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Summary. We examine three of the principles of probabilistic potential theory 
in a nonclassical setting. These are: (i) the bounded maximum principle, 
(ii) the positive definiteness of the energy (of measures of bounded potential), 
and (iii) the condition that each semipolar set is polar. These principles 
are known to be equivalent in the context of two Markov processes in 
strong duality, when excessive functions are lower semicontinuous. We show 
that when the principles are appropriately formulated their equivalence per- 
sists in the wider context of a Borel right Markov process X with distin- 
guished excessive measure m. We make no duality hypotheses and m need 
not be a reference measure. Our main tools are the stationary process (Y, 
Q,,) associated with X and m, and a correspondence between potentials # U 
and certain random measures over (Y, Qm). 

1. Introduction 

Our object in this paper is to examine three of the "principles" of probabilistic 
potential theory in a nonclassical setting. Let us recall these principles in the 
"classical" context of two standard processes X and J~ in duality with respect 
to a a-finite reference measure m. Assuming that X and X are transient, their 
respective potential kernels U and ~ have a common density u(x, y): 

U(x, d y) = u(x, y) m(d y), C?(d x, y)-- m(d x) u(x, y). 

If # is a finite measure on E (the common state space of X and J(), t hen / t  U 
is a-finite, hence an excessive measure (for X). Moreover #U ~ m and a version 
of d(#U)/dm that is excessive for Jf is given by 

(1.1) •(y) = 5 ~(dx) u(x, y). 
E 

Consider now the bounded maximum principle. 
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(M*) For each finite measure # with compact support supp (#), if ~ is bounded, 
then sup {~(y): y~E} = sup {~(y): yesupp(#)}. 

(The "*"  is to distinguish this principle from the maximum principle, in which 
is not assumed bounded.) 

Related to (M*) is Hunt's hypothesis (H) (the polarity principle): 

Every set semipolar for X is polar for X. 

(Of course, X and 2 have the same polar sets, and also the same semipolar 
sets; see [3, VII.) Blumenthal and Getoor [4] have shown that (M*) and (H) 
are equivalent, at least when the excessive functions of )~ are lower semicontin- 
uous. Smythe [29] has proved a variant of this result under weaker hypotheses. 

The third principle that we consider involves the energy of a signed measure 
# relative to the kernel u: 

I (#) = ~ # (d x) u (x, y) # (d y), 

defined whenever the integral exists. The bounded positivity principle is this: 

(P*) For each bounded signed measure # of compact support, 
if ~ ]#[ (d x) u (x,.) is bounded, then I (#) > 0 
with equality if and only if# = O. 

Rao [25] has shown that (P*) implies (M*). The converse is true if the excessive 
functions of J~ are lower semicontinuous; we have no reference for this assertion, 
but see Theorem (5.2) and the attendant remarks. For further background the 
reader can consult [3-5, 9, 16, 17, 24]; a good reference for classical potential 
theory is [19]. 

We shall study analogues of the above principles, and the extent to which 
they are equivalent, in the context of a Borel right process X coupled with 
a distinguished excessive measure m. We make no duality hypotheses and m 
need not be a reference measure. Consequently our three principles depend 
on the choice of m. Precise statements of these principles are postponed until 
the next section. Roughly speaking, three modifications are required: (i) "polar"  
is replaced by the appropriate notion "m-polar"; (ii) the suprema in (M*) are 
replaced by "essential suprema" allowing an exceptional m-polar set - this since 
d(#U)/dm will be determined modulo an m-polar set; (iii) only measures # that 
charge no m-polar set are admitted in (M*) and (P*) (for the reason cited in 
(ii)). The modified principles are labeled (M*), (Hm) and (P*) respectively. Assum- 
ing that m is dissipative, we show that (H,,) and (M*) are equivalent (Sec. 4), 
that (Hm) implies (P*), and that (P*) implies (H,,) under an extra hypothesis 
(Sect. 5). In the same sections we briefly discuss how these principles are related 
to the classical principles. 

Our main tools are the Kuznetsov process (Y, Qm) associated with X and 
m, and a correspondence between potentials # U and certain random measures 
over (Y,, Q,,). These tools are developed in Sects. 2 and 3. 

We use the balance of this section to set up our notation and basic hypothe- 
ses. We use mostly standard notation (see, e.g., [3]), but remark here on some 
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specifics: a stochastic interval IS, T~ (for example) is understood to be a subset 
oflR x (path space); the Borel a-field on IR is denoted ~ ;  if(A, d )  is a measurable 
space then d + denotes the class of positive d-measurab le  functions on A. 

We fix once and for all a right Markov process X = ( X ,  px) with Borel 
semigroup (P~) and Lusin state space (E, #). Let A 6E be the cemetery for X: 
we assume only that P~I < 1. It is convenient to realize X and (Y, (2,.) as coordi- 
nate processes on canonical path spaces f2 and W respectively. Let W denote 
the space of paths w: I R ~ E w  {A} that are E-valued and right continuous on 
some open interval ]a(w), fi(w)[clR, taking the value A outside of this interval. 
(The "dead"  path [A]: t--*A satisfies ~ ( [A] )=  +oo,  f i ( [ A ] ) = - o o . )  Let (Yt: 
telR) denote the coordinate process on W, with associated a-fields 

s___t}, 

A family of shift operators is defined on W by 

(0, w)(s)={;It + s)' s>O, t~lR, 

s<O, t6lR. 

Let f2={weW: a(w)--0, ~+(w) exists in E}w{[A]}  and for t > 0  let X ,  fro, 
g 0  denote the restrictions to s of Y~+, No, Nto respectively. Since (Pt) is a Borel 
right semigroup, there is a Borel measurable family {W, xeE} of probability 
measures on (s ~o )  such that X=((2, ~o, ~o ,  Xt, 0,, W) is a strong Markov 
realization of (Pt). 

Now let Exc denote the class of excessive measures for X: meExc if and 
only if m is a a-finite measure on E such that mPt<m for all t>0 .  By our 
right hypotheses on (P,), and a theorem of Kuznetsov [18], given meExc there 
is a unique measure Q" on (W, ~o) such that Q" ( [A] )=0 ,  

(1.2) Q"(YteA)=m(A), Vte]R, Ae#, 

and 

(1.3) Q"(FoOTI~O+)=PYT(F), Q"-a.s. on {c~< T<fl}, 

for each Fe(~-~ + and (~~ time T (It is implicit in (1.3) that Q" 
restricted to ~o+ is a-finite on { a < T < f l } ;  see Mitro [22].) It follows that 
Q,, is a a-finite measure on ~o. (y ,  (2,,) is the Kuznetsov process associated 
with (Pt) and m. Evidently Q" is invariant with respect to the shift operators 
at, telR, defined by 

(a,w)(s)=w(t+s), seN. 

We close this section by recalling from [10] the balayage operator L~: Exc 
--, Exc. Given a nearly Borel set B c E define the hitting time 

zB=inf{t >~z: YteB}. 
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If mEExc then zB is a stopping time of the Q,,-completion of (~9o+). For such 
m and B we define a measure LBm on E by 

(1.4) L~m(f) = Qm(fO Yt; zB< t), f E g  +. 

Since t+'cBoa,=z~ for all t eN ,  it is clear that the R.H.S. of (1.4) does not 
depend on t. Moreover, LB mEExc and LBm<m. If ~ and m are excessive mea- 
sures with ~<m, then L8 ~<Ln m; see [10, (5.14)]. 

Let U =  S Pt dt denote the potential kernel of X. From [10, w we know 
0 

that mEExc is dissipative if and only if there is a sequence of potentials /~,U 
with #, U T m. This being the case we have [10, (5.8)] 

(1.5) LB m = Tlim #, P~ u. 

where PB is the hitting operator associated with B. 
We require one more fact concerning Ln m. In what follows "/x" denotes 

the infimum in the lattice Exc (endowed with the simple order: r < m if and 
only if ~(A)<m(A), \/AEg). Of course, " r  on G" means 1~.~> 1G-re. 

(1.6) Proposition. [12, (2.7)]. I f  G is a finely open, nearly Borel set, then for 
all rnE Exc, 

LG m=A{~EExc:  ~>mon G}. 

2. Preliminaries 

For the rest of the paper we fix mEExc. Various objects defined in the sequel 
depend on m, but this dependence is seldom acknowledged in our notation. 

Let fr denote the Q,,-completion of go, and let fqt (resp. f~r) denote ~t~ 
(resp. ~~  s> t} )  augmented by the Q,,-null sets in fq. Let J denote the 
class of Qm-evanescent subsets of N x W a n d  put J / / = ( N  | f#)v J .  The optional 
and copredictable a-fields are defined on N x W by 

(9 = a {Z E~/~ + : Z is (fqt)-adapted and right continuous on 

N, Q,,-a.s.; Z = 0  on ~ -  ~ ,  ~ }  

= a {Z E ~ + : Z is (~t)-adapted and right continuous on 

N, Q,,-a.s.; Z=O on ~fl, + ~ } .  

A N-measurable random time T: W ~  F,. w { + ~ ,  - o v  } is optional (resp. copre- 
dictable) if ~ T, + ov ~ E (9 (resp.~ - ~ ,  T~ E ~). The optional (resp. copredictable) 
projection of a process ZEJ/ /+ is defined as usual, and is denoted ~ (resp. 
~ See [11] for precise definitions and properties of these projections. 

Of central importance is the process (lt) defined by 

(2.1) l~=P(l~,pO~. 
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A version of I can be chosen such that le(9 c~ ~ ,  0 < l <  1, and ltocy~=lt+s, s, t~]R. 
Moreover, setting 

A = {(t, w ) e R  x W: lt(w)>O}, 

we can (and do) assume that ~ ,  fl~cA c ~, fi~ and that l~(w)>0=~ Yt+ (w) exists 
in E. See [11, w for these facts. We now define an extension Y of the basic 
process Y: 

~ =  Y~+, - o e < c ~ = t ,  It>O, 
= Yt, otherwise. 

Evidently ~o o-~ = ~+~, fo  Y..e (9 n ~ if f e n  +, and A = {(t, w): ~(w)eE}. To state 
an important property of Y we need some terminology: 

B e d  is m-polar if and onlyifQm(YteBfor some te lR)=0 ;  

B e d  ~ is m-semipolar if and only if Qm(YteB for uncountably many t e N ) = 0 .  

An arbitrary A c E is m-polar (resp. m-semipolar) if it is contained in a Borel 
set of the same species. Clearly Beg is m-polar if and only if L ,  m=0.  

(2.2) Proposition. [11, (3.22)]. Be~ is m-polar if and only if Qm(~eB for some 
t e R ) = 0 .  

We can regard (~) as a process adapted to the reverse filtration (~) ;  as 
such (Ytt) is moderately Markovian under Q,,. Indeed, following Chung and Walsh 
[-7], and others ([--2, 28]), in [,11] we constructed a moderate Markov process 
J?=(J~t, P~) in duality with X relative to m. To state matters precisely we 
need some notation: 

= {we w: fl(w)= 0) { [A3 }; 
s>0, we ; 

Ot(w)(s)=Sw(t+s), if S<0, t e A ,  
lz. if s>0 ,  telR; 

Note that Or: { t < f l } ~  and that gsoOt=~_s on {t<fl} if s>0 .  Clearly, s 
J?~(w) is left continuous on the random interval {s > 0: l_~(w)> 0}. Theorem 

(4.6) of [,11] asserts the existence of a Borel measurable family {P~: x~E} of 
probability measures on (~, o~o) such that ()?t: t>0 )  is moderately Markov 
under each px, with transition semigroup 

P~f(x)=P~(fog,), t>0 ,  f E E  +. 

That is, for each (o~t~ time S and t > 0, 

(2.3) PX(foXs+,l~s~ P~-a.s. on { 0 < S <  oe}. 
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Moreover for each Qm-copredictable time T and all F ~ ( ~  ~ +, 

(2.4) Q,,(FoOrI~r+)=PY~'(F), Q,ca.s. on {IT>0}. 

Obviously (2.3) and (2.4) imply the duality relation 

(2.5) m(g. PrY) = m(/~ g-f). 

It follows easily from (2.5) that if ~ E x c  with ~ m ,  then any version 0 E g  + 
of d~/dm satisfies (i) Pt 0<0m-a .e .  (Vt>0), and (ii)/~0]'Om-a.e. as t$0 through 
any fixed sequence. Thus d~/dm is "almost coexcessive". Actually, a truly coex- 
cessive version of d~/dm can always be chosen, as the next result indicates. 
In the sequel a function f ~ g *  (the universal completion of g) is coexcessive 
if it is excessive for the semigroup (Pt~). A statement S(x) depending on x e E  
is true m-quasi everywhere (m-q.e.) provided {x:S(x) is false} is m-polar. 

(2.6) Proposition. (a) Given ~ E x c  with ~ ~m, there exists a Borel coexcessive 
version ~ of d~/dm; ~ is uniquely determined m-q.e. 

(b) I f  f is coexcessive, the there exists a Borel coexcessive function g such 
that f =  g m-q.e. In particular if f is coexcessive, then f o Y.~ (9 c~ ~.  

Proof It follows from (2.5) that mP~m as t,L0. This fact in hand the existence 
of ~ follows by the argument of [15,(6.19)1. The uniqueness of fi, and the 
existence of the modification, g, o f f  follow as in the proof of [15, (6.11)1. [] 

We call the density ~ of (2.6b) the coexessive version of d~/dm. (Of course, 
t~ is really an equivalence class of versions...) It follows from [6, Lemma 21 
or [11, w that t ~ ( ~ )  has left limits on ~ - o e ,  fl~ and right limits on IR, 
Qm-a.s. By [11, (4.15)1 there is a function ~ieg +, unique up to an m-polar set, 
such that 

(2.7) ff(~) =lira ~(~), VteA, Qm-a.s. 
s+t 

Since ri(Y.) is right continuous on A, we refer to ti as the fine version of d~/dm; 
see (2.10) below. Of course ~i = ~, m-a.e.; indeed it follows easily from (2.7) that 

(2.8) {~ 4= ~i} is m-semipolar. 

From (2.7) we also deduce that 

u=a m - q . e . ~ < a  m-q.e. (2.9) ^ < 

for each a > 0. The following result justifies our name for ~i. 

(2.10) Proposition. Let f ~C + and suppose that t ~ f o Yt is right continuous on 
]c~, fl[, Qm-a.s. Then there is a Borel m-polar set B such that E \ B  is absorbing 
for X and for X, and f]~\B is finely continuous on E\B.  

Proof. Define 

f2 o = {w~f2: t ~ f (X t (w) )  is right continuous on I-0, + oQ[}. 
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As noted by Meyer [21, p. 236], A=-{xeE: W(f2~)>0} is a Souslin subset 
of E. Therefore to show that A is m-polar it suffices to show that each Borel 
subset of A is m-polar. But this is clear from (1.3) and the optional section 
theorem [11, (3.16b)] since 

{c~ < T< fl} ca OT 1 ~'-~c 0 = {WE W:  0~(14))< T(w)< fi(w), s--*f(Y~(w)) 
is not right continuous on [r(w), + oo[} 

whenever T is a Qm-optional time. Thus A is m-polar, and so by [11, (4.14)] 
there is a Borel m-polar set B ~ A such that E\B is absorbing for X and for 
3?. By [3, II(4.8)], f is finely continuous at each point of the finely open set 
E\B. [] 

(2.11) Definition. cg denotes the class of finite measures # on E such that (i) 
#U<a.m for some constant a = a , > 0 ,  and (ii) # charges no m-polar set. Given 
#ecg we write (7(#) and [7(#) for the fine and coexcessive versions of d(#U)/dm. 

Note that U(#)<  a m-q.e, if # U  < a-m. We shall see in (3.7) that [7(#)< [7(#) 
m-q.e. 

We can now state our analogues of (H), (M*), and (P*). The first of these 
is 

(Hm) Every Borel semipolar set is m-polar. 

According to [15, (6.13)] every Borel m-semipolar set is the union of a semipolar 
set and an m-polar set. Thus (Hm) is unchanged if "m-semipolar" is substituted 
for "semipolar". Next is the bounded maximum principle: 

(M*) Given #scg carried by Aeg, 
if [7(#)__< 1 m-q.e, on A, then [7(#)< 1 m-q.e. 

Finally, define the energy of a signed measure # - v ( # ,  ve~g) by 

(2.12) t ( # - v ) = ( / ~  v)(~--~), 

where ~ =  U(#), t =  U(v). (Clearly i - - ~  is uniquely determined off an m-polar 
set not charged by # + v, and (#+v)(f i+@ < ~ ;  thus the R.H.S. of (2.12) is well 
defined and finite.) The bounded positivity principle is this: 

(P,.*) Given #, v e cg, I (# - v) > 0 with equality if and only if # --= v. 

As mentioned in section 1, the relationships between these three principles are 
discussed in Sects. 4 and 5. 

We conclude this section with a domination principle involving the fine 
density [7(#). This result extends [11, (7.7)] and is related to work of Az6ma 
[-1, 5.8] and Doob  [9, 2.IV.13]. 

Let # be a measure on E that charges no m-polar set, such that # U  is 
o--finite. Then # U e E x c  and #U~m. (For if re(A)=0 then {U1A>0 } is finely 
open and m-null, hence m-polar; thus re(A)=0 implies #U(A)=#(U 1A)=0.) Let 
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be a second excessive measure such that r ~ m. Let ~i and ~ denote fine versions 
of d (It U)/d m and d ~/d m respectively. 

(2.13) Theorem. If ~ < ~  #-a.e., then ti<~Tm-q.e. 

Proof Fix ~>0  and let G denote the fine interior of { t i<( l+ t )~} .  Then G 
is nearly Borel, and {~<~3}\G is m-polar (see (2.10) and note that {~7= oo} is 
m-polar by [11,(4.15)3). On G we have # U = ~ - m < ( l + e )  ~ - m = ( l + e ) ~ ,  and 
so by (1.6), 

(2.14) L G (# U) < (1 + e) ~. 

But L~(#U):#P~ U by (1.5), and exPa=ex if xeG. By hypothesis # is carried 
by {~i<~}, hence by G since {~i<g}\G is m-polar. Thus #U=#P~ U=La(#U) 
<(1 +e) ~ by (2.14). Since e > 0  was arbitrary we must have # U < ~ .  Thus ~i<g 
m-q.e, as required. [] 

(2.15) Corollary. Keeping the notation of (2.13), suppose that # is carried by 
Aeg .  I f  ~<__gm-q.e. on A, then ~7=< ~ m-q.e. 

Proof This follows from (2.13) since # does not charge the m-polar set {~7 
>~} hA.  [] 

3. Homogeneous Random Measures 

In this section we record several facts from [-11, w to be used in Sects. 4 
and 5. 

(3.1) Definition. A homogeneous random measure (HRM) is a positive kernel 
~: = ~:(w, dt) from (W, f#) to (]R, ~ )  with the following properties: 

(i) For each weW, the measure to(w,.) is carried by [c~(w), ~(w)[. There 
is a sequence (~:,) of kernels from (W, f#) to (It, N) such that Qm(~c,(ll)= + oo)=0 
for all neN ,  and ~ : = ~  K,. 

R 

(ii) (Homogeneity) For each s~lR, the measure ~c(o- s w , - - s )  coincides with 
~:(w,.) for Q,,-a.e. weW. 

Two HRM's  tc and 7 are identified if Q m(~ (w,.):# ~ (w,-))= 0. A H R M  ~ is carried 
by a set F s ~ /  if Qm ~lrc(t, ') ~:(dt)=0. We say that a H R M  ~: is copredictable 
if 

(3.2) Q,, ~ Z, tc(dt)=Qm ~ PZt•(dt), VZeJr 
R ]R 

and if the L.H.S. of (3.2) is finite for some strictly positive Z e ~ .  Optionality 
for a H R M  carried by A is defined analogously. See [11] for details. In view 
of [11, (5.27)], if ~c is an optional, copredictable H R M  carried by A then the 
exceptional set implicit in (3.1) (ii) can be taken to be empty. 
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The characteristic measure p~ of a H R M  x carried by A is defined by 

p~( f )=Q, , (  ~ f o ~ x ( d t ) ) ,  f~g+.  
1o, 11 

For f e ( N  | g)+ we have [11, (5.11)], 

(3.3) Qm(j f ( t ,  ~) ~c(dt))= ~ dt ~ p~(dx)f ( t ,x) .  
R N. E 

The following result is one of our basic tools. 

(3.4) Proposition. [11, (5.22)]. (a) Let tc be an optional, copredictable H R M  
carried by A. Then p~ charges no m-polar set. Moreover, ~ is diffuse (i.e., t --* ~ {t} 
is Q,,-evanescent) if and only if p~ charges no m-semipolar set. 

(b) Conversely, if p is a a-finite measure on E that charges no m-polar set, 
then there exists a unique optional copredictable H R M  carried by A with charac- 
teristic measure p. 

In particular, to each #ecg Proposition (3.4)(b) associates a unique H R M  
= xu with characteristic measure #. For  the rest of this section we fix such 

a # e ~  and the associated H R M  ~:. 
First note that if we set a (x)= P~(~c]- 0% 0D, then 

(3.5) I~U =~.m.  

To see (3.5) take f ( t ,  x)=  15_ oo,ot(t) P-tg(x) in (3.3) and use the optionality of 
x. Next, by [11, w the discrete part ~ca-~, K{t} et of ~c is Q,,-indistinguishable 
from t 

(3.6) Z k(~) at, 
t a n  

where k e g  + is uniquely determined m-q.e., and {k>0} is m-semipolar. Recall 
from (2.11) the fine (resp. coexcessive) version O(/~) (resp. 0(#)) of d(#U)/dm. 

(3.7) Proposition. Let ~ = P ( ~ ] - o o , 0 [ )  and k be as above, and set O-=~+k. 
Then ~7= O(#), fi---0(#) (m-q.e.). In particular, O(#)_>_ U(#) m-q.e. Moreover, up 
to Q,,-evanescence we have 

(3.8) ~o Y.. = 1A ~(~c] - oo,-]), ao Y.= 1A ~(~:]-- OO,'[). 

Proof. It is easy to check that ~ is coexcessive. From (2.6) (a) we see that a = 0(#) 
m-q.e.; in particular • o Y. e (9 r~ ~ .  Since k e g +, we also have 17 o Y. ~ (9 r~ ~ .  The 
relations in (3.8) now follow from [11, w and the section theorem. Because 
of (3.8) and the preservation of right continuity by the copredictable projection 
[11, (3.19)], we see that t ~ o ~  is right continuous on A, Q,,-a.s. This forces 
li= O(/l) m-q.e. []  

The following evaluation will be used in section 5. The notation is that 
of the previous proposition. 
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(3.9) Lemma. Given ~ +  with S ~(t) dr= 1, define g(s, t )= l~s<t~ ~0(t)+ l~s>t~ 
r Then 

(3.10) Qm(~S g(s, t) tc(ds) to(dr)) = #(fi) + #02 ). 

Proof We break the double integral on the L.H.S. of (3.10) into two, according 
as s < t or s > t. The first of these is equal to 

Q,~ ~ tc(dt) ~(t) t~(] - ~ ,  tD=Qm ~ K(dt) r O(~)=#(fi), 

where the first equality uses (3.8), the second (3.3). In the same way the integral 
over s > t has Qm-expectation #(rT). []  

4. The Bounded Maximum Principle 

For the rest of the paper we assume that the distinguished excessive measure 
m is dissipative: for each f~g+,  if m ( f ) < ~  then U f < ~  m-a.e. (See [10].) 
This transience hypothesis ensures that cg is sufficiently rich, and can always 
be engineered by passing to the q-subprocess for any q > 0. 

The main result of this section is the following 

(4.1) Theorem. (Hm) and (M*) are equivalent. 

Proof that (Hm) implies (m*). Given #~cg it follows from (2.8) that {0(#)4: 0(#)} 
is m-semipolar, hence m-polar under (H,~). The implication in (M*,) is now seen 
to be a special case of(2.15). []  

For  the converse we need a lemma. Recall that a Borel set B ~ E is totally 
thin if sup {PX(e- TB): x~B} < !, where T B is the hitting time of B by X. 

(4.2) Lemma. Let A6C be a semipolar set that is not m-polar. Then there exist 
a BoreI set B o A ,  a measure #ecg carried by B, a function k~E +, and a number 
b > 0 such that 

(i) B is totally thin but not m-polar; 

(ii) {k>O}={k>b}=B; 
(iii) #U <m, and k= U (#)-  0(#) m-q.e. 

Proof We assume without loss of generality that A is totally thin, hence finely 
closed. Since m is dissipative an appeal to [10, (4.6)] yields a sequence (v,) 
of finite measures on E, each v, absolutely continuous with respect to m, such 
that v, UTm. By (1.5), v, PA U'fLAm. Since A is not m-polar we can choose 
n so large that v, PA U 4: 0. Let #o = v, PA. Then #o 4: 0, #o U < m, #o (1)< v,(1)< ~ ,  
and #o charges no m-polar set. Thus #0scg, and #o is carried by A. By (3.4) 
(b), #o is the characteristic measure of a unique optional, copredictable H R M  
•o, and lco is carried by {(t,w): ~(w)~A} since #o is carried by A. The set 
A being totally thin, it follows that tco is purely discrete. By the discussion 
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in Sect. 3 there is a function kosg + with {k0>0} c A  such that ~o = ~ ko(~) 
ten  

et up to Q,,-evanescence. Since ~o#0,  there exists b > 0  such that {ko>b} is 
not m-polar. Set B =  {ko>b}, k =  1B ko, and define an optional, copredictable 
H R M  to, carried by A, by 

t~P,. 

Evidently tc has characteristic measure # =  1B #o, and k =  [2(#)-U(#) m-q.e, by 
(3.7). [] 

Proof that (M*) implies (Hm). If (Hm) fails then there is a semipolar Borel set 
A that is not m-polar. Let B, #, k, and b be as promised by Lemma (4.2). 
Write O= (7(#), fi= U(ff), so that O - ~ = k  m-q.e, and zi__< 1 m-q.e. Moreover, 

~ = ~ - k < ~ - b < l - b ,  m-q.e, on B, 

so by (M*), *< u _ 1 - b m-q.e. But (2.9) now forces ~i_< 1 - b m-q.e, as well. Iterating 
this argument we obtain successively fi < 1 -  2b, fi < 1 -  3 b ,... (m-q.e.) and even- 
tually fi < 0 m-q.e., which is absurd. Thus (Hm) cannot fail if (M*) holds. [] 

We close this section by comparing (Hm) and (M*) to (H) and (M*) when 
additional hypotheses are imposed. First, assume that m is a reference measure 
and that (relative to m) X has a dual process 3~ that is special standard. In 
this case "m-polar" is the same as "polar",  so (H,,)--(H). It can also be shown 
that each coexcessive function agrees with some 2-excessive function off a polar 
set. In particular, (M*) can be rephrased as 

(4.3) Given ff E cg carried by A e g, if U (#) ____ 1 q.e. on A, then U (#) ___ 1. 

Here U (if) is the version of d (# U)/d m provided by (1.1), and "q.e." means "quasi- 
everywhere" (i.e. except for a polar set). 

Let us assume additionally that X-excessive functions are lower semicontin- 
uous. Aside from the fact that X need not be a standard process, this is the 
(dual of the) context of [4]. It follows from [4, (5.1)] that a finite measure 
# lies in cg provided U(#) is bounded. (See also Revuz [26] on this point.) 
Now {U(#)__<I} is closed, and assuming as we may that the support set A 
in (4.3) is closed, if L?(#)=< 1 q.e. on A then U(#)< 1 everywhere on A. It follows 
that (Mm) and ( M )  are equivalent under the present hypotheses, so our Theorem 
(4.1) contains [4, (5.3)] as a special case. 

5. The Bounded Positivity Principle 

As in the previous section, m is assumed to be dissipative. To state our final 
result we introduce an auxiliary hypothesis: 

(5.1) Given a bounded coexcessive function ~, the coexcessive regularization 
of ~1 A 1 agrees with fi A 1 m-q.e. 
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This hypothesis amounts to a weak form of the 0-1 law for the measures px. 
See Remark (5.11) (c). 

(5.2) Theorem. (Hm) implies (P*). I f  (5.1) holds then (P*) implies (Hm). 
To prove (5.2) we introduce a modified energy Io; this functional is manifestly 

positive and coincides with I under (H,,). Given #ecg let tc denote the associated 
H R M  (see sect. 3). Since m is dissipative there exists a ~f-measurable random 
time S: W--*IRu { + oo} such that 

(5.3) (i) e < S < / ~  on {S~e+oe};  
(ii) S=t+Soa , ,  V t e N ;  

(iii) Q,,(S= + oe)=0. 

(Such an S exists if and only if m is dissipative; see [13].) Define 

(5.4) Io(#)=�89 Q,,([K(N~)]z; 0 < S <  1), 

and note that I o > 0  on cg. The next result implies that Io(#)< oo if #ec~, and 
that Io does not depend on the choice of S. 

(5.5) Lemma. Given #ecd set ~= U(#), r U(#), and k=gt-a .  Then 

I o (#) = #(a) + �89 #(k) = I(#) + �89 #(k). 

We defer the proof of (5.5) to the end of this section. 
Note that Io(#)=<#(ff)< ~ if #ecg, and so 

~(lR)<cc, Q,,-a.s. on {0<S__<l}, 

where ~c is the H R M  associated with # as before. But ~c(N.) is (at)-invariant, 
and Ut~a at--~ {0 < S__< 1} = {SEN} is Q~-full. Thus 

(5.6) ~c OR) < 0% Qm-a.s. 

This allows us to extend Io coherently to cg_ ~:  

(5.7) Io(#-v)-=�89 Qm([~c(IR)-7(]R)]2; 0<S=< 1), 

where 7 is the H R M  associated with v. Clearly I0 > 0 on cg_ off. 

Proof of (5.2). (i) Assume (Hm). Let #, vecg with associated HRM's  ~c and 
7. By (Hm) and (3.4) (a), tc and y are diffuse. In particular ~i=~, ~=~m-q.e. 
(Here zi=U(#), g=U(v),  etc.) Thus I (# -v )=Io(# -v )>O.  Suppose now that 
1 ( # -  v) = 0. Then by (5.7), 

(5.8) ~c(]R) = ~(IR) < o% Q,, a.s. 

Applying the copredictable projection to both sides of (5.8), and using (3.8), 
we obtain 

(5.9) ~c(]t, + o o [ ) - ? ( ] t ,  + oo[ )=(g- / i )o  ~,  
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up to Qm-evanescence. The L.H.S. of(5.9) is finite continuous in t and of bounded 
variation for t in compact subintervals of ]a, fl[. The same is therefore true 
for the R.H.S. But if t--*f(t) is a (deterministic) continuous function of locally 
bounded variation, then for Lebesgue a.e. y e N ,  {t: f(t)=y} is countable. See 
[27, p. 279]. Fubini's theorem now allows us to conclude that for Lebesgue 
a.e. yEIR, 

(5.10) {te]a, fi[:(g--~)o~(w)=y} is countable for Q, , -a .e .w.  

Upon reflection we see that (Hm) and the continuity of t ~ (g-~i)o Y, force the 
"level set" in (5.10) to be empty except possibly for one value of y, Q,,-a.s. 
(y may depend on w). In short, t--, (g-~i)o ~ is constant on ]~, fi[, Q,,-a.s. Thus 
tc = 7 by (5.9), hence # = v as desired. 

(ii) Assume (P*) and (5.1). Fix #ecg and suppose that # is carried by A e g  
and that f i -  0 (#) < 1 m-q.e, on A. Define ~ = # U A m so that ~ e Exc and ~ < # U. 
Then by [14, (4.2)] there is a measure v on E such that ~=vU.  Clearly vecg. 
Let 0= 0(v). Since fiA 1 is also a version of d~/dm, (5.1) implies that I)=~A 1 
m-q.e. In particular ~ < fi m-q.e., and ~--fi m-q.e, on A, hence #-a.e. Therefore 

< . . . .  < 0 = I (# -- v) = (#-- v) (u -- v) = -- v (u -- v) = 0. 

Consequently 1 ( # -  v) = 0, and so # = v by (P*). That is, # U = v U = # U A m < m 
which forces ~1<~i< 1 m-q.e. Thus (M*) holds and (5.2) is proved, since (M*) 
implies (H,,) by (4.1). [] 

(5.11) Remarks. (a) The proof of the implication (P~)=,-(M,,) is adapted from 
Rao [25]. 

(b) The energy Io of (5.4) is related to the energy of an additive functional, 
introduced by Meyer [20] (see also Weil [30]). Let (A,) be a finite additive 
functional of X; the energy of (&) is the quantity 

(5.12) "~ lira 1 ~ #,(dx) W(A~) 

where (#,) is any sequence of measures on E such that #, U Tm. Now associated 
with (A0 is an optional H R M  ~ carried by ~a, fi~ and determined by 

~c(dt+s)-=dA, oO~ on {c~<s}, t>O. 

Although ~ need not be copredictable, it is not hard to check that the R.H.S. 
of (5.4) coincides with (5.12). See [13, w 

(c) Note that if fi is bounded and coexcessive, then ~ ^ 1 differs from its 
coexcessive regularization only on an m-semipolar set (cf. [6]). Thus (Hm) implies 
(5.1), and it is not unreasonable to conjecture that (P*) implies (5.1). If X has 
a Borel right dual process )[ relative to m (m need not be a reference measure), 
and if J( is m-special standard [15, w then modulo m-polar sets, 37 and 

have identical classes of excessive functions. Since the cone of J~-excessive 
functions is A-stable and contains 1, (5.1) holds in this case. The reader can 
check that in general (5.1) is equivalent to the following statement: for each 
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bounded coexcessive function t~, the random variable lim 4(J~t) is px degenerate 
for m-q.e, xeE. t,o 

It remains to prove (5.5). Fix #ecg with associated H R M  •. Let S be as 
in the definition (5.4) of Io (#). Define a measure M on P,. by 

(5.13) M(f)=Qm(5~f(t-s)~.(ds)tc(dt);O<SNl),  f ~ + .  

It is easy to check that for g e ( ~ |  N)+, 

(5.14) Q,, ~ g(s, t) ~c(ds) to(dr) = ~ M(db) ~ g(a, a + b) da. 
R 

Now on the one hand, by (5.4) we have Io(#)=M(1)/2. On the other hand, 
if ~ +  with ~ ~(t) dr= 1, then defining g(s, t )= lls<, ~ 0 ( t )+  l~s=>t/O(s) we have 

N 

g(a, a+b) da=l,  so by (5.14) and (3.9), 
R 

I0 (#) = M (1)/2 = [# (t~) + # (~i) ]/2, 

which agrees with (5.5) since ~ = ~ + k m-q.e. [] 
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