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Summary. We prove an existence, uniqueness and unitarity theorem for quantum
stochastic differential equations with unbounded coefficients which satisfy an
analyticity condition on a common dense invariant domain. This result, applied
to the quantum harmonic oscillator, gives a rigorous meaning to a large class
of stochastic differential equations that have been considered formally in quan-
tum probability.

1. Introduction

We consider quantum stochastic differential equations of the form

(1.1) AU=U(W~DdA+LdA* —L* WdA+GK—+L* L)d?)
U©)=I

in which 4, A*, A are the number, creation, annihilation processes in the boson
Fock space over L*(R ) and the coefficients W, K and L are unitary, selfadjoint
and closed operators respectively in the initial space. These equations naturally
arise in the study of quantum evolutions ([1, 2, 4, 9, 10, 14-16]). In [15] an
existence, uniquenes and unitarity theorem is proved under the assumption that
W, K and L are also bounded. This result has many applications: the dilation
of norm continuous quantum dynamical semigroups [15], the construction of
quantum diffusions in the sense of [9], modelling physical systems [4] and
so on.

In many interesting cases ([1, 2, 4, 10, 14, 16]), however, the coefficients
are not bounded (typically L, L™ are annihilation or creation operators of a
quantum harmonic oscillator) and therefore the problem arises to extend this
theorem. Some results in this direction can be found in [12, 13, 16] and in
[6, 7] in the classical case. In [13] Frigerio gives the outline of a construction
using quantum Poisson processes under the assumptions that W is the identity
operator, K is the zero operator and L has a spectral property implying an
analyticity condition.

In this paper, which can be considered a generalization of [13], we prove
the existence, uniqueness and unitarity theorem (cf. Theor. 3.1) for Eq. (1.1) when
the unitary operator W and the unbounded operators K, L satisfy an analyticity
condition on a common invariant dense domain. This assumption is easily verifi-
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able (cf. Prop. 4.1) when K is a symmetric polynomial of second degree in a, a*
(the creation and annihilation operators of a quantum harmonic oscillator),
L a linear combination of a®, a and W is the unitary operator exp(iwa™ a).

The proof is based on a new estimate of some iterated stochastic integrals
(cf. (3.6)) refining that of [15]. In spite of the long computations needed to
establish this estimate the idea of the proof is very simple. First we consider
the adjoint equation to (1.1) and prove the existence of a unique local solution
consisting of isometries by the iteration method. The adjoint process is a local
solution of (1.1) that can be casily extended using the cocycle property; then
we prove uniqueness and unitarity extending a method of Hudson and Partha-
sarathy [15] to the unbounded coefficient case. The analyticity condition is
crucial in the proof both of existence and unitarity.

In Sect. 4 we apply theorem 3.1 to the case of the quantum harmonic oscilla-
tor as initial space and we prove (cf. Prop. 4.1, Prop. 4.2) that a certain class
of unbounded operators satisfying the formal unitarity conditions generates a
markovian cocycle in Fock space whose associated semigroup is (in general)
not invertible as in [17]. A counterexample, suggested by Frigerio, shows that
the same theorem is no longer true if we consider a weaker analyticity condition.
We give also an existence result (cf. Prop. 4.4) for the adjoint equation to (1.1).

After writing this work we knew that quantum stochastic differential equa-
tion (1.1) has been studied at the same time by Applebaum [3] (in the multidi-
mensional case), Chebotarev [5] and Vincent-Smith [19]. Our result is stronger
than those of [3, 19] because we use a better estimate of iterated stochastic
integrals.

We wish to thank L. Accardi and A. Frigerio for useful comments and sug-
gestions.

2. Fock space notations

Let h be a complex separable Hilbert space and I'(h) be the boson Fock space
over h. For each geh let Y (g) be the corresponding exponential vector, in particu-
lar 1 (0) is the Fock vacuum. It is a well known fact that the family {y/(f)| feh}
is linearly independent and total in I'(h). For all feh let W(f) be the unitary
Weyl operator on I'(h) defined by its action on exponential vectors (g), with
geh

W)y (@=exp(—%| fI*—<f, g0 ¥(f+8g)

Let # #, #* be the boson Fock space over I*(IR,), I*(0,1), L*(t, ).
We have the tensor product decomposition # =# @ #". The Hilbert spaces
# and #* will be identified with the subspaces #®y'(0) and ¥, (0)®H#" of
# where ¥/ (0) and ,(0) denote respectively the Fock vacuum in #* and #.
We will denote by & the set of exponential vectors Y (g) with |g| <1 and
esssup,.r, |g(t)|<1; & is total in .

Let & be a complex separable Hilbert space called the initial space and
2 a dense linear manifold in . For ue2 and y(g)ed we abbreviate u®@y (g)
to uir{g). Moreover all the operators defined on a factor of A ®# will be
identified with their canonical extension to the whole space.

A stochastic process is a family X =(X(t)),»o of operators on A4 ®# with
domain containing @& strongly measurable on Z®¢&. Two processes are
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equivalent if they agree on this domain for almost all t. A stochastic process
is bounded or contraction or unitary if the operators X (¢) are bounded or contrac-
tion or unitary for all telR,. A stochastic process is adapted if, for all ueZ
Y(g)ed, teR,

(@ X(tuy(g X(o,r))e«%@%

(b) X(O)uy(g) =X O)uy (8 X0,V (g Xt )
We will consider also processes indexed by an interval of R, ; in this case
the above definitions admit an obvious translation.

The basic martingales of Fock space stochastic calculus are the adapted
processes given by

d

MY @uy (f)=——udh ([+ex0.0) =0

. d ie
MY uy(f)= —i uy (e f)l—o
t
M @uy(f)= | f(s)dsuy(f)
0
They are called the creation, number and annihilation process. M°® denotes
the identity function on R, . For all adapted process F =(F(t)),», such that
t

2.1 FIF@uy () ds<oo

0

for all teR ., ueZ, ¥(f)cé one can form the stochastic integral of F with
respect to the fundamental martingales. Let F,; o, fe{0, 1} be four processes
- satisfying (2.1), then, for all u, veZ and all f, ge [*(R ) (cf. [15, 18])

22 <v¢(g), § Fup(s)dM™ (s)u lﬂ(f)>= § kP (5) <o (g), Fop(s)uip(f)) ds
) 0

where k* = f; g, with the understanding f, =f, g, =g, fo=go=1. The Einstein
summation convention is used. The Itd table (cf. [15, 18]) can be written in
the form

(23) dMaﬁdMyé= dM'lé lf ﬁ:’)):l
0 elsewhere

For all ue 9, y(f)eé and telR , we have the inequalities (cf. [18])

24)

[F@) dM“ﬁ(S)uW(f)Héj \F&)uy ()] ds if 2=0

.5)

[F(5) dM“"(s)uw(f)“§3(§ IIF(S)uw(f)IIZdS)m if =1
0 0
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Let X, Y,, Ls(a, fe{0, 1}) be operators on % with domain containing
4. An adapted process X (resp. Y) is a solution of the right (resp. left) stochastic
differential equation

(2.6) dX ()= X (t) Loy dM™ (1)
resp.
2.7 dY()=L,; Y(t) dM**(2)

with initial condition X, (resp. Y,) if, for all teR . , &, {0, 1}:

() L,s(Z2®@8)=D(X(t) (resp. Y(O)(P®&)=D(L,p), the map s— X (s) Ly,
(resp. s = L, Y (s)) is strongly measurable on 2®¢ and, for all ue 2, y(f)eé

FIX () Lyguw(f)?ds<oo
0

(resp. J L Y(Suy (NHl*ds< oo)
0
(i)
X(0)=Xo+ [ X(5) Loy dM(s)

(rcsp. Y({)=Y,+ jt L Y(s) dM“B(s)).
0

A process X (resp. Y) is a local solution of the right (resp. left) stochastic
differential equation (2.6) (resp. (2.7)) if there exists a T >0 such that these condi-
tions hold for all te[0, T] and all o, f€{0, 1}.

3. The existence, uniqueness and unitarity theorem

In this section we will prove our theorem on stochastic differential equations
with unbounded coefficients. Since we are interested in unitary solutions we
will suppose that the conditions that are necessary and sufficient in the bounded
case are satisfied on the domain Z.

Let W, K, L, L be four operators in ¢ satisfying the following conditions:

(i) W is unitary, K is selfadjoint, Lis closed and L* is the adjoint of L,

(i) @ is an invariant domain for the operators W, K, L, L*.

Let us consider the operators (defined on &) L, =W—1I, L,,=L, Ly; =
—L*W, Lyo=iK—%L* L and denote L;; the adjoint of L,g(x, {0, 1}). The
operators L;, are closed ([20] Theor. 2, p. 196). It is easy to see that Lg, =
—W*L.

Theorem 3.1. Suppose that, for all ue? nelN, there exists a positive constant
c(n, u) such that:
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(a) for some p >0 (independent of u)

[eo]

Y e(n,u)p" <o

n=0

(b) for alln=1 and all a;, B;€{0, 1}, 1<j<n, with a;=0 for h indices j

(3.1) “La"ﬂn...Lalﬂluﬂéc(n, u)m
ILF Loy ull Sclm, W)/ (n+ h)!

and the second inequality, with Ly , replaced by K, holds for all a;, p;€{0, 1},
1<j=n—1, witha;=0 for h—1 indices j.

Then there exists a unique unitary process (U(t)),»o that is a solution of the
right stochastic differential equation (2.6) with initial condition 1.

In Sect. 4 we show that conditions (a), (b) are satisfied by the unbounded
operators W, K, L appearing in many interesting applications ([1, 2, 4, 10, 14]).
Here we remark that, as a consequence of condition (b), & is a set of analytic
vectors for the operators +iK—4L* L, L* W and L*. Moreover, for all neNN,

we have |L'u|| Zc(n, u)l/ri so that the assumption on Lis stronger than analyti-
city on 9 When W=1I, K=0 then L* Lis a selfadjoint operator ([20] Theor. 2,
p. 200) and condition (3.1) is also closely related to the spectral properties of
L* L as shown in [13] (Theor. 4.1).

Remark. We can suppose also that, for all ue2, the sequence (c(n, u)),», is
increasing. In fact, for all sequence (a,),>, of nonnegative real numbers with
n
lim sup "|/ a,=L>0 denoting a,= max g, it is easy to show that limsup]/a,
n—+cow O<h=<n n—>ow
[
=max {1, L}. Therefore, if the convergence radius of the series Y a,p" is non-
n=0 o
zero, then is nonzero also the convergence radius of the series Y. a,p". We
n=0
will use this fact in the proof of the isometricity of the solution (Lemma 3.4).

We will divide the proof of Theorem (3.1) into several steps.

Proposition 3.2. Let p be as in Theorem (3.1) and T=min {1, 1(p/48)*}. There
exists a unique local solution V=(V (t))ic10,1; of the left equation

(3.2) dV(e) =L, V(1) dM* (1)

with  initial  condition I on the interval [0,T] such that
V() (2®&)=D(K)nD(L* L) for all te[0, T]. Moreover, V(1) is an isometry for
all te[0, T].

Proof. Using the It6 formula (2.3) it is easy to check that, for all local solution
(Y(®):sero,x of (3.2) on the interval [0, x] with Y (Z®E)sD(K)nD(L* L), we
have

Yo (), YOuy () =<Yooy (g), Youy (f)>
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for all u, veg, Y(g), ¥(f)ed Then, if Y, is zero (resp. an isometry), Y () will
be zero (resp. an isometry) for all te[0, x].
‘We construct now a local solution by iteration. Let

t
VO@=I, VY@= | L;, V() dM**(s).
[¢]
Tt is easy to see that the sequence is well defined and, for all nelN
t ty
(3.3) VW) =Lj . ...Lj o, [ dM*P(t,)... | dM*P(2,)
0 0

on the domain 2®4. For all o, fe{0, 1}, V(2® &)= D(L},) N D(K) and, denot-
ing by I*#n--%81(¢) the integral in the right-hand side of (3.2) we can write,
for all ue % and Yy (f)eé,

(3.4) VOO U ()= (L, Loy @I B (1) Y (£)).
We will prove that the series

(3.5) SVOQuul), Y L VOOui()
n=0

n=0

i KVO@©uy(f), i LT LV®@uy(f)

=0 n=0

converge on 2®& uniformly in the interval [0, T] and the conclusion will
follow by a standard argument. To this end we have to prove an estimate
of (3.4). For all integer h with 0<h=n let o, ,={(®,8,. ..., a; f)lo;=0 for h
indices j}, using (3.1) we have then

66 IOyl
S Y cmaferhl % st @)

B, a1 frEdnn

The following estimate is crucial, however we will defer the proof since it is
rather technical. For all t€[0, 1]

241/t
(3.7 {1723 Ba (1) () | S“J/— [l (NI
anﬁn’-",gl:ﬂleb‘?[n,h ‘/\‘/—-

Using (3.7) we majorize the left-hand side of (3.6) by

Wl éoc(n, 0 ((” : h>)1/2(24),, 2
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and then, due to the elementary inequalities

(n+h)£<2n)_é22"
h J7\n/™

IV @uy (NS I (NIl (n+1) c(n, u)(48)" 2

we have

In the same way we obtain

I L VO @u (NIS2 1 (Ol (n+1)? c(n+ 1, u)(48)" 72
IKV®@uy (] S21¢ (Nl n+1)% cln+ 1, u)(48)" ¢

ILT LY@ @uy (N 221 (Nl (n+1) c(n+ 1, u)(48)" ¥
It follows then from assumption (a) of (3.1) that the series (3.5) are convergent
on Z®¢E uniformly in the interval [0, T]. For all te[0, T], let V() be the
sum of the first one. Since the operators Lj,, K,L*L are closed,
V(t)(@@é")CD(LM)mD(K)mD(L+ L) for all te[0, T]. The process V
=(V())ic[0, 17 18 2 local solution of the (3.2) with the initial condition I. [

Proof of (3.7). For all «, f{0, 1} and all positive continuous function x let

jflx(s)lds if «=0
Jrx(t)=1° .
(f [x(s)|2 ds) if a=1

To prove (3.7) we majorize the stochastic integrals with respect to dM*' and
dM™ (resp. dM°! and d M°°) using (2.5) (resp. (2.4)) and we obtain

[ 1o @B () ([ S 3T || o= 2B o aBa () g ()] (2).

From this it follows, iterating the estimates and considering 1 as a constant
function

(3.8) |2 Enee s Ba () g () < W ()] 37 T e n. L T 5 1(2)

When x is the function s — s?(p>0) it is easy to see that we have

p+2’;—°‘
Jrx(@)=
Qp+2)*

and then, by induction, since we suppose t< 1,
Jon  Ju1()S2r e e ta) (02 -0 3270 | p2-any=1/2
2n {n/2

n!

=

(21 —az 31—0:3“.”1 —az,,)— 1/2'
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From this and (3.8) we obtain

) o 21B1 (1) 4 ()]
AnBrse-vs w116 nn
6"tn/2
<
=N VAl Y

vsaifieddnn

(21—a2 31—43'__nl~—a,,)—1/2

6" " tn/2

=y (NI Vo Z Gigeeodin) Y2

n . .
(h) addends and the greatest is I/W; then it

will be less than 2"/]/%. This completes the proof of the estimate (3.7). [

The right-hand side sum has

Unfortunately we can not obtain the global existence by successive steps
of length T because we have no estimates like (3.1) of

(3.9 | ;na,.---L;;lal VT“‘/’(fX(o,T))“

We will prove the global existence for the left equation (3.2) in Sect. 4 under
some more assumptions. Here we prove this result for the right equation (2.6)
with initial condition I. In fact the adjoint of a bounded local solution of (3.2)
is a local solution of (2.6) that can be extended using the cocycle property as
in [12]. The same can not be done for (3.2) since, due to the unboundedness
of L,;, domain problems arise.

Let I, be the second quantization of the time shift on I*(R ) given by

B fx—t) if x=t
(0. f)(x)= {0 otherwise

For all bounded operator 4 on 4" ®# and all teR,, [AL* is an operator
on X ®H#" that will be identified with its canonical extension to X ®@#. If
A is an isometry then [AL* is an isometry. A contraction valued adapted
stochastic process U=(U(t)),», is a cocycle if, for all s, >0

Ut+s)=U@ULUE)I).

From the uniqueness part of theorem (3.1) it will follow that the solution of
the right stochastic differential (2.6) equation with a contraction as initial condi-
tion is a cocycle.

Lemma 3.3. There exists a contraction solution U = (U (t)),  of the right stochastic
differential equation (2.6) with the initial condition I.

Proof. Let T, V be as in Proposition 3.2 and U(t)=V*(¢) for all 1[0, T]. Using
(2.2) it is easy to see that the process U=(U())e0,1 is a local solution of
equation of (2.6). For all te[0, T7] let us define

Ut+T)=U(T) (I U TF).
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The process (U (t))epo,27; is @ local solution of (2.6) on [0,2T]. We have in
fact, for all u, veZ and ¥(g), Y (f)e€

o(g), U+ T uy (f))
=UD)vy (@), I U uyp (f)> =<U*(T) vy (g), uy (f)>

+<U*(T)vl//(g), § IR UM LygdM* (s + T)ulﬁ(f)>

— Cod (), up () +<v¢(g), [ ULy dM“”(S)u¢(f)>

By successive steps of length T we can extend the local solution to R,. [

Lemma 3.4. The contraction U =(U (1)), , constructed in lemma (3.3) is the unique
contraction that is a solution of the right stochastic differential equation (2.6)
with initial condition 1. Moreover U is unitary.

Proof. We prove that U is the unique contraction solution of (2.6) and that
it is an isometry extending the method of Hudson and Parthasarathy [15] to
the unbounded coefficient case. '

Let X =(X(t))», be a contraction that is a solution of (2.6) and ¥ (g), ¥ (f)eé&
fixed. There exists bounded operators K(t), t =0, on ¢ such that, for all v, ue 2

v, K({t)u) =< X (&)v i (g), X (O)uysr (f))-

Using the fundamental formulas of quantum stochastic calculus on I'(I*(R,))
(2.2) and (2.3) we obtain the linear equation for K

(3.10) {v, K(t)u) =<v, KO)u)
+ f {<v, K(s)Lygu)+<Ly,v, K(s)u)
0
+ Lo, K(5)Lygud} k™ (s)ds

We show now that, for all bounded operator K(0) on #; if (3.10) has a solution
(K())r»0 With sup | K(f)]j=S <o, then it must be unique. As a consequence,
20

when X (0)=0, we have K(t)=0 for all zeR, then X (£)=0 for all teR,, and
the uniqueness part of lemma (3.4) follows. Moreover, when X(0)=1, due to
the expression of the coefficients L,, with respect to the operators W, K, L, K(t)
=I<Y(f), ¥(g)) for all teR . is a solution of (3.10), then it is the unique solution
and so X (0) is an isometry.

For all a, {0, 1}, ye{0, 1, 2} let

I if y=0 Ly, if y=0
(3.11) Logy={L,; ify=1 L,,={I if y=1

Llﬁ lf ’}322 Lla if ')):2
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and denote, for all integers hq, A, h, with hg+h, +h,=n
L iy = 300 BuVus o> %y B171)|y; =7 for h, indices j, for all y =0, 1,2}.

Iterating n times the equation (3.10) with the initial condition K(0)=0 we can
show that |{v, K(f)u)| is bounded from above by St"/n! times

z z Hernﬂnvn"'Lwﬂth“ : HL“nﬂn'}’n"'Lalﬁl'Ylu“

ho+hy+h2=n (o Bnyn, Vel hg gk,

For all o, f,7,...0; B1y1€15y 1, 5 due to (3.11), (3.1) and the remark on the
assumption a) of Theorem 3.1, we have

L

@18171

IL ul Sclm )|/ (2hy +ho)!

anﬁn'}’n' "

“I‘anﬁnyn"'f‘oclﬂlylvll éc(na U) (2 h0+h2)'

From the elementary inequalities |/(2h; +hy)!)/(2he+hy)!S|/(2n)!<2"n!,
since Z I w.n,1=(12)" for all v, ue Z we obtain the inequality
ho+hy+hz=n

[<v, K(t)uy| £S(24) c(n, u) c(n, v)t"
<824t (c(n, u)* +c(n, v)?)

Therefore, if |/24 £ < p?/2, the convergence of the series Y| c(n, u)* p*" (assump-
n=0
tion (a) of Theorem 3.1} implies that the right-hand side tends to zero as n
tend to infinity. Hence (v, K(t)u) =0 for te[0, p*/96] and we can prove global
uniqueness by successive evolution steps of length p*/96.
This shows that U is an isometry; since U* is an isometry by construction
it follows that U is unitary. []

4. Applications to the quantum harmonic oscillator

Throughout this section the initial space will be the quantum harmonic oscillator
ie. the Fock space I'(C) with creation and annihilation operators a*, a and
number operator N=a" a; a*, a are closed, N is selfadjoint and, for all weR,
we can consider the unitary operator exp (i@ N).

We have the commutation relations

@.1 aN=(N+1)a, Na*t=a"(N+1),
aexp(ioN)=e?exp(ioN)a, exp(ioN)a*=e?a” exp(iwN)

the first two being meant on D(N?3) and the other on D(N'/?). For all
xeD(N?), the following equalities hold

42) lax=IN"2x], [a* x| =I(N+1)"2x]
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Let us consider the operators

4.3) W=exp(ioN), L=c,a"+c_a+c,

K=d,,a"?+d, _a*a+d_ _d*+d.a*+d_a+d,

where d with indices + +, + —, ..., are complex constants and d, _, d,€R,
d,y=d__,d.=d_. It is a well known fact that W, K, L verify conditions (i),
(ii) of Sect. 3. Let

p=15max{lc,|,lc_|lcollds 1] lds -], |d-—|,ds ], 1d_|,|dol}.

Using (4.1), (4.2) it is easy to see that, for all meN and all «,p,, ..., 2, f; We
have

44)  [Lyp,-Loyg,a™™ YOI Sp" [(N+ 12 (N +n+h)2a* ™y (0)]

where h is the number of indices o, f, equal to 00. The right-hand side can

be computed explicitly and is equal to p"|/(m+n+h)!. Using the elementary
inequality (m+p)! <2™*?m! p! (for all m, pcIN) we can majorize (4.4) by

@2 )/m) 2"/ (n+h)!.

Therefore conditions (a), (b) of Theorem (3.1) are satisfied with & equal to the
linear manifold generated by the set {a™™y(0)|meN}.
Thus we obtain the proposition

Proposition 4.1. Let W, L, K be as in (4.3). Then there exists a unique unitary
solution of the quantum stochastic differential equation
dU@)=U@)(W—I1)dA(t)+ LdA™ (t)—L* WdA()+(—4 L* L+iK)d1)
U0)=I

In particular (iIK—LL"L, L, —L* W, W) are the generators, in the sense of
[1, 171, of a unitary markovian cocycle in the Fock space I'(I*(IR*)).

As a corollary we obtain a proof of existence, uniqueness and unitarity
for the stochastic differential equations

2

dU(f)= U(t)(pa+ dA(t)—padsz)—%amdt)

dU @)= U(t)(padA(t)—pa+ dAJr(t)—/%2 aa” dt),

with p positive constant and initial condition I, defining respectively the quan-
tum Ornstein-Uhlenbeck and anti-Ornstein-Uhlenbeck process [2, 16].

The existence result for these equations can not be obtained by the iteration
method using the estimates of iterated integrals in [3, 15, 197. In fact, let us
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consider, for example, the former. For all nelN we have |[(a™ a)"a*"¢(0)|
=n"(n!)"/? so that, with the same notation of [15], M,,(/(0)=27" p>"(n))** n"
and the series

® n(nh)l/?

2 @nh'2

n=0

n .3n

27 pch X"

is not convergent for all x>0.

Here is another example where Theorem (3.1) applies. It shows that the
estimates (3.1) might hold when the coefficients of the stochastic differential
equation are polynomials in a*, a of arbitrary degree, satisfying the formal
unitarity conditions in Sect. 3. However, because of the commutation and selfad-
jointness of the coefficients, it can be considered as a classical one.

Proposition 4.2. Let p, g be two positive real numbers. There exists a unique unitary
solution of the quantum stochastic differential equation
AU =U@(NPdA()—NPAA" () +(—L1N?*P+iN9d1)
vio=I
Proof. Suppose ¢ <2 p for simplicity; the other case can be treated in the same
way as it will be clear from our discussion.

Let 2 be the linear manifold generated by {a*™y/(0){meN}. For all neN
and all indices &, 8,, .., &, f,, we have

I Lavg, - Layg, a* ™90 <}/m1 2" mP".

The conditions (a), (b) of theorem (3.1) are fulfilled. Moreover we can consider

constants c(n, u) such that the series Y. c(n, u) p" converges for alt p>0. Hence,
n=0

from proposition 3.2, we can deduce also the global existence for the left equa-

tion. [

Other examples of quantum stochastic differential equations with unbounded
coefficients satisfying the assumption (3.1) (and the formal unitarity conditions)
can be found in [10].

Theorem (3.1) can not hold, in general, when L is a polynomial in the opera-
tors a, a* of degree greater than 1 as shows the following counterexample sug-
gested by Frigerio and inspired by example (3.3) in the paper by Davies [8].

Suppose that the quantum stochastic differential equation

4.5) AU =U@)(@*dA(t)—a*?dA* ()—La*a*2d1)

with initial condition I has a solution. We will show that V=U* can not be
an isometry. Let (e,),», be the canonical of I'(TC) (e,=(n!)""?a*"y(0) for all
nelN) and @ be the Fock vacuum in I'(I*(R,)). For all neN let II, be the
orthogonal projection onto the subspace ¢,&'(ZI*(IR ,)). Due to the commuta-
tion relations I,a* =a* II,_,, II,a=all,,, (with the convention IT,=0 if
m<0), the processes IT, V satisfy the recursion relations
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t
,Ve)=[a*?M,_, V(s)dA™* (s)
0

1
- (aZH,,Jr2 V(sydA(s)+%a™?a?1l, V(s)ds)
0
Hence, for all telR , and nelN, we have

t
|1, V(t)eo¢|lz=5n,o+f <a+2Hn—2 V(s)e, D, a+2Hn—2 Us)eo @) ds
0
t
~Re [ I, V(s)eo®,a*a** I, Nis)eo, D) ds
0

Using the canonical commutation relations we can write a®*a*? as (aa*
+1)(aa* +2) and, since the e, are eigenvectors of the number operator aa™*,
we obtain

T,V (t)eo ®|>=6,,0+n(n—1) | |II,-, V(s)eo P|*ds
0

—(n+1)(n+2)jt |1, V(s)eo ®|*ds
0

From this we deduce that, if n is odd, |11, V(t)e,®| =0 for all teR .. Denote
p.(t)=|I1,, V(t)eo ®@||>. Clearly, if (4.5) has a unitary solution U, we have

46) S pali)=
=0

n

Y I, V(e @)?=1
=0

n
However, the sequence (p, (1)),.n satisfies the system of differential equations

)= —C2n+2)2n+ 1) p,)+2n2n—1)p,_(t) if n>0
Po(t)=—2p,(t)

with the initial conditions p,(0)=4, o for all nelN. This is a basic system of
differential equations of a divergent pure birth process in classical probability

(cf. [11] Chap. XVII 3, 4 pp. 448-453) and then one has Y, p,(f)<1 for all t>0.

n=0

This contradicts (4.6) and shows that (4.5) can not have isometric solutions.

In the literature quantum stochastic differential equations are usually written
as right equations and up to now we have not studied the problem of global
existence for the left equation (2.7), however sometimes it is useful to consider
the stochastic differential of the adjoint of U. We will show that the global
existence for a left equation holds when the coefficients are as in Prop. 4.1 with
the restriction on K:d, . =d__=0. The proof is based on some estimates of
the commutators of the coefficients with polynomials in the number operator
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N. This method can be used in more general cases provided that the same
kind of estimates hold (for example when L=N?—g and W, K are as above).

For all keN let N, denote the operator (N +1)...(N +k); we state first some
easy estimates.

Proposition 4.3. For all keN the following inequalities hold

[x, [N al Xy SKIN2 X2 xeDIN*')
|<Wx, [N, alx)| SkIINZx[? xeD(N*'#)
(W, [N, a*1x) | Sk IN2x |2 xeD(N**3)
|x,alNe a " Ixp | SENS2 x> xeD(N*'T)
| (e a™ [N, alxy| SKIN2x)2 xeD(N*TY)

Proof. The proof is a simple computation using the chaos decomposition of
I'(©). Let us check, for example, the third inequality. For all x =(x,),» o€ D(N**%)

2k+1 Ixn|2

o]
we have ) n < o0 and

n=0

[{Wx, [Ny, a™1x)]|

=k i JE,,Hx,,exp(—ico(n+1))]/n+1(n+2)...(n—+—k)l

n=0

e8]

5 3 042D P g 3 Dl
k

A

n=0

<k[NZx|%. O

Proposition 4.4. Let W, K, L be as in Prop. 4.1 and suppose, moreover, that 4, ,
=d_ _=0. Then the quantum stochastic differential equation

47) AV)y=(W—-DdA@)+LdA* (t)—L* WdA@®)+(—L1L*L+iK)d) V(t)
* V()(0)=1I

has a global solution V which is the adjoint of the solution U of the corresponding
right equation. The solution is unique, unitary and has the following property

(4.8) V(Ouy(f)e () DIN?)  for all ued, y(f)eé, teR,

r>0

Proof. The adjoint of each solution of (4.7) satisfies the corresponding right
equation, therefore uniqueness and unitarity follow from Prop.4.1. From
Prop. 3.2 we know that there exists a local solution ¥V =(V(t)cp0, 17 of Eq. (4.7).
We can prove also the following “regularity” property in [0, T]

4.9) V(uy(f)e () D(N?) forall ue@, y(f)eé

p>0
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As a matter of fact we can show that the series ) N? V®(t) converge strongly
n=0
on 2®& uniformly in [0, T for all p>0. Let us consider the set

B={xelR |3V solution of (4.7) with the property (4.9) on [0, x)}

We prove that B=IR,. Bo[0, T] and so it is nonempty. Suppose that B is
bounded and let b denote its supremum. For all ue 2, ¥/ (f)eé&, keNN and t[0, b)
a simple computation gives the equality

INS2V (Oug (NI =N u (N2

+2%Re [ KWV (S)uy (f), [N, LIV (s)uypr (f)) F(s) ds

0

+Re [ V(syuy(f), L" [N, L1V (s)uy(f)> ds

+i [ KV (up(f), [N, KIV(s)uyp (/) ds
0
From Prop. 4.3 we obtain the inequality
INS2V@Oup (HIP S INSup (O +ck [N V() ug(N)II* ds
0

where ¢>0 is an easily computable constant depending only on W, K, L. Then,
using Gronwall’s lemma

N2 VE)uy (N)I1? Sexp(ckd) N2 uy (1))l

Thus we get estimates of expressions like (3.8) that can be used to construct
a solution of (4.7) satisfying (4.9) on intervals larger than [0, b], say
[0, b+ texp(—ch)T] starting from b—%iexp(—ch)T by an evolution step of
length exp(—cb) T. This shows that B can not be bounded and then B=IR,. []

References

1. Accardi, L., Journg, J.-L., Lindsay, J.M.: On multi-dimensional markovian cocycles. In:
Accardi, L., Waldenfeld, W., von (eds.) Quantum probability and applications IV. Proceed-
ings, Rome 1987. (Lect. Notes Math., vol. 1396, pp. 59-67) Berlin Heidelberg New York:
Springer 1989

2. Applebaum, D.: Quantum stochastic parallel transport on non-commutative vector bundles.
In: Accardi, L., Waldenfels, W., von (eds.) Quantum probability and applications III. Pro-
ceedings, Oberwolfach 1987. (Lect. Notes Math., vol. 1303, pp. 20-36) Berlin Heidelberg
New York: Springer 1988

3. Applebaum, D.: Unitary evolutions and horizontal lifts in quantum stochastic calculus.
(Preprint, Nottingham, 1989)

4. Barchielli, A.: Input and output channels in quantum systems and quantum stochastic
differential equations. In: Accardi, L., Waldenfeld, W., von (eds.) Quantum probability



516 F. Fagnola

and applications III. Proceedings, Oberwolfach 1987. (Lect. Notes Math., vol. 1303, pp. 37—

51) Berlin Heidelberg New York: Springer 1988

. Chebotarev, A M.: Conservative dynamical semigroups and quantum stochastic differential

equations. To appear in: Quantum probability and applications VI. Proceedings, Trento

1989

6. DaPrato, G.: Some results on linear stochastic evolution equations in Hilbert space by

the semigroup method. Stochastic Anal. Appl. 1, 57-88 (1983)

7. DaPrato, G., lannelli, M., Tubaro, L.: Some results on linear stochastic differential equations

in Hilbert spaces. Stochastics 6, 105-116 (1982)

. Davies, E.B.: Quantum dynamical semigroups and the neutron diffusion equation. Rep.

Math. Phys. 11, 169189 (1977)

9. Evans, M., Hudson, R.L.: Multidimensional quantum diffusions. In: Accardi, L., Waldenfeld,
W., von (eds.) Quantum probability and applications III. Proceedings, Oberwolfach 1987.
(Lect. Notes Math., vol. 1303, pp. 69-88) Berlin Heidelberg New York: Springer 1988

10. Fagnola, F.: Pure birth and pure death processes as quantum flows in Fock space. (To
appear in Sankhya)

11. Feller, W.: An Introduction to probability theory and its applications. Vol. I. vol. 1, 3rd
edn. New York: Wiley 1968

12. Frigerio, A.: Positive contraction semigroups on #(#) and quantum stochastic differential
equations. In: Clément, P., Invernizzi, S., Mitidieri, E., Vrabie, 1. (eds.) Semigroup theory
and applications. Proceedings, Trieste 1987. pp. 175-188. New York Basel: Dekker 1989

13. Frigerio, A.: Some applications of quantum probability to stochastic differential equations
in Hilbert space. In: Da Prato, G., Tubaro, L. (eds.) Stochastic partial differential equations
and applications. Proceedings, Trento 1988. (Lect. Notes Math., vol. 1390, pp. 77-90) Berlin
Heidelberg New York: Springer 1989

14. Frigerio, A.: Quantum Poisson processes: physical motivations and applications. In: Accar-
di, L., Waldenfels, W., von (eds.) Quantum probability and applications III. Proceedings,
Oberwolfach 1987. (Lect. Notes Math., vol. 1303, pp. 107-127) Berlin Heidelberg New York:
Springer 1988

15. Hudson, R.L., Parthasarathy, K.R.: Quantum It6’s formula and stochastic evolutions. Com-
mun. Math. Phys. 93, 301-323 (1984)

16. Hudson, R.L., Ton, P.D.F., Parthasarathy, K.R.: Time-orthogonal unitary dilations and
noncommutative Feynman-Kac formula. Commun. Math. Phys. 83, 261-280 (1982)

17. Journé, J.-L.: Structure des cocycles markoviens sur I'espace de Fock. Probab. Th. Rel.
Fields 75, 291-316 (1987)

18. Meyer, P.-A.: Eléments de probabilitiés quantiques. In: Azéma, J., Yor, M. (eds.) Séminaire
de probabilités XX 1984/85. (Lect. Notes Math., vol. 1204, pp. 186-312) Berlin Heidelberg
New York: Springer 1986

19. Vincent-Smith, G.F.: Unitary quantum stochastic evolutions. (Preprint, Oxford, 1989)

20. Yosida, K.: Functional analysis. 5th edn. Berlin Heidelberg New York: Springer 1978

W

(=]



