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Summary. In this note we extend the notion of completely analytic interactions 
of Gibbs random fields that is known for finite interactions with finite range to 
interactions that can have infinite values, too. We formulate a set of ten 
conditions on such interactions in terms of analyticity properties of the parti- 
tion functions, or correlation decay. The main theorem states that all these 
conditions are equivalent. Therefore, an interaction is called a completely 
analytic interaction, if it satisfies one of these conditions. 

1. Introduction 

In their recent papers [5, 7] Dobrushin and Shlosman introduced a natural class of 
interactions of Gibbs random fields. It is called the class of completely analytic 
interactions and it consists of interactions that possess all usual properties of 
interactions in the high temperature region. This class is natural because of the fact 
that it can be defined by very different conditions (by the description of the area, 
where the partition functions have no zeros, by estimates of the semiinvariants of 
the finite volume Gibbs distributions or by estimates of the variation distance of 
the finite volume Gibbs distributions with different boundary conditions). How- 
ever, the main theorem states that all these conditions are equivalent. 

The main point to call these interactions completely analytic is the fact that the 
free energy and the correlation functions of the corresponding Gibbs random field 
are analytic functions. The examination of analyticity properties and of decay 
properties of the correlation functions is one of the classical problems in statistical 
mechanics. Therefore, there is a wide spread literature about such properties of 
Gibbs random fields. The main acquisition of the papers [5-7] is the general, 
unifying approach to them. In these papers the reader can find a detailed survey on 
the literature and a discussion of the history of the problem. We will not repeat it 
here. 

In the papers [5, 7], where completely analytic interactions were introduced, 
the authors restricted themselves to the following cases: 1. All interactions are of 
finite range. 2. The interactions take finite values, only. It is the aim of the present 
paper to cancel the second of these restrictions. This enables us for example to 
include into the theory of completely analytic interactions hard core lattice gas 
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models (see Remark 2.5). First results concerning general state spaces and infinite 
range interactions are published in [4]. 

The interactions under consideration in this paper are defined on the lattice 
7/~, v > 1. The state spaces S is supposed to be finite and to contain a special 
element 0 in the sense that the value of the interaction for some configurations must 
be finite, if there is one component  in the configuration that equals 0 e S. In hard 
core lattice gas models the role of 0 e S plays the vacuum element, that represents 
the absence of a particle in the corresponding lattice point. The above condition 
can obviously be weakened, but only for the price of essentially more complicated 
constructions and further other conditions. As examples we mention the properties 
(D*) and (D) of configuration spaces in [10, pp. 22, 60]. Verifying these conditions, 
one has to check whether or not it is possible to compose a local configuration on 
a finite part of the lattice with any other configuration outside some possibly larger 
finite part  in such a way that there do not occur infinite interactions for the 
resulting configuration. Such compositions are used in the present paper several 
times. They are not complicated in the case of the presence of a special element 0 e S 
as above. On the other hand one cannot include into the class of completely 
analytic interactions for example in dimension one those, for which the state space 
of the corresponding Markov chain breaks up into several classes or subclasses (see 
[10, Chap. 5]). 

Let us remark that for the enlargement of the theory of completely analytic 
interactions to infinite interactions it was necessary to change the point of view of 
the examination of the partition function as an analytic function of the interaction. 
In the previous papers [-5-7] the partition function was understood as a function of 
the values U(A, co) of the interaction U. In the present paper we carry over to the 
generalized activities F(A, co) = exp( - U(A, co)) which are finite in the case when 
U(A, co) = o% too, and thus allow continuous variations, This led to a reformula- 
tion of the second group of conditions. In the present paper we use in the second 
group of conditions a new class of quantities that take the place of the semiin- 
variants in the second group of conditions in [5-7]. The new quantities are the 
coefficients of the Taylor expansion of the logarithm of the partition functions, 
where the derivatives are calculated with respect to the generalized activities. In 
some special cases (see [11, Chapt. 4]) such functions are called Ursell functions. By 
this approach we have found a new group of conditions for complete analyticity in 
the case of finite interactions. 

In section 2 we state our main theorem together with the set of conditions, 
defining the class of completely analytic interactions. Then we show that hard core 
lattice gas models will enter this class, if the chemical potential of the particles is 
large enough. At the end of this section we give a scheme of the proof of the 
theorem, that is divided into three steps, each of them is contained in one of the 
following sections. 

2. The Main Result 

2.1. Basic Definitions and Notations. Let yv, v => 1 be the v-dimensional integer 
lattice with points t = (t 1 . . . . .  tv), where t i are integers. We denote by ~ i ( ~  ~) the 
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set of all finite subsets of  Z". One-poin t  subsets we denote for simplicity by t, where 
t e Z  ~ is the point  contained in this set. For  V, A c Z" dis t (V,A) denotes the 
distance between the subsets V and A with respect to the no rm 
/tll =max{ I t i l l i  = 1 , . . . , v }  on 2: *. For  natural  numbers  r we denote by 
c3V= ~ , V =  { teT/~\VIdis t ( t ,  V) < r} the r -boundary  of V c  2~ v. If V c  7/~ is some 
subset of  the lattice, then V ~ = 7/*\ V. 

Let S = {0, 1 . . . . .  I S I -  1} be the finite set of states. The set of all maps  
a:W_ ~ ~ S is denoted by f2. It  is called the space of configurations. For  V c Z ~ the 
set f2 v is defined analogously.  For  V c W _~ Z ~ and a e f 2  w we denote by a v = alv 
the restriction of the configurat ion a to the subset V. For  V, W c 7/*, Vc~ W = ~ ' ,  
avGf2v,  COwer2 w we denote by a v c o w e f 2 w w  the configurat ion for which 
(avcow)Pv = a v and (avcow)l w = co w. 

Let r be a fixed natural  number  and 91 be the set of all nonempty  finite subsets 
of Z" with d iameter  smaller or  equal than r. Each m a p  U: NI(7/~) x f2 ~ C w { co } 
that  fulfills the condit ions (i)-(v) below is called an interaction. 

(i) The  value U(A, a) of U for Ae~I(W_~), a e f 2  depends on a]A, only. 
(ii) U ( A , ' ) <  ~ ,  if IAI = 1, where IA] denotes the cardinali ty of the set 

A G ~I(Z").  (2.1) 

(iii) U(A, .) - O, if A ~ 91. (2.2) 

(iv) The m a p  U is invar iant  with respect to s imultaneous translat ions of both  
arguments .  

(v) U(A, a) < 0% if there exists a t e a  with al, = 0. (2.3) 

The  set of all interactions is denoted by 9.1 c.  It contains in a natural  sense the set oA, 
of  interactions that  take values in the set R u { oo }, only. Somet imes we use 
non- t rans la t ion  invar iant  interactions, i.e. maps  that  fulfill (i)-(iii) and (v), but not 
(iv). The set of  these maps  is denoted by ~ c .  We introduce on ~ c a metric R: 

R(U1, U2) = max sup lexp( - ReU:(A,  a)) - exp( - Re Ui(A, a ) ) l ,  
A s g l  
aG(2 

sup [Im U:(A, a) - Im U2(A, ~r)[ / , (2.4) 

k 

Ac92 / crGQ 

where we suppose that  e - ~  = 0 and Im oo = 0. This metric R on ffd c induces 
metrics on ~1 c and 9.1, which are denoted by R, too. 

In some situations we identify u e g ~  c with the m a p  F:~I(7/~ ) x f2---> C, with 

F(A, a) = exp( - U(A, a)) .  (2.5) 

The values are called 9eneralized activities. 
For  each subset of real interactions 6g c 9/, ,  that  contains the zero interaction 

U~176  ", ") -- 0), we call its main  componen t  Jg(6g) the maximal  open connected 
subset of  ~ that  contains U ~ By 6g= we denote the set of real interactions that  
fulfill the condit ion a formulated below, where a runs through the set {I a, Ib, I I , ,  
lit,, I I  c, I I I  . . . . . .  IIIe}. 
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2.2 Main Theorem. The main components ~///(6g ) are identical for all ~ {I,,  I~, 
II~, II~, II~, I I I  . . . . . .  IIIe}. This general component is called the class of completely 
analytic interactions. 

2.3 
by 

The Conditions. For  U e ~ ~, Ve  Ns(Z~), ~ ~ O the part i t ion function is defined 

Zv(UI~ ) = ~ e x p ( -  H~(avl6)) ,  (2.6) 
av~ (2 v 

where 

H~.(avl6 ) = ~ U(A, av~vc ) . (2.7) 
A n  V :~ (25 

Throughou t  this paper  we suppose that  Zr  1 for U E ~  c, 6 c O .  Let us 
ment ion  that  in the case U e 9.1~, i.e. in the case of real interactions, the condit ion 
(2.3) ensures that  Zv(UI~ ) 4- 0 for all choices of Ve  ~s(2v),  6 E O. The proper ty  of 
being non-zero of the part i t ion functions for complex interactions, too, will be of 
importance in the first group of conditions. 

Condi t ion  /~. Ue6r iff there exists e > 0 such that  for all Ve~s(2_v), ~ E ~  the 
par t i t ion functions Zv(r I~) are nonvanishing provided 

U ~ ( g r ( u )  = {F~9 . I c  IR(U, U )  < e} .  (2.8) 

Condi t ion  / b. Ue6[Tzr b i f f there  exist C < oo and e > 0 such that  for all VENs(Z~), 
e ~2 the part i t ion functions Zv(U 16) are nonvanishing,  provided 

e c~(U) = {~T e ~  f IR(U, tT) < ~} (2.9) 

and, moreover ,  

[ln[Zv(l]alff )/Zv(U2lff)]l < C I ( V u S V )  ~ supp(U~ - [72)1 (2.10) 

for all U1, [72 E(~(U),  where for [7~9~ f 

supp [7 = [9 A .  
A : U ( A , ' ) ~ O  

Here and in the sequel we suppose that  oo + a = oo for a e C and oo - oo = 0. 
We define now the functions, called generalized Ursell functions, that  replace 

the semiinvariants  in the theory of completely analytic interactions wi thout  infinite 
values. With the help of them we formulate  the condit ions of the second group. For  
the definition of the generalized Ursell functions we use the representat ion of 
interactions U e 9.1, by the generalized activities (see (2.5)). Let Vbe  a finite subset of 
7/v and {A 1 . . . . .  Am} be a finite collection of subsets- Aie~s(7/v ) such that  
A i n V =t: ~ZS, i = 1 . . . . .  m. For  each set {01, �9 �9 �9 , IPm} of functions tp~: Y2 --. 
such that  O~(co) depends on COlA ,, only, and all F e 9.1~ we define 

F( . . . . . . . . .  )(A,') = r (A , ' )  + y~ z,4,,('), (2.11) 
i : A ~ = A  

where z ~ C ,  i = 1 . . . . .  m. For  each multi index K = (k 1 . . . . .  k,,) and each 6~f2  
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we define the general ized Ursel l  func t ions  by 

t?lKI 
[r . . . , ~P2"IF, V, 6 ] - Oz~' . . . ~z~ ~ ( l n z v ( f  ( . . . . . . .  ~ ) [ 6 )  ~,=o (2.12) 

z~:=0 

w h e r e I K  I = k  1 +  . . .  +km. 

Condi t ion II a. Us6~I~o  iff there exist C < oo and e > 0 such that for all V, 6, m, 
A1 . . . . .  Am, ~ b ~ , . . . , r  K = ( k ~ , . . . , k m )  with 1Oz] < 1  and A~92,  
i =  1 , . .  tn the generalized Ursell functions [~b'~ k', ,k ~ . . . . .  , C m ~ IF, V, 6 ], that are 
defined by (2.12) for real F, can be extended to analytic functions on (9~(F) and it 
holds the following estimate: 

I [~,'1 ~', . . . .  ~,2"~[F, r ,  6 ] l  =< k l ! . . ,  k,~!C pK~ (2.13) 

for all ff~ (9 ~(F). 
Let us remark that the part i t ion functions Z v ( F I 6  ) depend on the values 

F(A ,  colA) for A c~ V +  ~ ,  only, i.e. they depend on a finite set of values, only. By 
being analytic we mean the usual proper ty  of functions of several variables. 

Condi t ion  II b. U~6~I ,~  iffthere exist C < ~ and a function ~o:Z+ ~ ~+ with the 
proper ty  

~p(Jltl[) ][tll "-~ < ~ (2.14) 
te ~-~ 

such that for all V, 6, m, A~ . . . .  , Am, ~bl . . . . .  ~'m, K = ( k l , . . . ,  kin) with I~'~1 < 1 
a n d A ~ 9 2 ,  i =  1 , . . . , m  

I[~"1 k', . . . .  ~ 2 m l l ' , V ,  6 ] [ ~ k l ! . . . k m  !CIKI ~ H ~p(IgD, (215) 
G~ ~J(A, . . . .  , Am) g~ ~(G) 

where ~(A1 . . . . .  Am) is the set of all trees G with m vertices identified with the sets 
A 1 . . . . .  A m, ~ (G)  is the set of all edges g=(Ai~ ,Aj~)  of the tree G and 
[g[ = dist(Ai~, Aj~). 

Condi t ion  I I .  U S 6 ~ n c  i f f there  exist C < ~ and ~ > 0 such that for all V, 6, m, 
c 

A~ . . . .  , A m ,  r . . . . .  ~m, K = (k~, . . . , km) with [~[__<1 and A~s92, 
i = l , . . . , m  

I[~b~ k', . . . .  ~t'km]F, V, 6 ] l  -<kl~ . . .  k m ! C i r l e x p ( - o ~ d ( A 1  . . . .  , Am) ) , (2.16) 

where d(A 1 . . . .  , Am) = rain {IB] IB c Z ~, B u (A~ ~ . . . u Am) connected} and 
connectivity is meant  in the sense of the graph Z ~ with edges joining nearest 
neighbours. 

In the next group of conditions the notion of Gibbs distributions Q V ( a v l 6  ) in 
finite volumes V~ r ~) with boundary  conditions 6 ~ f2 is used. It is defined for 
U ~ 9.1~ and ~v  ~ [2v by 

QV(av[6  ) = Z v ( U [ 6 )  -1  exp( - HW(avI6)) ,  (2.17) 

where Z v ( U I 6  ) and H ~ ( a v ] 6  ) are defined by (2.6) and (2.7) respectively. Let us 
remark that the Gibbs distributions in the finite volumes with boundary  conditions 
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are well-defined because for real U the condi t ion (2.3) ensures that  the par t i t ion 
functions do not  vanish. For  A c Very(7/~)  and COA~2alet 

Q~, a(COal#) = ~ Q u ( a v l e  ) . (2.18) 

(YV ~ ~'~V: GV]A = 09 a 

Condi t ion  Ill a. U ~ m o  iff for some 6 < 1, p > 0  and all V~'F(7?~ ), t e S V ,  
if1, f f 2 ~  2 with #11~ = ~2[~ i f s  4: t 

U Var(~v,B( t ,p ,v) ( ' l~ l ) ,  QUv, e (~ ,p , v ) ( ' l~2 ) )~13[e ( t , p ,  V)[ -1 (2.19) 

where B(~, p, V) = {s~ VI p < []s - tl[ _-< p + r} and by V a r ( ' , . )  is denoted the 
var ia t ion distance of two probabi l i ty  measures  on the same finite measurab le  space, 
i.e. if Q1, Q2 are two probabi l i ty  measures  on the finite measurable  space X, then 

!2 Var(Ol ,  O2) = 2 ~ x  [Q~(x) - Q2(x)l . 

Condi t ion  Ill b. U e 6g m~ iff for some decreasing function ~0:2 + 

lim ~o(d) d 2(*- 1) = 0 

and all V, ~, # 1, 6 2 as specified in Condi t ion  III~ 

~+ with 

(2.20) 

and all A c V 

Var (Qv v, A('lff l), v QV, A(']42)) < 2 q)(Hs-- tH) . (2.21) 
s E A  

Condi t ion  Ill c. U ~ 6~ mo iff for some /( < oe, ~c > 0 and all V, A, t, ~ 1, ~ 2 as 
specified in Condi t ion I l l  b 

Var(Qvv A( ' I8 1), QV A('lff 2)) _< /(  exp( -- ~cdist(t, A)) .  (2.22) 

Condi t ion  Ill d. U e 6 ~ m d  i fffor some K < ~ ,  tc > 0, all V, A, t, ~ 1, ~ 2 as specified 
in Condi t ion I l l  b and all a A e Q  a such that  QV A(%I4 2) :t= 0 

Q U ' A ( ~ A I ~ I )  1 < 
Q.~.A(aA[~2) = K e x p (  -- ~cdist(t, A)) .  (2.23) 

Condi t ion  Ill c. UE6~m~ iff for some / ( <  ~ ,  ~ > 0 and some large enough 
d = d(/~, ~c) the bound  (2.22) holds for all V~ ~ I ( Z  ~) with d iam V < d and all A, t, 

1, ~ 2 as specified in Condi t ion  I I I  b. 

The Condi t ion  III~ is called a construct ive condition.  It  is of the same type as 
Condi t ion  III~ with the main  difference that  the cor responding  bounds  have to be 
checked only for volumes with a d iameter  smaller than  a given cons tant  d(/~, ~), 
which can be evaluated explicitly. In [6] it is proved that  for each condi t ion ~, 

~ {I . . . . . .  I I I  d }, there is a cor responding construct ive condition.  The  same can 
be done in our  situation, too, wi thout  new ideas. Tha t  is why we do not  go into 
details here. 

2.4. Remark. The Condi t ions  I o, Ib, I I I  . . . . . .  III~ almost  coincide with the 
condit ions in t roduced in [5-7]  for complete ly  analytic interact ions that  take finite 
values, only. Therefore  we refer the reader to [5 -7]  for a discussion of the 
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significance of these conditions and for the history of the problem, together with 
the corresponding references. Moreover ,  the reader can find there several examples 
of classes of completely analytic interactions with finite values. 

2.5. Remark. We consider the interactions corresponding to hard core lattice 
gas models with pair interactions as an example of a class of completely analytic 
interactions that  take infinite values, too. Let S = {0, 1 . . . . .  IS[ - 1} be the state 
space and U ~ 9d~ such that 

(i) U(V,.) =- 0 if V~91 and 

(ii) U ( { s , t } , a ) = ~  iff ] l s - t l l = l  

(iii) U(t,a) = #~ iff air = i E S ,  

F o r # ~ , i =  1 , . .  

[Vf > 2 ,  (2.24) 

and a[~ +- O , alt �9 O, (2.25) 

where #o = 0 .  (2.26) 

�9 [SI - 1 large enough the following estimate holds obviously: 

sup Var(QoU(. [~1 ), QoV(. [ff2 )) < 1 . (2.27) 
sey_V,s~O ~1,~2~12 

In [2, Theorem 5] estimates of the variation distance of the Gibbs distributions in 
finite volumes were derived from (2.27). They show in the case of interactions with 
finite range that the corresponding interaction fulfills Condit ion IIIc. It follows 
from this result that the class of interactions defined by (2.24)-(2.26) is a class of 
completely analytic interactions. Because of the implication U ~ 6~ni ~ ~ U ~ 6~i,, 
we find examples of completely analytic interactions not  only in the case when U is 
a pair  interaction, but  when (2.24) is not  fulfilled, too. For  this we only have to 
suppose sup IF(A, a) - 1 [ < e for A ~ 9~, [A[ > 2 and e sufficiently small. For  this 

a6(2 
situation the analyticity of the free energy was shown with the help of cluster 
expansions in I-8]. Let us remark that interactions for hard core lattice gas models 
are interesting for the examinat ion of the Ising antiferromagnet  in the neighbour- 
hood  of the critical point, too (see [3, 9]). The condit ion #i, i = 1 . . . . .  IS[ - 1, to be 
large is essential, because of the well known result in [1], that shows already in the 
case S = {0, 1}, v > 2 an example of an interaction, fulfilling (2.24)-(2.26), but 
having more  than one limit Gibbs state. The nonuniqueness of the limit Gibbs state 
contradicts  the condit ion of complete analyticity. 

2.6. Remark. Using inequality (2.27) and the results in [2], it is easy to see that the 
following assertion is true. Let U e 9.I r be a real interaction of finite range, fulfilling 
(2.3) and let #~ = #~(U)s N, i = 1 . . . . .  IS] - 1 be sufficiently large numbers. Define 
Uu69~ , by 

ISl-1 
u.(t, ~) = u(t, ~) + y ~z , (~ ) .  

i=1 

where Zi(6) = 1 if ff It = i e S  and Zi(8) = 0 otherwise. 

u . ( v ,  o) = u ( v ,  ~) , 

if V~ 9~ and IV[ > 1. 
Then U u is a completely analytic interaction. 
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2.7. Remark.  We want to point out that the assertion of the main theorem is not 
restricted to the case of hard spheres that do not allow simultaneous occupations of 
neighbouring lattice points. It comprises the case of more complicated hard cores, 
too. Thus it gives new insight into general hard core systems such as examinated in 
[12]. In [-12] there are given conditions on the generalized activities that ensure 
that the partition functions do not vanish, i.e. they ensure complete analytieity by 
Condition 1~. Now, the main theorem states a series of other properties of such 
systems. 

2.8. Remark.  The proof of the Theorem 2.2 follows the scheme 

- - I l i  a 

t 
I I I  b ~ III~ 

t 
I I I  d 

T 
An arrow X -+ Ymeans that the condition Yis fulfilled for the elements of the main 
component of the set of interactions fulfilling condition X. In Proposition 3.4 the 
implication 111 a --* I b is proved, in Proposition 4.6 the implication I a --, I l ia ,  in 
Proposition 4.7 the implication I l l  a --, I I t  c and in Proposition 5.1 the implication 
II~ -~ I I  c. The proofs of the implications I b ~ Ia, III~ ~ I I I  b -~ I l ia ,  III~ -~ III~ are 
obvious. The implications I b - ~  IIa, II~ - ~  l i  b ~ I a can be proved in the same way as 
in [5]. We only want to give a comment on the implication l l I ~ - ~  III~ that is 
proved in [6, Proposition 4.1]. The main point is that the Conditions I l l~  and III~ 

are not conditions directly expressed by the interactions. They are conditions on 
the variation distance of the Gibbs distributions in finite volumes with different 
boundary conditions, i.e. they are conditions on specifications. In the proof of 
Proposition 4.1 in [6] only measurability properties of specifications are used, but 
not the property that the specification is a positive one. 

3. Condition Ilia Implies Condition Ib 

During the proof of the proposition that Condition I l i  a implies Condition I b we 
use the following lemma. 

3.1. Lemma. Le t  u c g.I r and p > O, c5< 1, v >= i be given and f i x ed  in all the 
fol lowing.  Define for  V ~ I ( Z  v) and t ~  V c the sets B(t, p, V)  and ~" by 

B(t,  p, V) = {s~  V lp  < Hs - t l l  < P + r} (3.1) 

V-={s~VILIs-tL[ > p + r } .  (3.2) 
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Suppose that for all Ve~f(Z~), t e  V c, 61, 62 el2 such that 

611==62r= if s @ t  (3.3) 

the following estimate holds: 

Var(QV o, v)(.161), v Qv, n(t,o,v)('l@2)) ~ 16[B(t, p, V)1-1 . (3.4) 

Then there exists an e o = eo(U, p, b) > 0 such that the partition functions Zv(O J6 ) 
are nonvanishin9 for all U~(9~o(U), Ve~I(Z~), fleD. Moreover, one can choose 
e o > 0 so small that for all 0 < e < e o and all Ue(9=(U) and te  V ~ 

I) there exist functions C 1 = Cl(e; U), 01 = 81(6; U, U, V, t) and ~c = ~c(U) such 
that lira C1(8) = O for the fixed U, [0z(6)[ < l for all 6~f2 and all values of the 

s --* 0 

other variables and 

Z,,(O I~ )Z~(UI ~) 
=1 + `91Cl e x p ( -  K dist(t, V m s u p p ( U -  [7))) (3.5) 

zv(uI6 )Z~([716 ) 
for all # e O, 

II) there exist functions C 2 = C2(e; U), ,92 = ,92(6 1, 62;  U, [7, V, t) and ~c = ~c(U) 
such that lim C2(e ) = 0, ],9z(6 1, 62)] < l for all 6 1, 6 2 e(2 that fulfill (3.3) and 

g ~ O  

all fixed values of the other variables and 

Zv(~ 16 1)Zv(Ui 6 2) 
= 1 + 82C 2 exp( - ~c dist(t, Vc~ supp(U - 0 ) ) )  (3.6) 

z. (u I6  ~) z.([716 ~) 
for all 6 1, 62eff2 that fulfil  (3.3). 

For  the sake of simplicity we omit ted in the formulat ion of the l emma 
the specification of the dependence of C~, C 2, ,9~, ,92 and ~c of the fixed parameters  
v, r, p, 6. 

Proof Let U ~ 9I, be an interaction that  meets the condit ions of  the l emma with 
respect to the numbers  p and 6. If U takes finite values only, then one can find eo so 
small that  all interactions 0 e C=o(U ) have this property ,  too. Moreover ,  one can 
find 0 < eb < eo such that  for all U e C=o(U ) 

sup 
Aeg] 
6 e Q  

IU(A, ~) - O (A, ~)l < ~o. 

Now, one can prove  the l emma in the same way as it was done in [5, Theorem 3.1], 
where the authors  investigated finite interactions with respect to a distance defined 
by the left hand side of the above  inequality. We want  to emphasize that  in this case 
% does not  depend on U! 

It remains the case, when U takes infinite values. In each e-neighbourhood of 
U one can find interactions that  take infinite values, too. But one can choose e o so 
small that  for all O~C=o(U ) and all Ae~I(7/~), ~ef2 such that  U(A, cr)< oo 
0 (A, tr) < oo holds, too. Hence there are two possible cases: 
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(i) Qe(9~o(U) and (~ (A, a) = ~ iff U(A,a)= ~ .  
(ii) Ue(9~o(U ) and there exist Aoeg~, a o e O  such that  U(Ao, ao)= ~ but  

U (Ao, ao) < oo. 

In the first case the p roof  of our assertion follows the scheme of the proof  in the 
case, when U takes finite values, only, if we suppose (and we do it th roughout  this 
paper) that  o o -  0o = 0. For  the proof  of the second case we introduce 
a real-valued intermediate  interaction U h. Let ~ ~ gt x f2 be the set of all pairs 
(A, or) for which U(A, a) = oo but  L7 (A, or) < oo. We define 

Uh(A, or) = Re LT(A, ~) ,  if (A, a) e | (3.7) 
and 

Uh(A, or) = U(A, ~r) in all other cases . (3.8) 

Obviously  U h ~ (_9,o(U). We assert that  under  the condit ions of the l emma one can 
choose t0 so small that  for all Ve~s(Z~) ,  t~ V C, all 0 < e < eo and all [Te (9~(U) 

there exist functions C 1 = (21(e; U), K 1 = KI(~;  U, U h, V,t), (22 =,,/~, 
K2 = K2(~  1, (y 2; U, U h, ['I, t), a number  3" = ~" (6, v, r, p) and a function ~c = ~:(U) 
such that  lim (21(0 = 0 for fixed values of the other variables and ]KI(~)[ < 1 for 

~ 0  

all e?e f2, IK2(~ 1, ~ya)l < 1 for all ff 1, ~ 2 E f  2 and for all 6 e l 2  

zv(ul~)z~(vhl~) 
= 1 + K1(21 exp( - ~: dist(t, Vc~supp(U - uh))), (3.9) 

Zv(U~l~)z~(ut~) 
and for all ff 1, ff z e Q that  fulfill (3.3) 

Var(QvU~B(t, 0, v)(, ]ff 1), u~ Qv,8(t,p,v)('l~z))<�89 V)l-* (3.1o) 

and 

Zv(Ul~ bZv(Uhl ~ 2) 
= 1 + K 2 ( 2 :  exp(  - ~ dist(t ,  V r ~ s u p p ( U  - uh))). (3.11) zv(u~l,~ 1) Zv(Ul~ ~) 

As before we omit ted the specification of the dependence of the functions (21, K~, 
K 2 and ~c of v, r, p, & Let us ment ion  two facts that  will be used in the proof  several 
times. At first we draw the reader 's  a t tent ion to the fact that, if (3.11) is true, it 
follows by subsequent  appl icat ion of this formula  that  for 8 1 6 2 ~ f2 that  differ at 
any finite set of points of the set ~V for the given V ~ ( Z  ~) 

Z v ( U [ ~  1) Zv(Uhl6 2) 
Zv(Uh[~ 1)Zv(U]~2 ) = F], (1 + K2, i(2 2 c x p ( -  ~cD,)), (3.12) 

where i indicates the points  t~ ~ c? V, where ~ 1 and ~ 2 differ f rom each other and 
D~ = dist(t~, V c~ s u p p ( U -  Un)). Fur the rmore  it will be necessary to distinguish 
between "good"  and "bad"  configurations. For  Ve ~y(7/") and avo ~ s we call the 
configurat ion COver2 v a good configurat ion and write COv ef2~~176 if for all 
A~91, A ~ Vw c3V the value U(A, COvC~w ) is smaller than infinity. Otherwise the 
configurat ion co v e f2 v is called a bad configurat ion and we write co v ~ s In 
the following we denote for V e N y ( Z  ") by 0 v the configurat ion of s v that  is 
identical 0 e S. 
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Let Ve~:(Z~), t s  V ~ and 6 c O  be fixed. Then 

and 

E 
bad 

O2 vx ~ t?vx ~ ( %  ~rw)  

= Y E 

U h 

U n - U n - Qv, ~(~162 )Qvxff(C~ ) 

U n 
~. max QvxP(COvxP[6p~o~) 

= K(U, U h, V, t, 8) (3.13) 

lim K(U, U h, V, t, 6 ) = O (3.14) 
R ( U ,  u h ) ~ O  

uniformly in V, t, ~. Indeed, the set V\ I? is contained in the bounded sphere 
U h B(t, p + r) = (s ~ 7/v[ IFs - t II < P + r}. Hence, the values Q v\~ ('[ ~ ) do not depend 

on the restriction of ~ to the complement of B(t, p + r) w 8B(t, p + r). It follows 
b a d  from COy\ ~ ~Qv\~(0~avo) and (2.4) that at least one factor of the product 

U a l~ e x p ( -  Uh(A,e)yCOV\~6vo))Zv~(Uh]6) = Qv\~(O~v\~]coy6 ~) 
A~(V\~), fg 

is smaller or equal than R(U, uh). Furthermore, we conclude from 

lira Zv\~(Uhl~) = Zv\9(UI~ ) 
R ( U ,  U h ) ~  0 

and again V\ V = B (t, p + r) that 

K(U, U h, V, t, ~)/R(U, U h) < C < ~ (3.15) 

for some constant C that does not depend on V, t, ~ and U h, if R(U, U h) is small 
enough. 

Now we can start with the proof of (3.9)-(3.11). We do it by induction on the 
cardinality of V~ ~f(7/~). The first step is easy because Z~(t..7 ]~ ) = 1 by definition. 
Suppose that (3.9)-(3.11) are valid for all VeP:(7/~) with IVI < n - 1 .  Let 
V~g~:(Y_ ~) be a set with IV] = n and t ~ V .  A short calculation shows that 

Zv(U]~ ) i Z ~ ( U , . 6 v o )  r 1 ) ~ h  
Zv (Uh]~) -  Z-~-~[.-~-)I_ + ~o('Ovo)] (3.16) 

U h where ( ' ) v ,  ~ denotes the expectation value with respect to the Gibbs distribution 
QWh( �9 [6) (see (2.17)) and the function ~o is defined by 

/ \ 

q~(o-) = exp( - ~ (U(A, a) - Uh(A, o')) / -- 1 . (3.17) 
A c ~ V +  J A ~ ? = Z  

Let us emphasize that U h is a real-valued interaction and thus both sides of (3.16) 
are well defined. 
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Let D = dist(t, Vc~ supp(U - Uh)). Then, if D > p + r, the function q~ is iden- 
tical zero. Hence, we get from (3.11) and (3.12) 

Zv(Wle)zP(w~le) I z~(wlevYZp(W~le)) ~ 
= (3.18) 

= [ I  (1 + K2,~C2exp( - ~cD~)) 
i= 1 / V , 8  

Using the facts that  IVc~8~ <= IB(t,p, V)[ and D < D+ + p + r for all i, it is not 
hard to see f rom (3.18) the existence of functions K~ and (~I((~2) such that  
I g l l  =< 1, lim C I ( C 2 ) = 0 a n d  

C ~ 0  

Zv(gl~)Z~(Shle) 
= 1 + K I Q e x p (  -- ~D) ,  (3.19) z~CUhle)Z~(Ule) 

where we omit ted to write down the corresponding dependence of K I and C~ (C2) 
on the parameters  U, U h, V, t, v, r, p, 6. 
Let now D ~ p + r. Then 

bad - 
= - 1, if COvlv\p~f2v\p(Opavo) (3.20) 

o g o o ~  ((~ ~ (P(C~176 0, if COviv\~oov\vwv~w) 

and, hence, we get from (3.16) 

Zv(Ul~)Z~(U~l~) (z~(ulev~ ~ (3.21) 

For  the first term on the right hand side of (3.21) we obtain a representat ion in the 
form of equat ion (3.19) in the same way as it was shown in the case D > p + r. The 
second term on the right hand side of (3.21) can be est imated with the help of the 
induction hypothesis  (3.11) and (3.12) 

Z~(Uhc~176 ~) v~ 
o - , Z~(Uhl~~ ~O~6V~ Qv. v\~(c~ ~) 

e)v\~E Qv\~( Va vJ 

-<- I-[ I1 + C 2 e x p ( -  KD,)I Z QW~v\p(oJv\pla) (3.22) 
i = i ~bad (0 (~ 

C~ v \ ? '  V w ) 

Because of (3.13), (3.14) and ]Vc~ 8V]-< kB(t, p + r)] the right hand side of (3.22) 
tends to zero, if R(U, U h) tends to zero. Hence, we have in the case D < p + r for 
some d21(C2), K~, C 3 

Zv(gl~)z~(ghl~) 
= 1 + 1 2 ( ~ 2 e x p ( _  KD) + C 3 (3.23) 

zv(u~l 3) z~(ul~)  
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where lim C 3 = 0, uniformly in Vand& [K~Z[ < 1 and lim C~Z(C2) = 0. We 
R(U, u h) ~ 0 t~2 ~ 0 

get from (3.19) and (3.23) the needed equation (3.9) with new functions K~ and C1 
that possess the asserted properties. 

We want to point out that the function C~ is constructed from C2 = v/~ and 
further functions that do not depend on V, if R(U, U h) is small enough. Hence, (~ 
does not depend on V. 

In the next step we prove (3.10) for V~ ~y(Z ~) with I VI = n, assuming that (3.9) 
is true for the same V. We have to show that for any small enough 6 > 0 one can 
choose e o > 0 independently of V, t ~ c~ V and 6 ~ f2 such that for all t ~ c~ V, 6 ~ f2 
and all U~ 9.1. c with R(U, U) < % 

U h Var(Qv, B.,o,v)('[6), v Qv, B(t,p, v)(" 10)) < 6 �9 (3.24) 

For the sake of simplicity we write B instead of B(t, p, V). Then 

Qv, B(la))  = ~ Y~ y~ Q~ x I1 - 7 'Co.)1,  Var(Qv, B('[a), v - 
o.60. ~  (3.25) 

where 

e x p ( -  ~ Uh(A,(DB(Dv\BffVr 
Zv(UI6 ) o+\~ Q~\~ A ~ v ,  

( ) ~(o9.) = Zv(Uh[ 6) ~ exp - ~ U(A, CO.OOV\B5 vo) 
O~v\B~ s"2v\ B A ~ V 4: , f3  

Because of Q~.(og~COv\ol 6 ) = 0, if co B e f2g ad (0v\ s 6 vo), we have to examine 7 s for 
f2 g~ - ' co.~ ~ t v\Bavohonly. SinceBhasthethicknessrwegetwith W= Vk(Bw V) 

~ e x p ( - ~  Uh(A, oor.OOw~%6w)) 

~(~ ~ ~ e x p ( - ~  U(A,~COW~OB6W)) x 

X 

~~ Qw <.o~6 f2~ 

exp( - 

exp( - 
A c ~ V 4 -  ~,Ac~ P= Zf 

\ 

to.COw 6 (B ~ w)~ )) Uh(A, 
/ 

U(A, 09BCOW6t.~W)c)) 

Zv(Ule  )z~(uhlco~e~) 
-~- X 

Zv(a~Io ) z ~ ( a l % o . o )  , 

I =p(- z 
x / 1  + - - ~ '  _ A ~ P = ~  

COwe Q~  ~ Ac~ V + S,~ 
A c ~ Y =  ~ 

Uh(A, c.o,COw6 al~, w)~ ) I 

U (A, ooBOOwO (~ w)~ ) 
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It follows from the induction hypothesis (3.9) that, if the distance R(U, U h) tends to 
zero, the first factor tends to one. The same is true for the second factor, because of 

bad W w e O w  (c%a(~w)o)  in the numerator. Since the function C~ in (3.9) does not 
depend on Vand W ~ {seT/~[ lit - sll < p} the convergence is uniform in Vand & 
This proves (3.24) that leads together with (3.3) and (3.4) to 

oh Varr'q v~ ~ v , ~  tr'16t~l J, ~v ,  r . l~z))  < Var(Qv, Qv, -1)) + 

+ Var(Q~,n(. 13 ~), QW, n(" 13 2)) + 

+ Var(QW,,('13 2), v, - 2 O~,.('l~ )) 

< ~[BI -~  + 2~ 

if eo is sufficiently small. Now, we choose ~ so small that 

�89 -~ + 2 8 <  �89 

for some S <  1. Inequality (3.10) is proved. 
In the last step of the proof we suppose that (3.9) and (3.10) are true for all 

V~f(Y-~), IVI < n and that (3.11) is true for all VeNr IVI -< n - 1. We prove 
that (3.11) is true for all VsNy(7/~), IV] = n, too. We write for the corresponding 
parameters V, 3 t, 6 2 

z ~ ( u I 3  ~) z~(u"13:) 
Zv(Uhla ~) Zv(ala 2) 

(Zv (U 13 t ) /Zv(U n 13 ~) - Z v(UI32)/Z v(Uh[3 z) )(Z~(U~I62)/Z~,(U 162) ) (3.26) 
1 + (Zv(UI32)/Zv(uhld2 ) )(Z~(Uh132 )/Z~(UI32 )) �9 

Using (3.16) and (3.17) the numerator of the right hand side of (3.26) can be written 
in the form 

I Z~(U[" 31v~)Z~(Uh132) 1 ~ Ur' __ / Z~z(U[" ~2v~)Z~z(Uh[32) 1 ~ Uh 
z~(u~l .3~)z~(uI3  ~) /~ ,~  \ z~ (u~ l -3~o )z~ (c l32 )  /~ ,~  

/ z~(uI. 3~c)z~(uhl32 ) 
+ \ z ~ i . 3 V o ) z ~ ( u i 3 2 )  

_ / z~(ul:3$o)z~(u"l ~2 ) 
\ z ~ ( v h l  �9 3 ~ ) z ~ , ( u  I~  2 ) 

r  . 
V,~ 

(3.27) 

Notice that within the ( ' ) -brackets  of the first term one can replace 6 ~o by 6 ~vo. 
We can use the induction hypothesis (3.11) in the form of (3.12) and get 

_ - \z~(u,L.3~o)z~(ul~2) - 1 Z~(Vhl~2vo)Z~(Vl3 2) /v,~ ,~ 

= - Qv, B( 'I3 z)) ,  (3.28) 

where all /5 i > 15 = dist (Vc~ ~l?, Vc~supp(U-  Uh)). The number of points t i 
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where (" ~01w~;6 and ff l lv~,~ differ from each other is bounded from above by 
[B(t, p, V)]. Hence, one can choose x(3") and e0 so small that for D < / )  + p + r 
and R(U, U h) < ~o 

1/31 
l--[ (1 + Czexp( - K/)~))- 1 < [Bl-C2exp(-  xD)3 "-1/2 

i=1  

Then it follows from (3.10) that the right hand side of (3.28) does not exceed 

C2 exp( - xD)6" 1/2. (3.29) 

In the case D > p + r the function 09 is identical zero and we still have to examine 
the denominator of (3.26). But it follows straightforward from (3.9) that for 
sufficiently small e o 

Zv(Ul~ z)z~,(U~le 2) > S1/* 
(3.30) Zv(U~le 2)z~(Ul,~ =)  = . 

Now we get (3.11) from (3.30), (3.29), (3.27) and (3.26). In the case D < p + r we use 
(3.11) in the form (3.12) and (3.20) for the set I7 c V and for ffJ, j = 1, 2, to estimate 
the last two terms in (3.27), 

z~(u~le ~) z~(ulco~e ~o) ~o(cove ~o )Q~(cov le s) 
z~(ule2) ~Ov~v z ~ ( u ~ l c o ~ e J v ~  

= Qv (co~cov~ I~r 0 
~a~ eL.) Z~ (U Iry2 )Z~(Uhtco~cov\~ ~jc)  COv\~ E Ov\p(O ~ o ~  O~ 

< (1 + C2) I"l ~. vn j) = Q v, v\)7 (cov\~ la (3.31) 
bad  ~ ~ t2v\.o(0~ #~c) 

<(1 + (~2)IBIK(U, U h, V,t, 6J ) ,  

where K(U,  U h, V,t, 6J) is the function defined in (3.13) with the properties 
expressed by (3.14) and (3.15). Now one can choose x(6) and eo so small that (3.28) 
and (3.30) are satisfied and that the bound (3.29) holds for (3.28). In this case the 
absolute value of (3.27) does not exceed 

t~2exp( - xD)6 x/e + 2K(U, U h, V, t, 6 J ) ' ( 1  + C 2 )  IBI . 

Due to the special choice o f  C2 as  C2 = N~ the above term can be estimated by 
(~2exp( - KD)~ 1/4, if % is small enough. Now (3.11)follows straightforward from 
(3.30) and (3.26). 

We want to point out that during the proof of (3.9)-(3.11) we always ensured 
that the construction of the functions t~ 1 and ~c did not depend on the actual 
volume V in our induction procedure. Moreover, in each step we had to choose 
a suitable small %. We did this choice independently of V, too. Thus we can use as 
the needed e o the minimal one of all steps. The rest of the proof of the lemma is easy. 
Indeed, we find that the following condition is fulfilled by ~lefinition of Uh: For 
A~91 and o ~ Q  

/.7(A, co) = oo if and only if Uh(A, co) = 0o . 
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This corresponds to the case (i) of our proof and, hence, (3.5) and (3.6) are valid for 
U h instead of U. The assertions of the lemma are now consequences of the following 
calculations. 

Zv(U [~)Z~(Ule)  _ Zv(U 16) Z~,(Vhle ) Zv(Vhle ) Z~(UI~) 

Zv(Ule)z~(t21~) Zv(Uhle) z~( tTle  ) Zv(Ul~) z ~ ( u h l e )  

= (1 + 0~C~exp( -  ~cd))(1 + K ~ C ~ e x p ( -  ~D)) -~ 

= 1 + O l C l e x p ( -  Kd) , 

where ~ is the constant x used in (3.9) and 0~, C~, ~ are some new constants, that 
possess the needed properties. This proves (3.5). Analogously we get 

z~(t7 le ~ ) Z g U l e  ~) 
= (1 + 0 2 C 2 e x p ( -  ~cd))(1 + K2C2exp( - ~D)) -~ 

z ~ ( v l e ' )  Zv(~ le ~ ) 

= 1 + t92C2exp( -- f f d ) ,  

for some new constants that possess the needed properties. The equation (3.6) is 
proved. 

In the course of the proof of the proposition that U e 6g m~ implies U e ~ ~ we 
make use of the following lemma. 

3.2. Lemma. Then, i f_ U e ~ m , ,  there exists e > 0 such that for all 
W ~  V~y(Z~) ,  #~f2, U~C~(U) the following estimate holds for some constant 
c = c(u,  I Wl) < 0o: 

max IZv\w(C7 law6wo)/Zv(17 I#)t < C .  (3.32) 
a w ~  1"~ w 

Proof In a first step we prove an estimate for the ratio of partition functions for 
U~9,I r. Namely, we show that for VENI(7/~ ), t~ V, a, sS, 6~t2 there exists 
a constant Ca(U) > 0 that does not depend on V, t, at, ff such that 

Zv(Ul~)/Zv\,(Ula,~tc) > Cl(U ) . 

Using the abbreviation 

q(U' V ' t ' a t ' f f ) = e x p (  - AnV=t2 U(A, at~tc)) 
we get 

7,_. ( U ~  
Zv(Ulff)/Zv\t(U[~176 ztes2 ~Uv\t( [ t~te) q(U, V,t, zt, 6 ) 

> Zv\t(U]Offtc) q(U, V, t , O , ~ ) .  
= Zv\ , (Ulat~o)  

If follows from (2.3) and U ~ Nr that 

(3.33) 

(3.34) 

q(U, V, t, O, 6) > C2(U) > 0 (3.35) 
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for some constant  C2(U) that  does not depend on V, t, 6. For  the examinat ion  of 
the ratio on the right hand  side of (3.34) we look at the terms exp( - HW\t(colat6 t=)) 
(see (2.7)) the sum of which gives the part i t ion function Z v\t(Ultr t ~ tr In  case of 
exp( - HVv\~(colat~tJ) 4:0 there is a number  C 3 = C3(U, V,t, to, at ,6 ) > 0 such 
that  exp( - HU\t(o2[at~tr = exp( - H~\~(o9 ]06to)). Since U ~ "~r, the constant  
C 3 depends on a finite number  of variables, only, and, hence, there exists 

min C3(U , V, t, co, Crt, 6 )  = C4(U ) > 0 . (3.36) 

Now,  we get f rom (3.36)-(3.38) 

/ 

Zv(Ui?r)/Zvv(Ulat(rt~) >= C2(U)" C4(U)(1 + 

\ 

exp( - HW\~(colats \ 
/ 

> c~(v).c~(u) = c l ( v )  > o .  

The est imate (3.33) is proved.  After these prel iminary examinat ions  we go abou t  the 
p roof  of (3.32). Let ~ > 0 be so small, that  for all /_?eC=(U) the conclusions of 
L e m m a  3.1 can be used. T o  show (3.32), it is enough to handle the case W = t for 
some t e  V~ ~'I(Z v) and 6e t2 .  If V, t and ~ are fixed, then S splits into two parts  $1 
and $2: 

r t eS1 ,  iff U ( A , ~ t ~ t c ) < o o  fo ra l l  A e g l , A c ~ V = t .  

We get for all a t ~ S 

Z v ~ - t ~  r = ,,~s, Zv\~(~la,6tr q(U, V,t, r t , ~  ) 

+ F. zv\,(t~l ~teto) q(U, V, t, z,, e)  . (3.37) 
~'~2 zv\t(t71 ~rt~ to) 

Using L e m m a  3.1, equat ion (3.6), we can write 

Zv\'(lTlzt6tc) - (1 + 02C5) Zv\'(Ulzt~t~ (3.38) 
Zv\,(t~l ,rt~,o) Z~\ , (Ul~te ,o)  ' 

where we included the term exp( - xd) from (3.6) into ,92. 
For  zt ~ S~ we get 

q(LT, V,t, vt, 6)/q(U , V, t, r t , ~  ) = 1 + O3C 6 , (3.39) 

where 1,93] < 1 and C 6 tends to zero, if e tends to zero, and the convergence is 
uniformly in V, t, rt and 6. 

For  -r t ~ S 2 we get 

lira q(LT, V, t, z,, e ) = 0 (3.40) 
e ~ O  

uniformly in V, t, zt, 6. 
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It follows from (3.37)-(3.40) and (3.33) that 

zv~,(Olo-,,~,~) { zv\,(uIo-,,~,o) 
- (1 + o : G ) ( 1  + + 

+ ~ ( l + 0 : C s )  Zv(UI6 ) q(U, V , t , h , a )  
t t~S  2 

< C~(U) < oo . 

The bound C in (3.32) can be chpsen as C = I WI'CT(U). The lemma is proved. 

3.3. Corollary. Then, if U ~ m , ,  there exists e > 0 such that for all V ~ ~f(Y_~), 
6~(2, f) ~ C~(U) and each complex-valued function r on ~2 that depends for some 
W c V on o)lw, only, the following estimate holds: 

I(~o>~,~1 =< cI l~l l ,  (3.41) 

where C = C(I WI, U, r, v, ~) is independent of V and 6 and 

II~ll = sup I~0(r 

Before proving this assertion we want to remark that in (3.41) the left hand side is 
defined by 

(qo)~,e= ~ r (3.42) 
09 v ~ ~2 v 

where QvS(covl ~) is defined by (2.17) with [ / ins tead of U. In Lemma 3.1 it was 
shown that for U s dg tU, and e > 0 small enough the partition functions Zv(U 16) 
are nonvanishing for U e (9~(U). Hence, for small enough ~ (~0)~, ~ is well-defined. 

Proof. Let U~dgmo, e > 0 be small enough, tTe(9~(U) and ~p:~2 ~ C a function 
that for some W c Ve ~s(7/~) depends on ~Olw, only. Then it follows from (2.6), 
(3.42) and (3.32) that 

I(~0)va~l__< tsllWlll~01t max Zvxw(Ulaw6w~ x 
~,,~ ~ Z v ( U  ~ ) 

X max exp(  ~ U(A, awSwo)) 
aw~Ciw ~ A n W *  (25 ~ar~(V\W)= 

~= Is l lWl l l~ l IG max exp 
aw ~ Qw 

U (A, awawc)) 
A n W t  ~ 

A r ~ ( V \ w ) =  ;25 

(3.43) 

where C 1 is the bound in (3.32). Let ~ w~Ow be the configuration for which the 
maximum is reached on the right hand side of (3.43). It is easy to see that 
8weO~~ if e is small enough. Hence, ReU(A, ~w~rwo)< C2(U, ~) for all 
A e 9l, A c~ W :t: ~ ,  A c~ (V\W) = ~ .  As a consequence we get that the right 
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hand side of (3.43) is bounded by a constant 

c = [sI Iwl I1~oll c1 " C 3 ( U ,  F,, r, [WI) , 
Q.E.D. 

3.3. Proposition. The Condition U ~ ~ ;1;o implies U E ~ ; b. 

Proof. Let U ~ , ; o  and e o > 0 be the number for which the assertions of Lemma 
3.1 and Lemma 3.2 are valid. For 01, U2~(9~o(U) we choose a sequence of 
interactions 0 i~ (9~o(U), i = 1 . . . .  , k such that 

(i) 01 (A, co) = UI(A,~) and 0 k (A, co) = ff2(A, co) for all A c Vu  OV, co6f2. 
(ii) Then, if (U i+ ~ - U ')(A,. ) ~ 0, the interactions differ from each other on this 

set A, only, and for all ff6f2 with 6[a  ::[= (O[A the values 0g+~(A, tY) and 
0 i(A, ~ ) are equal. 

(iii) k is the smallest number such that (i) and (ii) are satisfied. 

It is clear that 

k <_ C~(r, v, ]S[)[(Vu 8V) n supp(0~ - [-~2)1 �9 (3.44) 

Our assertion will follow from (3.44) and the estimate 

[ln[Zv(U ~[ff ) /Zv (O  '+ ~ [6 )][ < C 2 , (3.45) 

where C 2 = C2(U, r, e, v). 
Let A o be the set for which 0 ~ and 0 i+a differ from each other. Using (ii) and 

(3.32) we get for all V~y(Z~) ,  ~ s  

= o ~ o  /expt- /~ ' (co))  - exp( -/~,+l(co))} 

:<C ~ I{exp( - /~ ' ( co) ) -exp( - /4 '+~(co) )}  I , (3.46) 
0 )~  OAo 

where /tJ(co) = ~ U J( W, COCYA~) for j = i, i + 1 . 
W= Aow3V,  W ~ A  o 4- ~Zi 

But the last sum in (3.46) can obviously be estimated by a constant C .Co, where 
= C (U, r, v, %, ]S[). This already proves (3.45). Hence, the proposition is proved. 

4. Condition la Implies Condition I I I  b 

For the proof of the assertion that U~dg(6~1o) implies U ~ m d  we need the 
following lemmata. One of them is already published, but we repeat it here without 
proof for the sake of completeness. 

4.1. Lemma [6, Lemma 3.1]. Suppose the function q~(z) is analytic in the disc 
{z~C[[zf < 1 + 6}, 6 > 0, with [q~(z)[ < Cl for  [z[ __< 1 and q2(O)is real, q)(O) > ~ > O. 
Let  E = 1 - e x p ( -  o~/2C1) and C 2 = 1 + max{[ln~[, [lnCx] }. Then q~(z)4: O for 
[z[ <-_ E and [In (p(z)[ __< C2for ]z[ _-< E, where we choose the branch of  the logarithm in 
such a way that In(p(0) is real. 
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4.2. Lemma.  Let  U~6g~ . Then there exist e > 0 and C < oc such that for all 
w~Azv) ,  ~eo,  Oeo~(u) 

IlnZv([718)1 < ClVl .  (4.1) 

Proof. Because of Uegg1~ there exists e t > 0 such that for all u e ( f i r ( u  ) the 
part i t ion functions are nonvanishing. We define 

fi = sup {]U(A, co)1[A691, c o c O ,  U(A, co) < oo } 

and ~c = c a r d { V ~  Y ~] 0 s  V, diam V=< r} . 

We show that  the numbers  e and C looked for are 

e = [1 - exp( - exp( - ~c(2zi + e l )  + ln]S]))]e 1 (4.2) 

C -- [1 + ~c(li + e~) + lnIS[] .  (4.3) 

According to (2.5) we use instead of U respectively E7 the corresponding generalized 
activities F respectively F. It is not  hard to check that f o r / ~  Of(F)  

[ Z v ( l ~  ]~ )l/IV I] ~ exp(K(ff + el) + lnlSl). (4.4) 

For  IzI < 1 we introduce the functions 

F=(A, ca) = F(A, co)exp(z'ln(/~(A, co)/F(A, co))) if F(A, ca) 4= 0 

and F=(A, co) = zlff (A, co) if F(A,  co) = O. 
Obviously F=~ O r (F) for all ]z[ __< 1. Thus, the part i t ion functions Z v ( F  = ]~ ) are 

analytic functions of the parameter  z in the disc {z ~ C IIzl _-< 1 ). Moreover ,  it is easy 
to see that  

IZv(r=la)~/IVll <__ exp(tc(~i + el) + lnlSl) 
and 

Zv(FI5  ) 1/Ivl > exp( - m i ) .  

Hence, we can apply Lemma 4.1 to q)(z) = Zv(F=]5 )~/IVl, which gives by definition 
of e and C (see (4.2), (4.3)) the needed result. 

4.3. Lemmm Let  ~#~" ~ ~ ,  be an open and connected subset that contains 
the interaction F ~ = { F(A, " ) =- 1, A ~ 9l } correspondin 9 to U ~ Define 
(9~(~#2) = ~ (fi~(F) and ( f i r ( ~ )  = U (fiT(F)" Then there exist ~o > 0 and a func- 

F~ ~ F~ ~ ~ ~ 
tion c~(F, e) > O, F ~ K ,  ~ < e o, such that for all functions g(F),  F e(fi=(~/r that are 
analytic in ( f i r (~ )  the conditions 

(i) Ig(2ff)l _-< M for all /~(fir(~g-) (4.5) 

and 
(ii) for  some n > 0 

~ m g ( F !  F ~ 0 z l / ~ ( B ~ _ ~  ~ q F  (Bq) f =  = 0 (4.6) 

q 
l i = m < n, B I , . . . ,  B q ~ I ( ~ -  ~) imply 

i = l  

]g(F)[ _-< Mexp(  - na(F,s))  for all F ~ Y / f  . (4.7) 
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By the partial derivatives (4.6) of the function g(F ), F ~ (9~(r we mean the family 
of functions 

a t , , f ( B 1 ,  ~1, ~ )O~'~f (B1 ,  ~'  2).. �9 O~"~/~(Bo, ~'"~) ' 

where the parameters are chosen as follows: 1 u > 0, I~1 + . . .  + l~,, = l~, a~'Jef2~, 
j = 1 . . . . .  u~ > 0, i = 1 . . . . .  q. The proof of the lemma proceeds in the same way 
as the proof of Theorem 4.2 in [5]. 

A family { V ~ I ( Z ~ ) I i =  1 . . . . .  I} is said to 
4 = J ~ { 1  . . . . .  I} 

be connected, if for all 

In the next two lemmata we examine the generalized Ursell functions, that are 
defined by (2.12), to find the crucial properties of these functions. 

4.4. Lemma. Let VGNI(7/~), AiGgt  , Aic~ V + ~ ,  Oi: I 2 ~ R  such that O~(o)) 
depends on o~[a, only, i = 1 . . . .  , m and K = (k: . . . . .  k~,) be given. Then, if  the set 
{A 1 . . . .  , Am} is nonconnected, 

[~ '1kl , . . . ,  ~k~mlF ~ V, 6 ]  = 0 .  (4.8) 

Proof  By definition (see (2.11), (2.5)-(2.7)) we have 

Z v (  ( . . . . . . . . .  ~la) = Z 1-I 1 +  Z z, Oi(~176 �9 
Over2 v Ac~V + ;,~ i:Ai=A 

From the nonconnectivity of {A 1 . . . . .  A,,} it follows the existence of a nonempty 
/ \ f \ 

. . . . .  m) s u c h t h a t ( ( J A , ) c ~ ( U A ~ ) =  ~ .  Now it is not hard to see s e t J c  {1 
that \ i , J  / \ i cJ  / 

o ( )( o ( o Zv(r(~l . . . . . . .  )la) -= Z v n  U A, r(z,, i~ j ) l f f ) 'Zvn  UA i F(z,,icj)lt7 ) . ) 
i e J  i~:J 

Thus the logarithm of Z v ( F ~  . . . . . . . .  )15) breaks up into a sum of two logarithms 
and, consequently, the derivatives defining the generalized Ursell functions for F ~ 
are vanishing. 

4.5. Lemma. Let {A: . . . . .  Am}, {B 1 . . . . .  Bq) be two families of  elements ofgl  and 
{~:, . . . .  ~'m} be a family of  maps ~bi: f2 ~ l~ such that ~i(o9) depends on ~ola,, only. 
I) Then, if  {A 1 . . . .  , Am, B 1 . . . . .  Bq) is nonconnected, 

~tl+...  +t~ tY] ~ = r  ~ ~ 3 , ~ / ~ ( B 1 ) . .  " ~3z~ff(Bq ) [~h~k~,..., ~;,km[/~ V, = 0 ,  (4.9) 

for all choices of  the parameters V, 6, l i=( l i l  . . . . .  li,,), i =  1 . . . .  ,q, 
K = ( k ~ , . . . ,  k~). 

II) L e t V i G ~ y ( 7 ? ) ' S i G f 2 ' i = l ' 2 b e s u c h t h a t f ~  U A i ) u (  ~J Bi) i=1  

following conditions hold: 

D c ~ V : = D c ~ V 2 ,  D ~ d V : = D c ~ t ? V  2 and ~1~=~21~ f o ra l l  s G d V l c ~ D .  
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Then, for all choices of  the other parameters 

c% + " ' "  +z~ f = 3hf (B~)  . c%ff(Bq) [~ i k "  . . . .  0 ~ } / ~  V,, 6 ' ]  , . l r ' ~  

0h + ... +lq f =  
= '-,','", ~ 2 ~ t f ,  v~, ~ ~] c t ' , f f (B , ) . . .  Oq f (Bq) e,e , . . . .  , 

Proof. The left hand side of (4.9) is equal to 

[0;" ' ,  . . , 0 2  ~, ' " '  " " " " l r ~  �9 ) ~ 1 ,  1 ~  " �9 �9 ~ I ~ q ,  U q  

where 

(4.10) 
F 0 

(4.11) 

for (COv6vo)lB ~ = a 'J (4.12) 
Zi, j (r d vo) = otherwise 

if aUlov ~ B, = 6}OV ~ for all i =  t . . . .  , q, j = 1 . . . .  , u i. 
N o w  the first assertion follows immediately  f rom L e m m a  4.4. The second 

assertion is a direct consequence of the representat ion (4.11) for the derivatives and 
of the propert ies  of D. 

4.6. Proposition. The Condition U s J g ( 6 g ~ , )  implies U~Illd. 

Proof. Let U e dg(6~ ~,) and consider the function 

g(U) In [QW,A (~rAI(Y 1 V - 

= l n Z v ( U { ~  2) _ l n Z v ( U l e  a) + l n Z v \  a(UiaAe)V ) 

- In Zv\  A( U 16Ae% ), ( 4 . 1 3 )  

where the parameters  are chosen as follows: V~ ~s(Z~), A c V, t ~ OV, r~ 1, 6 2E f2 
such that  ~ 1 [ _  62[s for s 4= t, cracf2~~176 Define ~ = ~r 
to be the main  componen t  of the set of  interactions that  fulfill (4.1) with the 
constants  C and 2e. It  follows f rom L e m m a  4.2 that  the sets ~c ,~  exhaust  Jg(6~, ) .  
Moreover ,  we get 

]g(U)[ < 4C[V[ (4.14) 

for all/.7 e (9 [ ("W). In the next step of the proof  we want  to show an est imate similar 

to (4.7). Fo r  this we need for some n > 0 

O'~+ ""-+J ' g ( f )  = 0 .  (4.15) 

To  prove  (4.15) we use L e m m a  4.5 for the case m = 0. By this l emma the derivative 
on the left hand  side of (4.15) can be nonvanishing only if the family {B 1, . . . ,  Bq} 
is connected with t E B~ for some i and A n B~ 4= ~ for some i. Indeed, if connect-  
ivity does not  hold, the derivative vanishes according to I) of L e m m a  4.5. If on the 
other  hand  the family is connected,  but  t ~ B~ for all i or all intersections A c~ B~ are 
empty,  then according to II) of the same lemma we have a complete cancellation of 
equal  terms with different signs in (4.13). Hence, if the derivative is nonvanishing,  
then q > J r -  ~ dist(t, A)], where Ix]  denotes the integer par t  of the number  x. Now,  
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it is a consequence of Lemma 4.3 that 

Ig(U)I < 4CI Vlexp( - ~(U)dist(t,  A)) .  (4.16) 

Let us recall that  in (4.10) the boundary  conditions ~ a, ff 2ef2  differ from each 
other  at t, only. For  general t71, t72ffQ such that  for the fixed aa~O a holds 

good - 1 r'~good/- 2 
aAE Q ~ (O'Ae ) ~ ~l A ta  A ~ ) we get by subsequent application of (4.15) 

lnQV, a(aal# 1) < 4CIV[2tA(~ 1, QW, A(OAla 2) = ~ 2)lexp( -- a(U)dist(A (8 1, ~ 2), A)) ,  (4.17) 

where A(6 1, ~ 2) = {sEt?V[6 112 4= 6 2Is }. 
Now we can at tack the original problem. Remark that without loss of general- 

ity we can restrict ourselves to the situation, where V -- A w V 1 with A c~ V: = 
and 

1/1 = {s t  Vldist(s, t) _< dist(t, A)} . (4.18) 

Indeed, assume that there exists s s V, s 6 A, but dist(s, t) > dist(t, A). Then 

u 

Q~.A(GAIe 1) . . . .  S 
Q~,~(~A~ 2) 

Z O~,a (aA~l~ 2) 
~s~S 

where A = A w {s} and A is situated in V such that  V \ A  fulfills (4.17). Assuming 
that (2.23) is true for V and A and using the implication 

a i / b  i < K, i = 0 . . . . .  [SI =~ 2 ai bl < K , 
i=0  i=0  

which is true for positive real numbers a~ and b i, we get that (2.23) is true for V and 
A, t o o .  

In the following we use the notat ions 

A' = {s~ A[dist(s, t) < dist(t, A) + r} 

A" = A \ A '  and 

~" = {s~A"[dist(s ,  A') > dist(t, A)} . 

Taking into account  the finiteness of the range of the interaction a long but simple 
calculation shows that 

Q V A ( a A ] ~  V )/Qv, A" (aA'l~ 2) (4.19) 

This enables us to restrict ourselves to the set A'. For  this set a n d j  = 1, 2 we get by 
the formula of the total probabil i ty 

= ~ )Qv ,  ~(e)~l~ J).  (4.20) QW,A, (0"A, Itr j) ~ QW\~. A'(aA'IO~ "ej U 
co,2~ OF, 

Before doing the next step let us remark that we can restrict ourselves to the case 
dist(t, A) > r. This assertion is true because of the possibility to change the needed 
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constant  K in (2.23) for the values of dist(t, A) up to the finite number  r. It  follows 
from this remark  that  dist(I  ?, A') > r. We use (4.17) for the volume V\I7 and get for 

t #t all cop, cop e f2p 

In QWx'~'A'(aa' ~ < 4Ct V k l P I @ ( V \ I 7 )  c~ V[ + 1)exp( - c~(U)dist(t, A')) 
U ~ -  Qv\~,A,(~a" Ico~@~:) 

(4.21) 

It  is easy to see that  I V \ V l < C ~ l A ' l ( d i s t ( t , A ) )  ~, IA ' l<C2(d i s t ( t ,A ) )  ~ and 
I~?(V\IT)I =< C3(dist(t, A)) ~, where C 1 = Cl(v ), C 2 = C2(r, v) and C 3 = C3(r, v) are 
constants.  Hence, it follows f rom (4.20) and (4.21) that  

Q~',A' (a~, le ~) 
(aA, I@ 2) 1 < K e x p (  - ~c dist(t, A)) (4.22) 

for some K > 0 and some K < oo. N o w  the est imate (2.23) follows immediately  
from (4.22) and (4.19). The proposi t ion is proved. 

4.7. Proposition. The Condition U ~ ~ sss~ implies U ~ ~ ssso- 

Proof. Let U E Ug ris~ and the parameters  V, A, t, 6 ~, 6 2 be chosen as necessary for 
the Condi t ions  III~ and IIIa. We denote by 12'A=Q~~176 
N o w  the proof  proceeds in the following way: Then, if dist(t, A) > r, it follows f rom 
(2.23) that  

Var(QW,a('16 1), v u - 1 1 Qv,a(" I@ z)) < �89 max Qv>a(aala ) -- ---g-- 7---:-.~. _ ~- 
..~ ~x iQv,A(~Ao ) 

< �89 - ~dist(t, A)) .  

The  case dist(t, A ) <  r is trivial because it is possible to increase the needed 
c o n s t a n t / (  in (2.22) for the values of dist(t, A) up to the finite number  r. 

5. The Second Group of Conditions 

The basis to include the second group  of conditions into the cycle of the theorem 
are  the propert ies  of the generalized Ursell functions for the zero-interact ion U ~ 
that  are proved  in the L e m m a t a  4.4 and 4.5 We use them to prove  the implicat ion 
U e g Z ( ~ e s o ) ~ U e ~ u c .  Before doing this we remark  that  the implicat ion 
U e ~ I ~  ~ U~Sguo follows from the est imate 

m Ai Isupp(/~< . . . . . . . . .  ) - F)I -- U < C ' m  
i =1 

for some constant  C = C(r, v) and the Cauchy formula  for derivatives of analytic 
functions. The Condi t ion I I  b follows f rom Condi t ion I1 c with ~0(d) = exp( - ~d). 

5.1. Proposition. The Condition U ~ / ( d g u , )  implies Uedguc .  

Proof. We apply L e m m a  4.3 to the function 

g( / ' )  = f~,i k,, . . . .  0; .~1/~  v ,  @3, 
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where f e (9T(F). The  a priori  est imate is (2.13), i.e. M = C Irl k l ! . . ,  k,,!. It  follows 
f rom assert ion I) of L e m m a  4.5 that  the derivative (4.6) can be nonvanishing only if 
{A 1 . . . . .  Am, B 1 , . . . ,  Bq} is connected.  Since d i a m B  i < r and by definition of 
d(A 1 . . . . .  Am) it follows that  q > c . d (A  1 . . . . .  Am) for some constant  c = c(r, v). 
This immediate ly  gives the asserted est imate (2.16). 
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