
Probab. Th. Rel. Fields 86, 501-516 (1990) 

Probability 
Theory 
�9 Springer-Verlag 1990 

On quantum stochastic differential equations 
with unbounded coefficients 

Franco Fagnola 
Dipartimento di Matematica, Universit~i di Trento, 1-38050 Povo (TN), Italy 

Summary. We prove an existence, uniqueness and unitarity theorem for quantum 
stochastic differential equations with unbounded coefficients which satisfy an 
analyticity condition on a common dense invariant domain. This result, applied 
to the quantum harmonic oscillator, gives a rigorous meaning to a large class 
of stochastic differential equations that have been considered formally in quan- 
tum probability. 

1. Introduction 

We consider quantum stochastic differential equations of the form 

(1.1) ~ dU= U((W-I)dA+LdA + - L  + WdA+(iK-1L+L)dt)  
[ u(0)=I 

in which A, A +, A are the number, creation, annihilation processes in the boson 
Fock space over L2(IR+) and the coefficients W, K and L are unitary, selfadjoint 
and closed operators respectively in the initial space. These equations naturally 
arise in the study of quantum evolutions ([-1, 2, 4, 9, 10, 14-16J). In [15] an 
existence, uniquenes and unitarity theorem is proved under the assumption that 
W, K and L are also bounded. This result has many applications: the dilation 
of norm continuous quantum dynamical semigroups [151, the construction of 
quantum diffusions in the sense of [9], modelling physical systems [4] and 
SO Off, 

In many interesting cases ([1, 2, 4, 10, 14, 16]), however, the coefficients 
are not bounded (typically L, L + are annihilation or creation operators of a 
quantum harmonic oscillator) and therefore the problem arises to extend this 
theorem. Some results in this direction can be found in [12, 13, 16] and in 
[6, 7J in the classical case. In [13] Frigerio gives the outline of a construction 
using quantum Poisson processes under the assumptions that W is the identity 
operator, K is the zero operator and L has a spectral property implying an 
analyticity condition. 

In this paper, which can be considered a generalization of [13], we prove 
the existence, uniqueness and unitarity theorem (cf. Theor. 3.1) for Eq. (1.1) when 
the unitary operator W and the unbounded operators K, L satisfy an analyticity 
condition on a common invariant dense domain. This assumption is easily verifi- 
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able (cf. Prop. 4.1) when K is a symmetric polynomial of second degree in a, a § 
(the creation and annihilation operators of a quantum harmonic oscillator), 
L a linear combination of a § a and W is the unitary operator exp(ie)a + a). 

The proof is based on a new estimate of some iterated stochastic integrals 
(cf. (3.6)) refining that of [15]. In spite of the long computations needed to 
establish this estimate the idea of the proof is very simple. First we consider 
the adjoint equation to (1.1) and prove the existence of a unique local solution 
consisting of isometries by the iteration method. The adj0int process is a local 
solution of (1.1) that can be easily extended using the cocycle property; then 
we prove uniqueness and unitarity extending a method of Hudson and Partha- 
sarathy [15] to the unbounded coefficient case. The analyticity condition is 
crucial in the proof both of existence and unitarity. 

In Sect. 4 we apply theorem 3.1 to the case of the quantum harmonic oscilla- 
tor as initial space and we prove (cf. Prop. 4.1, Prop. 4.2) that a certain class 
of unbounded operators satisfying the formal unitarity conditions generates a 
markovian cocycle in Fock space whose associated semigroup is (in general) 
not invertible as in [17]. A counterexample, suggested by Frigerio, shows that 
the same theorem is no longer true if we consider a weaker analyticity condition. 
We give also an existence result (cf. Prop. 4.4) for the adjoint equation to (1.1). 

After writing this work we knew that quantum stochastic differential equa- 
tion (1.1) has been studied at the same time by Applebaum [-3] (in the multidi- 
mensional case), Chebotarev [-5] and Vincent-Smith [19]. Our result is stronger 
than those of [3, 19] because we use a better estimate of iterated stochastic 
integrals. 

We wish to thank L. Accardi and A. Frigerio for useful comments and sug- 
gestions. 

2. Fock space notations 

Let h be a complex separable Hilbert space and F(h) be the boson Fock space 
over h. For each g e h let ~b (g) be the corresponding exponential vector, in particu- 
lar ~b (0) is the Fock vacuum. It is a well known fact that the family {~b (f)  l f s  h} 
is linearly independent and total in F(h). For all fEh let W(f)  be the unitary 
Weyl operator on F(h) defined by its action on exponential vectors 0(g), with 
geh  

W(f)  O (g) = exp ( -  �89 l[ f [I 2 _ ( f ,  g)) 0 ( f +  g) 

Let ~ ,  ~ ,  d~ t be the boson Fock space over L2OR+), La(o, t), L2(t, oo). 
We have the tensor product decomposition 2 / g = ~ |  "~t. The Hilbert spaces 

and Jt ~t will be identified with the subspaces ~t| and Ot (0) |  of 
where Ot(0) and 0t(0) denote respectively the Fock vacuum in H t and ~ .  

We will denote by g the set of exponential vectors ~b(g) with I[gl[ <1 and 
esssupt~.+ [g(t)[ N 1; g is total in A<. 

Let ~ be a complex separable Hilbert space called the initial space and 
a dense linear manifold in Y{2. For u ~  and ~b(g)sg we abbreviate u| 

to u~b(g). Moreover all the operators defined on a factor of A"| ~ will be 
identified with their canonical extension to the whole space. 

A stochastic process is a family X=(X(t))t>o of operators on S |  with 
domain containing ~ |  strongly measurable on ~ |  Two processes are 
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equivalent if they agree on this domain for almost all t. A stochastic process 
is bounded or contraction or unitary if the operators X (t) are bounded or contrac- 
tion or unitary for all t e N + .  A stochastic process is adapted if, for all ue~ ,  
0(g)e~, t e N +  

(a) X(t)u 4J(g)~(0,0)e3C| 
(b) X(t)u O(g) =(X(t)u q/(gzm,o))| ~)) 

We will consider also processes indexed by an interval of IR+; in this case 
the above definitions admit an obvious translation. 

The basic martingales of Fock space stochastic calculus are the adapted 
processes given by 

M'~ u 0 ( f )  = ~  u 0 ( f +  eZ(o,0)I~=o 

d 
M 11 (t)U O (f)  = -- i ~-- U ~9 (ei~Z<~ = o 

M~ u ~ (f)= i f(s) ds u O(f) 
0 

They are called the creation, number and annihilation process. M oo denotes 
the identity function on IR+. For all adapted process F = (F(t)),>= o such that 

(2.1) i [IF(s)utP(f)H 2 ds < oo 
0 

for all t e N + ,  ue~ ,  O ( f ) e g  one can form the stochastic integral of F with 
respect to the fundamental martingales. Let F=~ o~, fie{O, 1} be four processes 
satisfying (2.1), then, for all u, v e ~  and all f, geL2(lR+) (cf. [15, 18]) 

(2.2) v0(g), 5 F~p(s)dM~P(s)uO(f) = ~ k~e(s)(vt~(g), F~(s)u~p(f)) ds 
0 0 

where k ~p =f~ g= with the understanding fa = f ,  g a = g, fo = go = 1. The Einstein 
summation convention is used. The It6 table (cf. [15, 18]) can be written in 
the form 

(2.3) 
CZM ~ if fi = 7 = 1 

dM~P d M  '~ = ~7 
[o elsewhere 

For all ue@, O ( f ) e g  and telR+ we have the inequalities (cf. [18]) 

(2.4) ' i ~o F ( s ) d M ~ ( s ) u ~ ( f )  ~ IlF(s)u~(f)][ ds 
0 

if ~ = 0  

(2.5) 
t )112 
~o F(S)dM~P(s)u~b(f) <=3 [[F(s)uO(f)l[2ds if a = l  
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Let Xo, Yo, L~p(e, fie{0, 1}) be operators on ~f  with domain containing 
9. An adapted process X (resp. Y) is a solution of the right (resp. left) stochastic 
differential equation 

(2.6) 

resp. 

(2.7) 

dX (t) = X (t) L~a dM ~a (t) 

dY(t) = L~a Y(t) dM~a(t) 

with initial condition X 0 (resp. Yo) if, for all t e N + ,  7, Be {0, 1}" 

(i) L~a(gQN)~_D(X(t)) (resp. Y(t)(N| the map s~X(s)L~a 
(resp. s--*L~a Y(s)) is strongly measurable on @@~ and, for all ue@, O ( f ) e g  

t 

IlX(s)Z~a u 0(f)ll 2 ds < oo 
0 

resp. i IIL~a Y(s)uO(f)ll 2 ds< oo) 
0 

(ii) 
t 

X(t)=Xo + ~ X(s)L~a dM~a(s) 
0 

(resp. Y(t)= Yo + i L~a Y(s)dM~B(s) ). 

A process X (resp. Y) is a local solution of the right (resp. left) stochastic 
differential equation (2.6) (resp. (2.7)) if there exists a T > 0 such that these condi- 
tions hold for all te[0,  T] and all ~, fie{0, 1}. 

3. The existence, uniqueness and unitarity theorem 

In this section we will prove our theorem on stochastic differential equations 
with unbounded coefficients. Since we are interested in unitary solutions we 
will suppose that the conditions that are necessary and sufficient in the bounded 
case are satisfied on the domain 9. 

Let W, K, L, L + be four operators in ~ satisfying the following conditions: 

(i) W is unitary, K is selfadjoint, L is closed and L § is the adjoint of L, 
(ii) 9 is an invariant domain for the operators W,, K, L, L § 

Let us consider the operators (defined on 9 )  Ll l=-W-I ,  Llo=L, L o l =  
-L+W, Loo=iK--�89 and denote L~+p the adjoint of L~a(e, fie{0, 1}). The 
operators L,+~ are closed ([20] Theor. 2, p. 196). It is easy to see that L~I = 
--W+L. 

Theorem 3.1. Suppose that, for all u ~  neN, there exists a positive constant 
c(n, u) such that: 
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(a) for some p > 0 (independent of u) 

• c(n,u)p"<~ 
n = O  

(b) for all n> 1 and all o9, flj~{O, 1}, 1 <=j<n, with aj=O for h indicesj 

(3.1) IiL~,p ...L~,plul[ <c(n, u) (~/~h)! 

Hgp+~ ...g~-~1 u 11 --< c(n, u) ( ~  h)! 

and the second inequality, with L~,,, replaced by K, holds for all ~ ,  flje{0, 1}, 
1 <=j <_ n-- 1, with ej = 0 for h - 1 indices j. 

Then there exists a unique unitary process (U (t))t>=o that is a solution of the 
right stochastic differential equation (2.6) with initial condition I. 

In Sect. 4 we show that conditions (a), (b) are satisfied by the unbounded 
operators W, K, L appearing in many interesting applications ([1, 2, 4, 10, 14]). 
Here we remark that, as a consequence of condition (b), N is a set of analytic 
vectors for the operators +iK--�89 L+W and L § Moreover, for all hEN, 
we have Ilg"utl <c(n, u)V~. so that the assumption on Lis stronger than analyti- 
city on ~ When W=I,  K = 0  then L§  a selfadjoint operator ([201 Theor. 2, 
p. 200) and condition (3.1) is also closely related to the spectral properties of 
L+L as shown in [13] (Theor. 4.1). 

Remark. We can suppose also that, for all u~@, the sequence (c(n, u)),>=o is 
increasing. In fact, for all sequence (a,),>_0 of nonnegative real numbers with 

lim sup = L > 0  denoting a,' = max ah it is easy to show that lim sup 
n - - * ~  O < _ h < n  n ~ o o  

=max{ l ,  L}. Therefore, if the convergence radius of the series ~ a.p" is non- 
,=oo~ 

zero, then is nonzero also the convergence radius of the series ~ a', p". We 
n = O  

will use this fact in the proof of the isometricity of the solution (Lemma 3.4). 

We will divide the proof of Theorem (3.1) into several steps. 

Proposition 3.2. Let p be as in Theorem (3.1) and T=min{1 ,  �89 There 
exists a unique local solution V= (V(t))t~to, T1 of the left equation 

(3.2) d V(t) = L~  V(t) dM~(t) 

with initial condition I on the interval [0, T] such that 
V(t) (9  | o ~) ~_ D (K) c~ D (L + L) for all t ~ [-0, T]. Moreover, V(t) is an isometry for 
all re[0, T]. 

Proof Using the It6 formula (2.3) it is easy to check that, for all local solution 
(Y(t))t~ro,xl of (3.2) on the interval [0, x] with Y(t)(~| ~D(K) c~ D(L + L), we 
have 

<Y(t)v~(g), r(t)u~O(f)>=<Yov~,(g), You~(f)> 
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for all u, ve~,  ~k(g), O(f)~g. Then, if I1o is zero (resp. an isometry), Y(t) will 
be zero (resp. an isometry) for all te l0,  x]. 

We construct now a local solution by iteration. Let 

V(~ V("+ 1)(0= i L~ V(")(s) dM~(s). 
0 

It is easy to see that the sequence is well defined and, for all n a n  

t t 2 

(3.3) vt")(t)=L-~.~ . . .L~ ~ dM~"~"(t.)... ~ dM~(q) 
0 0 

on the domain ~ | g. For all c~, fle {0, 1 }, V (~ (@ | g) ___ D (L~) c~ D (K) and, denot- 
ing by I ~ ........ P~(t) the integral in the right-hand side of (3.2) we can write, 
for all u e @ and ~ (f)  ~ g, 

(3.4) V (") (t) u 0 (f)  : (L~.~...L~I,, u) | (I ~" ~ ........ a~ (t) O (f)). 

We will prove that the series 

oo 

(3.5) ~ V(")(t)uO(f), ~ L~ V(")(t)uO(f) 
n = O  n = O  

KV(")(t)ur ~ L+ LV(")(t)uO(f) 
n = O  n = O  

converge on N |  uniformly in the interval [0, T] and the conclusion will 
follow by a standard argument. To this end we have to prove an estimate 
of (3.4). For all integer h with O<_h<_n let d , ,~={(~ f i  . . . . .  , cqfil)]cg=0 for h 
indices j}, using (3.1) we have then 

(3.6) 11V(')(t)u O(f) H 

_< z ii, '- '  ........ 
h = O  an~ . . . . . .  a l f l l  e ~ l n , h  

The following estimate is crucial, however we will defer the proof since it is 
rather technical. For all t~ [0, 1] 

< ( 2 4 ~  
(3.7) ~.~,, ...,~,r [11 "~ ........ Pl(t) •(f)l] = ]/~! ~ .  [l@(f)[[ 

Using (3.7) we majorize the left-hand side of (3.6) by 

L c,. u) ((" h h)) l'2 ." 
h = O  
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and then, due to the elementary inequalities 

we have 

II V(")(t) u 0(f)l[ 5 ]lO(f)ll (n+ 1) c(n, u)(48)" t "/2 

In the same way we obtain 

IlL~ V(")(t)u @(f)l] ~ 2  I]0(f)ll (n+ 1) 2 c(n+ 1, u)(48)" t "/2 

[[K V(") ( t)u ~ (f)[l <= 2 [[ O (f)[[ (n +1)2 c(n + l, u)(48)" t "/2 

l[ L + L V (")(t) u ~ (f)11 =< 2110 (f)II (n + 1) 2 c (n + 1, u)(48)" t "/2 

It follows then from assumption (a) of (3.1) that the series (3.5) are convergent 
on @ |  uniformly in the interval [0, T]. For all te l0,  T], let V(t) be the 
sum of the first one. Since the operators L~a , K , L + L  are closed, 
V ( t ) ( ~ |  for all te[0,  T]. The process V 
= (V(t))t~tO,T 1 is a local solution of the (3.2) with the initial condition I. [] 

Proof  o f  (3.7). For all a, fle {0, 1} and all positive continuous function x let 

i j x ( s ) j d s  if ~ = 0  
j ax ( t )  = o 

( i l x ( s )  l 2 ds) l/2 if e = l  

To prove (3.7) we majorize the stochastic integrals with respect to d M  ~ and 
d M  1~ (resp. d M  ~ and d M  ~176 using (2.5) (resp. (2.4)) and we obtain 

rig . . . . . . . .  #'(t) ~P(f)lt ~ 3  J=" llI . . . .  a . . . . . . . . . .  ~ ' ( ' )  ~ ( f ) [ I  (t). 

From this it follows, iterating the estimates and considering 1 as a constant 
function 

(3.8) lIP "~ ........ ~l(t) ff(f)ll ~ H~k(f)]l 3"Ja"J . . . .  ...j~l l(t) 

When x is the function s ~ sP(p > 0) it is easy to see that we have 

J a x ( t ) ~  
2 - ~  

(2 p + 2) -~- 

and then, by induction, since we suppose t < 1, 

jan...jal 1 (0 5~ 2" t"- ~ (a, + ...+ ~.)(22 - a232 - a3...n z - a,)- 112 

2" t "/2 
< (21-~23 t-a3.. ."  1-~.)- 1/2 
=V~.~ 
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From this and (3.8) we obtain 

II U"~ ....... aPl(t) O(f)] I 
~nfln, .",~l~l~'g~n,h 

6 n tn/2 
< IIiP(f)[I (21-~231-~3...n1-'") -1/z 

6" 2" t "/2 
-- IllP(f)ll . 7 ,  Z (Jl...Jh)- 1/2. 

v n ~  o < j ~ <  . . . .  Jh~ .  

 ana side sum (: /  addends and   e.test is thou it 

will be less than 2 " / ~ .  T . This completes the proof of the estimate (3.7). []  
V ' l  

Unfortunately we can not obtain the global existence by successive steps 
of length T because we have no estimates like (3.1) of 

(3.9) + L + IIL~.~.-.. pl~ VTU~P(fX(o,T))II 

We will prove the global existence for the left equation (3.2) in Sect. 4 under 
some more assumptions. Here we prove this result for the right equation (2.6) 
with initial condition I. In fact the adjoint of a bounded local solution of (3.2) 
is a local solution of (2.6) that can be extended using the cocycle property as 
in [12]. The same can not be done for (3.2) since, due to the unboundedness 
of L~a, domain problems arise. 

Let F t be the second quantization of the time shift on L2(N+) given by 

( c s f ) ( x ) = { f ( x - - t )  if x>=t 
otherwise 

For  all bounded operator A on ~f~| and all t e ~ + ,  F~AFt* is an operator 
on ~ |  t that will be identified with its canonical extension to X |  If 
A is an isometry then FtAF~* is an isometry. A contraction valued adapted 
stochastic process U = (U (t))t >= o is a cocycle if, for all s, t > 0 

u(t+s)---u( t ) (r ,U(s)r~) .  

From the uniqueness part of theorem (3.1) it will follow that the solution of 
the right stochastic differential (2.6) equation with a contraction as initial condi- 
tion is a cocycle. 

Lemma 3.3. There exists a contraction solution U = (U (t))~= o of the right stochastic 
differential equation (2.6) with the initial condition I. 

Proof Let T, V be as in Proposition 3.2 and U(t)= V*(t) for all re[0,  T]. Using 
(2.2) it is easy to see that the process U=(U(t))t~to,r] is a local solution of 
equation of (2.6). For  all tel-0, T] let us define 

U(t + T)= U(T)(FT U(t)F*). 
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The process (U(t))t~to, zrl is a local solution of (2.6) on [0, 2T].  We have in 
fact, for all u, y e n  and O(g), O ( f ) e g  

(v ~b(g), U(t + T) uO( f ) )  

= (U*(T)  v~b(g), Fr U(t)F* u~p(f)) = (U*(T)  V~b(g), uO( f )  ) 

( ' ) + u*(r)vo(g), ~ rr U(s)r*L, pdM'P(s+ r)uO(f) 
0 

= @ 0 ( g ) , u O ( f ) ) +  v~b(g), I U(s)L, odM~P(s)u~b(f) 
0 

By successive steps of length T we can extend the local solution to l l+ .  [] 

Lemma 3.4. The contraction U = (U (t))t >= o constructed in lemma (3.3) is the unique 
contraction that is a solution of the right stochastic differential equation (2.6) 
with initial condition I. Moreover U is unitary. 

Proof We prove that U is the unique contraction solution of (2.6) and that 
it is an isometry extending the method of Hudson and Parthasarathy [15] to 
the unbounded coefficient case. 

Let X=(X(t)) t~o be a contraction that is a solution of (2.6) and 0(g), ~k(f)eC 
fixed. There exists bounded operators K(t), t > 0, on 3r r such that, for all v, u e ~  

(v, K (t)u) = ( X (t) v~  (g), X (t) u~  (f)  ). 

Using the fundamental formulas of quantum stochastic calculus on F(L2(ll+)) 
(2.2) and (2.3) we obtain the linear equation for K 

(3.10) (v, K (t)u) = (v, K (O)u) 

+ i {(v, K(s)L~r + (Lp~v, K(s)u) 
0 

+ (LilY, K (s)L1 p u)} UP(s) ds 

We show now that, for all bounded operator K(0) on ~ ,  if (3.10) has a solution 
(K(t))t>_o with sup ]lg(t)[l--S<oe, then it must be unique. As a consequence, 

t>=0 

when X(0)=0, we have K( t )=0  for all t e N +  then X( t )=0  for all t e l l + ,  and 
the uniqueness part of lemma (3.4) follows. Moreover, when X(O)=I, due to 
the expression of the coefficients L~ with respect to the operators W, K, L, K(t) 
= I@' ( f ) ,  O(g)) for all t e l l+  is a solution of (3.10), then it is the unique solution 
and so X(0) is an isometry. 

For all c~, fie{O, 1}, 7e{0, 1, 2} let 

(3.11) 
I if 7=0  [ L ~  if 7=0  

L~pT= L~z if 7=1 / , ~ = ~ I  if 7=1 

[L~t~ if 7=2  [ L ~  if 7=2  
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and denote, for all integers ho, hi, ha with ho + h~ + h 2 = n 

Fho,h~ ,h2 = {(e,/3,7 . . . . . .  Cq/?~yt)lyj=~ for h~ indices j, for all 7 = 0, 1, 2}. 

Iterating n times the equation (3.10) with the initial condition K(0)=0  we can 
show that I(v, K(t)u)[ is bounded from above by St"~,! times 

h o + h l  +h2 =n (o;nfln? . . . . .  )~F~o,h 1 ,h 2 

For all e,~,y,...cq~l"~leF~,hl,h2, due to (3.11), (3.1) and the remark on the 
assumption a) of Theorem 3.1, we have 

I[L~,~ ., ...L~I~, ,I uI[ < c(n, u ) / ( 2  h 1 + hz) ! 

IIL=.B., ...L=,~,l vll <c(n, v) 1/(Z ho + hz)[ 

From the elementary inequalities 1/(2 ha + h2)[ 1//(2 ho + h2)! < 1 /~  n)! < 2" n!, 
since ~ IFh~,h~h~[ =(12)", for all v, ue@ we obtain the inequality 

ho+ht  + h 2 = n  

I (v, K (t) u)  I ~ s (24)" c (n, u) c (n, v) t" 

< S (24 t)" (c (n, u) z + c (n, v) 2) 

Therefore, if ~ t < p 2 / 2 ,  the convergence of the series ~ c(n, u) z pZ, (assump- 
. = 0  

tion (a) of Theorem 3.1) implies that the right-hand side tends to zero as n 
tend to infinity. Hence (v, K ( t )u )=0  for te l0 ,  p4/96] and we can prove global 
uniqueness by successive evolution steps of length p4/96. 

This shows that U is an isometry; since U* is an isometry by construction 
it follows that U is unitary. [] 

4. Applications to the quantum harmonic oscillator 

Throughout this section the initial space will be the quantum harmonic oscillator 
i.e. the Fock space F(IE) with creation and annihilation operators a +, a and 
number operator N = a  + a; a +, a are closed, N is selfadjoint and, for all coeR, 
we can consider the unitary operator exp(icoN). 

We have the commutation relations 

(4.1) a N = ( N +  1)a, N a  + = a  + (N+  1), 

aexp(icoN)=e~~ exp(icoN)a, exp(icoN)a + =ei~' a + exp(icoN) 

the first two being meant on D(N 2/3) and the other on D(N1/z). For all 
xeD(NI/2), the following equalities hold 

( 4 . 2 )  Ilaxll=-IIN1/2xl], Ha+ xl[=ll(g+ l)l/axH 
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Let us consider the operators 

(4.3) W=exp(icoN), L=c+ a+ +c_a+co 

K--d++a+2+d+_a+ a+d__a2+d+a+ +d_a+do 

where d with indices + + ,  + - ,  ..., are complex constants and d+_,  doeR,  
d+ + = d_ _, d+ = d_.  It is a well known fact that W, K, L verify conditions (i), 
(ii) of Sect. 3. Let 

p =  15 max {Ic+ I, Ic-I, ICo[, [d+ + I, Id+- I, I d - -  I, [d+ I, [d_ I, Idol}. 

Using (4.1), (4.2) it is easy to see that, for all m e n  and all a, fl,, . . . ,  ~lfll we 
have 

(4.4) I[L~,~...L~,~,a+mO(o)[[<p"l[(N+l)l/2...(N+n+h)l/Za+mO(O)ll 

where h is the number of indices akflk equal to 00. The right-hand side can 
be computed explicitly and is equal to p"l//(m+ n + h)!. Using the elementary 
inequality (re+p)! <2"+Pro! p! (for all m, p e N )  we can majorize (4.4) by 

(2m/2 ]//~[) 2" ~ .  

Therefore conditions (a), (b) of Theorem (3.1) are satisfied with ~ equal to the 
linear manifold generated by the set {a + m ~,(0) r m e N}. 

Thus we obtain the proposition 

Proposition 4.1. Let W, L, K be as in (4.3). Then there exists a unique unitary 
solution of the quantum stochastic differential equation 

d U (t) = U ( t ) ( ( W -  I)  d A  (t) + L d A  + (t) - -  L + W d A  (t) + ( - 1 L + L + i K )  d t) 

U ( 0 ) = I  

In particular (iK--�89 W) are the generators, in the sense of 
[1, 17], of a unitary markovian cocycle in the Fock space F(L2(~+)). 

As a corollary we obtain a proof of existence, uniqueness and unitarity 
for the stochastic differential equations 

dU(t)=U(t)(pa + dA(t)--padA+ (t)-P-~-~ a+ adt) 

dU(t)=U(t)(padA(t)-pa+ dA+ (t)-P-~-2 aa+ dt), 

with p positive constant and initial condition I, defining respectively the quan- 
tum Ornstein-Uhlenbeck and anti-Ornstein-Uhlenbeck process [2, 16]. 

The existence result for these equations can not be obtained by the iteration 
method using the estimates of iterated integrals in [-3, 15, 19]. In fact, let us 
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consider, for example, the former. For all n e N  we have ll(a+a)"a+"tp(O)II 
= n"(n !)1/2 so that, with the same notation of [15], M2,(O (0)) > 2-" p3"(n !)1/2 n" 
and the series 

~ n'(n!) lie 2 - , p a , x ,  
. = o ( ( 2  n ) ! ) 1 / 2  

is not convergent for all x > 0. 
Here is another example where Theorem (3.1) applies. It shows that the 

estimates (3.1) might hold when the coefficients of the stochastic differential 
equation are polynomials in a +, a of arbitrary degree, satisfying the formal 
unitarity conditions in Sect. 3. However, because of the commutation and selfad- 
jointness of the coefficients, it can be considered as a classical one. 

Proposition 4.2. Let p, q be two positive real numbers. 7here exists a unique unitary 
solution of the quantum stochastic differential equation 

"d U (t) = U ( t ) ( N  p d A (t) - N v d A + (t) + ( - �89 N 2 v + i N q) d t) 

U(O)=I 

Proof Suppose q____ 2 p for simplicity; the other case can be treated in the same 
way as it will be clear from our discussion. 

Let ~ be the linear manifold generated by {a+"O(O)lmeN}. For all h e n  
and all indices a, fl,, . . . ,  ~1/31, we have 

IjL~,a . ... L=lala+mO(O)ll ~ [~.T 2" m 2p". 

The conditions (a), (b) of theorem (3.1) are fulfilled. Moreover we can consider 

constants c(n, u) such that the series ~ c(n, u)p" converges for all p > 0. Hence, 
. = 0  

from proposition 3.2, we can deduce also the global existence for the left equa- 
tion. [] 

Other examples of quantum stochastic differential equations with unbounded 
coefficients satisfying the assumption (3.1) (and the formal unitarity conditions) 
can be found in [10]. 

Theorem (3.1) can not hold, in general, when L is a polynomial in the opera- 
tors a, a + of degree greater than 1 as shows the following counterexample sug- 
gested by Frigerio and inspired by example (3.3) in the paper by Davies [8]. 

Suppose that the quantum stochastic differential equation 

(4.5) du(t)= u ( t ) (a  2 dA(t)-a + 2 d A  § ( t ) - - � 8 9  2 a + 2 a t )  

with initial condition I has a solution. We will show that V= U* can not be 
an isometry. Let (e.).>=o be the canonical of F(~) (en = (n !)-1/2 a+.~(0) for all 
n~N) and �9 be the Fock vacuum in F(L2(IR+)). For all n ~ N  let H.  be the 
orthogonal projection onto the subspace en| Due to the commuta- 
tion relations II .a + = a + / / . _ l ,  I I . a = a H . + l  (with the convention Hm=0 if 
m < 0), the processes/ / .  V satisfy the recursion relations 



Quantum stochastic differential equations 513 

1-1 n V(t)= i a + 2 I][n- 2 V ( s ) d A  + (s) 
0 

0 

Hence, for all t eN+ and neN,  we have 

IlIln g(t)eo ~lP e = C~n,0 + i (a + e Hn- 2 V(s)eo ~, a + e II~- e ~s)eo ~ )  ds 
0 

- ~ e  i (Fin V(s)eo~, a2a+ZHn Ns)eo ~ ) d s  
0 

Using the canonical commutat ion relations we can write a2a § as (aa § 
+ l ) ( a a  § +2)  and, since the em are eigenvectors of the number operator  aa § 
we obtain 

t 

IlII. V(t)eo ~ll2=6.,o + n (n -1 )  ~ ]1/In-2 V(s)eo ~ll2 ds 
0 

t 

- (n + 1)(n + 2) ~ II/L V(s) eo ~ It 2 as 
0 

From this we deduce that, if n is odd, II/-/n V(t)eo~[[ = 0  for all te]R+. Denote 
pn(t) = 11//2n V(t)eo ~ll 2. Clearly, if (4.5) has a unitary solution U, we have 

(4.6) ~ pn(t)= ~, II1-1 n V(t)eo~l[ 2= 1 
n = 0  n = 0  

However, the sequence (Pn(t)).~r~ satisfies the system of differential equations 

{ f i n ( t )=- (2n+2) (2n+l )pn ( t )+2n(2n -1 )pn_ l ( t  ) if n > 0  

p~)(t) = --2po(t  ) 

with the initial conditions p,(0)=6, ,o for all n e N .  This is a basic system of 
differential equations of a divergent pure birth process in classical probability 

(cf. [11] Chap. XVII 3, 4 pp. 448453)  and then one has ~ pn(t)< 1 for all t>0 .  
n = 0  

This contradicts (4.6) and shows that (4.5) can not have isometric solutions. 

In the literature quantum stochastic differential equations are usually written 
as right equations and up to now we have not studied the problem of global 
existence for the left equation (2.7), however sometimes it is useful to consider 
the stochastic differential of the adjoint of U. We will show that the global 
existence for a left equation holds when the coefficients are as in Prop. 4.1 with 
the restriction on K:d++ = d _ _  =0.  The proof  is based on some estimates of 
the commutators  of the coefficients with polynomials in the number operator  
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N. This method can be used in more general cases provided that the same 
kind of estimates hold (for example when L = N 1/2- a and W,, K are as above). 

For  all k e n  let Nk denote the operator ( N +  1). . . (U+k);  we state first some 
easy estimates. 

Proposition 4.3. For all k e n  the following inequalities hold 

i ( x, [N~, a] xS i <= k liU2/2 x It ~ 

[<Wx, FN,, a]xSI <=k IIN~/2xll 2 

I ( W x ,  INk, a +] x )  i <=k IIN2/2 xll 2 

I(x,  a[Nk, a + ] x ) l < k  [lUg/2 x II 2 

I(x, a + [Nk, a] x ) l <  k liU~/Zxl] 2 

x~D(N k+'~) 

x~D(N k+~) 

xeD(N k+~) 

x~D(N k+ l) 

xeD(N ~ +1) 

Proof The proof is a simple computation using the chaos decomposition of 
F(G). Let us check, for example, the third inequality. For  all x = (x,),>_ o ~D (N k +~) 

we have ~ n 2k+l IXn[2<oO and 
n=O 

I(Wx, INk, a + ] xS[ 

.~o (n + k) =k 2,+lx ,  exp(--ico(n+l)) n ~ ( n + 2 ) .  

<k (n+2)...(n+k)lx.+ll2 + ~. (n+l)...(n+k)lx.[2 
= 2 , : o  ,=o 

=<kllU2/2xll 2. [] 

Proposition 4.4. Let W, K, L be as in Prop. 4.1 and suppose, moreover, that d+ + 
= d_ _ =-O. Then the quantum stochastic differential equation 

(4.7) 
d V(t) = ( ( W -  I) dA (t) + Ld A + (t) - L + WdA (t) + ( - �89 L + L + i K) d t) V(t) 

v( t ) (o )= I  

has a global solution V which is the adjoint of the solution U of the corresponding 
right equation. The solution is unique, unitary and has the following property 

(4.8) V(t)u~(f)~ (~ D(N p) for all ue~,  ~ ( f ) e ~ ,  te]R+ 
p>O 

Proof The adjoint of each solution of (4.7) satisfies the corresponding right 
equation, therefore uniqueness and unitarity follow from Prop. 4.1. F rom 
Prop. 3.2 we know that there exists a local solution V=(V(t)),~t0,T 1 of Eq. (4.7). 
We can prove also the following "regulari ty" property in [0, T] 

(4.9) V(t)uO(f)~ ~ D(N p) for all ue~,  O(f)~g 
p>O 
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As a matter  of fact we can show that the series ~, N p V(")(t) converge strongly 
n = 0  

on N |  uniformly in [0, T] for all p > 0 .  Let us consider the set 

B = {x~N.+ [3 V solution of (4.7) with the property (4.9) on [0, x)} 

We prove that B = I R + .  B ~ [ 0 ,  T]  and so it is nonempty. Suppose that B is 
bounded and let b denote its supremum. For  all ueN, ~k(f)eg, k e n  and te  [0, b) 
a simple computat ion gives the equality 

IIN~/2 g(t)u~,(f)lla= ]lN~l/2uO(f)l[2 

+ 2  0te i (WV(s)u~,(f), INk, L] V(s)uO(f)) f(s)ds 
0 

+ 9te i (V(s)u4J(f), L + INk, L] V(s)uO(f) ) ds 
0 

t 

+ i S (V(s)uO(f), INk, K] V(s)uO(f)) cls 
0 

From Prop. 4.3 we obtain the inequality 

[[N2/2 V(t)uO(f)[[ a< [[N~/2uO(f)H z +ck i t liNk 1/2 r(s)u~t(f)U 2 ds 
o 

where c > 0 is an easily computable  constant depending only on W, K, L. Then, 
using Gronwall 's  lemma 

liNk 1/2 V(t)ugJ(f)l] 2 < exp(ckt)][N~ 12 mp (f)][ 2 

Thus we get estimates of expressions like (3.8) that can be used to construct 
a solution of (4.7) satisfying (4.9) on intervals larger than [O,b], say 
[0, b+�89 starting from b - � 8 9  by an evolution step of 
length exp ( - c  b) T. This shows that B can not be bounded and then B =JR+.  []  
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