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Summary. In the present paper the limit laws for conveniently normalized 
multivariate sample extremes are characterized by means of the decomposa- 
bility of probability distributions. Continuous automorphisms of R d 
= [ - o o ,  oo) d with respect to the operation " v "  defined by x v y  
= (max(xi, Yi), i=  1 ... d) are treated as norming mappings. An integral repre- 
sentation of the limit distributions is found using their log-concavity and 
a decomposition of Rd in orbits of the norming family. Finally an example 
is given as an illustration. 

1. Introduction 

In the classical theory selfdecomposable laws appear to be limit laws for normal- 
ized sums of independent random variables. Linear mappings are used as norm- 
ing ones since they (and only they) preserve the summing operation. This paper 
is aimed at studying the corresponding class of limit laws on R d in a stochastic 
model with a v -operation (instead o f"  + ") between the random vectors defined 
by X v Y = (max(X (~), y~i)), i=  1 ... d). Denote the set of all df's o n  R d by ~. 
For Z = X v Y, where X, Y are independent with df's Fx, Fy, it holds Fz = Fx- Fy. 
The unit (neutral) element of ~ with respect to the multiplication is the distribu- 
tion 6_00 degenerated at the point - o o ,  and 6 _ ~ o ~ .  Even if Fz belongs to 
~, we cannot say the same for its components Fx and Fy, because one of 
them may possess "mass"  at - o o .  Roughly speaking, this is why a number 
of problems concerning decomposition in components can not be solved satisfac- 
tory in the structure (~, -) endowed with the topology of the weak convergence. 
Here we shall consider random vectors in R d= V-0% oo) e and expand ~ to 
the set ~ - =  {df's F on Re: lim F ( x t ,  ..., xd)>0, x i ~  - oo}, ie{1, ..., d}. Unfortu- 
nately, the topology of the weak convergence does not remain relevant in the 
structure (o ~,  -), thus we have constructed in [6] a more successful metric ~ .  
However, in the present paper we shall try to avoid using the unconventional 
~-convergence and in the same time to stay in the framework of (~,  .). This 
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is possible under the restriction that all considered limit df's F belong to .~ 
and {x: 0 < F(x)<  1} = R e. In this case the weak convergence can be used instead 
of ~ .  So we suppose this restriction to be in force further on. 

Let X k = ( X  (i), i = 1. . .  d), k = 1, . . . ,  n, be independent random vectors in R e 
= [ -  o% oo) e from which we form the random sequence 

Z . = X a  v . . .  v X . = (  m a x  X(k i), i = 1  . . .  d). 
l<_k<_n 

(1) 

We denote by GMA(R e) the set of all continuous v-automorphisms L of Rd. 
Hence L preserves v -operation, i.e. 

L(x v y) = L(x) v L(y) (2) 

and there exists the inverse mapping L-1. Let thesequence F, of df's of normal- 
ized maxima (1) converges weakly to a nondegenerate df F, i.e. 

F,(x) ,=Pr(L,  1 Z , < x ) - ~ F ( x ) ,  n-~oo, L,e GMA(Rd). (3) 

Assume the uniformity assumption 

max (1-Pr(LXl Xk <x))--, 0, 
l<_k<_n 

n --* o% (u.a.) 

holds whenever x is a continuity point of F and F(x)>0. Then the possible 
limit distributions in (3) are said to belong to the class max-L. 

It is known [2] that the class MID of max-infinite divisible laws consists 
of all limit df's for random sequences of the form Z,=Xnl ~/... v X,k(,) under 
(u.a.). In our model X, j=L; lXj ,  so max-LcMID.  Thus, two more problems 
occur here, namely 

(A) the form and the properties of the possible norming mappings L, satisfy- 
ing (2), (u.a.) and (3); (B) the characterization of the limit class max-L. 

The present paper gives the solution of these problems. In Sect. 2 we analyse 
the properties of the norming sequence L, by solving the functional equation 
(2) and by proving a theorem on preserving the type. The latter establishes 
the existence of a family of mappings T~eGMA(Rd), /~e(0, 1], with respect to 
which the limit df F(x) is max-selfdecomposable, i.e. it can be decomposed into 
a product of F(Tt~ x) and a MID-df. We denote the class of all max-selfdecompos- 
able df's by MSD and state that max-L coincides with MSD. The main result 
of the paper is given in Sect. 3 where we concentrate on the integral representa- 
tion of a MSD-df F. The basic idea consists of decomposing R d in orbits of 
the norming family and finding the corresponding decomposition of the expo- 
nential measure of F. Then the log-concavity of F leads to the representation 
formula. 

It is worth mentioning two papers on the multivariate sample extremes which 
appeared in 1977. Balkema and Resnick [2] dealt with a characterization of 
the MID-df's by their exponential measures, whereas de Haan and Resnick [4] 



Selfdecomposable Distributions for Maxima of Independent Random Vectors 269 

contained a description of the class MS of max-stable laws. An year later the 
monograph [-3] was published where necessary and sufficient conditions were 
found for weak convergence to a MS-dr (Theorem 5.3.1) under linear normaliza- 
tion. The present investigation is based on the above mentioned works as well 
as on [5] and I-6]. 

2. Class max-L Under Nonlinear Normalization 

Let us start with the problem (A). We assume that (2), (u.a.) and (3) hold through- 
out this section. Since the random sequence (1) is nondecreasing it is reasonable 
to assume at hoc that the norming sequence L, is also nondecreasing in n. 

First we discuss (2) as a functional equation for the v-endomorphisms of 
R e. Recently, the problem of describing the latter was posed in [9]. In order 
to answer it, let us consider a mapping L: R d ~  R e, L(x)= (11 (x), . . . ,  ld(x)), preserv- 
ing the v -operation. Its coordinate functions li: R d ~ R a, i = 1 . . . .  , d, also preserve 
" v " and the following lemma holds. 

Lemma 1. The functions 

d 
t ( X I ' ' " '  Xd) ~--" V [(k)(xk)' I(k): R 1 ...+ R1, (4) 

k=l 

monotonous and nondecreasing in each coordinate, are the unique nontrivial solu- 
tions of the functional equation 

l ( x v y ) = l ( x ) v l ( y ) ,  l: R d ~ R  1. 

Since the proof is entirely analogous to that of the corresponding result 
for the linear operators we will omit it. 

Note that the class of the mappings preserving " v " on R d is closed under 
the composition (L. T)(x)=L(Tx) ,  passing to the inverse mapping (if it exists) 
and to a limit. 

Thus, according to Lemma 1, the coordinate functions of the norming map- 
ping L, have the form (4). Additionally L~ is assumed to be continuous and 
invertible. The latter means that the coordinate functions (4) are strictly increas- 
ing in each coordinate. These properties lead to a further specifying of (4), namely 

Corollary of Lemma 1. Let LeGMA(Rd). Then there exists a permutation ~ of 
the coordinats such that 

L(xl . . . .  , xa) = (l(l"l)(xr . . . .  , l(a"a)(Xr (4a) 

Let us consider the restriction imposed on the sequence L, by (u.a.). The 
limit df F in (3) belongs to MID, hence there exists q=inf{x:  F(x)>0}~R d 
[2]. The set {x: F(x)> 0} forms a semigroup with respect to the ,c-operation 
whose unit is q. So (u.a.) implies the asymptotic closeness of L~Xk  to the 
semigroup unit. In the introduction we assumed that { 0 < F < I } = R  d, so q=  
--O0. 
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Therefore we concentrate on the weak convergence (3). For  all n >  1 the 
- ~(~)- F ~2) with d f F . ( x ) = P r ( Z . < L . x )  decomposes in a product  F . - . .  _. 

F,(X)(x),=Pr(Zt,~l<L,x), fie(0, 1), 
(5) 

F,(Z)(x) :=Pr V X k < L ,  �9 
\ k  = [np] + 1 

Here [x] means the integer part of x. Now we make use of the following lemma 
which is proved in [-6] for the onedimensional case. Taking into account the 
multivariate Helly theorem we may easily extend the proof  to the case R e. 
The notion of max-compactness used further is also studied in [6]. 

Definition. A set ~ r  is called max-compact if for e > 0  there exists a x ~ R  d 
such that sup { 1 - F(x~): F e ~r < e. 

For  ~r  {F,} max-compactness means that each subsequence /7,, contains 
a convergent in ~ subsubsequence. 

Lemma 2. Suppose that for all n> l one has G,=G(, 1). G(, 2) and G, w ,G, G ~ .  
Then the sequences G(, ~) and G(, z) are max-compact and if for {n'} _c {n}, n'--+ o% 

G(9 w ,G(i), i=1 ,  2, then G ( ~  and G=G (1). G (2). 

In our case Lemma 2 implies that for fie(0, 1) a sequence {n'} ~_{n} and 
distributions So, F # ~  exist, such that for n ' ~ o o  the sequences Ft,? ) and F, (2) 
defined in (5) converge weakly to S o and Fo, respectively. Furthermore F = S o �9 F~. 
It can be directly seen that S# and F~ belong to MID. Our next aim is to 
prove an explicit description of the component S o. For  that reason we need 
an analogue of the known Khinchin theorem on preserving the type. We recall, 
two df's G and S are said to belong to the same type if there is such a mapping 
T ~ G M A ( R  d) that S(x)= G(Tx). Further, a d-dimensional df G is called nonde- 
generate if all its onedimensional marginals G "), i = 1, ..., d, are nondegenerate. 

Theorem ! (on preserving the type). Suppose a sequence G, of df 's  converges 
weakly to a nondegenerate df G ~ ,  {0 < G < 1} = ~d, and for all n > 1 the mappings 
T, e G M A ( R  a) satisfy T,(x)> x. I f  the sequence G,(T,x) converges weakly to a 
nondegenerate distribution S e ~ ,  { 0 < S <  1} = h  a, then both G and S belong to 
the same type. 

In particular it means that S is also a df from ~. 

Proof By assumption the sequence T~(x)=(t,j(x), j = l  ... d) is bounded from 
below. We will show that it has an upper bound, too. To obtain a contradiction 
we assume that t,j(x) ~ 0% n ~ oo, for some j. Let j = 1. According to Lemma 1 
there is an index ie{1 . . . . .  d} and a subsequence {n'} c_ {n} such that for n = n ' ~  oe 
t") (xi)-~ oo. n l  

The sequence {G.. T.} is max-compact, hence there exists such a x, that 
for all n >  1 and e > 0  G.(T.x~)> 1 --~. The latter can be rewritten as P. (A.,) > 1 --e 
where P. is the probability measure corresponding to G. and A.~=={xeRa: x 
_< T.(x~)}. Define a (d- / ) -d imensional  hyperplane H. '={xeRa: xi = c}, e = con- 
stant, and continuous functions fk: R e~R1, k >  1, fk (x ) - '= l -  1/tk,(x). For  suffi- 



Selfdecomposable Distributions for Maxima of Independent Random Vectors 271 

cient large k 0 < f k < l  and fk(X)--*l, k ~ m .  Now using the notation PG for 
the probability measure corresponding to G and IH(X) for the indicator function 
of H we may conclude that 

Pa(H) ~ ~ fk(x) dG(x),~ T ~ fk(x) dG.(x) 
H H 

>= ~ In (x) fk (X) d G. (x) 
An~ 

> inf{fk(X): x e H  c~ A.~} P.(A..) 

> (1 -- 1/t(ki)l (C)) (1 -- e). 

Letting k--* 0o and e ~ 0  we find that Pa(H)= 1, hence G must be degenerate. 
This contradiction implies the boundedness of the sequence T~(x). Hence, 

any subsequence {n'} will have a subsubsequence {n"} such that T,,,(x) converges 
to a v -endomorphism T(x) of Ii e. So for b = (bl, ..., be), bi > 0, (and if we apply 
the operations " + "  and " - "  coordinatewise) we get 

G,,,(Tx - b) <= G,,,(T,,, x) <= G,,,(Tx + b) 

for sufficiently large n". Let n" ~ oe and b-~ O. We have 

S (x) = G (Tx) (6) 

for x e l l  e such that T(x) is a continuity point of G belonging to {t: G(t)>0}. 
Now, the mapping T defined by (6) does not depend on the choice of {n"}. 
Further  T ( - o r ) = -  0% since T satisfies (2). This implies that S can have no 
defect at - o %  i.e. SeN. 

It remains to prove that TeGMA(Ile) .  Let us consider the sequence T~-~(x) 
for which T,-l(x)__< x holds. We show that it is bounded from below as well. 
Indeed, let us assume that there is a subsequence {n'}, n ' ~  o% such that T~rl(X) 

- o o .  Then T~;-l(x)<--N becomes true for sufficiently large n' and N > 0 .  
Thus we have x=T~,.  T~;-lx< T~,(-N). According to T , ( - o o ) = - o e  one can 
choose N so large that T~,(--N) becomes smaller than x. But this is in contradic- 
tion to the previous inequality. Now passing to a subsequence, if necessary, 
it may be assumed that for n ~ o e  T~-l(x)~R(x)  and T~(x)~ r(x) where R and 
T are v -endomorphisms of R e. So T(x) - b < T~(x) < T(x) + b for sufficiently large 
n and b > 0. The strict monotonici ty of T~- ~ leads to 

T ~ - I ( T x - b ) <  T, -1.  T~(x) < T~-I(Tx +b). 

If n ~ oe and b ~ 0 we may obtain R (Tx  -- O) <= x <= R (Tx  + O) for all x. Analogous- 
ly T(R x -  O) <= x <= T(R x + O) holds as well. Comparing the last two relations 
we conclude that R.  T ( x ) = x =  T .R(x)  for all x e R  d, i.e. R =  T -1 and the two 
mappings are continuous. This completes the proof. 
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Let us return to the random sequence Zr.al from (5). For it we have (passing 
to a subsequence if necessary) the convergences 

Pr(ZE.al < LE.al x) = Ft.pl (x) ~ ,  F(x), fl e(O, 1), 
and 

Pr (Z[,pi < Ln x) = F[,/~](L[n~] �9 Ln x) " ,  Sp (x) 

when n ~ oo. Since L, is nondecreasing in n, the inequality T,, ~(x)> x will hold 
for the mapping T~,t~,=L[,~1.L, eGMA(Ra).  Further, the (u.a.) ensures a non- 
empty intersection {x: O<F(x)<l}~{x :  0 < S ~ ( x ) < l )  for all fie(0,1]. By 
assumption F is nondegenerate, hence such is S~. Now we are able to apply 
Theorem 1. According to it there exists a mapping TpeGMA(R a) such that 
Sp(x) = F(Tp x) and if T,,~, n ~ 0% is convergent, then T~ = lim T.,a. 

We end discussing the asymptotic properties of the norming sequence Ln 
by the following 

Lemma 3. Let Femax -L  with respect to the norming sequene L,. The family 
J---{Tp: fie(0, 1]} of continuous v-automorphisms of [U, such that 

T a (x) = l i r a  L[.~1 - L . ( x ) ,  n -~ oo, (7) 

forms an one-parameter semigroup with following properties: 
(i) Tp(x) satisfies the functional equation of Abbel's type 

T~(Ta x) = T~.~(x), s, fie(0, 1], (8) 

with boundary conditions T~ (x)= x and 

lim T a(x) = oo, fl--* 0;  (9) 

(ii) T~(x) is increasing in x and decreasing in ft. Moreover T~(x)>x for 
f i e ( 0 , 1 ) ;  

(iii) there exists such a reversible continuous mapping H: R a-~ R a which gener- 
ates Y- by 

T a ( x ) = H - I ( H x - e  �9 log fl), e=(1,  ..., 1)eR a. 

We would briefly sketch out the proof of Lemma 3: 
(i) Let fl, se(O, 1) and n ~  oo. Then the equality 

-1  . L . ( x ) -  -1  Lc.,~s j - (LE .as  ~ �9 L M )  (L[ .~.  L.) (x) 

implies (8). From (7) one can see that T~(x)=x and moreover TB-I= T1/a. Thus 
(8) is valid for all positive parameters. In order to show (9) note that 

[n/~] 

- log Pr (Zt.al < Ln x) ~ ~, (1 - Pr(Xi < L, x)) 
i=1  

- l o g  F(Ta x), n ~ o o .  

Setting here f l= 1/n~O we obtain (9). 
(ii) TaeGMA(Ra), hence it is increasing in x. Since Ln is nondecreasing in 

n, we have Ta(x)>T~(x) for fl<s. If we assume that Ta(x)=T~(x), then there 
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is a te(0, 1), t=fl/s, with T~(x)=x. Therefore, for all n > l  T~,(x)=x. But this 
leads to a contradiction to (9). Consequently Tp is strictly decreasing in fi. 

(iii) This statement is a modification of Theorem 20 in [7] which has been 
adapted to our model. 

For  the family { T f l :  fie(O, 1]} one may determine also properties analogous 
to these of Lemma 3. In particular 

lim T f  1 (x) = - 0% fi ---, O. (9 a) 

Thus we complete the answer of A) and go on to problem B) concerning 
the characterization of the class max-L. In fact, we have already shown that, 
if a nondegenerate df F belongs to max-L (i.e., (3) and (u.a.) are valid), there 
exists a one-parameter semigroup J = { T r  fie(O, 1]}, TpeGMA(Rn), such that 
F can be decomposed in the product 

F(x)=F(Tax)Fa(x),  fie(0, 1], (10) 

where Fp is a MID-df. The property (10) will be called max-selfdecomposability. 
Thus, the class MSD of all max-selfdecomposable laws on R a contains max-L. 
The inverse statement is also true and it may be proved as simply as in the 
onedimensional case [-5]. In other words, the following statement holds 

Theorem 2. The class max-L coincides with the class MSD. 

Using the characteristic decomposition (10) rewritten as 
F o H - l ( H x ) / F o H - a ( H x - e . l o g f i ) = F p ( x )  one may observe that the function 
f (x )  = - log F o H -  1 (x), f :  R a --, Rl+, is decreasing and convex. Hence F is continu- 
ous and it has the expression 

F(x) = exp ( - f ( H  x)) (11) 

if and only if F is a MSD-df with respect to the semigroup Y-={T~(x) 
= H - a (H x - e. log r): fi e (0, 1] } generated by H. 

Evidently, any MSD-df is also a MID-df. Conversely, let F belongs to MID 
and let log(F. H -a) be non concave. Then F cannot be a MSD-df with respect 
to J-. 

We call the mapping H a parameter of the max-selfdecomposability of F. 
Denote by ~Uf(F) the set of all reversible continuous mappings H: R e a R  a, 
H(___oe)= _0% such that l o g ( F . H  -1) is concave. If H and GeoVf(F), then F 
is a MSD-df with respect to J -  and also to the semigroup {Ga = G - a ( G - e  . log fl): 
fie(0,1]}. 

The question about the uniqueness of (11) could be reasonable posed here. 
It may be answered by applying the following 

Corollary of Theorem 1. Suppose 

Pr(Z. < L, x) w FI (x) = F1 (T~ x) Flt3(x) 
and n ~ Go, 

Pr (Z, < M, x) w F2 (x) = F 2 (Gp x) F2 p (x), 

where F1 and Fz are nondegenerate df 's. Then there exists a mapping R e G M A  (R e) 
such that Fl (x)= Fz (R x) and TB= R -1. Ga . R, i.e. H =  G . R. 
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Thus, we may say that the expression (11) is unique up to a mapping 
R ~ G M A ( R  d) such that PF is R-invariant. In the next section we return to (11) 
and proceed with discussing problem B). 

3. Integral Representation of a MSD-Exponential Measure 

We remind a result from [2] : a df F (in our assumption {0 < F < 1} = R e) belongs 
to MID if and only if there is a measure # on Ii d, a-finite everywhere except 
the point q = - o e ,  such that F(x)=exp(-#(A~)). Here x=(xl . . . . .  xd), Ax 
= [ -  0% x~]x. . .x[-  0% xa], A~ is the complement of A~. The measure # is called 
an exponential measure (exp.m.) of F. Obviously t #, t > 0, is also a MID-exp.m. 

Let # and vr be exp.m's corresponding to the df's F and Fp from (10). This 
characteristic decomposition is equivalent to 

#(A)-#(TpA) = vp(A)>O, (12) 

for fie(0, 1] and for all subsets A of the Borel a-algebra ~d. 
Our next goal is to give a convenient decomposition of 11 a and find a corre- 

sponding decomposition of #. 
First, let us consider the group (under composition) 5r {L,: t>0} of map- 

pings L,(x) increasing in t and x and generated by @ as follows 

L - fT t - t '  te(O, 1)]=H_I(H+e. log t), t>0 .  
t-~.T~/, t_>_l J (13) 

Let us define an orbit Ox of s passing through a point x as O,:={z=Lt(x): 
t>0}.  Each orbit begins from q = - ~  and gets up to Go, according to (9) 
and (9a). If xl and x2 are distinct points of Ox then there is a s > 0  such that 
xl =L~(x2). Hence, each point x e R  d lies on one orbit only, i.e. the set of all 
orbits forms a decomposition of R d. In this respect there are Borel subsets 
of R d which intersect each orbit of ~ at exactly one point. For example, the 
set B={x*~Ra: max(x*, . . . , x* )= l}  is of this type. Now, an arbitrary x~R a 
may be represented by x=L~(x*), x*~B, s>0 .  The set B becomes compact 
by including the points of ~B. This results in adding the axes through q = - 
to the set of the orbits and in this way obtaining a decomposition {0~,: x*cB} 
of R ~. 

Second, according to the formula for total probability, # generates a family 
{#~,: x*eB} of conditional exp.m's #,,, with Supp #~, equal to Ox, such that 
for all A c AL N, N > 0 fixed, 

#(A) = ~ #x,(A) P(dx*) (14) 
B 

where P is a probability measure on B, depending on #. (In the next section 
this dependence is explicitly given.) Formula (14) may be interpreted as a decom- 
position of # consistent to Lf. The notion of a "conditional exponential measure" 
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completely corresponds to that of conditional probability measure as for 
A ~ ALN we have #(A)= t p(A), t > 0, p-probability measure on R d. 

Third, the property (12) expressed by ~ means: #(A) -# (L tA )=v~ / t (A )>O,  
t>__l, i.e. # is a MSD-exp.m. with respect to the semigroup {Lt: t_>l}. Each 
conditional exp.m, inherits this property ~. Therefore, there exists an one-to-one 
correspondence between the exp.m. #~, and a certain function f~,: R d ~  RI+ which 
is monotonous,  decreasing and convex. Indeed, by virtue of (11) 

ix,  (/-/y) = m ,  (A;), y �9 R ~, 

with fx,(Ov)=0. Hence fx* has a negative (for instance left-sided) derivative f j ,  
satisfying 

oo 

f~,(a) = - ~ f ' , (y)  dy. 

Since H - I ( a ) ~ R  d there are s>O and x,,~B such that H-l(a)=Ls(xa) ,  i.e. a 
= H(Xa) + e. log s. Thus 

fx,(a) = #x,(ACL~xo n 0~,). 

Let us determine the set in the brackets. Denoting H(x)=(hi(x) ,  i= 1 ... d) we 
have 

AL, x, c~ 0x, = {y ~ Ra: y = Lt (x*) <= Ls (Xa)} 

= {Lt(x*): hi(x*)+log t<hi(xa)+log s, i= 1 . . . . .  d} 

= {Lt(x*): t < s" min exp(hi(xa)-  hi(x*))}. 
l<_i<=d 

We abbreviate the expression on the right hand side of the last inequality by 
c(x*, a) and obtain 

A~sx, n Ox, = {Lt(x*): t > c(x*, a)}. 

Note that c(x*, a)--*O when a ~  - o e .  Let us set 

m~,(s) :=#~, {Lt(x*): t > s}. (15) 

The function mx,(s) defined on RI+ is convex, decreasing and mx,(0)=o% 
m~,(oo)=0. For  x*e~?B we set m~,(s)= oo when s = 0  and m~,(s)=0 when s>0 .  
Then 

f x , ( a )=mx , (C(x* ,a ) )=-  ; dmx,(t). 
c (x*, a) 

Finally substituting this expression in (14) and letting N ~ oe we get 

Theorem 3. A df  F belongs to M S D  with a parameter H if and only if  there 
is a Borel subset B of  R e which intersects each orbit of  L t ( x ) = H - ~ ( H  x + e . log t) 

1 More precisely, this statement is true for P-almost all x*EB 
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at exactly one point, and a probability measure P on B so that for all x > - o o  
the corresponding exp.m. # may be expressed as 

Here c(x*, Hx)  is a positive constant and m~,(t) is a non-negative decreasing, 
convex function defined on Rl+ as in (15). 

Proof The integral in (16) is of the form f(I-Ix) given by (11) which is a sufficient 
condition for # to be a MSD-exp.m. We have already shown the necessity 
of (16). 

Analogous integral representation of selfdecomposable (Levy) probability 
measures in the classical model (with summing operation between the random 
vectors) is investigated in [8]. The method used there consists of finding the 
extreme points of a certain convex set of measures. Then the Choquet theorem 
([10], w 3) yields the representation formula. The same method is applied to 
operator-stable distributions in [7]. The decomposition (14), as one may observe, 
is nothing else but a Choquet representation, because 
- the set 9Jl of all MSD-exp.m's with respect to a given semigroup 5O is convex 

and max-compact; 
- the extreme points of gJl are exactly the exp.m's #~, concentrated on the 

orbits of 5O. 
We illustrate (16) in the next section. 

4 .  E x a m p l e  

A df F on R a is called max-stable (briefly F~MS) with respect to a group 
5O = {L~: t > 0}, LtsGMA(Ra), if 

F(x) = F~(Lt x) (17) 

for all t > 0. Evidently, MS c MSD. The result corresponding to Theorem 3 for 
MS-df's has been studied extensively in recent years (for instance [3], Theorem 
5.4.3, and [4], Theorem 2). The integral representation given there fits completely 
to Theorem 3. This fact is illustrated below by (18) and (19). 

The exp.m. # corresponding to a df F e M S satisfies t -  1 # (A) = # (L t A), A ~ ~e. 
This means Supp # is quasi-invariant under 5 ~ The same applies to the condi- 
tional exp.m. #x,, so we get mx,(s)=tmx,(ts). Hence dmx,(t)= -m~,(1)d t / t  2. We 
notice that the max-stability parameter H of F (the generator of 5O) has the 
form H(xt . . . . .  xa)=(hl(xa) . . . . .  hd(xa)) where hi is a max-stability parameter of 
the corresponding marginal F ~~ of F, i = 1, ..., d. Now we have by Theorem 3 

#(A~) = S max exp (hi (x*)-  hi(x~)) dP'(x*) 
B l<--i<--d 

log F ~i)(xi) 
= [ max dP'(x*), (18) 

l <:i<:a log F(i)(Xf) 
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where x = ( x l ,  ...,xa), x*=(Xl*, . . . ,x*),  and dP'=mx.(1)dP is a positive Borel 
measure on B, satisfying 

1 = j exp(hi(x*)) dP'(x*), i= 1,..., d. (19) 
B 

Formula  (18) enables us to construct multivariate max-stable df's with given 
marginals. 

The simplest example is the case of a df F on R 2 whose marginals F (~ 
i =  1, 2, are max-stable with parameters hi(xi)=log xi, i.e. F(~ 
x~>0. It means that F e M S  with respect to Lt(x)=(tx~, tx2), t>0 .  The corre- 
sponding decomposition of Supp F is a bundle of rays starting from the point 
q= in f{x :  F ( x ) > 0 } - 0 .  Let us give B as a union 

BlWB2={x*ER2+: 0__<x*=< 1, x*=l}w{x*eR2:  0=<x*=<l, x * = l } ,  

and 
x,)=fdE(x~), dPl(x~) on B1, dP'(x*, 

t-dE(x*) dP2(x'~) on B 2. 

Here dPi=cidGi, ci>0,  Gi-d f  on [0, 1], i=1 ,2 ,  and E(x) is the distribution 
concentrated at x. We denote the mean value of Gz by mi. The constants c~ 
could be found by means of (19) which results in the system clm 1 + c 2 = 1 ,  cl 
+ c2 m2 -- 1. The conditional exp.m's are of the form 

/t~.(A~)=~cl. max(x*/xl, l/x2) if x*~B1, 
{'C 2 max(I/x1, x*/x2) if x * E B  2. 

Putting fl = x2/xl we come to the following expression 

- l o g  F(xl, x2)=,  

l/x1 Clio (fl--u) dGl(u)+ l , f l < l ,  

C1@ C2, f l = l ,  

1/x2 c2 j (~8-1-u)dG2(u)+ l , /?>1. 
o 

Finally, let us treat the limit Theorem 2 as a tool for solving approximation 
problems. The use of nonlinear normalizations in it enriches the class of limit 
distributions that can serve for approximation of distributions of sample 
extremes. This is one practical application of (16) and (18). 

Acknowledgement. I wish to express my thanks to the referee for his helpful and constructive remarks 
and especially for the statement of the Corollary of Lemma 1. 
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