
Probab. Th. Rel. Fields 84, 473490 (1990) Probability 
Theory Related Fields 

�9 Springer-Verlag 1990 

Noncommutative Stochastic Processes 
with Independent and Stationary Increments Satisfy 
Quantum Stochastic Differential Equations* 

Michael Schiirmann 
Institut ftir Angewandte Mathematik, Universit/it Heidelberg, Im Neuenheimer Feld 294, 
D-6900 Heidelberg 1, Federal Republic of Germany 

Summary. The notion of a unitary noncommutative stochastic process with 
independent and stationary increments is introduced, and it is proved that 
such a process, under a continuity assumption, can be embedded into the 
solution of a quantum stochastic differential equation in the sense of Hudson 
and Parthasarathy [8]. 

1. Introduction 

A stochastic process taking values in the group Ud of complex unitary 
d x d-matrices can be regarded as a family of unitary d x d-matrices where the 
matrix elements are elements of the commutative von Neumann algebra consist- 
ing of L~-functions on the underlying probability space. A noncommutative 
generalisation of a time-indexed Ua-valued stochastic process is a family of time- 
indexed d x d-matrices where the matrix elements are elements of a yon Neu- 
mann algebra. In other words, we consider families (U~)z~L of unitary operators 
on a Hilbert space l12d| W which is the tensor product  of a d-dimensional 
space (12 d and a Hilbert space ~ .  The probability measure of the underlying 
probability space is replaced by a state, represented by a unit vector ~o in 
~ ,  on the algebra B(~r ~) of bounded linear operators on ~ .  The family (Ut)t~L 
may be interpreted as the time evolution of a d-dimensional physical system 
in contact with a heat bath represented by the 'big '  Hilbert space ~ .  We call 
(Uz)~ L a d-dimensional unitary noncommutative stochastic process if 4~ o is 
cyclic for the elements of the matrices U~, t sP ,+ .  The notions of independent 
and of stationary increments are translated from the classical commutative case 
of a Ud-valued stochastic process but with the additional assumption that the 
matrix elements of the increments U~* Ut and US Ut, commute for disjoint open 
intervals (s, t) and (s', t'), an assumption which becomes trivial in the commuta- 
tive case. The main result of this paper (the ' embedding theorem') is a character- 
isation of unitary processes with independent and stationary increments. It turns 
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out that such processes, if for t$0 the operators Ut converge weakly to Uo = 1, 
can be 'embedded'  into solutions of linear quantum stochastic differential equa- 
tions in the sense of Hudson and Parthasarathy [8]. This means that (Ut)t~+ 
is isomorphic to a solution of a quantum stochastic differential equation re- 
stricted to a certain invariant subspace, namely the subspace generated by the 
Fock space vacuum vector. For a finite-dimensional initial space this result 
is more general than the result of [9], because we do not assume ~ to be 
a Fock space but an arbitrary Hilbert space, the Fock space structure coming 
from the properties of (Ut)t~R+ itself. 

The main method used for the proof of our embedding theorem is the theory 
of the noncommutative analogue ~ of the coefficient algebra of the group 
Ua; see [6] for the notion of the coefficient algebra of a compact group and 
[-3, 12, 14] for the noncommutative analogue in the case of Ua. (Recently, a 
structure theorem for 3(Ca has been obtained [4].) The algebra ~ is a *-algebra, 
that is an algebra with an involution. Moreover, 3((a is a *-bialgebra [11], which 
means that there is a coalgebra [-1, 13] structure on ~ compatible with the 
*-algebra structure. A theory of quantum stochastic independent, stationary 
increment processes over a graded *-bialgebra was developed in [-3, 123. It was 
proved that such a process, under a continuity assumption, is determined (up 
to a canonical equivalence) by its generator, a hermitian, conditionally positive 
linear functional on the *-bialgebra. In the present paper, we apply this general 
result to the special case of the *-bialgebra ~ .  It turns out that d-dimensional 
unitary noncommutative stochastic processes with independent and stationary 
increments are nothing else but quantum independent, stationary increment 
processes over ~ .  Thus a process (U,)t~+ of the kind we are interested in 
is determined by its generator, and two such processes with the same generator 
are equivalent. For the proof of the embedding theorem we proceed as follows. 
We start from an arbitrary hermitian, conditionally positive linear functional 

on o~((a. We show that there is a *-representation of 3((a associated to 0 in 
a canonical way. With the help of this *-representation we define the coefficients 
of a quantum stochastic differential equation. The solution of this equation, 
if restricted to the subspace generated by the vacuum vector, is a d-dimensional 
unitary process with independent and stationary increments. Finally, we show 
that the generator of this process is the hermitian, conditionally positive 
we started from. 

The organisation of this paper is as follows. In Sect. 2 we introduce the 
quantum stochastic differential equations relevant for our problem. In Sect. 3 
we give the precise definition of unitary noncommutative stochastic processes 
with independent and stationary increments. We state the embedding theorem. 
Section 4 contains a review of results of [-3, 12] and the new concept of *- 
representations associated to conditionally positive linear functionals on *-bial- 
gebras. Section 5 is devoted to the proof of the embedding theorem. It is here 
where we explain how unitary processes with independent increments fit into 
the general concept of quantum independent increment processes developed 
in [-3, 123 . This section also includes the calculation of the generator (Theo- 
rem 5.1.) of a process given by the solution of a quantum stochastic differential 
equation. 
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All vector spaces will be over the complex numbers. An algebra is always 
understood to be a complex associative unital algebra. For a *-algebra d we 
let Z2 = {0, 1} operate on d by setting for a e d  

{a if e=0 
a :  

a* if e = 1. 

We denote by C d, d~N, a d-dimensional complex Hilbert space with orthonor- 
real basis {ek: k = l  . . . .  ,d} and by Md=B(C d) the *-algebra of complex d 
x d-matrices. The matrix units ek~eMd, k, l= 1, ..., d, are given by the equations 

ekl en : (~ln ek, 

k, l, n=  1, ..., d, where 6~, is the Kronecker delta. For a vector space ~W an 
element _w of Ma | ~ can be written in a unique way in the form 

d 

w_= ~ ekl| 
k,l= l 

o r  

with Wkle~.  

_ W = ( W k z ) k , : ,  . . . . .  d 

2. Unitary Solutions of Quantum Stochastic Differential Equations 

We need a generalisation of a result of [8] on unitary solutions of quantum 
stochastic differential equations. This generalisation will be valid for the case 
of a finite-dimensional initial space whereas in [8] initial spaces of arbitrary 
dimension were considered. Let H be a Hilbert space. For ~ M a |  and 
B_eMd | B(H)~-B(C d | H) we write _B_~ for the element ( of Me | H with 

d 

(kl~ 2 Bkn4nl" 

Clearly _B_~ does not depend on the choice of the orthonormal basis {e,} of 
~d. For 4, ( e M d |  we denote by (4, ~} the matrix b in Md with 

d 

bkl = ~ ( 4,k, ~,Z}" 
n = l  

Let L2(N+, H) be the Hilbert space of almost everywhere defined measurable 
functions 

f : R +  ~ H  
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such that 

I[ f ( t ) l l2dt  < oo. 
0 

For ~eH and teN+ denote by ~t the element in L2(R+, H) with 

~,(s) = ~ Z(o, ~)(s) 

where Z(o,o is the characteristic function of the open interval (0, t) in IR+. For 
B~B(H) and tslR+ denote by Bt the element in B(L2~+,  H)) with 

Bt ( f ) ( s )  = B ( f  (s)) Z(o, t)(s), 

feL2(R+, H). Let A(f) and A*(f),feLa(N~+, H), be the annihilation and creat- 
ion operators on the Bose Fock space F(L2(]R+, H)) over (L2(N,+, H) with 
domain of definition the subspace d~(H) of F(LZ(P,+, H)) spanned by the expo- 
nential vectors 

1 1 
E(f)  = 1 @f0)  ~ . t  ( f |  03 ~ . t  ( f |174  @"" 

f~ L 2 (IR +, H), and for F s B (L 2 (IR +, H)) denote by A (F) the operator with domain 
of definition g (H) which is the differential second quantisation of F, that is 

A(F) E ( f ) = d  E(etVf) lt= o, 
G [  

The processes 

A;(f)=AqfX(o.o), e=0, 1 

At(F)= A (F Z(o,t)) 

are the integrators for the quantum stochastic calculus of Hudson and Parthasar- 
athy. For ~ H  and B~B(H) we set 

A~(~)=A~(~t) 
At(B)=A(Bt) 

and for ~Md@H, B_~Md@B(H) and b_~Ma we set 

d 

dA~(_~)-- ~ (ekz) ~+1@ dA;(~kl) 
k, l= l 

d 

dAt(_B)= ~ ek,| 
k , l=  l 

d 

_bdt= ~ ekl| 
k , l = l  
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Theorem 2.1. Let ~eMa | H, B_eMd| B(H ) unitary and h_~Ma selfadjoint. Then 
the quantum stochastic differential equation 

dVt= Vt(dAt(~)-dA*t(B_~)+dAt(B_-l)+(ih_-�89 ~))dt  (2.1) 

with the initial condition Vo = 1, has a unique solution ~//" = (Vt)t~L with Vt, te l l+,  
unitary operators on tee| F(L2OR + , H)). 

Proof. We have that V.(t), n~N,  t e N + ,  given by 

Vo(t)=l 

E+~ (t) = 1 + f V. (s)(dA~(_~)- dA~t(_B_~) + dA,(_B- 1) 
O 

+ ( i h - � 8 9  ~)) ds) 

satisfy for T e l l +  and f e f fOR  +, H) locally bounded 

sup 
ONt<_T 
l<_m<_d 

II(V~(t)- v~_ 1 (t))e,, | E(f)[I < e  -~(T+ IIIIF~) (2d ]/;6T~(T))" 
ft., 

(2.2) 

with 

I d 
a ( T )=  sup max I(f(t), (Bkz--3ktl)f(t))l, [(~tk,f(t)}l, I(f(t), ~ Bk.i.~)[, 

O<--t<--T n = l  

d 2 .  1 ~  ~nl) @ 
H(Bkl--(~ktl)f(t)[[2' n~--1Bkninl ' l hk l -2n=  1 (ink, :k, l =  1, . . . ,  . 

This follows from 

II(E(t)-  E -  x (t)) e., | E ( f )  ll 

e.~ | (V._ 1 (s) - V._ 2 (s)).k (dA~(i~)-  dAy(F, B~. f.~) 
k,l=l 0 u 1 n 

+ dA~(Bkt- 6kt 1) + (ihkt-- 1 2  (ink, int)) ds) e ,  | E (f)  
n 

< 2 1 / 6 a ( T )  E et-* | em ds 
k , / = l  u 

= 2]/~a(r)k__~ 1 et-Sll(V.-,(s)-V.-2(s))ek| 

{i s} < 2d 6a(T) e t-s max II(V._~(s)--V._2(s))ek| 
l<_k<_d 
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where we made use of the estimate (4.9) of [8]. Based on the estimate (2.2), 
it can be shown, exactly as in the proof of Proposition 7.1 of [8], that V,(t) 
converge to a solution Vt of (2.1). The unitarity of the Vt follows by the same 
argument used for the proof of Theorem 7.1 of [8]. [] 

3. Unitary Noncommutative Stochastic Processes 

Let ~ be a Hilbert space and let N be a subset of B(~) .  A vector ~ e ~ f  
is called cyclic for N if N(N)~={B~:  BeN(N)} is dense in ~ ,  where N(N) 
is the yon Neumann algebra generated by N. For N c B ( C d |  J~f) we say that 
~ e ~  is cyclic for N if ~ is cyclic for the subset {Bkl: k, l=  1 . . . . .  d, _BEN} of 
8(~). 

Definition 3.1. A d-dimensional unitary noncommutative stochastic process is a 
triplet (~,  q/, ~o) consisting of 

(i) a Hilbert space R, 
(ii) a family ~' =(Ut) t~  of unitary operators on ~a | ~ ,  

(iii) a unit vector ~ o e J g  which is cyclic for {Ut: tMR+}. 

Two d-dimensional unitary noncommutative stochastic processes (~vf~0, q#0, ~b~)), 
i = 1, 2, are said to be equivalent if there exists a unitary operator 

such that 

and 

~[: ~(1)_...>~(2) 

•[ d-~(1) _ d~(2) "1:'0 -- "~0 

U~ 1) = (1  (~) U %) g}2)(1 @ U). 

Let (O, ~,, P) be a probability space consisting of a set f2, a a-algebra 
of subsets of f2, and a probability measure P on the measure space (O, ~) .  
Let L ~ (O, ~,, P) be the commutative yon Neumann algebra of equivalence classes 
of bounded measurable functions on f2. Let ~ = (Xt),~R+ be a family of random 
variables on (O, o~, P) taking values in the group Ua, that is ~ is a classical 
U:valued stochastic process. This process can be regarded as a family r 
=(UO,~.+ of unitary elements in the yon Neumann algebra Md| L~176 ~, P) 
by the equations 

(v,)~; (~o) = ( x ,  (co))~; (3.1) 

e)eO, k, l=  1, ..., d. Conversely, any family ~#=(Ut)t~R§ of unitary elements in 
Md | L ~ (O, ~,  P) gives rise to a stochastic process ~ = (X~)t~a + through equa- 
tions (3.1). By setting ]g=LZ(f2, ~, P) and ~o the constant function 1, we see 
that Definition 3.1 includes the classical U:valued stochastic processes, and 
that our notion of equivalence in this case is the usual notion of stochastic 
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equivalence of stochastic processes. In the following a unitary noncommutative 
stochastic process will just be called a unitary process. 

For a unitary process (~,  og, ~o) denote by Ust, 0 __< s < t, the increment U~* Ut 
and by Nst the yon Neumann algebra generated by (U~t)kt, k, l= 1, ..., d. We 
write E[A] for the expectation value (4~o, A ~o)  of an operator A on ~ .  

Definition 3.2. A unitary process (~,  d//, ~o) is called a process with independent 
increments if 

(a) N~c(Ns,~,)' for all O<_s<t and O<_s'<t' such that (s, t) and (s', t') are 
disjoint, 

(b) E[A  1 . . . A . j = E [ A 1 ] . . . E [ A , ]  for all n e N ,  O<_<t~<=...<t,<=tn+~, and 
AkeNtk, tk+l, k = l ,  ..., n. 

The process is called a process with stationary increments if 
(c) E[(U~t)~'ltl ... (U~t)~",j=E[(Us+r,t+r)~'lh ... (U~+,,z+r)~,] for all r e l l + ,  

O<_s< t, h e N ,  kl . . . . .  k,,  11 . . . .  , l ,= 1 . . . . .  d and Ca, ..., eneZ2. 
We always assume our processes to be weakly continuous, that is 
(d) Ut ~ Uo = 1 weakly for t+0. 

In the classical case (b) together with (c) is the usual definition of a process 
with independent and stationary increments whereas (a) becomes trivial. Condi- 
tion (d) means that for t~0 the distributions #, of Xt converge weakly to the 
Dirac measure concentrated at the unit element of Ue, so (d) is the continuity 
of the convolution semi-group {#~: t e l l + }  of probability measures on Ue asso- 
ciated to a stochastic process with independent and stationary increments. 

We omit the proof of the following theorem, because it goes along the same 
lines as that of Proposition 3.1 of [9]; see also [3, 12]. 

Theorem 3.1. Let ~ = (Vt)t~L be the solution of the quantum stochastic differential 
equation (2.1). Then (J f f ,  og~, cb~) is a d-dimensional unitary process with indepen- 
dent and stationary increments where 

( i )  ~ is the vacuum state in C(LZ0R+, H)), 
(ii) ~ f  is the closure of N~b~ with N the yon Neumann algebra generated 

by (V~)kl, t e l l + ,  k, l= 1 . . . .  , d, 
(iii) ~//~r with U~, t e l l + ,  the restriction of Vt to the subspace ~ 

ofr(L2(l l+,  H))~ [] 

Here the question arises when ~ * = F ( L Z ( N + ,  H)) does hold, that is when 
the vacuum state is cyclic for {V~: t e l l+} .  Actually, this is the case i fH  =113, _B= 1 
and _~ is selfadjoint (Weyl operator case). It is a conjecture that ~ 
=F(L2(N+,  H)) holds in general. 

We are now ready to state our main result. 

Theorem 3.2 (embedding theorem). Let (~,, ~ll, q~o) be a d-dimensional unitary 
process with independent and stationary increments. Then there exist 

(i) a Hilbert space H, 
(ii) an element ~ in M e | H, 

(iii) a unitary element B_ in Me | B(H), 
(iv) a selfadjoint element h in Me 
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such that (~,, ~ll, ~o) is equivalent to ( ~ ,  ql ~, r where V=(V~)t~+ 
solution of the quantum stochastic differential equation 

d Vt = Vt(dAt (_~)- dA~ (_B _~) + dA~(_B- 1) + (i_h-�89 _~)) dr) 

with the initial condition V o = 1. 
A proof of this theorem will be given at the end of Sect. 5. 

M. Schiirmann 

is the 

4. Involutive Bialgebras 

Most of this section is a brief review of facts on involutive bialgebras; see [3, 12]. 
On the other hand, Proposition 4.1 introduces a simple new construction which 
will be important for the proof of the embedding theorem. 

A coalgebra is a triplet (cg, A, 6) consisting of a vector space ~r a linear 
map A : cg ~ ~ @ cg and a linear functional 6 on cg such that 

and 

(A |  = ( I |  

(6 |  

(coassociativity) 

(counit property); 

see [1, 13]. The map A is called the comultiplication and the functional 6 is 
called the counit of the coalgebra cg. Let d be an algebra with multiplication 
map M : d  | d - - .  d .  The space L(Cg, d )  of linear maps from cg to d is turned 
into an algebra by defining a product R .  R' for R, R'~L(Cg, d )  by 

R , R ' = M o ( R Q R ' ) o A .  

We call R �9 R' the convolution product of R with R'. The unit of L(~, d )  is 
the map c~-.6(c)1. For the special case d = r  the algebraic dual space 
cg. = L(~, 112) of cg becomes an algebra with convolution product 

~b, Oecg., and unit 6. For any ~ in cg. the convolution exponential exp.Oecg * 
can be defined as the pointwise limit 

(exp.0)(c) = ~ 0*" 
. :  o ( c ) ,  

ceCg, where ~k*~ and ~*", neN,  is the n-fold convolution product of ~ with 
itself; see [11]. For an algebra d the vector space tensor product d |  is 
again an algebra with multiplication given by 

(a| | | 

a, a', b, b' ~ d .  If d is a *-algebra an involution on d | d is defined by 

(a | b)* = a* | b*, 
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a, b e d .  If (N, A, `5) is a coalgebra and N is also a *-algebra such that  A and 
5̀ are *-algebra homomorphisms,  then N is called an involutive bialgebra or 

a *-bialgebra [-11]. A linear functional ~ on a *-bialgebra N is called conditionally 
positive if 

6'(b*b)>O for all b e n  with `5(b)=0. 

For  a linear functional 6' on a *-bialgebra N we define two sesquilinear forms 
K ,  and Lq, on N by 

Ko(b, c) = 6'(b* c) 

and 

Lr (b, c) = 6' ((b - 5̀ (b) 1)* (c - 5̀ (c) 1)) 

= 6' (b* c) - `5 (b) 6' (c) - O (b*) `5 (c) + 6 (b) ,5 (c) 6' (1) 

b, ceN.  A linear functional 6' on N is positive if and only if K ,  is positive, 
and it is condit ionally positive if and only if L ,  is positive. Assume that  6 'eN* 
is such that  exp,( t6 ' )  is positive for all t e N + .  Differentiating with respect to 
t at t = 0, yields that  6' must  be hermit ian and condit ionally positive. The con- 
verse of this is the content  of Theorem 4.2 in [11]. Moreover,  if cg is a coalgebra 
and { q~: t e N  + } is a convolut ion semi-group of linear functionals on cg satisfying 

lim r for all c e g  (4.1) 
t$o 

then q5 t = exp ,  (t 6') for some 6' e ~*;  see [3, 12]. Thus the convolut ion semi-groups 
{r t e N + }  of states on a *-bialgebra, which are cont inuous in the sense of 
(4.1), are exactly the semi-groups of the form exp,(t6')} with 6' a hermitian, 
condit ionally positive linear functional vanishing at 1. 

Let N be a *-bialgebra and let n be a representation of N as an algebra 
of linear operators on a vector space N. We turn N into a N-bimodule (with 
respect to re) by defining a left and right action of N on N by 

b. {. c = rc (b)({) 5̀ (c), 

b, c e N ,  { e ~ .  The vector space C will always be considered as a N-bimodule  
with respect to the representation 5̀ of N on IE. We use the language of the 
Hochschild algebra cohomology theory for N taking values in ~ ;  see I-7]. Thus 
a 1-cocycle with respect to a representation rc of N on ~ is a linear map t/: N ~ 
such that  

17 (b c) = = (b) t/(c) + t/(b) 5̀ (c), 

and a bilinear map  s N | N --* II; is the coboundary  of 6' eN*  if 

s (b, c) = 5̀ (b) 6' (c) - 6' (b c) + 6' (b) 5̀ (c), 
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b, c~N. If ~K is a vector space and S is a positive sesquilinear form on ~ ,  
denote by ~ ( ~ ,  S) the pre-Hilbert space ~K/~Ars, where ~s={WS~/U: S(w, w) 
= 0}, with the scalar product given by S. Denote by 

*/s: ~ - - '  ~(~ , ,  S) 

the canonical map. 

Proposition 4.1. Let ~J be a *-bialgebra and let ~ be a hermitian, conditionally 
positive linear functional on ~ .  Then the equation 

7r ~') (b) t/L o (C) = qL~ (b (c -- 6 (c) 1)) =tIL , (b c) - t lL  * (b) b (c), 

b, c~N, defines a*-representation of ~ on the pre-Hilbert space @(~, L~,). More- 
over, tlL ~ is a 1-cocycle with respect to ~z (~') and the bilinear form ~ ,  on ~ given 
by 

~o (b, c) = - L~, (b*, c) + b (b) b (c) O (1) 

b, c ~ ,  is the coboundary of  O. 

Proof. The last statement is just the definition of Lq,. Let b e n  a n d  r/t,(b)=O 
that is L,(b, b)=O. Then for c s N  we have 

L0(c(b-  6(b) 1), c ( b -  b(b) 1)) 

= O ((b - b (b) 1)* c* c (b - b (b) 1)) 

= L o(b, c* c (b - 6 (b) 1)) 

which is equal to 0 by Cauchy-Schwartz inequality. It follows that ~z(O)(b) is 
well-defined as a linear operator on @(~, L0). Using again the fact that b is 

, C0) * a -algebra homomorphism, one checks that ~c is a -representation. The map 
qL, is a 1-cocycle with respect to n (~ by the definition of ~(o). [] 

Note that we did not use the comultiplication of ~ and that Proposition 4.1 
also can be formulated for the more general situation when N is a *-algebra 
and 6: ~ ~ ll; is a *-algebra homomorphism. 

The case of a hermitian, conditionally positive definite function on a group 
G (cf. [5, 10]) is included in the above proposition. N is the group *-algebra 
of G that is the free vector space spanned by G with multiplication given by 
the group multiplication and involution given by x ~ x-~, x ~ G. The comultipli- 
cation and the counit of N are given by linear extension of the maps x ~ x | x 
and x~--> 1, respectively. 

We now turn to the concept of independent, stationary increment processes 
over a *-bialgebra as introduced in [3, 12]. In the sense of Accardi et al. [2] 
a quantum stochastic process over a *-algebra N is a triplet ( d ,  j ,  ~) consisting 
of 

(i) another *-algebra d ,  
(ii) a family j" = (j~)~ of *-algebra homomorphisms j , :  N ~ ~r indexed by 

a set I, 
(iii) a state �9 on d .  



Noncommutative Stochastic Processes 483 

Two processes (~r j , ) ,  ~0), i=  1, 2, over N, indexed by the same set I, are 
said to be equivalent if for all n e N ,  ~, . . . .  , ~ . e I  and b, . . . .  , b . e N  the complex 
numbers 

• ( i ) l ; ( i ) t  h ~ .(i) wlwlJ...J,,(b,)) 

are the same for i = 1 and i = 2. In the following I will be the set of all ordered 
pairs of nonnegative real numbers. For  a process ( d ,  j ,  ~) let sr be the subalge- 
bra of sr generated by the elements Jst(b), beN,  and let qS,t, 0 < s < t ,  be the 
state �9 Ojs t o n  N. An independent, stationary increment process over a *-bialge- 
bra N is a process (~r j ,  ~) over N in the sense of Accardi, Frigerio and Lewis 
such that 

(i) j , ,  *J~t =J~t; Jt.~ = 61 for all 0 < r < s < t (increment property), 
(ii) ~r and ~r commute for all O<s<t  and O<s'<t'  such that the inter- 

vails (s, t) and (s', t') are disjoint, and ~(e l  ... c~,)= ~(cq). . .  ~(e,)  for all h e N ,  
0 < t~ < . . .  < t, < t, + 1, and ak e ~r +1, k = 1 . . . .  , n (independents of increments), 

(iii) qS~, = q~ +,,t +, for all r e l l  +, 0 < s < t (stationarity of increments). 

The process is called continuous if 

lim qS,, (b) = 6 (b) 
tSs 

for all s e l l + ,  beN.  If we put ~b~= qSo, t, for an independent, stationary increment 
process, {qS,: t e l l +  } is a continuous semi-group of states on N, and if the process 
is also continuous we have 

q~,= exp,(tff),  

t e N + ,  for some hermitian, conditionally positive ~ e N *  vanishing at 1. The 
linear functional ~, is called the generator of the process. It was proved in 
[-3, 12] that a continuous independent, stationary increment process is deter- 
mined by its generator up to equivalence. 

5. Proof of the Embedding Theorem 

We give another interpretation of d-dimensional unitary processes. Let MS be 
the complex conjugate vector space of M d. The elements of M~ are _h c with 
_heMa and the vector space structure of MS is given by 

&he +_kc = (2_h +_k) c , 

2 e ~ ,  _h, k e M  d. We denote by J the tensor algebra 

~ 1 @ ~ @ ( ~  | ~//~)| (~/r | ~//~ @ y,f) |  ... 

over the vector space ~/f = M~ �9 M~. The multiplication in J is defined by 

Wl ... Wn=Wl |  | 
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nEN, w~, ..., w,e ~K. An involution on J is given by 

(_h)* = b ~ 

for _heMe. We divide the *-algebra J by the ideal J generated by the elements 

d 

ek~ | (el.)*--6gl 
n = l  

and 

d 

(%k)* | 
n = l  

k, I---1, ..., d. Notice that J is a *-ideal and does not depend on the choice 
of the orthonormal basis {ek} of B(IEe). We denote by ~ the *-algebra J / J  
which can be regarded as the noncommutative analogue of the coefficient algebra 
of Ue; see [12, 14]. We let Xkl, XkZ~cUe be the equivalence class of ekl, (ekt)*~J 
respectively. 

Proposition 5.1. Let 7z be a *-representation of ~ on a pre-Hilbert space ~.  
Then the operators re(b), b~cua, are bounded and the operator ((n(Xk3)k,z=a,...d 
on lEe@~ extends to a unitary operator on lEe| where H is the Hilbert 
space which is the completion of ~ 

Proof The relations in CUd imply that the operator U=(rC(Xk3)k,Z=I ..... d on 
lee | N satisfies 

tT* ~7= OOt=l. 

So U can be extended in a unique way to a unitary operator U on lea| H. 
Then Ukt, k, l= 1 . . . . .  d, are bounded operators on H and the restriction of Ukl 
to N is equal to 7C(Xk3. [] 

Let d be a *-algebra, ~ a state on ~r and j: cUd ~ ~r a *-algebra homomorph- 
ism. The left multiplication in d defines a *-representation p of d ,  the Gelfand- 
Naimark-Segal representation, on the pre-Hilbert space ~ = N ( d ,  K,)  where 
as before K ,  is the positive sesquilinear form on d with K,(a,b) 
=~(a*b), a, b e d .  Moreover, ~ = p ( d ) ~ o  where ~o is the unit vector q~.(1), 
and p oj is a *-representation of CUa on ~. By Proposition 5.1 the operator 
((P~ ..... d extends to a unitary operator on lEe| where H is the 
completion of ~,  which we denote by U(j). Conversely, let U be a unitary 
operator on IE e | H with H an arbitrary Hilbert space. A *-algebra homomorph- 
ism 

j(U): oY~d---~ B(H) 

is determined by 

j ( U ) ( x k , )  = uk , ,  
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k, l=  1 . . . .  , d. Thus stochastic processes ( d , j ,  ~) over ~ and d-dimensional 
unitary processes (~,  q/, ~o) represent the same object. 

We define a *-bialgebra structure on ~ ;  see [3, 12]. First define the *-algebra 
homomorphisms 

z~: J - , J |  

and 

by 

and 

3: J - - * C  

d 

AekI ~ E ekn(~eni 
n = l  

~ek I ~ (~k I. 

J is a *-bialgebra with comultiplication A and counit 3, and j is not only 
a *-ideal but also a coideal in J .  Thus A and 3 give rise to a comultiplication 
and a counit on cue. If d =  1 the coefficient algebra ~Cd reduces to the group 
algebra of ~g. 

The proof of the next proposition is now straightforward. 

Proposition 5.2. Let (sO', j ,  ~O) be a continuous independent, stationary increment 
process over :Kd: Then ( ~ ,  ql, ~)o) is a d-dimensional unitary process with indepen- 
dent and stationary increments where 

(i) ~ is the completion of ~ ( d ,  Ke), 
(ii) s#=(Ut) ,~+ with U ,=  U(jo,,), 

(iii) ~o = tlK,(1). 

Conversely, let (~,, ~ ,  r be a d-dimensional unitary process with independent 
and stationary increments. Then ( d ,  j ,  ~) is a continuous independent, station- 
ary increment process over ~ where 

(i) d = B(Ye), 
(ii) j = (Js,)(~, t)~I with Jst =J (U~t), 

(iii) ~ (A) = E [A], A e B (W). 

Moreover, the notions of equivalence for processes ( d ,  j ,  ~) and (~, q/, ~o) 
correspond. []  

Using Theorem 3.1 and Theorem 4.1 of [-3], it follows that a d-dimensional 
unitary process (~,  0-//, ~b0) with independent and stationary increments is deter- 
mined up to equivalence by its generator ~ which is the hermitian, conditionally 
positive linear functional on ~ given by 

d U .  
O ( x ? , ,  . . .  x ~ : ~ . ) = ~ / ( ~ o ,  (u,)~'~, ... ( ,)~:z. ~o) I ,=o ,  

n~N,  kl . . . .  , k,, l 1 . . . .  , I, = 1 . . . .  , d, e~, ..., z, e292. Before we come to the proof 
of Theorem 3.2, we treat an example of a class of hermitian, conditionally posi- 
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tive linear functionals on CUd; see [15]. Let o-: ~'~a---'lE be a *-algebra homo- 
morphism, that is a is determined by the matrix _w in Ma with Wk,,=a(Xk,,). 
The relations in Cga imply that _w is unitary. For l~Ma we define the a-derivation 
Dz on Sa as follows. We set 

DL(x~m) = tk~ 
d 

Y 
n = l  

and require D t to satisfy the equation 

Dz(b c) = D~(b) a (c) + 5 (b) Dr(c), 

b, c ~ .  We define the hermitian linear functional r on ice by 

~_~,1(1)=0 
d 

,/%_,(x,,,.)= _ 1  y_, 
n = [  

and by requiring ~9_~,! to fulfill 

~_~,t(b c) = ~w,z(b) 6 (c) + 6 (b) 0w, l(c) + Dz(b) Dr(c*), 

b, ceJ{a. Using quantum Ito's formula, it can be shown by a long computation 
that Cw,~ is the generator of (af  ~, 0gf, ~b~) where U is the solution of the quan- 
tum stochastic differential equation 

d Vt = Vt(/| dAt - _w_/* @ dA~ + (_w- 1) | d A t -  �89 | dt) 

with the initial condition Vo = 1 on IE a | F(L 2 (R +)). This also follows from Theo- 
rem 3.2. 

Proposition 5.3. Let H be a Hilbert space and d s N .  7-here is a one-to-one corre- 
spondence between pairs (B_, ~_), where B ~ Ma | B(H) unitary and ~ ~Mu | H, and 
pairs (re, it) , where ~z is a *-representation of ~ on H and 11 is a 1-cocycle with 
respect to ~, given by the equations 

z(x~3 = Bkl (5.1) 

(5.2) 
d 

}2 (5.3) 
n = l  

k , l = l  . . . .  ,d. 
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Proof Let n be a *-representation of 3((d on H. By Proposition 5.1 the operator 
_B on Cd|  given by (5.1) is unitary. Let t/ be a 1-cocycle with respect to 
n. Then we have, using the relations in ~ffd and the fact that t/(1)= 0, 

d 

o = Z (~ (x~.) ~ (x*.) - ~ (x~. x~'.) + n (x~.) ~ (x~'.)) 
n = l  

d 

= ~ Bk.tl(x~'.)+tl(Xkl), 
n = l  

so (_B, _Q with Ckt=t/(X*k) satisfies (5.1) to (5.3). Conversely, let ~_~Md| and 
B_~Ma| unitary be given. Equation (5.1) defines a *-representation of 
~ .  Moreover, there is a uniquely determined 1-cocycle q with respect to n 
satisfying (5.2) and (5.3). [] 

TheoremS.1. Let H be a Hilbert space, d~N,B_sMd| unitary and 
~ ~ M d | H. Let ( ~ ; ,  all ~, ~bS) be the d-dimensional unitary process with indepen- 
dent and stationary increments given by the solution ~U of the quantum stochastic 
differential equation 

d Vt = V~ (d A, (_~) - d A~ (_B_~) + d At (_B - 1) - �89 (4, ~) d t) (5.4) 

with the initial condition Vo = 1, and let (n, tl) be the pair associated to (B_, ~_) 
by Proposition 5.3. Then the bilinear form ~q~ on Xa given by 

&~ c)= - (t/(b*), t/(c)), 

b, c ~ :,U~, is the coboundary of the generator of (2/f ~, ql ~;, q~). 

Proof We must proof that for the generator ~ of (240 ~;, 0gf, ~o~) 

O (b* c) = 0 (b) 6 (c) + 6 (b) 0 (c) + (q (b), ~ (c)) (5.5) 

for all b, c e ~ .  We have 

d ~-r 
f f (b*c )=~-  ( o,j(G)(a)tj(G)(b)~b~)lt=o . (5.6) 

For  k, l=  1, ..., d the operators (Ut)kt satisfy the quantum stochastic differential 
equations 

d 

d (Ut)k I = ~ (Ut)k, (d At (q (x't)) + d At* (1/(x, l)) + d At (B,z -- 6,z 1) 
n = l  

d 

1 ~', (t/(X*m), t/(x*,.))dt) (5.7) 
m = l  
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with the initial condition (Uo)k~=fk~l. It follows that j(Ut)(b) for arbitrary b 
in Yfd satisfies a quantum stochastic differential equation and by quantum Ito's 
formula 

d (j (U 0 (b)*j (Lit) (c)) = d (j (Ut) (b)*)j (Ut) (c) + j  (Ut) (b)* d (j (Ut) (c)) 
+ d (j (U0 (b)*) d (j(U~) (c)) (5.8) 

where the third term is calculated according to the quantum Ito table. But 
in Eq. (5.6) we are just dealing with expectations in the vacuum state (b~, so 
we only need to compute the coefficient of the dr-part of (5.8). This coefficient 
will be a complex-valued function in tMR+, and its value at t = 0  gives the 
right hand side of (5.6). Using the initial condition, one checks that the first 
two terms on the right hand side of (5.8) give rise to the first two terms on 
the right hand side of (5.5). We are left with the computation of the coefficient 
of the dt-part of 

d (j (U~) (b)*) d (j (Ut) (c)) 

at t=0 .  To this goal we compute the dA~-parts of d(j(Ut)(b)) and d(j(U0(c)) 
and use 

dAt(~)dAt t  (~) = ( ~, ~) dt ,  

~, (~H. Of course, we can assume that both b and c are monomials in Xki 
and x~'l. Assuming that 

- -  g l  ~ r  
b - - X k l l l  . . .  Xkrlr  

for some neN,  kl, ..., kr,/1, . . . , / re{ l ,  ..., d} and el, ..., ereZ2 ,  we obtain from 
(5.7) and quantum Ito's formula for the dAt*-part of d(j(Ut)(b)) the expression 

d 

t I = l  ml,...,mr=l 

8n- 1 (~m lr ... d A ( B  . . . . .  z,_,) dA*0?(x~\l,)) 6 . . . . .  l,+~ .-- 
d 

r i m 1  m l ,  . . . ,  r n r  ~ 1 

S~n  - 1 8n ... ,, . . . .  l._, tl(Xm.l.)) 6 . . . . .  *.+, "" 6m~l~' (5.9) 

Finally, the fact that t/is a 1-cocycle with respect to ~ gives 

~, lJl -- ~1 E'r 
(Bk~l~ ~"-~ . . .  �9 .. Bk . . . .  t._,)tl(X~,".,.)bk . . . .  ,.+l 6k~t.--rl(Xk~h ... Xk.,~) 

n = l  

which together with (5.9) yields (5.5). [] 

P r o o f  o f  Theorem 3.2. Let 0 be the generator of (~, oy, ~o). As 0 is a hermitian, 
conditionally positive linear functional on Yfd, it gives rise to a *-representation 
~=zc (q') of Yfa on a Hilbert space H and a 1-cocycle ~ =qz ,  with respect to 

by Proposition 4.1. Let (_B, 0 be the pair associated to (re, 7) by Proposition 5.3. 
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By Theorem 5.1 the genera tor  ~ of  the process ( ~ ,  ~//~, ~ )  which is given 
by the solut ion ~ of  the q u a n t u m  stochastic differential equat ion  (5.4) has 
the c o b o u n d a r y  L~ with 

~ ( b ,  c )=  - Q l ( b * ) ,  t/(c)), 

b, c ~ .  But ~ is also the c o b o u n d a r y  of  O. It  follows that  ~ and O differ 
only by a *-derivation on ~ ,  that  is by  a hermit ian linear functional D on 

satisfying 

D (b c) = D (b) 5 ( c ) -  5 (b) D (c), 

b, ceJde. The *-derivation D is determined by the selfadjoint matrix heMd with 

hkt = --iD(Xkz); 

see [3]. So ~ must  be the genera tor  of  the process (W f ,  ~//~, ~o f )  where ~f" 
is the solut ion of  the q u a n t u m  stochastic differential equat ion  

dVt= Vt(dAt(~)-dA~(B_~)+dA~(B_-l)+(ih_-�89 ~})dt) 

with the initial condi t ion Vo = 1. Moreover ,  we have 

ihkl -- �89 ( ~, ~}kI = O (Xkl) 

which gives 

hkl=l(~k(Xlk)--O(Xkl)). [] 
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