substituting (7.59) into (7.47), dividing by rbb(2 ) rbb(#)>O , and using (7.59), 
we obtain 

r~-b 1 ( l ' ) -  r~-b 1 (2) = ( ~ -  4 ) -  2 <'1(2), 4> + ~ <~ @, 4>, 
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o r  

(7.60) r/-r ( ~ ) -  ~ -  ~ <'7 @, ~> = r;-r (2 ) -  2 -  2 <'7 (2), r 

Equation (7.60) shows that rb-b1(2) -- 2 -- 2 (t/ (2), 4> is independent of 2, i.e. 
r (bl(2)--2--2(q(2) ,  4> is a finite constant. On denoting this constant by C we 
obtain (7.35). 

Using (7.35), result (7.52) can be re-written as 

C +  2 +  2<r/(2), ~> ~ 2 +2<r/(2), 1>, 

i.e. 

(7.61) C___ 2 (q(2), 1 - 4 > .  

By (iii) of Lemma 7.4 we know that 2(t/(2), 1 - 4 >  is an increasing function 
of 2>0 .  Noting that (7.61) is true for each 2 > 0  for constant C then shows 
that lira 2(t/(2), 1 - 4 >  is finite and 

(7.62) C>  lim 2(~(2), 1 -4> .  

Thus we have now proved (7.36). 
Using result (7.35), the condition lira 2(1--2rbb(2))=qb can be re-written 

a s  

(7.63) lim C+2(q (2 ) ,  4> 

~ -+  1 + <~(2), r 

By (ii) of Lemma 7.2 we know that lim (q(2), 1 )=0 ,  and since 

0 < Ql(2), ~> < Ql(2), 1> 

we see that 

lim (~(2), 4> =0. 
2---~ oo 

Hence (7.63) shows that 

C+ lim 2(t/(2), 4) = % .  

But we have assumed that qb = + oo (see (7.29)) and C is a constant, hence 

(7.64) lim 2(~(2), 4> = + oo. 
2 --+ oo 
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Since we have proved in (7.62) that lira 2(q(2), 1 - 4 >  is finite, (7.64) is true 
2 ---~ oO 

if and only if 

(7.65) lim 2(q(2), 1 ) =  + Go. 

This proves (7.37) and (7.38). 
If R (2) is an honest process, i.e. 2R (2) 1 = 1, then both (7.52) and (7.53) become 

equalities, viz. 

(7.66) 2 rbb (2) + 2 rbb (2) q (2) 1 = 1, 

and 

(7.67) 2 r (2) 1 + 2 rbb (2) ~ (2) + 2 rbb (2) ~ (2) q (2) 1 = 1. 

Substituting (7.66) into (7.67) yields 

(7.68) 2 ~k(2) 1 + ~(2)= 1. 

Thus (7.39) and (7.40) follow from (7.68) and (7.66), respectively, whilst (7.41) 
follows from (7.35) and (7.66). 

The proof of the theorem has now been completed apart from showing 
the uniqueness of the decomposition form (7.30). Suppose there are two forms 
of decomposition 

1 0 1 
R(2)=[~  ~k(02)]+rbb(2)[~(2)l[],t/(2)]=[~ ~(2)]+rbb(2)[~.(2)][1, g/(2)]. 

Then since rbb(2)>0 we see that ~(2)=~'(2) and q(2)=0(2), whence ~k(2)=~(2) 
and so the uniqueness property is true. []  

Theorem 7.7 is particularly useful for determining properties provided we 
know that a process exists. In many cases, however, all we are given is a pre- 
generator Q and we do not know whether a Q-process exists. In such situations 
the following theorem, which can be seen as the converse of Theorem 7.7, plays 
an important role. 

Theorem 7.8. Suppose Q is a given pre-generator defined on E • E where E 
= N w {b}, satisfying 

(7.69) qb - - qbb = + 0e. 

Suppose there exists a Q-process ~(2) and a pair of rl(2) and ~(2) which satisfy 

(7.70) ~/(2)~Hq, and r 

(7.71) ~(2) < 1 - 2 ~k(2) 1, 
(7.72) lim 2q(2)=c~ and lim 2~(2)=/3 
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where ~ = {qbj; J ~ N} and fl = {qjb ; J ~ N}, 

(7.73) lim 2(7(2), 1) = + ~ ,  

and 

(7.74) lim 2Q/(2), l - i ) <  +oo 
,g--+ oo 
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(7.75) 

and then let 

(7.76) 

and 

C>__ lim 2(r/(2), l - i ) ,  
) ,  --~ ct3 

r~(2)=(C+2+2(,7(& i>) -~ (2>0) 

Thus by (7.75) we have 

whence 

(7.77) R(2)=[00 @ (0~)] + rbb (2) [~ (1;L)] [-1, q (2)] (2>0) 

where ~(2), ~(2) and q(2) are taken from the ones given by the conditions. 
Condition (7.74) guarantees that we can choose a constant C to satisfy (7.75), 
and so (7.76) and (7.77) are well-defined for each 2 > 0. 

We shall prove that R(2) defined in (7.77) is a Q-process. First it is easy 
to show that 

(7.78) R(2) __> 0. 

Second, by conditions (7.70), (7.71) and Lemma 7.4, we know that 

2 0/(2), 1 -  ~> T(2-+ oo). 

c__>2<,7(2), 1-~> (v2>o), 

C + A + 2 QI(2), ~> ~ 2 + 2 <7(2), 1). 

Comparing this result with (7.76) we see that 

rbb (2) < (2 + 2 (rl (2), 1))- *, 

where 4=  lim I(2). Then Q is a generator (see Definition 2.2), i.e. there exists 
~-'*0 

a Q-process. 

Note. In the above theorem (~ denotes the restriction of Q on N x N. 

Proof. To construct a Q-process suppose that all the required conditions are 
satisfied. We first choose a constant C such that 
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o r  

(7.79) 2r~b(2) + 2r~(2) I/(2) 1 _< 1. 

Condition (7.71), together with (7.79), shows that 

(7.80) 2R(2) 1 < 1. 

Third, Lemma 7.4 (i) and (7.76) shows that 

r~ b (2) -- rb v (#) = (# -- 2) rb b (2) r~v (#) + (#-- 2) r b ~ (2) r bb (#) q (2) ff (#). 

This result, together with condition (7.70) and the condition that $(2) is a process, 
yields the following three equations 

(2) - r (~) = ( ~ -  2) 4, (2) r (~), 
(~) - .  (~) = (~ - 2 ) .  (2) r (u), 

(~) - ~ (~) = ( ~ -  ~) ~ (~) ~ (~). 

A little algebra then shows that R(2) (defined in (7.77)) satisfies 

(7.81) R (2)-- R (#) = (#--  2) R (2) R (/2). 

Fourth, by (ii) of Lemma 7.2, (iii) of Lemma 7.3, and condition (7.70) we 
have lim q ( 2 ) l = 0  and lim QI()0, ~)=0~ and so 

) . ~ o o  2-->oo 

(7.82) lim 2rbb(2)= lira [ (C/2)+  1 + (t/(2), ~ } 3 - ~ =  1 
J . ~ o o  ). ---~ oo 

and 

(7.83) lira rbb(2 ) = O. 
A ~ o O  

On using these results together with condition (7.72) we obtain 

(7.84) 

(7.85) 

(7.86) 

(7.87) 

(7.88) 

lim ~rbj(,~)= lim rbb(2 ) lim 2~/j(2)=0 x qbj----0 (jeN), 
,~, --+ oo 2 ~ o o  2---~ oo 

lim 2r~b(2)= lim rbb(2 ) lim 2~j(2)=0 x q jb=0 (]eN), 
A - * o O  9t--+ oO ~. --* r 

lira 22rbj(2)= lira 2rbb(~ ) lim 2~/j(2)=1 x qbj=qbj (jeN), 
2--*o0 & --+ co 2--+ oo 

lira A2r/b(,~)= lim 2rbb(2 ) lim 2~i(2)=1 • qjb=qyb (j~N), 
A'-* cO A--+ oO ~ t ~ o o  

lim Arfj(2) = lim (25~j(2) + 2 ~i(2) rbV(2) ~/j(~)) = lim 2r 
~.--* cO ~.-+ cO A - * c O  

= 3ij (i, jeN) ,  
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and 

(7.89) lira 2(2r~j(2)-61j)= lim 2(2~pij(2)-fi j)+ lim 2r rbb(2 )2q j(2) 
~--* 00 , ~ 0 0  2 - - + 0 0  

= qi j  + (qib X 0 • qbj) = q i j  (i, j~ N). 

We know on combining (7.73) with (7.74) that 

S o  

(7.90) 

lim 2(~(2), r  = + o o .  
) , ~ 0 0  

c+2<~(2),~> 
lira 2(1--2rbb(2))= lim 

,~ --> 00 ~. -* 00 C 
~--~- 1 + (~(2), r 

- l i r a  2 ( ~ ( 2 ) , r  + o e .  
~ . ~ 0 0  

Thus (7.82), (7.84), (7.85) and (7.88) together show that 

(7.91) lira 2R(2) =I ,  
,~ --r 00 

whilst (7.86)(7.90) together show that 

(7.92) lim 2(2R(2)- - I )=  Q. 
& ~ 0 0  

Now (7.78), (7.80), (7.81), (7.91) and (7.92) show that R(2), as constructed in 
(7.77), is a process and its density matrix is the given Q (see (7.11)-(7.14) and 
(7.16)). Thus R(2) is a Q-process. [] 

Remark. Note that in proving Theorem 7.8 we found that the base from which 
we construct the Q-process is to choose a constant C such that (7.75) holds. 
Apparently, there are infinitely many ways to choose such a constant C, and 
different choices of C lead to different Q-processes (at least rbb(~. ) is different 
because of (7.76)). We therefore have the following corollary. 

Corollary 7.9. I f  all the conditions of Theorem 7.8 hold, then there exist infinitely 
many Q-processes. 

The Q-process constructed in Theorem 7.8 may not be an honest one. How- 
ever, in many applications we are only interested in honest processes, and for 
these we have the following theorem. 

Theorem 7.10. Suppose Q is a given pre-generator defined on E x E where E 
= N u { b }  and satisfies qb = - - - q b b  = + 0 ( 3 .  I f  there exists a Q-process ~k(2) and 
a row-vector ~ (2) (2 > 0) which satisfy 

(7.93) 

(7.94) 

(7.95) 

q(2)eHr 

lira 2 ~ ( 2 ) = .  where c~=(qbj;j~N), 
~ 0 0  

lim 2 ( 1 - 2 0 ( 2 ) 1 ) =  fi where f l=(qjb;j~N),  
.~ --~ 00 
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and 

(7.96) l im 2~/(2) 1 = + 0% 
~.--* co 

then there exists an honest Q-process. 

Proof Let 40(2)= 1 - 2 ~ ( 2 ) 1 .  Then by Lemma 7.5 we know that 4~ and 
2(q(2), 1 -  4 ~ is a finite constant, say C. In other words, if we let 

(7.97) 

(7.98) 

C = 2  Q/(2), 1 - 4  ~ where 4~  lim 4~ lim ( 1 - 2 5 ( 2 )  1), 
2--*0  2 ~ 0  

rbb(2)=(C + ~ +'~<~(~), 4>) -~ = (i  +'~ <~('~), 1>) -1, 

and 

(7.99) R(2)=[00 $(02)]+ rbb(2)[1-  215(2)1] [1, ~(2)], 

then R(2), rbb(2 ) and C are all well-defined. 
Now the proof  of Theorem 7.8 works well since 4 ~ (2)= 1 - 2  ~ (2)1 is a special 

case of general 4(2). Hence R(2) constructed in (7.99) is a Q-process. 
In order to complete our proof  we need to show that R(2) constructed 

in (7.99) is honest. This follows since we know that R (2) is honest if and only 
if the following two conditions hold: 

(7.100) 

(7.101) 

2 rbb (2) + 2 rbb (2) ~ (2) 1 = 1, 

r176 +,~,(,~) 1 = 1. 

Now (7.100) is equivalent to (7.98), whilst (7.101) is just the equality 40(2)= 1 
- 2  ~k (2)1. This completes the proof. [] 
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