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Summary. Let X be a BESo(d) ( 0 < d <  1) with canonical decomposition X 
=B +(d-1)H,  where B is a brownian motion and H locally of zero energy. 
The process (X; H) is shown to have a local time at (0; 0), and the characteris- 
tic measure of its excursions (in It6's sense) is described. This study leads 
us to new determinations of the - space variable - process defined by the 
occupation densities of H taken at some optional times. 

I. Introduction 

The theory of the excursions of a Markov process out of a regular point, initiated 
by It6 [7], is a powerful tool to study diffusions on the line such as brownian 
motion and Bessel processes. It both provides global information on the paths 
and allows explicit computation of distributions (see Williams [12]; Rogers 
[9]; Pitman and Yor [8] ;Biane and Yor [4] ; Barlow et al. [1]). 

In this paper, we consider the Markovian couple formed by a Bessel process 
X of dimension de(0; 1) and its drift term H which appears in the canonical 
decomposition of X 

(1.1) X (t)= B(t) + (d-- 1) H (t) 

as the sum of a real brownian motion B and a locally of zero energy process 
(d -1 )H .  We firstly note that (0; 0) is a regular point for (X; H) and that its 
associated local time satisfies an analogy of L6vy's downcrossing theorem. Fol- 
lowing It6 [7], the process of the excursions of (X; H) out of (0; 0) is a Poisson 
point process, and we describe its characteristic measure. 

The initial motivation of this work was an attempt to explain the Ray-Knight 
theorems obtained in [2] for the occupation densities of H. We will see in 
Sect. 4 that the excursion theory not only gives a direct proof of those theorems, 
but also yields to new results. There are now two natural excursion processes 
related to X (the classical one, as it is described for instance in Pitman and 
Yor [8], and the present one); and a comparizon of the two would be interesting 
since each is likely to produce new information about the other. 
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In this paper, (f2, ~,, (~-)t_>_0, P) will stand for a complete probability space, 
endowed with a right-continuous family of a-fields. We will denote by X a 
Bessel process of dimension de(0; 1), starting from 0 and with an instantaneous 
reflecting barrier at 0 (in short, X is a BESo(d)); and by {L{: a e R + ,  t>0} a 
jointly continuous version of its local times, i.e. P a.s., for every positive t and 
bounded Borel (p, we have 

t 

~ q)(X(s))ds= ~ (p(a)L'~a a-1 da. 
0 ~.+ 

We saw in [-2] that the drift term H of X [-see (1.1)] admits a representation 
as a "partie finie" (p.f.) in Hadamard's sense associated to the local times of 
X: 

(1.2) i ( I 4 - E t ) a  da H(t)=�89 X - l ( s ) d s = � 8 9  ~ a o a-2 
0 N+ 

remember that de(0; I), so S X - l ( s )  d s=  oo p.s. for every positive t . This for- 
o 

mula implies that 

(1.3) p.s., H increases on every interval on which X is never zero. 

Note however that, according to (1.1) and since d - 1  is negative, H is negative 
when B is positive. More precisely, if we introduce 

T(b)=inf{ t>O: H( t )=b}  (beN),  

then T(b) is finite a.s. (cf. Lemma 3.7. in [2]), and it follows from (1.3) that 
X(T(b))  =0  provided that b is negative. 

2. Local Time and Down-Crossings Number 

In this paragraph, we introduce a local time at (0; 0) for (X; H). For every 
n e N  and t~IR+, let us denote by d,(t) the number of down-crossings of H 
from 0 to - 2 - "  during the interval of time [0; t]. Our main result is 

Theorem 2.1. P a.s., for all t, 2"(a- ~) d,(t) converges as n goes to + oo to a continu- 
ous non-decreasing process 6(t). Furthermore, the set of times at which ~ increases 
is {t: X( t )=H( t )=O}  and lim 3 = + oo. 

+co 

Remark. (0; 0) is a regular point for the Markov process (X; H) (indeed, if g~ 
denotes the last time before T ( - e )  when H is zero, then there is no neighbour- 
hood of g~ on which H increases, so according to (1.3), X(g~)=H(gO=O, 0<g~ 
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Fig. 1. (X; H) graph on [-0; T(-  1)] 

< T ( - e )  and T ( - e ) $  0 p.s.), and since 6 is clearly a positive continuous homoge- 
neous additive functional of (X, H) which increases only when (X; H)=(0 ;  0), 
6 is the (unique up to a multiplicative constant) local time at (0; 0) of (X; H). 

Proof Two lemmas are interspersed through the proof; the first is 

Lemma 2.2. {2"(~-a) dn(T(-1)): n~N} is a positive martingale (with regards to 
its natural filtration). Hence it converges P a.s. and in L 1 (P), and its limit, 6 (T(-- 1)) 
has an exponential distribution with parameter 1. 

Proof of Lemma 2.2. Let us set, for all (k, n)eN2:  S ~ -  0, 

Tk" =inf{t  > S~: H(t)= --2-"}/~ T(--  1), 

Uk" =inf{t  > Tk": H( t )=0}  A T(--  1), 
and 

S~+1 = in f{ t>  Uk": H( t )=0}  A T(--  1). 

To be at ease, it is important to understand what is related to those definitions 
(see Fig. 1): 

Td' is the first hitting time of - 2 - "  by H, and we saw in the introduction 
that X(To")=0. If U ~ < T ( - 1 ) ,  then U~ is the first time after Tg when H hits 
0 again. Since X(U~)#O a.s. on {U~< T(--1)} (see Proposition 5.4. in [2]), H 
increases on a neighbourhood of U~; and S~ is the second time after Tg when 
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H hits 0 again. Since H is positive immediately after U~, the same arguments 
as before imply X(S] ) -  O. 

We split H paths as in Fig. 1" let us denote 

H~k(t)=H(S~,+t) for te[O; Tk"-S~, ] 

H"2k+l(t)=H(Tk"+t ) for te [0; S~+ 1 -  Tk~]. 

Since X (S~) = X (Tk") = 0, the process t ~ X (S~ + t) (respectively t ~-~ X (Tk" + t)) is 
a BESo (d), independent of o~s~ (respectively of ~r~); hence: 

(i) Conditionally on H(S~), H2k ~ is independent of ~s~ and of ~T~ 
=a{X(t) :  t>_--Tk"}, is identically 0 when H(S~)=--1,  and is distributed as H~ 
when H (S~,) = O. 

(ii) Conditionally on (H(Tk"), H(S~,+I)), H"zk+l is independent of YT~ and of 
o~sr,+l=a{X(t): t>S~+l}, is identically 0 if H(Tk")=-1 ,  and is distributed as 

n n n _ _  (Hl lH(SO=O) (respectively (H"a tH(S])= - I)) when H(Sk+ O--O (respectively 
H(S~,+ ~) = -- 1 and H (Tk") = -- 2-"). 

Now, notice that, for every peN*,  {d , (T(-1))=p} = {H (S~)=0 and H(Tk") 
= - 2 - " :  k < p -  1} n {H(S~) = - 1}. Since for every non negative integer r, down- 
crossings of H from 0 to - 2  - " -"  only occur on intervals [S~; Tk"], and since 
for every positive integer q < n, da (T( - 1)) depends only on {H~ k + 1 : 0 < k < p -- 1 } ; 
we deduce from above that, conditionally on d,(T(-1)), {d,+,(T(--1)): t e N }  
and {dq(T(-1)): q<n} are independent (i.e. {d,(T(--1)): heN} is a Markov 
chain). 

On the one hand, we saw in w 5 of [2] that, if f is a continuous function 
and F is the primitive o f f  which is nul at 0, then 

t 

is a continuous local martingale. If we take f ( x ) = ( x -  1/2) 1, then f '  + f 2 _ 0  
on ( -  oo ; 1/2), and the optional sampling theorem applied to r ( - -  1/2) A r(1/2) 
gives 

P ( { T ( -  1/2)< T(t/2)})=2 a-1 =P({SI = T ( -  1)}). 

Since X(S~) = - O, the strong Markov property implies 

(2.1) P({d l (T( -1 ) )>q})=( l -2d- t )  q (qeN); 

and particularly, E [dr (T(-- 1))] = 21 -d. 
On the other hand, since conditionally on {d,(T(-1))=p}, {H~k: k<=p--1} 

is a family of p independent processes, all having the same distribution as 
{2-"H(2n2t): t=<2 -"2 r ( - 1 ) }  (use the scaling property), we deduce from (2.1) 
that 

E(d. +~ (T( -- 1))I d.(T(--  1)))= 21 - a  dn (T(-- 1)), 



Excursions of Bessel Processes 235 

and the first part of Lemma 2.2. is proved (because { d , ( T ( -  1)): n~lq} is a Mar- 
kov chain). 

Thus, (2.1) implies that P ( { d , ( T ( - 1 ) ) >  q } ) = ( 1 -  2 "~d- ~))~, Hence, taking the 
limit as n i" + ~ ,  we obtain that 

P({f(T(--1))> x})=e -x. [] 

Proof of theorem 2.1 (continuation). Let us first show that if T is an optional 
time such that T <  T(--1)  P a.s., then 2 "~- 1)d,(T) converges P a.s. as n T + 
(according to Theorem 21, Chap. 1 in Dellaeherie and Meyer [6], this shall 
imply the convergence in LI(P), since, 2"~d-1)d,(T)<2"~d-1)d,(T(--1)), and 
{2,td- 1)d,(T(-- 1)): n~N)  is uniformly integrable). 

Let us set S = i n f { s >  T: H(s)=X(s)=O)A T(--1). As in the proof of Lem- 
ma2.2., we see that on { H ( T ) > 0 } u { H ( T ) = 0  and X ( T ) # 0 ) ,  
S = i n f { s >  T: H(s)=0},  and on {X(T)=H(T)=O}, S =  T. We have 

(i) On {S=T( - -1 ) ) ,  H(T) is negative (since H(T)>O implies 
S=inf{s>T: H(s)=0};  and the last quantity is clearly less than T(--1)); and 
provided that H ( T ) < - 2  -p, d,(T)=d,(S) for every n>p. Consequently, 
2 "(d- ~) d,(T) converges. 

(ii) On { S < T ( - 1 ) } ,  let us define .~(t)=X(S+t). Since X(S)=0,  _~ is a 
t 

BESo (d): X (t) = ~ (t) + (d - 1)/~ (t), wi th/~ (t) = �89 p.f..I ~ -  1 (s) d s. Let 7"( - 1) den- 
o 

ote the first hitting time of - 1  by /~; and g,(7"(-1))  the number of down- 
crossings from 0 to - 2 - "  o f / t  during [0; 7"(--1)]. We have 

d.( T ( -  1)) = d.(S) + il .(Tr(- 1)). 

So, according to Lemma 2.2., 2"td-X)d,(S) converges as n ' ~ + ~ .  Now, notice 
that d,(S)= d,(T) in each of the following cases: 

(a) For  every n if (H(T)>0)  or if ( H ( T ) = 0  and X(T)+-O) (since then S 
= in f{s>  T: H(s) =0}). 

(b) For every n if X(T)= H(T)= 0 (since then S == T). 
(c) For  every n>p if H ( T ) < - 2  -p (since then, if U=inf{s>T: H(s)=0},  

then S = i n f { s >  U: H(s)=0}, and H is negative on (T; U) and positive on (U; S)). 
Hence, in any case, 2 "td- 1)d,(T) converges. 
Now, we have to prove that P a.s., 2"td-~d,(t) converges for all positive 

t. For every positive e, let us introduce 

A~ = { t < T( - I): lim inf 2"ca- 1) d, (t) + e < lim sup 2" ~ -  1~ d, (t)}, 
n T + c o  n T + o o  

and 
S~=inf{t >0:  t~A~}/~ T ( -  1). 

Since A, is a progressive set, S~ is a stopping time; and we deduce from above 
that 2 n(d- 1)d, (S~) converges, so S~(~A~. If we suppose that P({A~ ~: 0}) is positive, 
then, conditionally on {A~:0}, H(S~)=X(S,)=O (if H(S~)~:O, then, for every 
s close enough to S~, d,(S,)=d,(s) provided that n being sufficiently large; so 
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s~A~; and if H(S~)=0 and X(S0>0,  then H increases on a neighbourhood 
of &, and the same arguments apply). Once again, X(t)=X(S~+ t) is a BES0(d); 
if we define the corresponding ~,(t), T(--1) and 6(T(-1)) ,  then, for all positive 
s, the definition of St implies the existence of a positive s' such that s '<  s 
and lim sup 2"(a-1)~(s')>~. Since 2"(a-1)d~(s')<-_2"(e-1)d,(~F( - 1)), we obtain 

n $ + ~  

J(7"(-1))>~;  and this is false because ~(T(-1) )  has an exponential distri- 
bution. Hence P({A~ + 0})= 0 and after usual scaling arguments, we have proven 
that P a.s., 2 "(a- 1)d,(t) converges for all positive t. 

The continuity of 6 is a consequence of the following 

Lemma 2.3. For each positive ~, there exists an integer N such that, for every 
n > N and every stopping time T, T <= T(--1), 

IE(2"(a- a) d,(r)--6(r))l  <~. 

Proof of Lemma 2.3. Since the martingale {2 ~(d- 1) d , ( T ( -  1)): neN} is uniformly 
integrable, for every positive e, there exists an integer N such that, if n > N, 
then 

E (12 "(a- ~) d. ( r ( - -  1))-- 6 ( r ( - -  1))D < e. 

Let S denote i n f { t>T:H( t )=X( t )=O}AT( -1 ) .  In particular, we have 
E(12"(a-1)d.(S)-a(S)ll{s=r(_l)})<e. On the other hand, conditionally on {S 
< T(-- 1)}, X(t)= X(S + t) is a BESo(d), and with the corresponding notations, 

d . ( T ( -  1)) = d.(S) + ~ . ( T ( -  1)), 6 ( T ( -  1)) = 3 (S) + 6"(T(- 1)). 

So 
E(I 2 "(a- 1)d,,(S)- 6(S) I les< r(-  1)}) 

_-__ E(I 2 "(a- 1)dn (T(-- 1))-- 6 (T(-- 1))1 

+12 "(a- ~)g, (7"(- 1))- S ( T ( -  1))1) < 2 e. 

The lemma follows from the obvious inequality: d, (T) < d, (S) =< d, (T) + 1. [~ 

Proof of theorem 2.1 (end). Since 6 is a previsible non-decreasing process, accord- 
ing to Dellacherie and Meyer ( [6]  Theorem 48, Chap. VI), in order to prove 
the continuity of a, it is sufficient to show that for any stopping time T < T ( -  1) 
P a.s., and for any sequence {T,,:n~N} of stopping times, T,,<T(--1) and 
lira T,= T P a.s., we have lim E(6(T,))=E(6(T)), which is an easy consequence 
of the former lemma. 

Since we already know that ~ increases only when X and H are zero, it 
remains to prove the converse: let a and b be two real numbers, 0 < a < b, and 
let us define r=in f{ t>a:X( t )=H(t )=O}.  X ( t ) = x ( r + t )  is a BES0(d); and 
according to Lemma 2.2. and the scaling invariance property, for every positive 
~, 3"(7"(-e)) has an exponential distribution. Since 6(a)= 6(r) and lim T ( - e ) =  0, 

e,t0 

we have P({6 (T) = cS(b), T<b})=0 ,  and so 

P [  ~) {3ts]a;b[:X(t)=H(t)=O and 6(a)=b(b)}]=0. 
O<_a<_b 

a,beQ 
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Finally, Lemma 2.2. and the scaling invariance imply that lim 6 = + oo. [] 

The local time at (0; 0) is a natural measure on the zero set of (X; H). 
In order to make a more rigourous statement, let us introduce the right-continu- 
ous inverse of 6: 

a(t) = inf{s: ~ (s) > t}. 

We easily deduce from Theorem 2.1. 

Proposition 2.4. a is a stable subordinator of index (1-d)/2.  More precisely, for 
all positive k, E [exp - k a(t)] = exp - t(8 k) (t -e)/2 

Proof For all positive k, {H(kt): t>0} (a2 {k~/2H(t):t>O}. Hence {6(kt):t 

>0} (d__) {k(l_d)/2 b(t): t>0} and {a(kt): t_>0} (e__) {k2/(l_d ) a(t): t>0}.  Further- 
more, since 6 only increases when X and H are both zero, the strong Markov 
property implies that {X(a(t)+ r): r > 0} is a BESo(d) independent of ~(t); and 
a is a non-decreasing process with homogeneous independent increments. Even- 
tually, the Laplace transform of a is obtained by the computation of the Laplace 
transform ofinf{t: d,(t)= x} which is done by the same techniques as in [2]. [] 

Corollary 2.5. There is a finite positive constant C such that, P a.s., for all positive 
t, (p-m({s<=t: X(s)--H(s)=O})=CS(t); where ~o-m stands for the Hausdorff 
p-measure, and 

q) (h) = h tl - d)/2 (log [log h I) (1 + d)/2. 

Proof a has the same distribution as the right-continuous inverse of the local 
time at 0 of a stable process of index 2/(1 + d); and so c5 has the same distribution 
as the local time at 0 of this stable process. According to Taylor and Wendel 
[11], there is a positive finite constant C such that 

qo--m({s<t: H(s)=X(s)=O})= C6(t). [] 

Remark. It is easy to prove that 

{t: H(t) = 0} = {t: H(t)=X(t)=O} ~ {t: H(t)--0; X(t)*0} 

is the canonical decomposition of the closed set {t: H(t)=0} as the union of 
a perfect closed set and the set of its isolated points. Furthermore, between 
two isolated points (respectively two accumulation points), there exist infinitely 
many accumulation points (respectively at least one isolated point). In particular, 
we also have ~o-m({s<t: H(s)=0})= Cg)(t). 

3. Excursions of (X;H) 

We saw in the former paragraph that (0; 0) is a regular and recurrent point 
for (X; H). Following It5 [7], we introduce the excursion process e=(e l ;  e2), 
where 

e 1 (t) = {X(o-(t-) + r) l~r ~ ~(0- ~(~-)~: relR+ }, 

eZ(t) = {H(o'( t-)  + r) l{r<=~r(t)_a(t_)} : r~]R+ }. 

Theorem 3.1. (It6). e is a Poisson point process. 
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We will denote by m its characteristic measure on f2~ bs, the set of continuous 
o) :~+-- - ,~+ x N ,  co(0)=(0;0) and co absorbed at (0;0) after the first return 
to the origine. 

The purpose of this paragraph is to present a decomposition of the generic 
excursion (see Theorem 3.4.). In comparizon with Williams' decomposition at 
the maximum of the brownian excursion (Williams [,12]; Rogers [,9]), it is inter- 
sesting to note that here, the splitting time is a stopping time in the natural 
filtration on f2~ b~. Several applications of this result are discusted in Sect. 4. 
The key point for the description of rn is the following 

Lemma 3.2. {X (s): s_< a (t)} and {X (a (t) - s): s < a (t)} are identical in law. Hence, 
so are the processes {U (s): s =< a (t)} and { - H(a ( t ) -  s): s =< ~ (t)}. 

Proof Let z stand for the right-continuous inverse of L ~ (zt = inf{s: L ~ > t}). H (z.) 
is a stable process of index 2 - d  (the strong Markov property implies that 
H(z.) has homogeneous independent increments, and it remains to use the scal- 
ing invariance property, see Biane and Yor [4]). According to Boylan [5], there 
exists a jointly continuous version {A~:ae]R, t>_>_ 0} of the occupation densities 
of H(z.) i.e.a.s., for every bounded Borel ~o and positive t, 

t 

~p(H(zs)) ds = ~ (p(a)A~ da. 
0 ~t 

Since d,(vt) is the number of down-crossings from 0 to - 2 - "  of H(~.) during 
[0; t] (because H increases on every excursion interval of X), 6 (z.) is a continuous 
positive homogeneous additive functional of H(~.) which increases only when 
H(~.) is nul, and so there is a positive finite constant c such that 6(zt)=cA ~ 
Since 6 increases only when X =  0, g)(t)= cA~ Now set 

l~=A~Lp and l*=Sup{l~:aelR}.  

(note that a.s., (a, t)~--~l~ is continuous). We have 

t 

~o(H(s)) dL ~ = S c#(a)l~ da. 
0 

Consider the process 

where n and x are two positive integers, 0 < t l  < ... < t , ,  (~1 . . . . .  ~,)e(N~+)", and 
q~ is a non negative with compact support C ~ function. Since a.s. for every 
a, the measure dl~ does not charge inf{t: l* =x}, the only discontinuous time 

of Z, a~--, S Z(s) dl~ is continuous. 
0 
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Now, let {fk: k~N} be an approximation of the Dirac mass at 0. On the 
one hand, 

E[fCfk(H(t))Z(t)dL~ ], 

and the last term converges as k]" + oo to 

On the other hand, 

E 

oo 

= ~ E [ l { t , ,<x} cfk(H(z,)) c~(cl~ exp {  - - ~ c h X ( t  i A zt)}]  dt. 
0 

Since {X (s): s < z,} has the same distribution as {J((s) = X (z , -  s): s < z,} (because, 
according to Pitman and Yor [8], the processes of excursions of those two 
processes are two Poisson point processes stopped at the instant t, with the 

same characteristic measure), if we set /~(s)=�89 i du/J~(u) and define the 
~O 

corresponding {~a: a e lR, t > 0}, then I2I (s) = H (zt) - H (zt- s); h e n c e / t  (zt) = H (zt) 
and ~ =  l~ ('t)-a. So, 

E [l{t~ < x} cfk (H(zt)) q5 (c 1 ~ exp { -- ~ c h X(h A "C~)}] 

= E [ l { t , ,  < ,,} cA  ( H  (z,)) 4' (c l~ ('~ exp { - }-' c h X ('c, - ti A z,)} ] ,  

consequently 

E [ ~  cfk(H(t))Z(t)dL ~ 

= E  dafk(a) ~ l~t~<~}4)(clf(~)exp{-2~X(s-t~^s)}d(cl~) ; 
0 

and this last quantity converges as k 1" + oo to 

E[~ l,,~<~} qS(c l~(~)) exp { - ~ cq X (s-  t, /x s) } d ~(s)]. 

Furthermore, since 6 increases only when H = 0 ,  the last expression is equal 
to 

oo 
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So, eventually, we have 

E[ ~ lt,,<x} (~(a(s)) exp { -  y ~ X (ti A s)} da(s)] 

= E[ ~ l~,<x~ O(~(s)) exp {-  ~ ~ X (s- ti A s)} d~(s)]. 

Taking the limit as x ]" + oo, we obtain 

+ c o  

I d s 0 (~) E [exp { - ~ ~, x ( o ( ~ ) -  t, A ,~(~))}] 
0 

Hence, for almost every s, 

+ c o  

I 
0 

ds ~b (s) E [exp { - ~ ai X (ti /x a (s))}]. 

E [exp { - ~ ~, X (a ( s ) -  t,/x a(s))}] = E [exp { - E ~ X (h/x o-(s))}]. 

We deduce that, for all t, 

In particular, 

{X(s): s < ~ (t)) r { x  (o ( t ) -  s): s < o (t)}. 

s s 

~(t) du 

~-U-) -p 'f" X ~ :  s=< z~,  

~(0 du 
and since p.f. ! ~ - ~  = 0, we have the second part of the Lemma. [] 

We start the description of m introducing the following 

Notations. For  all co = (o)1; co2)ef2g us, we set 

u= in f{ r  >0 :  r = 0}, v= in f ( r  >0 :  co(r)=(O, 0)}, 

i--inf{~o2(r):r>0} and s=sup{co2(r):r>O}. 
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- F o r  all posi t ive t, we set 

g, = S u p  {s < t: H ( s )  = X ( s )  = 0}  
and 

dt = inf{s > t: H (s) = X (s) = 0}. 

We  have  

L e m m a  3.3. (c0 m (i = 0) = m (s = 0) = m (co t (u) = 0) = 0. 

(fl) For all positive x, re(i< - x )= x a- 1. 

t 1 - d  a 
(7) re(co ( u ) ~ d x ) = F ~ -  x -2  l~x>o~ dx. 

Proof (e) Let  e be a posit ive real number .  Since m(i < - s )  is finite and  positive, 
we can in t roduce  t h e  p robabi l i ty  m ~ ( . ) = m ( . l i < - e ) .  We k n o w  tha t  m, is the 
law of the process  

{(X (gr~-~) + S); H(gr~-~) + s)) l~s<=a~_ o~-g~., _,}: 0 _--< s} 

As in Sect. 2, we notice tha t  if ~ T ( _ ~ ) = s u p { s <  T( - -e ) :  H ( s ) = 0 } ,  then X(~T(-,)) 
= 0 (because if it were positive, then H would  increase on a n e i g h b o u r h o o d  
of gr(-~),  and  g r ( - ~ ) w o u l d  not  be the last  t ime before T( - - e )  at which H is 
zero); and  so gr(_~)=gr(_~). In  part icular ,  H is negat ive on (gW(-e); T(--~)). 

Accord ing  to Propos i t ion  5.4 in [-2], we have  

m~ (s > 0) ____ m~ (co ~ (u) > 0) = 1, 

so, taking the limit as e ~ 0, 

(3.1) m(s = 0 ;  i=~O)=m(co~(u)=O; i=~ O) = O. 

On the o ther  hand,  accord ing  to L e m m a  3.2, 

m(s 4= 0; i=O)=m(s=O; i+O), 

thus 

m(i=O)=m(s~O:  i=O)+m(s=O; i = 0) = m ( c o z -  0). 

On {co/=0},  v = i n f { r > 0 :  col( r )=0},  co x is posi t ive on (0; v), and  so 

f o col(r) o col(r)" 

Hence,  necessari ly v = 0, i.e. co = 0. So re(co 2 = 0) = re(co = 0) = 0; and  consequent ly,  
m(i = 0) = 0. Accord ing  to (3.1), we deduce t ha t  m(s = O) = m(co 1 (u) = O) = O. 

(fl) Accord ing  to L e m m a  2.2. and  to the scaling invar iance proper ty ,  

E [ f ( T ( - x ) ) ] = x  x-a, so m ( i < - x ) = x  a-1 
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(7) Accord ing  to Propos i t ion  5.4. in [2] and  to the scaling invar iance p roper -  
ty, for every posit ive 0 and  e, we have 

E [exp - 0 x(r(e))] = (1 + e 0) t - ~ -  (e 0) 1 -a. 
Hence,  

m (d (`0) 1{~ < _ ~} [exp ( -  0 (`01 (u)) - 1] = e a -  t [(1 + e 0) i - e _ (e 0) 1 - a _ 1]; 

and the last quant i ty  converges  as e~0 to - 0  a-e. This  implies that  m(i 

4=0;col 1 - d  a 2 (u)edx)=~TA~ x - 1~>0} dx; and we achieve the p r o o f  with the help 

of(c 0. [ ]  

We  are now able to describe m: 

Theorem 3.4. For all positive x, let X ~ denote a BES~(d): X~(t)=x + B(t)+(d 
t ds 

- 1 ) H * ( t ) ,  where B is a standard brownian motion and H ~ ( t ) = l p . f .  ~ X ~ ;  and 
0 

let S~(O) stand for i n f { t > 0 :  HX(t)=O}. Then (remember that v denotes the life 
time of the excursion) for every positive x, conditionally o n  (2) s ( u )  = x~ the processes 

{(co~(r + u); co~(r + u)): O<_r<_v-u} 
and 

{(co s ( u -  r); - co~(u-  r)): 0_< r_< u} 

are independent and have both the same distribution as 

{(x '~(r); H"(r)): 0 < r < S ~'(o)}. 

Proof According  to L e m m a  3.3., o) 1 (u) is posi t ive m(dco)a.s., so (,02 increases 
on a n e i g h b o n r h o o d  of u, and  hence, v=inf{r>u: co2(r)=0} and 0 = s u p { r  
< u :  co2(r)=0}. W e  deduce  tha t  u is the only zero of  (`0 2 o n  ] 0 ;  V[-. Since Lem-  
m a  3.2. implies that ,  under  m, the processes {coi(r): O<r<v} and {coS(v-r) :  0 
<_r<v} have  the same distr ibution,  we deduce that  {col(u+r) :  O < r < v - u }  and  
{(̀ 0 ~ ( u -  r): 0 _< r < u} are equally dis t r ibuted too. 

F o r  every posit ive ~, with the nota t ions  of the p roof  L e m m a  3.3, let us 
consider  

�9 = ~({col (u+r) :  O<_r<_v-u}) 
and 

~ =  ~({cot (u--r ) :  O_<r_< u}) 

two non-negat ive  Borel functionals  on f2~bs; and  let us denote  by cpjcol(u)) 
and  Ojcol(u)) their respective me-mean condi t ional ly  on col(u): (p~ and ~ are 
bo th  non-negat ive  Borel funct ions and, for all Borel non-negat ive  funct ions f ,  

.~ m (d co) l(i < - ~} q)f(co 1 (u)) = j" m (d co) l{i < - ~) cp~ (co i (U)) f(COl (U)) 

S m (d (`0) 1(, < _ ~} kCf(co l (u) )=  S m (d (`0) 1~, < _ ~} r (co 1 (u)) f(col  (u)). 
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According to L e m m a  3.3. i), the left-sides of the former equalities converge as 
e $ 0 respectively to ~ re(d0)) ~f(o~ 1 (u)) and ~ re(d0)) g~f(0)l (u)). So l{i < -~ (p~(0)1 (u)) 
and l{i <-,} ~(0)1 (u)) increase as ~ $ 0 respectively to two co 1 (u)-measurable ran- 
d o m  variables denoted  by q)(o) 1 (u)) and ~ (0) 1 (u)). 

On the other  hand, we know that  the dis tr ibut ion of {0)(r): O<-r<<-v} under  
m~ is equal  to the distr ibution of {(X(gT~_~)+r); H(gT(_~)+r)): O<r<dT(_~) 
--grt-~)} under  P. Let us in t roduce 

U~ = inf{r > T ( -  e): H(r) = 0} ( =  inf{r > gT(-~): H (r) = 0}). 

Then dr{_ , )=inf{r  > U~: H(r)=0} (because, since X(U~) is positive, H increases 
on a ne ighbourhood  of U~), and, according to the strong M a r k o v  property,  
condit ionally on X (U~) = x, {X (U~ + r): 0 <_ r < d T(_ ~) -- U~} is independent  of ffvo 
and has the same law as {X~(r): 0< r<S~(0 )} .  We  deduce firstly that  qh(x) 
= E[q~ ({X ~ (r): 0 < r < S x (0)})] = q) (x); and secondly that, for every non-negat ive 
Borel function f ,  

I m (d 0)) 1{, < _ e} ~ ~gf(0) 1 (U)) 

= ~ re(d0)) 1~i< _~} ~p (0)1 (u)) ~p~ (0)1 (u))f(0)1 (u)). 

Taking the limit as e J, 0, we finally get 

m (d 0)) q~ ~gf(0) 1 (u)) = ~ m (d 0)) ~o (0) 1 (u)) r (0) 1 (u)) f(0) 1 (u)), 

so, condit ionally on 0)X(u)=x, {0) l (u+r) :  O<_r<_v-u} and {0)~(u-r) :  O<_r<_u} 
are two independent  processes, the first one having the same distr ibution as 
{X*(r): 0_< r_< S~(O)}. 

Finally, since 

and 

= 0)2 (U) q- �89 p.f. 

u + t  

0 ) 2 ( U + t ) = l P - f .  ~ dr/o)1(r) 
0 

u + t  

dr/0)l(r)=a P "f" i dr/0)x(u+r) 
u 0 

u - - t  

c~189  .f. ~ dr/0)a(r) 
0 

=0)2(U)--�89 "f" i dr/0)'(r)= --�89 i dr/~~ 
u - - t  0 

(O<_t<_v--u) 

(O<=t<=u), 

Theorem 3.4. is proven, [ ]  

Finally, let us see an easy applicat ion 

t dr 
Proposition 3.5. Consider Z x a BESx(d) and KX(t)= l p.f. ju ~ - x ~  conditioned on 

Sup{K~(r):r<=S~(O)}>l (where S~(O)=inf{t>O:KX(r)=O}), and let DX(1) 
=Sup{t<=S~(O): KX(t)=l}. Then, conditionally on X(T(1))=x, the process 
{X (W(1)-- t): t < r(1)} is distributed as {Z ~ (t): t < D x (t)}. 
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Proof When Q is a probability measure on a set of paths and W a process, 
let us denote by ~(W, Q) the law of W under Q. We also denote by Or the 
translation operator of r. We have 

({X (r): r < T(1)}, P) = e ({X (r) o O T(- ~): r < T(0) o O T(-1)}, P) 

= e({021 (r + ~ ( -  1)): 0-< r _< u - ~ ( -  1)}, m0 ,  

where g ( -  i )=inf{r :  022 (r)= - 1}. Hence 

2~({X(T(I)-  r): r ___ T(1)}, P(.  [ X(T0) )  = x)) 

= ~({021(u-r): O<r<<_u-.l(-1)}, m~(.102~(u)=x)) 
= ~({021(u +r): O<r<d(1)-u},  m(.1021(u)=x and s >  1)), 

where d ( 1 ) =  sup {r > 0:(o2 (r)= 1}; it just remains to apply Theorem 3.4. []  

4. Some Applications 

4.1. Ray-Knight's Type Results 

Let us now recall the main results of [2]: P a.s., the occupation measure of 
H is absolutely continuous with respect to Lebesgue measure on N, with densi- 
ties {27: a~lR, t > 0}, and we have the following analogies of Ray-Knight theo- 
rems 

(R.K.-1) Conditionally on 2~ 1) = x, {2~(_ 1): a > 0} 

is the square o fa  BESv~(0 ) (in short BES Q~(0)). 

(R.K. 1) Conditionally on 2~ {2~ga): a>0}  is a BES Q,(0). 

In order to explain these results via the excursion theory, let us first give 
a Ray-Knight theorem for the generic excursion of H: for m-a.e, co, there exists 
a family {2": aMR} of r.v. such that for every Borel bounded (p, 

o 

S (P(022(r)) dr ~ (P(a) 2ada" 
0 

We have 

Lemma 4.1. Conditionally on col(u)=x, {2a: a~lR+} and {2-~: aelR+} are two 
independent BES Q2x (0). 

Proof 02 2 is negative on (0; u) and positive on (u; v). According to Theorem 3.4., 
conditionally on 021=x, {Z": aMR+} and {2-": a~N+} are independent and 
have both the same distribution as the occupation densities process of {HX(t): t 
__<SX(0)}. Using generalized stochastic calculus introduced in [3], these occupa- 
tion densities are easily shown to be a BES Qz~(0) (see proof of Theorem 4.1. 
in [2]). []  

Remember that o- is the right-continuous inverse of the local time at (0; 0) 
of (X; H). We are now able to claim the following third Ray-Knight theorem: 
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0 , Theorem 4.2. (i) {2~(~). t~0} is a unilateral stable process of index 1 -d .  More 
precisely, for all positive k, 

k 0 E[exp--~ 2~(t)]=exp-t k 1-a 

o (x > 0), the processes {2~( o. a > 0} and {2~( 0 . a > 0} (ii) Conditionally on 2~( 0 =x  a . -a. 
are two independent BES Q~(0). 

Proof Let f l  and f2 be two continuous non-negative functions with compact 
support; and let ~b t and ~2 be the non-negative, non-increasing solutions of 
~ '  =fq~i, with ~(0)=  1 (i= 1 or 2). According to the exponential formula (see 
It6 [-7]), 

E [ ( ~  exp - �89 ~ (fa (H(s)) l~m~)> = o} + f2 ( -  H(s)) l~m,) <= o2) d 
0 

=exp{-tfm(do,)>[1-exp{-�89 

= exp{--t  ~ re(dee)[1- e x p { -  �89 f2(-c02 (r))dr+ f f~ (c02 (r))dr)}]} 

- - e x p ~ - t  I ~ 1-dx-2+a(1-exp{x(~'i(O)+~2(O))})} 
' , -  N +  , , 

(use Lemmas 3.3. and 4.1. and Pitman and Yor's description [-8] of the Laplace 
transform of a BESQ,(0)); and the last quantity is equal to exp{t(~'i(0) 
+~(0)) l -e}.  On the other hand, according to Corollary 3.10. in [2], o 
= ~ 2X(s)l~ms)=o2, and the exponential formula implies easily that, for all 

s < a ( t )  

positive k, 
k 

E [exp-  ~-),~ = e x p - t k  l-a. 

Hence, 

E exp --�89 I fl(a)2~(t)da-�89 I fz(a)).,~-(]ld 
0 0 

= E [exp { 1 (r (0) + Ch (0)) 2~ 

0 a . - a .  that is, conditionally on 2~(t)= x, {2~(t). a > 0} and {2~( o. a_>_ 0} are two indepen- 
dent BES Qx(0) (see Pitman and Yor [--8]). [] 

Let us give now an alternative proof of the descriptions (R.K.-1) and (R.K. 1): 
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H 

L A,L A 

fi 
Fig. 2. The transformation H~--,/t send the negative part of H-graph before gr(l~ on the positive 
part of/~-graph before 7"(-1) (stripped areas), and the negative part of H-graph between gr(1) 
and T(1) on the positive part of/~-graph between T(1) and dr(_ l) (hatched areas) 

Proof of (R.K.-1). According to Theorem 3.1, the processes 

t~e(t) l{infe2(t)> _ 1} a n d  t~--~e(t) l(infeZ(t)__< _ t} 

are two independent Poisson point processes with respective characteristic mea- 
sure ml~>_l  and ml~__<_ 1. Thus, Lemma 2.2. implies that the process of the 
excursions out of(0; 0) of(X(.  A gr(- 17);/4(- p, gr~- 1~)) is a Poisson point process 
with characteristic measure m l i>-1 and killed at an independent exponential 
time with parameter 1. Since Theorem 3.4. allows us to claim that 
{co(u+r): O<r<-v-u} has the same distribution under (mli>_llcol(u)=x) as 
under (mloJl(u)=x), applying Theorem 4.2., we obtain that, conditionally on 
~ ( r ( - 1 ) ) = t  and 2~ {2~-1): a>_-0} is a BESQx(0), and so (R.K.-1) is 
proven. [] 

Proof of (R.K. 1). Let us see now that (R.K. 1) is a consequence of (R.K.-1) 
and of the invariance under time reversal property (Lemma 3.2): 

Let us introduce the process H:H(t)=-H(a(s)-t+a(s-)) for 
t e [ 6 ( s - ) ;  a(s)] (see Fig. 2). According to Lemma 3.2., H and / t  are equally 
distributed (since their respective excursions processes are two Poisson point 
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processes with the same characteristic measure); and we denote by ~, T( -1) . . .  
the corresponding occupation densities, first hitting time of - 1 . . .  for /~. We 
clearly have for every positive a, (see Fig. 2) 

- a  _ a ~'a 

and 
- - a  - -  - a  _ a 2d~m - 2r(1) - ,T~(_ ~). 

We know that, conditionally on ~~ C_ 1)= x, {~}(_ ~):a>0} is a BES Qx(0). F u r -  

" " > " " e ~ �9 thermore {~}e(_ ~ -  ~.(_ 1): a=  0} is lndep ndent of 5~.(_ 1), and is, conditionally 
on ~'o_ ~,_ ~'o(_ ~)= y, a BE S Qy(0)(the first part is a consequence of the strong 
Markov property, and Lemma 4.1. implies the second). The additive property 
of squares of Bessel processes (Shiga and Watanabe 1-10]) allows us to claim 
that, conditionally on ,T~ { ,~(_ , :  a>0} is a BESQ~(0); so (R.K. 1)is 
proven. [] 

Remark. Applying the same methods as in the proof of (R.K.-1), we easily 
obtain other Ray-Knight's representations of the occupation densities of H taken 
at optional times such as inf{t: H(t )=0 and X( t )>l}  or inf{t: t - g ~ > l  and 
H(t)<O}. 

4.2. Computation of Some Distributions 

Section 3 also allows us to compute the distribution of several r.v.'s such as 
(for instance) H(1), gl and (5(To), 2oo) where To denotes and exponential time 
with parameter 02/2 independent of X. 

P r o p o s i t i o n  4.3. For every negative x, 

P(H(1)~dx) = 2d(1 - d)(2 H)- 1/2 e x p ( -  x 2 (1 - d)Z/2) dx. 

Proof. According to the scaling invariance property, there is a positive constant 
c such that, for every positive t, P({H(t)< 0})= e. We have 

c = E  S e- t lmo<o d = E  ~ S e-tlmo<od 
0 s > O  a ( s - )  

= E [ ~  e-'(s-)(ie-rl,o2(r)<odr)oO,(~_)] 
ks  > 0 \ 0  

(where 0 denotes the translation operator) 

= E [  +o0 q / "  dr) ! e-~(S-)dq~m(d~ 

(using Maisonneuve's formula) 
-t-oo 

= ~ exp(-8cl-d)/2s)ds~m(do~)(1-e -") 
0 

+oo V~ l - d  a 2 a-1 
=8(e-1)/a i dx(1 -e -  )~ (d~X-  =2  . 

0 
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On the one hand, for any negative x, 

P(H(1) < x) = P(T(x) < 1 ;/~(1 - T(x)) < O) 

where "2"(t)=X(t+T(x))ai:d 9(t)=H(t+T(x))-x=}p.f. ~ . Since '2 is 

independent of ~r~x), we have 

P(/- / (1)<x)=2 ~-1 l ' ( r ( x ) <  1), 

On the other hand, we easily deduce from (1.1) that 

(4.1) T(x) = inf{t > 0: B (t) = x (1 - d)}. 

Indeed, since X is non-negative, B(t)>x(1--d) for all t<T(x); and since 
X (r(x)) = O, B (r (x)) = x ( 1 -- d). So (4,1 ) is proven, and 

P(T(x) < 1)= P(inf{B(s): s__< 1} <x(1  -d ) )  

= 2 P(B((1 - d ) - 2 ) < x ) ;  

and finally, P(H(1)<x)=2aP(B((1-d)-Z)<x). [] 

The result for the positive part of H(1) is less simple: 

Proposition 4.4. The law of H + (1) is given by: for every positive O, 

Proof Let To be an exponential time with parameter 0z/2 i~adependent of X, 
We have, for any positive x, 

02 ~~ 

0[--  S(x) [ 0 2 \ 

: E l 2  S d t e x p l - - ~ t  ) 
T(x) 

0 2 + 0:) [ 0 2 \ ] 

+5- I atexp{-y91 ,,-s .,,.o,j 
S(x) \ / 

where S(x)=inf{t> T(x): H(t)=x} and ffI(t)=H(t+S(x))-x. Since H has the 
same distribution as H and is independent of ~s(~), we obtain 

P(H(To)> x)=E(exp{-- O---~ T(x)}--2d- l e xp{ -  O@ s(x)}) 
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The computation o f E  e x p - ~ -  T(x) and E e x p - ~ - S ( x )  is done by the same 

methods as in I-2], and we obtain 

E ( e x p - ~  T(x))= (ch 0x) l -d-- (sh  Ox) 1-a 

and 

E e x p - ~ -  S(x) = e  ~ 0x) l-d. 

Finally, we get 

(4.2) P (H (To) > x) = (ch 0 x) 1 - d _  (e 0 x/2) 1 - a. 

We finish the proof applying (4.2) to x = 1 and using the scaling invariance 
property. []  

Proposition 4.5. g~ foItows a fl( - l - d  1 2 d  ) 2 ' distribution�9 

Proof By the same computations as in the proof of Proposition 4.3, we easily 
obtain for every positive ~, 

E ~ exp-( t+~gt)dt  = ( 1 + 0  (e-1)/2. 
o 

Then the scaling invariance property and Barlow, Pitman and Yor's methods 
l-l] establish the proposition. []  

Eventually we have 

Proposition 4.6. For every positive O, the law of (6(To), 200) is given by: for all 
positive a and b, 

E(exp { -a6(To)--b2~ 
= 1-(2 (0 + b)) 1 - e - (0 + 2 b) 1 - d + 01 - a]/[a + (2 (0 + b))' - el. 

In particular, (5(TO) has an exponential distribution with parameter (2 0) 1 -d. 

Proof 
E(exp { - a6(TO)- b 2~ 

= E  ~ e x p -  t+af ( t )+b2 d 
0 

=EIi~~176 
0 

0 z 

= ( !  e-a tE~exp-~Ta( t )  

�9 (~ m (d co) [(1 - e -  02,/2) + e -  2b o~1 (,) (e- 02,/2 _ e - 02 v/2)]). 
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After usual computat ions,  we obtain 

and 

which proves the proposition. 

J. Bertoin 

E(exp-(~-a(t)+ b 2~ {-t(2(O + b))l-d}, 

S m(dco) ( 1 _ e-02./2) = 01 -a, 

~ m(d og) e- 2b~l(.)(e-O~u/2_e-O2v/2)=(2(O + b))t § + 2 b)t -~; 

[] 
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