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Summary. To extend the traditional Fourier theory of stationary processes, some 
new boundedness notions, for processes and for random measures, are intro- 
duced. This leads, for these processes and measures, to Plancherel and Hausdorff- 
Young type formulae and to a decomposition theory via dilations and multipli- 
cations. Various applications of our methods are also presented. 

1 Introduction 

The object of this work is to present some advances in the representation of 
stochastic processes as Fourier integrals. These advances provide a Plancherel 
and Hausdorff-Young theory for stochastic processes and random measures 
and, in particular, a framework in which to develop a Fourier theory for the 
ubiquitous white noise model. Several applications of these methods, when com- 
bined with a dilation theory, are also presented. Among others, existence results 
for linear stochastic differential equations. 

The use of Fourier techniques to study linear problems in stochastic processes 
is hardly recent. It goes back to Slutsky IS] and Cram6r [C] who obtained 
Fourier integral representations for (weakly) stationary processes and extends 
to Phillips (l-Ph] and Kluvfinek [K] who characterized processes as Fourier 
transforms of vector measures. Common assumptions made to derive these rep- 
resentations are the (norm) continuity of the process, the o--additivity of the 
representing measure or the orthogonality of its increments. These assumptions 
are severe and for basic classes of processes, cannot be satisfied. Moreover, 
these developments do not recover classical scalar results such as, for example, 
the L2-Fourier theory. 

In the work below, we relax these various assumptions. In particular, we 
develop a "stochastic" Fourier theory in which expressions such as ~ eitedW~, 

R +  

where W is the Wiener process on IR +, make senses. With this approach, we 
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also study some linear problems for the corresponding stochastic processes and 
random measures. 

We now come to a brief description of the contents of this paper. In the 
forthcoming section, we set the stage with some definitions and examples, and 
also obtain a basic representation theorem. In the third section we relax the 
convergence assumptions and develop a summability theory for processes and 
random measures. Via finitely additive vector measures, we obtain in Sect. 4, 
a "stochastic" Plancherel and Hausdorff-Young theories. Our fifth section ana- 
lyzes the relationships between "correlated and uncorrelated" stochastic mea- 
sures, and it is shown that the later can be decomposed in terms of dilations 
and multiplications of the former. The last section is devoted to some applica- 
tions of the previous sections. First to obtain a decomposition of random mea- 
sures into continuous and discrete parts, then to give existence results for autono- 
mous linear stochastic differential equations. Most of our results have been 
announced in [H2], while some of the discrete time versions are in [H 1]. 

2 Preliminary results 

Let (f2, N,~)  be a probability space and for 1<c~_<2, let H(g?, N, N) ((L~(N) 
for short) be the space of random variables with finite eta-moment. On L~(N), 
the norm is denoted by [1"11~ and for Y and Z in L~(~), the covariation of 
Y and Z is (Y, Z)~ = g YZ  <~- ~ ~, where Z <~> = [ZI ~- ~ Z and where g is the expec- 
tation. For  1 </3 < + 0% L ~ (IR) is the usual Lebesgue space with associated norm 
ll'llp- We also denote by Co(N) (resp. C~(IR)) the space of continuous functions 
vanishing at infinity (resp. with compact support) and the uniform norm by 
LI" II ~. Finally, for 1 = f l< + co, L~(IR) ~ is the space of functions f e U  (N_) such 
that f ( t ) =  ~ eit~f(~)d~eLB(lR), while for f l= +0% we set L~(IR)~=LI(IR), since 

R 

in this case f e  Co (~). A last notation, throughout  this work K denotes a generic 
absolute constant whose value might change from an expression to another. 

Let NOR) be the Borel a-ring of P, and let No(P-) be the 6-ring of elements 
of NOR) which are bounded. A random measure is a finitely additive set function 
#: No(N)--+L~ where L~ is the vector space of random variables. If ZA 
denotes the indicator function of the set A, we now introduce a concept originat- 
ing in Bochner [B1], [B2]. 

Definition 2.1. A random measure # has finite (e, fl)-variation whenever 

where 
[l#[[ = sup {H/~ll (A), A~No(IR)} < +0% 

N #(Ai)~ II#ll(A)-=sup ~ ai : {Ai}cN0(IR) 
/ = 1  

aiE(F', ~ ai } finite partition of A, ~= 1 7,~ , < I . 

The definition of (c~, fl)-boundedness makes implicit use of the Lebesgue mea- 
sure, this is somehow superfluous. Most of our results continue to hold if we 
replace La0R) by La(2) where 2 is a a-finite regular Borel measure on some 
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locally compact Hausdorff  space, replacing also ~ 0 ( ~ )  by the corresponding 
b-ring of sets with finite 2 measure. Generally, L~(~) can also be replaced by 
an arbitrary Banach space. To be consistent with the results of Section 4 and 
for probabilistic considerations (in which instance the case a > 2 is of little inter- 
est, furthermore included in L 2 (~)) we will however keep, with a few exceptions 
(mainly examples), our "restricted" framework. 

For fl = + 0% Definition 2.1 reduces to the usual definition of semi- (or Fr~- 
chet) variation, but for 1 < 13 < + ~ ,  it differs from the definition of fl-variation 
(see [Di]), in that it involves 13 and not its conjugate exponent. It is assumed 
in the (~, 13)-boundedness requirement that #(A)~L'(~), hence if # has finite 
(a, 13)-variation it also has finite (7, 13)-variation, y < c~. Typically,/t is only finitely 
additive, and in fact, if # is o--additive on ~(11), then it has finite (e, oe)-variation 
(see [DS, IV.10]). 

The following properties of the (a, fl)-variation are now easy to verify. 

II~(A)PI~ ~ II~ll (A)~ II~]l, A ~ ' o  OR). 
JJt~tJ(A)<II#II(B), A~B~o(IR) .  

[[#[[(A ~ B)< [II~I[(A)+ Hp[I(B), A,B~o(IR). 

Even for A and B are disjoints, the last inequality is usually strict and II~PI (') 
is additive if and only if 

lj/~ll (A) = sup Ilai/~(A;)ll~: ai ZA, I t 
k-i= 1 i 

for each A ~ ~0 (IR). 
The integration with respect to # can now be defined as follows: for a simple 

function 
N 

f : ~ f f ~ ,  f =  ~ aigA~, Aie~o(rk~), 
i = 1  

as usual, the integral ( o f f  with respect to #) is 

N 

(2.1) ~ f d#= Z ai #(Ai). 
~- i = 1  

If/~ has finite (a, fl)-variation, then 

(2.2) II ~ f d#  I1~< JIp]l (A)II f lie, 

N 

where A =  ~) Ai. Since II~ll (A)< [I~IP, and by the density of the simple functions 
i = 1  

in LafH1) l < f l <  +0% (resp. in CoOR)), the integral can be extended to Le(~) 
((resp. to CorN)), this is done so, and integration with respect to g is always 
taken in that sense. On ~(/R), and for a-additive #, the above integral is the 
Bartle-Dunford and Schwartz integral [DS, IV.10], while for dp(t)=t~(t)dt, it 
is just the strong, i.e., the Bochner, integral. 
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Our first result identifying random measures with operators, is certainly 
known. For (e, oo)-bounded measures and in a more general framework, it is 
in [DS], [P] and [K], replacing of course LP(N) below, by Co(N). For the 
sake of completeness, a sketch of proof in the case 13 < + oo is included. Let 
us say that a random measure # is regular if for every A ~ o 0 R )  and ~>0 
there exist O open eNo(N) and C compact e&o0R) such that C m A c O  and 
[] I.t(B)II ~ < e, for every B c O\C.  

Theorem 2.2. Let ~ be a dense linear subspace of La(]R), l < f l <  +oo, and let 
T: @--* L ~ (~) be a linear mapping such that there exists a constant K > 0 with 

(2.3) II T f  il ~ N K [I f l] p, 

for all f ~ .  Then, there exists a unique regular random measure # with finite 
(c~, /?)-variation such that 

(2.4) T f  = S f dl~ 
N. 

for all f ~ .  Moreover, if there exists a random measure # with finite (~, fl)- 
variation such that (2.4) holds, then (2.3) is also satisfied. In either case, 11T [I = I]Y[]. 

Proof From Definition 2.1, the "if" part is immediate. For the converse, since 
is dense in LP0R), T can be extended to all of LP(IR) without change of 

norm. We do extend it that way and still denote the extension by T. Now, 
if we set #(A)= T()~), A~o( IR) ,  then kt is well defined, additive, and has finite 
(e, /?)-variation. Finally, the regularity of the random measure # follows from 
the regularity of the Lebesgue measure, and the equality of the norms is also 
clear. [] 

Remark 2.3. As already mentioned, it is well known, that every o--additive # 
on &(N.) has finite (e, oo)-variation ([DS, IV.10]), and furthermore that there 
exist finitely additive (cq oo)-bounded measures on No(N) which are not a-addi- 
tive on &(N), e.g., a Hahn-Banach extension of a Dirac measure. However, 
when given via an operator T: ~ c  Co(N)~L~(N) and since L~(~), 1_<c~<2, 
is weakly complete the corresponding/~ is o--additive on NOR ) (see [DS, VI.7] 
for the compact case, which can be modified to give the result for Co(N)). 
Since all the (ct, oo)-bounded measures appearing in this work are given by, 
obtained from, or extended to bounded linear operators from Co(N) to U(~), 
we identify throughout the (e, oo)-bounded case with the o--additive one, i.e., 
with the bounded linear operator from Co(N ) to L~(N) case. 

Remark 2.4. In Theorem 2.2, L~(~) can be replaced by a Banach space B as 
long as (2.3) is replaced by the relative weak compactness of B of the set 
S=  {T(f) :  [If li~ < 1, f ~ } .  As in [K], for B weakly complete, S is relatively 
weakly compact whenever T: ~ --, B, is linear and bounded. 

From the above result, it is clear that the set of (e, fl)-bounded measures 
# from a Banach space under the norm [IPii. It is denoted by J~ ' r  

To complete this introductory section, we provide a few examples which 
illustrates the scope of our method. First, a stochastic measure # is called orthog- 
onaIly scattered if (y(A),  f t ( B ) ) 2 = 0  , whenever A, BeNo(N), A c~B=r As well 
known, # is orthogonally scattered if and only if there exists a finitely additive 
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positive function m on ~o(N) such that (#(A), #(B)) 2 = m ( A  n B). For 1 _<e <2, 
a similar r61e is played by the isotropic independently scattered symmetric a-stable 
(SeS) (in short, independently scattered SeS) random measures, namely, for 
each AsNo(~) ,  y(A) is an isotropic S eS  random variable such that for any 
pairwise disjoint { A I , A 2  . . . . .  A,}c~o(lR),  the random variables #(AO, 
#(As), ..., #(A,) are independent. If # is independently scattered and SeS, there 
also exists a positive finitely additive m such that [# (A) , I t (B ) ] ,=m(AnB) ,  
A, Be~o(IR), where [ . , ' ] ,  is the covariation of the corresponding random vari- 
ables (see Weron [W] and Cambanis [C] for more details on the properties 
of S e S  processes and measures used here). Furthermore, for any 1 < 7 < e, [y(A), 
#(B)]~=K(#(A) ,  #(B))~, A, B ~ o O R  ), where K depends only on c~ and 7- With 
these notations, we now characterize the independently scattered SaS  (resp. 
orthogonally scattered) elements of U/g ~'p (resp. ~2,p). Our proof is similar to 
the discrete time case (see [H1]) and so only sketched. 

Proposition 2.5. Let ~ < fi < + ~ (resp. 2 < fl < + ~) ,  and let l~ be an independently 
scattered S~S (resp. orthogonally scattered) random measure # with control mea- 
sure m. Then, # is (7, fl)-bounded, 1 < 7 < e ,  (resp. (2, fl)-bounded) if and only 
d m = m d t, m ~ L ~/p - ~ (~)  (resp. m ~ L ply- 2 (~)). 

Proof We first treat the case 1 _<~ <2. Let # have the stated properties, with 
d m = m d t ,  m~L~/P-"OR). Then, stability and H61der's inequality give #~J//~'~. 
Conversely, if # is independently scattered Se S  and in ~ ' ~ ,  then for f 

N 

= Z ai g~t,, Ai~No(N.) (and more generally for anyfeL~(N)), 
i= l  

Ir I f d rl,=g( I Ifl~dm)a/'<= II~ll K(  ~ [fJP dt) ~/~, 
R R R 

hence d m = m d t ,  with m > 0  and locally in L1 (IR). Now as in [H1], in the above 

inequality we take f=ml/~-~Z]_, , ,[  , e</~, get mP/P-~dt) <K ,  and 
g 

monotone convergence gives the result. The case e =/~ can again be obtained 
essentially as in [H1], while for ct=2 the techniques are identical, replacing 
independence by orthogonality. [] 

For/~ = + oe, comparable arguments easily show that #~Jg~' o~ (resp. ~ 2 ,  ~o) 
if and only if m defines a positive bounded linear functional Cc(~ ) which is 
uniquely extended to Co(JR), i.e., m is a positive finite measure on ~(IR). Replac- 
ing, in the definition of variation, the Lebesgue measure by some o--finite 2, 
we similarly get, for independently scattered #, dm=(dm/d2)d2 ,  with 
dm/d2EIfl/P-'(2), this case corresponds, for example, to infinitely divisible ran- 
dom measures with control measure 2. As in [H1], for l < / ~ < e ,  the only Se S  
independently scattered element of J/L ~' p is the zero random measure and similar- 
ly for c~ = 2. 

The archetype of orthogonally scattered random measure is the white measure 
(or noise) W, i.e., for each A ~ o 0 R ) ,  W(A) is a zero mean Gaussian random 
variable and (W(A) ,  W(B)) 2 = ]A c~ Br where IA c~ B I denotes the Lebesgue mea- 
sure of A c~ B. Then W has finite (2, 2)-variation, in fact finite (e, 2)-variation 
1 < ~ < + oe. For 1 < e <  2, we have the corresponding a-white measure V, i.e., 
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Vis SeS independently scattered with IV(A), V(B)]~ = ]A c~ B1. Moreover, V (and 
similarly W) is stationarily scattered, i.e., for any t e n  and any 
A1, A2 . . . . .  A, eNo(IR ), the law of {V(A~+t), V(A2+t), ..., V(A,+t)} does not 
depend on t, where A + t = { a + t, ae A]. 

Two last properties worth mentioning: Firstly if # is absolutely continuous, 
i.e., #(A)=~#( t )d t ,  with #(-)~LI(N, c0 (the Lebesgue-Bochner space of 

A 

L " (N)-valued integrable functions), then by H61der's inequality,/~ e ~/g"' ~ whenev- 
er I,~L~/O-~([l, a). Secondly, i f /~eJg" '~ and if Q is a bounded linear operator 
on L"(N) then v = Q #  defined by v(A)=Q#(A), Ae~o(~) ,  is also and element 
of ~ '  ~ furthermore Q commutes with the integral. 

3 Processes as Fourier integrals 

Unless the measure #: No(N,)~ L ~ (~) has finite (cq oo)-variation, the exponen- 
tials are not /~-integrable, and expressions such as ~ e~tCdl~(~) do not make 

sense. To bypass this handicap, we need to extend our definition of the Fourier 
integral. A first natural step in that direction is to use summability methods 
and such is done below. Throughout this work we assume that a process X 
is a function X: IR ~ L ~ (~). 

Definition 3.1. A bounded (with respect to the L'(~)-norm) process X is (~, fl)- 
bounded if X is strongly measurable and if there exists a constant K > 0 such 
that 

(3.1) 11 ~. f(t)  Xt d t[l~ < K LI f IJ~, 
N. 

for all feLP(lR) v. 
In (3.1), ~ f ( t ) X t d t  is a well defined Bochner integral since HXtLI~<__K. The 

~R 

above notion of boundedness has been introduced, for discrete time processes 
and for e=2 ,  in [H1 l, and is directly inspired by Bochner's V-boundedness, 
i.e., the case f l=  + oo. If U(~)  is replaced by a Banach space B and for X 
such that IIXtll B-<-K, the definition of (e, fl)-boundedness can be translated into: 
the B-valued function X is strongly measurable and the set {[I ~ f(t)Xtdt]l~: 

H fll~ < 1, fege(P-) v} is relatively weakly compact in B. When B is weakly com- 
plete, this last requirement is equivalent to (3.1). 

We now present some examples of processes satisfying (3.1). First, it is clear 
that if Y= {Yt}t~ is a continuous second order stationary process or a harmoniz- 
able stable (of order a) process, it does satisfy (3.1) with fl = + oo. Hence for 
Xt=QYt, t eN,  where Q is a bounded linear operator on L2(~) (when Y is 
stationary) or on U (~), 1 < 7 < a, (when Y is stable harmonizable), we have: 

I[ ~ f(t)Xtdtlly<=llQi[ H ~ f(t)  Ytdt j l~KNfl ioo,  l ~ y < ~ ,  
N 
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and similarly for e = 2. Less immediate examples are ARMA processes or solu- 
tions to linear autonomous stochastic differential equations (see [H1] or Sect. 6). 
For a more atypical example, let a => 2 and let X be a discrete time L~-bounded 

N 

martingale difference process. For any P(t)-~ ~ Pje in~~ Burkholder's square in- 
j = l  

equality as well as Minkowski's inequality give 

j =  1 a j =  1 2 a/2 

N 2 I e/2 ~K{j~=I'P]I2]IXnjlI~/2; 
=<g sup HX.jrl~ IPjl 2 

=K { ~  IP(t)[2dt} ~/2. 

Hence, X is (a, 2)-bounded. 
We are now ready to characterize (a, fl)-bounded processes as Fourier inte- 

grals. 

Theorem 3.2. A bounded process X is strongly continuous and (~, fl)-bounded if 
and only if there exists a (unique) regular random measure # of finite (a, fi)- 
variation such that 

(3.2) Xt= lim [ (1-'-~!le~tCd#(~), 
2~+oo -2 

in U(~), uniformly on compact subsets of IR. 
Proof Let X be strongly continuous and (~, fl)-bounded and let La(N)= {f: 
f ~ L  1 (IR)}. Then, by the uniqueness of the Fourier transform, the mapping T: 
L 1 (~)c~ LP0R)~U(~) such that r ( f )=  ~ f(t)Xt dt is well defined and also lin- 

R 

ear. Since X is (~, fl)-bounded, T is bounded on LI(N)c~LP(IR) which is dense 
in L~(~). Hence by Theorem 2.2, there exists a unique regular random measure 
# of finite (~, fl)-variation such that 

(3.3) [. f ( t )Xtdt= [. f(t)d#(t), fsLPOR)L 
1t  N_ 

Let 

Kz(t)= ~ [" I~1~ -it~--~ o/sin2t/2\ 2 

be the Fej6r kernel, and let g 2 ( Q = ( 1 - ~ )  ;q-a,~t(Q be its Fourier transform. 

By (3.3), and since K2eI2OR), g2eL~(lR), 

(3.4, ~Ka(t--~)X~dz= ~ ( 1 - ~ )  eltCd#(~). 
- 2  
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Now, using (3.4) and since Kx is an approximate identity, 

<=sup]lX,-Xt-d]~ ~ [Kz(z)]dz+2supHXd]~ ~ [K~(z)[d'c 
I z l -  -<~ I~l_-<~ ~ I r l>~  

< sup ]IX,-X,-.II~+K ~ Igz(~)ld'c. 

The norm continuity of X on the compact set t xl < 6 gives lim sup IlX~-X,-~II~ 
~ 0  i,i <,5 

=0 and since again K~ is an approximate identity, lim ~ IK~(z)ldr 

=0. For the converse, X is the uniform limit of the continuous X~" 

i ( 1 - ~ ]  eitCd#(r hence is (norm)continuous. Let f~La(NO ~ have compact 
- 2  

support, then by the uniform convergence on compacts, we have ~ f(t)X~ dt 

= lira ~f(t)X~dtinU(N).But,  ~f(t)X2dt= ~ l -  (~)d#(~),with# 
.,1.~ + m N. N --~ 

of finite (a, fl)-variation, and since ga (~)< l  we get I]~f(t)S, dtll~ 
N 

If(r For an arbitrary fEff0R)L the functions f , ( t ) = ( l - ~ )  <11#11(~ 
N 

"Zl-, nt(t)f(t) have compact support, converge to f in DOR), with moreover 
lim 'l)f-f~ I1 a = 0. Hence, 

n'-* + ~ 

I1 ~ f(t)Xtdtll~ < H ~ (f-f~)(t)X, dt]l~+ tl f.(t)Xtdtl]~ 
rR 

=sup IIX, l[~ ~ [f(t)--f~(t)Idt+ [l#ll (~ If~(t)l~dt) u~, 
]R R N. 

from which the result easily follows. [] 

For fl= + o~, i.e., replacing La(~) by Co(R), Theorem 3.2 is due, in a more 
general framework, to Phillips and Kluv~nek. When X is (e, ~)-bounded, equi- 
valently, when/~ is a-additive (see Remark 2.3), the exponentials are/Mntegrable 

and Xt=~eitCd#(~)= lim i (1-~,l)eitCd#(~), by dominated convergence 

[DS, IV.10]. Theorem 3.2 continue to hold when X is B-valued as long as 
we replace our boundedness conditions by the equivalent, and now familiar, 
compactness conditions. Except for being an approximate identity, no particular 
property of the Fej6r kernel has been used in the proof of Theorem 3.2. Hence, 
in (3.2) the Fej6r kernel can be replaced by any approximate identity. 
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.~/ l?lx 
A processXisca l l ed  Ces6roharmon i zab le i fX t=  lira / [ 1 - ~ ] e i t r  

2 ~ + o o  - - 2  

for some Sc~S independently scattered random measure ~ (orthogonally scatter- 
edd p for c~--2). With this definition as well as Proposition 2.5 and its notations, 
we have: 

Corollary 3.3. For ct < fl < + ~(resp.  2 < f i <  + oo), a strongly continuous Cesdro 
harmonizable process is (% fl)-bounded (resp. (2, fl)-bounded) if  and only if  
d m = m d t, m ~ L 1 (~ )  ~ L a/a- ~ OR) (resp. L alp - 2 (~)). 

Proof. In view of Proposition 2.5, only the additional requirement meLt( lR)  
needs some justification. Since the process X is a strongly continuous S~S  pro- 
cess or since/~ is a Sc~S random measure, we must have 

is [ 1--  eited#(~) e - l S l  ~ i 1-- ~m(~)d~ ~e  isxt~- l i m e - ~  ~ = lim _~ 
2 ~ + c o  2 - - + + o 0  

--Js] ~ ~ rn(~)d~ 

where the last equality follows from Fatou's 1emma and since 

- N  ~ s ' - ~ r  ~ / d r  - j s lo  s~d~  
e -~  ~---~ R . 

In other words, reeL 1 (N) (of course, the process X is not identically zero). []  

The case fl = + oo is trivial: a strongly continuous Cesfiro harmonizable pro- 
cess is always (7, oo)-bounded ((2, oo)-bounded when c~ = 2) since the control mea- 
sure m is finite. The measure # and the process X are dual of one another, 
and # can be recovered from X (see Theorem 4.3 for a more general result). 

Although Theorem 3.2 allows us to extend the definition of the Fourier 
transform beyond Bochner's V-bounded class, it retains some disadvantages. 
Very apparent disadvantages are the L~-boundedness and the continuity require- 
ments. These can be partially removed as shown by the following result, which 
for fl = + oo is due to Phillips and which clearly is not a characterization. First, 
a process X is said to be essentially bounded if tlX, II=<K, for almost all t 
(Lebesgue). 

Theorem 3.4. Let  X be essentially bounded, strongly measurable and (~, fl)- 
bounded, then there a (unique) regular random measure # of  f ini te (~, fl)-variation 
such that for  almost all t (Leb.) 

(3.5) 
- 2  

in L~ (#). 



176 C. Houdr6 

Proof. Let X be strongly measurable and (a, fl)-boundcd. Then, as in the proof 
of Theorem 3.2, we have ~ f(t)Xt dt= ~ f(t)d#(t), for all feLaOR)L Hence, 

R N_ 

(3.6) 
- ,~  N. 

To prove the result, we need to show that for almost all t, the right hand 
side of (3.6) converges to zero. Since K~(r)<K/2r 2 and since IIX, II~<K for 
almost all t, it follows that II ~ Kz(r) (Xt-X~_~)dz IL~ is dominated by 

N. 

1r1<=~- 3/4 M > Z - 3 / 4  

< II ~ K,~('c)(Xt-Xt_~)d'c[[~,+RK ~ 1/2z2dz 
I,g I ~ ~, - 3/4 I~1 > X 3/4 

= L] ~ g x ( ~ ) ( X ~ - X ~ - O d ' c l l ~ + 4 K 2  -~/4 
I v [ < 2 - 3 / 4  

To prove the result, it is thus enough that, in the above expression, the first 
term converges to zero as 2 becomes infinite. It is clear that except at the 
origin, Kx is absolutely continuous. By integrating by parts and since X is 
essentially bounded we get: 

I ~ l < Z - 3 / 4  

+ ~ ( i  []X,--X,-,,]L=du) K'~('c)dz 
Ivl~z-3/4 

<= 4 K 2-  3/4 Kz (2- 3/4) + 4 K 2-  3/4 Kx (2- 3/4). 

Finally, 2-3/4K).(2-3/4)=4,~-l/4(sin(21/4/2)) 2 and the result follows. [] 

There is no hope with the methods presented above to go beyond Theo- 
rem 3.4. In other words, these methods can produce, at best, convergence results 
for almost all t eN,  and so even under "weaker requirements". For example, 
if XeLP(IR, ~), i.e., X is strongly measurable and IIXtlI~LP(R), 1 _-_p< + Go, it 
easily follows from the same methods that: X is (c~, fl)-bounded if and only 
if there exists a (unique) regular # of finite (e, fl)-variation such that 
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Similarly, at any point t where 

we have 

lira e -1 i [IX~-~-Xtll dr=O, 
g ~ O  

0 

lim i (1-J~ )d'~d#(~)=X~ 
" ~ "  + ~ --A 

(in L ~(~)). 

These almost sure results are somehow restrictive since there exist important  
random measures for which they do not hold. A case at hand is a white measure 
W, where for no tEN, does 

converge, either in L2(~) or in LP(N, 2), 1 =<p< + o0. In order to deal with such 
a case, we need to extend our definition of the Fourier transform, and such 
is done in the next section. 

4 Random measures as Fourier integrals 

For  discrete time processes, (e, fl)-boundedness implies (cq oo)-boundedness and 
(~, fl)-bounded processes are Fourier integrals; and similarly when # has compact 
support. However, outside of these two cases things happen quite differently, 
since the Lebesgue measure of N is infinite, a random measure or a random 
process which is (e, fl)-bounded is not necessarily (c~, oe)-bounded. In order to 
clear this obstacle and to extend our notion of Fourier transform, our strategy 
is to think of fi not as a stochastic process, but more globally as a stochastic 
measure. 

Again, for /~ of finite (c~, oc)-variation, i.e., #E~//g ~'~ the exponentials are 
#-integrable, hence fi--{fi(t)}t~ ~ makes perfect sense and is a (e, oo)-bounded 
process, But, fi can also be looked at in a different way, namely, as the absolutely 
continuous element of Jg~' 1, dfi (t) = fi(t) d t. This follows from the simple calcula- 
tion given below, where we make use of a Fubini type theorem which is justified, 
since # E J/{~' ~. 

IIf f(t)fi(Odt[l~= 1t S f(t)d#(t)ll~ N [Ifll~ < ~ ]f(t)l dt, fED(N) .  
N R R 

Since for # in Jg~' ~, fi belongs to Jg~' 1, it becomes natural to try to define 
the Fourier transform of a random measure as being itself a random measure. 
This is done below, where we first tackle the case f l= 2, and where we drop 
in our notation the reference to cq i.e., we write d/{ 2 for ~gg~,2 and jgoo for 
jg~,o~. The relevant results is a Plancherel type theorem in which # and 
play identical r61es. 

Theorem 4.1. There exists a unique bounded linear operator ~ from jg2 onto 
itself such that 

( i ) ~ t t = f i ,  for # e J g z c ~  ~ 
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(ii)  I l Y ~ I I  = II~ll. 

Proof Let #~JE 2 and let #. be defined via #.(A)=II(AVI]-n, n[), A~No(IR). 
Clearly, for each n, #. is (2, 2)-bounded as well as (2, oo)-bounded, with moreover 

fd#.= i fd#,feC~(N). Since, each #.~d/l ~176 is the previously well defined 

Fourier transform, i.e., ~. is a (2, ~) -bounded process or, d~.=~.(t)dteJ/g ~. 
Hence, for each n, 

L.: CcOR)cL2(IR)---+L2(~), f :  - + L . ( f ) =  5 f dfi. 
R 

is also well defined and linear. Furthermore, since ~ fd~.= ~ fd#.,  ( f  and 

#. have compact support so a Fubini theorem holds) L. is also bounded. Now, 
the (2, 2)-boundedness of # gives 

lim ]IL.(f)--L~(f)H2 < lim II#l] Ilf.--f,.JJ2 =0, 
n~ttl ~ at) n, m --* 

since f~Cc(~) and by the classical Plancherel theory. Thus, the sequence L,(f) 
is a Cauchy sequence with limit denoted by ~( f )  also satisfying ~ fd~ 

N. 

= ~ fd#,f~Cc(lR). Clearly, ) is linear and by the Banach-Steinhaus theorem 
R 

it is also (2, 2)-bounded and, as such, has a unique extension (also denoted 
2) to L2(N). It is also clear that for #~Jg~ ,  the two definitions of Fourier 
transform agree. Now, let i f :  J/tz--. Jg  2, #: ~/~, then ~ is well defined, linear. 
By, the density of Cc(~) in L 2(N), by the above Parseval type formula as well 
as by the classical Plancherel theory, it follows that 

LI~#H = sup ]j ~ fdfilh2= sup 11 ~ fdfill2 
I l f l l 2 < l  N_ I l f l 1 2 < l  R 

f eCe(~l.) 

= sup II~fd#H2-- sup II~fd#lj2 =jl#ll. 
[ I f [12~ 1 R 11~]12~1 R 
feCc(IR) f eCc(N.) 

Thus, ~ is norm preserving, hence bounded and one to one. It just remains 
to show that o~ is also onto. May be the simplest way to see that is to take 
f in a dense subset of L2(IR), with f =  ~ (the twice differentiable elements of 
Cc(IR ) will do it, with geLI(IR)c~L~176 Then, 

f ({)  d#(Q = 5 ~(~) d#(~)= 5 g(Q d/~({) = 5 ~ ( -  {) d/~({) 
R BR R 

= ~ ~ ( - r  ~ f ( r 1 6 2  

where the next to last equality is just the inversion formula for the classical 
Fourier transform. [] 
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Let us mention a few immediate consequences of the arguments given above. 
Firstly, the definition of/2 is independent of the sequence, i.e., we can replace 
#, by any sequence 

v , ~ 2 c ~  ~ with lim v,(f)=#(f),  feCc(~) 
n--+ + o0 

(setting v.(f) = ~ fdv.), and define/2 as the limit of the ~).. Since ~ is invertible 

we have 

# ( f ) =  lim ~ f d/2, f~L2OR). 
n--+ + oO -- l l  

Finally, we state Parseval's formula: S f d # =  ~ fd/2, for all feL2([I). 
N N 

We will come back, in a short while, to the preceding theorem. In the mean- 
time, let us study the case fl:~2. As in the scalar case, a dichotomy occurs. 
First, for 2 < fl < + o% our approach can be extended. 

Theorem 4.2. For 2 < f l <  + o% the Fourier transform operator is a contraction 
from d/[ B into J//[~, 1/fl + 1/7 = 1. 

Proof. For / /=2,  ~ is an isometry from j//2 to j///2. For f l= + o% o~ is a 
contraction from J/L ~~ to jg l .  For  2 < fl < + 0% the complex or the real interpola- 
tion method applied to the Banach spaces j//2, A/1 and jg~o (see, for example, 
Bergh and L6fstrSm [BL]) gives the result. [] 

For  2 < f l <  +o% and for tteA/p, we can also define/2 by the method used 
in Theorem 4.1. ForfeLP0R), lim It#,(f)-#(f)[l~ =0  and forfeCc(lR)cU(N), 

. -0" -t- O0 

1/fl+ 1/7 = 1, ~ fd/2,= ~ fd# , .  Hence, by (~, fl)-boundedness and the classical 
N N. 

Hausdorff-Young inequality, it follows that 

lira III f d f i , -  ~ f dfi,,jl~= lim II I f d # , -  I f d#,~r[, 
m , n ~ + o o  R ~. m , n ~ + o o  It. N 

=< lira (~ lf,(t)-f,,(t)fdt) 1/" 
ra,  n ~ + ~  ~ .  

l i ra  . (S IL(t)-f,~(t)l~at)x/~=o. 
n't~ n--* + oO 

As in theorem 4.1, this method uniquely defines #. It is then clear that a Parse- 
val's formula holds, i.e., S f d #  = S fd/2, for all feLY(N), and that the range 

of ~ is a proper subset of JCL ~. Again, if # ~ M/d e, if # e ML ~ or if as in Theorem 3.2, 
the Cesfiro averages of # converge, all the definitions of Fourier transform agree, 
and we have in the last instance 

2 ~ + ~ 1 7 6  - 2  
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Another important  property shared by the Fourier transform on JC/P is the 
inversion formula. Since o~ is not invertible, this is not as immediate as in 
the case/3 = 2. 

Theorem 4.3. Let p~J/[~, 2 < fl <<_ + oe. Then, for any A ~o(]R) 

l~m+~ #(A)- i ~(t) d~(t) . 
- - n  

Proof The cases/6 = 2 and fl = + Go have already been obtained. For  h in U OR), 
1 < ? < 2, the classical inversion formula gives 

h(t)- i e"r ~dt=O, lim ~ ~(~) 
?l ---~ -t- ~ - - n  

1/~+1/~=1. 

If f e  Cc(lt) is twice differentiable, then f = ~ with g ~ L 1 (IR) n L ~176 (IR) ~ U (IR), and 

~N. - n  - n  

-<_ ( ~ [g(t) - )fi_., ,[(t)f(t)l ~ d t) lh, 
R 

since #e  J/~. But, by the classical L t (lR)-inversion formula, 

and 

zl_.,.t(t)f(t) = ~ ~(~) e-"r 
- - n  

lim (~ g ( t ) -  i~(~)e-it~d~edt)l/~=O. 
n --+ -}- ~ 1 7 6  \ ~  - - n  

Given any feLP(IR), we can now find a sequence of compactly supported func- 
tions {f.} which are twice differentiable with 

lira kLf , - fNp=0  and lira ]k f , - f  l[~o =0.  
n - - +  + cX3 n ~ -1- oO 

Hence,  

lim ~fd#- i f d j  = 0 ,  
n - - +  + ~ 1 7 6  - - n  

for all feL~(1R), from which the result follows. []  

In the above proof, we obtained a stronger result than the one actually 
stated: ZA can be replaced by any f~LP(IR). The version stated here, that we 
often cryptically rewrite as g(A)=/~(A), is the most practical since it permits 
to recover p from ft. A completely symmetrical formula which permits to recover 

from p is also valid. Theorem 4.3 can be "extended" to the (e, fl)-bounded 
case under the conditions of Theorem 3.2 or 3.4, with /) as defined there. It 
is also readily seen from the inversion formula the y is Gaussian, SeS or infinitely 
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divisible if and only if ~ has the same property. As a simple application of 
the above results we also have. 

Corollary 4.4. Let e = 2  and 2 < fl <_ + Go, and let # be a random measure with 
finite (~, fl)-variation. Then, g is orthogonally scattered (resp. stationarily scattered) 
if  and only if ft is stationarily scattered (resp. orthogonally scattered). 
Proof Let # be orthogonally scattered with control measure m. By the inversion 
or Parseval's formula, and since 2A +s(t)= e its 2A (t) we have, for any s ~]R, 

( f i (a  +s), f t(B+ s)) 2 = (#(ZA +s), #0~n +s))2 = ~ Zn+s(t) 2~+~(t) din(t) 

= ~. ZA (t) ZB (t) d m (t) = (fi (A + s), fi (B + s)) 2. 

Let/~ be stationarily scattered, then for any A e ~o  (F,.) with [A]> 0, S: ~,~-~ L a (~), 
s: ~ f i ( A + s )  is shift invariant, and since 12eJg~, it is also continuous. Thus, 
S is a stationary process and there exists a random measure v a which is orthogon- 
ally scattered and (2, og)-bounded such that 

~ ( A + s ) =  ~ eitSdva(t), but ~t(A+s)= ~ Za+~(t)dft(t) 
R 

= ~ ~a+~(t)d#(t)= ~ eits~a(t)d#(t ). 

Finally, the uniqueness of the Fourier transform gives dva=~ad# ,  and d# 
= ~ ~ d va is orthogonally scattered. [] 

For  ~ = f l = 2 ,  the above corollary was already known to Bochner. Since 
a white measure is both orthogonally and stationarily scattered as well as Gaus- 
sian, so is f f W =  l~. For 1 < f l<2 ,  the approach presented here does not work, 
and this is not surprising, in view of the scalar case. The methods developed 
by Gel'fand (see [GV]) or Dudley [D1-2], i.e., generalized processes and random 
Schwartz distributions, do provide a way of defining the Fourier transform 
of random measures with finite (~, fl)-variation, 1 _< fl < 2. In particular, and in 
contrast to the Brownian motion case, the Fourier transform of the L6vy motion 
cannot be defined by our methods. However, such a definition is possible via 
random Schwartz distribution (see [D1-2]). Another approach to this problem 
is also presented in [CH]. 

5 Dilation theory 

In this section, our first task is to obtain another characterization of random 
measures with bounded (~, fl)-variation. This characterization, via dominating 
measures and Grothendieck's type inequality, leads to a few important applica- 
tions. In particular, it clarifies the r61e played by the orthogonally scattered 
elements in d//~'p. The cases fi < + o9 and fl = + o9 read slightly differently, be- 
cause of well known duality problems. We first have: 

Theorem 5.1. Let 1 ~ 2 ~ f l < :  + o9 (resp. let f l= + o9). A measure 12 has finite 
(~, fl)-variation (resp. (~, og)-variation) if  and only if  there exists a non-negative 
function h in LP/P-2(~) (resp. a finite positive Borel measure h) such that I] 

R 

f d#l]~<~(~ [f i2hdt)  1/2, for all feL~(IR) (resp. [r ~ f d#J]~<=(~ [fl2dh) ~/2, for all 
R ~ R 

fECo(~,.)). 
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Proof The "if part"  simply follows from H61der's inequality. For the converse: 
the case e = 2, fl = + oo is just the positive definite version of Grothendieck's 
inequality (see Pisier [Pi] for extensive developments on Grothendieck's inequali- 
ty and its ramifications); while the case 1 < e < 2, fl = + m is essentially contained, 
using also Pietsch domination theorem, in Lindenstrauss and Pelczynski [LP]. 
For 1 = c~ < 2 < fl < + co, we only sketch the proof indicating the major differences 
with the Hilbert space case, i.e., e--2,  already given, for/~ with compact support, 
in [H1]. First, we need to show that there exists a constant K > 0  such that 

k =~1 If/j2 fl/2' (5.1) ILI f~ d/ill~ =<K 
i=1 N_ i 

for all fl,f2, ...,fneCc(lR). To do so, let X1, X2, ..., X,  be independent N(0, 1) 
random variables on some probability space (fl', ~ ' ,  ~'). Then, by Minkowski's 
inequality and by the independence and Gaussian assumptions we have, 

i= i= 

--(~x~lXl')-I {~ (J' i~I(N ~ f/d#)@o)Xi((D') d~t((D')) d~((D)~. 

(o)Xi(o') d.~(co)~ d~'((o') 

(Minkowski's inequality) 

= ( g , X , [ ) - ' J  ,~l~ fid,X,(~o' ) d,'(co') 
n 

__< ])ill (d~ - t  ~, ,~=tf~X'(c~ t d~'(co') ((e, fi)-boundedness) 

{ S _-< II li (g (H61der's inequality) 
D' i 

?l 
= [I/i][ 'glXl[) -1 {~ ~ i~l fi(t) Xi(fl~)'l' d:' (~o)dt)' 31/, 

= II ll( lx,l)- ( lx/y/P lf~(t)12)p/2dt 
~-~ i 

(N (0, 1). independence) 
tl 

This gives 5.1. Then, for f real valued and in Co(N), and for any finite set 
{/1, ... ,f,} = Cc(lR), let 
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where K is the infimum of the constants appearing in (5.1); and let also Q( f )  
= i n f S ( f f l  . . . .  ,f,), where the infimum is taken over all finite sets of elements 
of Co(N). Then, as in [H1], Q is a subadditive homogeneous functional on 
C~(N) (the real valued elements of C~OR)) such that: 

(5.2) IQ(f)I =< II f 11~/2. 

Again, by applying Hahn-Banach twice, there exists a linear functional L such 
that for all f e  C~OR)IL(f)] _-__ 21/2 [I f II m.  Now, by the density of CcOR) in L ~/2 (IR) 
and the Riesz representation theorem, there exists hoeL~l('-2)(IR) such that 
L ( f ) =  ~ f h o  dt, feL~/2OR). Finally, and exactly as in [H1], L is a positive func- 

N. 

tional and furthermore, 

(5.3) II ~ f d#ll 2< K I Ifl2ho dt. 
N. N. 

Taking h = K h o and by the density of Cc0R ) in La(~), the result follows. [] 

A major difference between the above theorem and the classical Grothen- 
dieck's inequality is the unboundedness of the dominating measure. A case 
at hand is, again, a white measure which has finite (2, 2)-variation and for which 
a dominating measure is Lebesgue measure. The dominating h above is clearly 
not unique, however (see [H1] ), there exists a unique h such that 11 h lira-2 = infK 
appearing in (5.1). The orthogonally (resp. independently) scattered case, clearly 
shows that for l<f l<2(resp,  l < f l < c  0 the only h satisfying the conclusions 
of Theorem 5.1 is h=0. It is also clear that in Theorem 5.1, L'(~) and L~(N) 
can be respectively replaced by L~(v) and LP(t/), for some a-finite v and q; the 
corresponding h is then in L alp- 2 (~). 

A consequence of Theorem 5.1 is the following dilation and multiplication 
result. 

T h e o r e m  5.2. Let 1 < ~ <_ 2 <_ fl < + ~ .  A random measure #: ~o  (~)  ~ L~ (~) has 
finite (~, fl)-variation if and only if there exist a probability space (f2, ~ ,  ~ )  with 
L 2 ( ~ ) c  L 2 (~), an orthogonally scattered v : ~  o OR)~ L ~ (~) with finite (2, fl)-varia- 
tion and 2 in L2~/2-'(~) such that kt=2Pv, i.e., #(A)=2Pv(A) ,  A6~o(~, ) ,  where 
P is the orthogonal projection from L 2 (~) to L 2 (~). 

Proof H61der's inequality and the property of the (c~, fl)-variation mentioned 
at the end of Sect. 2 give the sufficiency part. For the necessity part, in order 
to find 2, it is enough to apply Maurey's criterion (see [M, Th6or. 8]) after 
having identify # with the operator given by Theorem 2.2. But, in Theorem 5.1, 
we proved that: 

n \~/2 

=< Ilal] (elx~[)- ~(~lXxla) ~/a 012 dt 
"-R i 

<ll~ll(~lXl[)-l(~lX~l~) ~/~ II f~llp , 
\ i  = 1 
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where the last inequality is again Minkowski's since 2 < fi < + oo. We also get, 
using methods corresponding to the case 

f ( n \~/2 ") tie / n 2 \t12 

Thus Maurey's criterion is verified and this gives 2eL2=/2-=(~). For  the rest 
of the proof, let h be as in Theorem 5.1 and let f and g~C~(IR). As in [H1], 
and after having identified the functions f such that []~fd#[I 2 

= ~ [fl2hdt(resp. = ~ ]f[Zdh when f l= + oo), we can define a inner product by 
IR IR 

( f ,  g)o = 5 f ~ h d t - < S f d # ,  ~ g d # )  2 
R R R 

( I  f g d h - (  I f d#, I gd#)2 
P. R R 

when f l=+oQ).  

Completing the corresponding space with respect to the norm []'No, we 
get a Hilbert space L2(~o). Then, and again as in [H1], L2(~)=L2(No)| 
and for each Ae~o(lR), v(A)=vo(A)+#(A).  As constructed, v has the desired 
properties. []  

Combining Theorem 3.2 and 5.2, the result below is clear. 

C o r o l l a r y  5.3. Let I <_ c~ < 2 < fi <= + oo. A bounded process X is strongly continu- 
ous and (~, fi)-bounded if and only if there exists a bounded (2, ~)-bounded Cesdro 
harmonizable strongly continuous process Y defined on U (~), with L 2 ( ~ ) c  1)(~), 
and a random variable 2 in L2~/2-~(~) such that Xt=2PYt,  t eN ,  where P is 
the orthogonal projection from I~ (~) to I~ (~). 

For  e = 2  and f l= +o% Theorem 5.1 is due to Niemi IN] (when e = 2 ,  2 
can be taken constant hence # = P v l, where V l =2v). Combining Theorem 3.4 
and 5.2, a measurable version of Corollary 5.3 readily follows. 

For  1 < f l < e ,  Proposition 2.5 and its remark show that no version of Theo- 
rem 5.2 can hold. On the other hand, for l < ~ < f l < 2 ,  and by taking for # 
the L6vy motion it is clear that with 2 replaced by e, (5.3) does not hold. 
Furthermore, as alluded to by the independently scattered S~ S random measure, 
a potential range for the values of the parameters is 1 < 7 < e < fi < 2. However, 
no similar 1 < y < e < fi < 2 version of the domination theorem 5.1 do hold, since 
the ideals of e-summing operators from L ~ to U are increasing for 1 <y  < 2, 
fl' < e < 2 and 2 < fi < + oo (see Pietsch [-P, 22.4]). Nevertheless, by replacing the 
independent N(0, 1) by i.i.d. SeS  random variables, it can be shown (see [M])  
that 

n ', 1/~11 / n \ 1 I ~  

Thus, the corresponding version of Maurey's criterion is verified and # can 
be decomposed as p = 2 v ,  with 2eL~/~-~(~), v itself cannot be further decom- 
posed as in theorem 5.2. 
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6 Some applications 

The rest of this paper is devoted to some applications of methods developed 
to this point and will be devoted to two problems (see [H3] for other types 
of applications). Firstly, the more theoretical problem of decomposing random 
measures, secondly, the more practical problem of finding existence results for 
linear stochastic differential equations. 

Definition 6.1. Let 1_<~___2 and let l=<fi< + ~ .  A random measure # of 
bounded (~, fl)-variation is continuous if/t(A)--0, for all finite sets A and discrete 
if there exists an increasing sequence {A,} of finite sets such that lim Jl#-kt.J] 

n---~ + O0 

= 0, where #, is the restriction of # to A,, i.e., #, (A)--~ (A c~ A,), A ~ o  (R)- 
Although the following looks well known, we believe it is original to this 

work. It has, however, its origins in the bilinear case version, i.e., a = 2  and 
fi = + ~ ,  as given by Graham and Schreiber [GS]. 

Theorem 6.2. Let 1 < a< 2 <<_fl < + oo. A random measure Iz of  bounded (cq fl)- 
variation admits a unique decomposition # = #~ + #a into continuous and discrete 
parts, with both It~ and #d of  bounded (~, fl)-variation. 

Proof The uniqueness follows directly from the above definition. Let h be any 
of the positive dominating measure in Theorem 5.1 and let A =  {te~,~: h(t)>0}, 

then A is at most countable and A =  ~) A, where A I C A 2 ~  ... ~ A n ~  ... are 

finite sets. Let #d be the restriction of # to A and let #, be the restriction 
of # to A,. It is also clear from elementary properties of the (a, fl)-variation 
that /z d and #n have bounded (a, fi)-variation with Ilmtl < II#1/ and llmll _-< II~ll. 
We now show that #d is discrete by showing that lira ]]#d--kt, I ] =0. Let 

n - +  + oo 

N 

B ~ o 0 R  ) and {B~}c~o(~  ) be a finite partition of B, let f =  ~ b~ZB,, with 
i = 1  

b~e~ and let A~ denote the complement of A, in A. Then, 

i~1 bi#~(Bi)-i~=l b~ #,(Bi) ~ 

= ~ b i l ~ ( B i c ~ A ) - ~ b i # ( B i c ~ A . )  
i i = 1  

N 

= ~=1 bil2(Bi~Ac) 
i a 

---< Jl f lip h(A~.), 

by Theorem 5.1 and H61der's inequality. Since A = { t e N :  h(t)>0}, we have 
lim h(A~)=0, hence lim IJm-#.ll< lira h(A~)=0 and #d is discrete. Let 

n--* q- oO n--* + oo n ~ + cO 

#c = ~--#d, then #c has bounded (~, fl)-variation since both # and #a share this 
property. Let B be any finite set, let A be as above, then I~c(B)=#(B)--Ian(B) 
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= # ( A n B ) + # ( A C n B ) - # d ( B ) ,  and by the domination theorem, ]]#(ACnB)[[~ 
<__ h(ACc~ B)--0 since the discrete part of h is supported on A. Since #d is the 
restriction of # to A, we have # ~ ( B ) = # ( A n B ) - # d ( B ) = # ( A c ~ B ) - # ( A n B ) = O  
and #~ is continuous. [] 

As immediate consequences of the definition of boundedness Theorem 5.1 
as well as Theorem 5.2, 6.2 and its proof (using also the notations of Sect. 5) 
we get: 

Corollary 6.3. For 1 <_ ~ <_ 2 and 1 <_fl < + 0% a random measure # of bounded 
(~, fl)-variation is continuous. 

Corollary 6.4. Let 1 <_ ~ <_ 2 <= fi <= + oo and let # have finite (~, fi)-variation. Then, 
# is discrete (resp. continuous) if and only if #= ),Pv, with v discrete (resp. continu- 
ous). 

It is clear that, using Corollary 5.3, stochastic processes versions of our corol- 
laries easily follows; but it is also well known that, in general, the measure 
# does not have a Radon-Nikodym derivative, i.e., #~ cannot be further decom- 
posed into an L~-function and a singular continuous part. 

To end this work, we now present some results on linear stochastic differen- 
tial equations (the derivatives are taken in the norm-sense). Once again, the 
case a = 2  and f l= + oo was already known to Bochner FB2], the case ~ < 2  
and fi= + oo is omitted since essentially identical, and we thus assume that 
l < a < 2  and l=<fl< +oo. 

Theorem 6.5. Let Y be a norm bounded strongly continuous (a, fi)-bounded Cesdro 
harmonizable process, and let 

L =  ~ ak dk/d t k 
k = 0  

be a linear autonomous differential operator. Then, the stochastic differential 
equation L X =  Y has a bounded strongly continuous (a, fi)-bounded solution 
if and only if it has a bounded strongly continuous (a, fi)-bounded Cesfiro har- 
monizable solution. 

Proof The "if" part is trivial. For  the "only if" part, let L(~)= ~. a k ~k, ~]R, 
k = 0  

be the characteristic polynomial of the operator L, let N={~:  L(~)=0} and 
let 

 ,-lim 
;t--* + ~ _ . ~  

be a strongly continuous (a, fl)-bounded solution of L X  = Y. Let A6~o0R) and 
let also 

2 ~ -I- o~ --3.  
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Since a strong solution of the equation is also a weak solution and since L 
commutes with the integral (dominated convergence), we have 

LXA=L lim ~ (1--1--~2]-)eltr ) 

= l i m  r a 
2"-r + ~176 - 2  

= l i m  ~(1--J~-)eitr ) . 
~ . ~  + oo _ ~  

Since A~No(IR ), this becomes 

eitgL(r ZA(~) d#x(~)= ~ eltCZA(~) d,uy(~), 
R R 

and the uniqueness of the Fourier transform gives, for each AeNo0R), )~A Ld#x 
=ZAd#r, i.e., Ld#x=d#r Now, by Theorem 5.1 or by the very definition of 
boundedness, we have h(N)= 0, and 

Zat= i~ (1--~)L(Q-1)~R\N(~)e"r ~ (1-1--~2]-)L(~)-leitr 
- 2  - 2  

is well defined with LZ~= Yt ~'. Again, since ZA Ld#x=ZA d# r it directly follows 
that L - l # r  has bounded (e, /?)-variation and thus we can set 

2 - ~  + oo - 2  

uniformly on compact sets. As defined, Z has the required properties. [] 

Theorem 6.5, can roughly be restated in the following way: under the same 
hypotheses on Y, any (~, fl)-bounded solution of LX = Y, must be stationary. 
In the above result, L can also take a more general form such as a differential- 
convolution operator. The resulting theorem admits a similar proof since what 
is needed is the interchangeability of the operator and the integral. In fact, 
this is the type of operators studied in [B2]. Also, only assuming the existence 
of a weak solution is enough. For  fi = + 0% the result takes a slightly different 
form, since h(N) might not be null. So, in the proof of the results, Z above 
should be replaced by 

Zt = lim S (1--~-)eit~L-l(~)Zrt\~(~)dl~y(~), 

with the corresponding adjustments in the conclusions. To finish, it is clear 
that, for fl = + o% if #y is discrete (resp. continuous) so is #z- 
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