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Summary. In this paper we establish an almost sure invariance principle 
with an error term o((t log log 01/2) (as t ~ oo) for partial sums of stationary 
ergodic martingale difference sequences taking values in a real separable 
Banach space. As partial sums of weakly dependent random variables can 
often be well approximated by martingales, this result also leads to almost 
sure invariance principles for a wide class of stationary ergodic sequences 
such as @mixing and or-mixing sequences and functionals of such sequences. 
Compared with previous related work for vector valued random variables 
(starting with an article by Kuelbs and Philipp [27]), the present approach 
leads to a unification of the theory (at least for stationary sequences), moment 
conditions required by earlier authors are relaxed (only second order weak 
moments are needed), and our proofs are easier in that we do not employ 
estimates of the rate of convergence in the central limit theorem but merely 
the central limit theorem itself. 

O. Introduction 

Throughout this paper, we shall adhere to the following standard notation: 
~ : = s e t  of all real numbers, N. + ..={x~N.: x>0},TZ..=set of all integers, N 
,={x~Z:  x > 0}, No :=N u {0}. For  x e N  +, we use L 2 x  to mean 
log log(max(e ~, x)). 

The present article is concerned with extensions of the following (by now 
classical) invariance principle for the law of the iterated logarithm established 
by Strassen [44] in 1964. 

Theorem O.A. Let  (X  j)i~ ~ be a sequence o f  independent, identically distributed 
(i.i.d.) real-valued random variables (r.v.'s) with EX1  = 0 and E X  2 = 1. Then, without 
changing its distribution, one can redefine the sequence (X  j)j~N on a new probability 
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space (0, ~ ,  P) on which there exists a Brownian motion (W(t)),>o with W(0)=0 
and EW(1) 2 = 1 such that 

[tl W(t) = o ((tL 2 Z X k -  t) 1/2) P -a . s .  
k = l  

(as t ~ or). (0.1) 

Strassen utilized this theorem in order to show that his functional version 
of the law of the iterated logarithm for a Brownian motion can be carried 
over to the partial sum process of a sequence of i.i.d, real-valued r.v.'s with 
mean zero and variance one. 

Since the appearance of Strassen's paper, almost sure invariance principles 
of the form (0.1) have been obtained for a large class of independent and "weakly 
dependent" sequences (Xk). Strassen himself [45] (Theorem 4.4) also investigated 
the case when (Xk) is a martingale difference sequence. Partial extensions of 
this latter result have been published by Heyde and Scott [18] and Hall and 
Heyde [16]. Weakly dependent sequences such as mixing sequences, functions 
of mixing sequences, lacunary trigonometric sequences, or moving averages of 
i.i.d.r.v.'s have been studied by Heyde and Scott [18], Philipp and Stout [34], 
and Heyde [-19]. The key idea exploited in [18], [34], and [19] is that, under 
a variety of assumptions, partial sums of "weakly dependent" sequences can 
be well approximated by martingales (see also Gordin [15] and Statulevi~ius 
[40]). If the error term of this approximation is small enough, and if the associat- 
ed martingale admits an almost sure invariance principle, this also leads to 
an almost sure invariance principle for the original partial sum sequence. 

The results quoted till now are confined to real-valued r.v.'s, and the corre- 
sponding proofs all depend on the Skorohod embedding for martingales (applied 
either to the partial sum process itself or to an associated martingale). To prove 
almost sure invariance principles for r.v.'s taking values in a higher dimensional 
Euclidean space (or even in a general Banach space), Berkes and Philipp [-2] 
developed a new approximation technique based on the Strassen-Dudley theo- 
rem and suitable estimates of the rate of convergence in the central limit theorem 
with respect to the Prohorov distance. In the meantime this approach has been 
pursued by several authors. Kuelbs and Philipp [27] investigated sequences 
of independent, q~-mixing, and e-mixing sequences of Banach space valued r.v.'s. 
In [35], Philipp weakened the assumption of finite absolute (2 + 6)-th moments 
(for some 6 > 0) still required in the proof of a Banach space analogue of Stras- 
sen's invariance principle for i.i.d.r.v.'s given in [27] (see also [-7]). Dehling 
and Philipp [7] are concerned with absolutely regular (or weak Bernoulli) and 
e-mixing sequences of Banach space valued r.v.'s. Morrow and Philipp [31] 
derived partial generalizations of Strassen's [45] martingale invariance principle 
to the case of Hilbert space valued r.v.'s. For further related results, we refer 
to Philipp's [36] survey and the references given there. 

In this paper we shall establish an almost sure invariance principle with 
an error term o(( tL 2 t) 1/2) (as t --, oc) for partial sums of certain stationary ergodic 
sequences of r.v.'s taking values in a real separable Banach space. More precisely, 
we consider stationary ergodic sequences having the property that their partial 
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sums can in a sense be approximated by partial sums of stationary ergodic 
martingale difference sequences. This approach leads to a unification of the 
theory for stationary vector valued sequences analogous to that described in 
the book by Hall and Heyde [17], Chapter 5, for real-valued r.v.'s. In the station- 
ary case, our main results (Theorems 3.1 and 3.2 below) contain several results 
previously derived by the Berkes-Philipp method as special cases (see Corol- 
lary 4.1 and Remark 4.3 below). In contrast to earlier work concerning almost 
sure invariance principles for weakly dependent random vectors, the results 
of this paper usually hold under minimal moment conditions. (Only second 
order weak moments are required in Theorems 3.1 and 3.2; previous authors 
generally needed moment conditions somewhat stronger than finite absolute 
second moments.) This is achieved by organizing the proofs in such a way 
that estimates of the rate of convergence in the central limit theorem are com- 
pletely avoided; only a conditional version of the usual central limit theorem 
for stationary ergodic martingale difference sequences taking values in a finite- 
dimensional Euclidean space is employed. Thus our proofs are also easier than 
earlier proofs of related results in that the tools required are weaker. 

We now proceed to describe the organization of this paper. In Sect. 2 we 
introduce and discuss the dependence structure on which our main results are 
based. The essential condition (the "Mz-property") ensures that the partial sums 
of a stationary ergodic sequence can be well approximated by partial sums 
of a stationary ergodic martingale difference sequence (Proposition 2.1). It turns 
out (Proposition 2.2) that this condition, though usually much easier to handle, 
is actually equivalent to a condition occurring in the book by Hall and Heyde 
[17]. Proposition 2.2 can be regarded as an answer to a question implicitly 
posed in [-17]. The already announced general invariance principles (Theo- 
rems 3.1 and 3.2) for stationary ergodic sequences satisfying a suitable variant 
of the M2-property are then stated in Sect. 3. Section 4 contains applications 
of the results of Sect. 3 to sequences of mixing r.v.'s and functions of such 
sequences (Corollary 4.1). We also relate these results to those obtained in the 
previous literature (Remarks 4.2 and 4.3). Sections 5-10 are devoted to proving 
the as yet indicated results. In Sect. 5 we give a new proof of Strassen's invariance 
principle. This proof illustrates in a simple setting some of the ideas to be 
used in the proof of Theorems 3.1 and 3.2. The proof of Theorems 3.1 and 
3.2 is then carried out in Sects. 6-8. Having the proof in Sect. 5 in mind, the 
r61e of the auxiliary results stated in Sect. 6 becomes fairly obvious. Section 7 
contains an approximation theorem (Proposition 7.1) for random variables tak- 
ing values in a sequence space. The invariance principle for finite-dimensional 
Banach spaces (Theorem 3.1) is an immediate consequence of this proposition, 
while the remaining part of the proof of Theorem 3.2 (where the underlying 
separable Banach space is admitted to be infinite-dimensional) consists to a 
considerable extent in simply translating Proposition 7.1 into a Banach space 
result (see Sect. 8). It seems worthwhile to note that concepts connected with 
the theory of abstract Wiener spaces or the law of the iterated logarithm in 
general Banach spaces come into the picture only in Sect. 8. The proof of Propo- 
sition 2.2 is given in Sect. 9; Corollary 4.1 and Remark 4.1 are verified in Sect. 10. 
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1. Notation and Preliminaries 

E. Berger 

1.1. General notations. The topological dual of a Banach space (~, [1" [[~) is denot- 
ed by 113". 1A is the indicator function of a set A. For n~lN and x 
=(Xl . . . .  , x,)MR", llxl[ will always stand for the Euclidean norm of x, i.e., ]]x]l 

:= x i) , I, is the n x n identity matrix. For a symmetric, nonnegative definite 

n x n matrix C, N(0, C) denotes the normal distribution with mean 0 and covari- 
ance matrix C. The convolution of two probability measures # and v defined 
on the Borel ~-field of a separable Banach space 113 is written as # .  v. 

Let (f21, ~ ,  Pl) be a measure space, let (g]2, o~2) be a measurable space, 
and let T: s ~f22 be a measurable mapping. Then #1 ~ T -  1 denotes the measure 
#2 defined by #2(A):=#I(T-1A) (Ae~2). 

1.2. Further notations and conventions. For a Polish space O, ~(O) denotes the 
Borel ~r-field induced by the topology of O. 

Let (~, ~ ,  P) be a probability space, and let O be a Polish space. A mapping 
X: ~ ~ O will be called a random variable (r.v.) if and only if it is Borel measur- 
able. If X is simply said to be measurable, this will always mean that it is 
Borel measurable. 

For a probability space (t2, ~ ,  P), ~2(Q, ~-, P) denotes the Banach space 
of P-equivalence classes of Borel measurable functions f :  ~ 2 ~  such that 
~fZdP< 0% equipped with the norm ]]" 1[ 2 defined by IL f I[ 2 :=(~f2dP) 1/z. If the 
underlying probability space is clear from the context, we shall also use the 
abridged notation ~2 in place of ~2(t2, ~ ,  P). For  a sequence ( f , ) , ~ o ~ j  in 

(~, ~ ,  P), the convergence ][ f , - f ~  [[ 2-~0 (as n ~ oo) will usually be indicated 
by '% , f~  as n ~ " .  

-9'2 

Let a ~  +, and let (113, [t" [[~) be a separable Banach space. Then C~[0, a] 
denotes the separable Banach space of all continuous functions f :  [0, a] ~]13, 
furnished with the norm []" H (,) defined by [] f [l(~).'=sup { [[ f(x)[IB: xe[0,  a]}. 

If (Xi)j~s (J an arbitrary set) is a family of r.v.'s, d(Xs ;  A(j)) denotes the 
o--field generated by all X s such that j has the property A (j). 

1.3. Mixing conditions. Let (Q, ~ ,  P) be a probability space, let O be a Polish 
space, and let (Xk)k~Tz be a stationary sequence of r.v.'s Xk: ~ O .  For J = Z ,  
put ~ s ' = ~ ' ( X i ; J 6 J ) ,  and let P [~s  denote the restriction of P to ~ .  Write 

I~:={m~2g: re<p}, I;..={m~2~: m>p} (for p ~ ) ,  

and define (for n~N) 

a(n).'=sup {[ P(A c~ B)-- P(A) P(B)[: A e ~ 8 ,  Be ~ , } ,  

p (n)..= sup {(I f g  dP)/((~ f 2 dp) l/2 (l g2 dp) l/2): 

f ~  ~ (~2, ~ , ,  Pl~'~6), g ~ ~-c ~ (s ~a ' ,  P I,~,), 

f +O, g 4=0, f f  dP = ~g dP = 0}, 

q~ (n):= sup {]P (B] A) - P (B)]: A e ~ ,  B e ~ , ,  P (A) > 0}. 
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The sequence (Xk) is called e-mixing, p-mixing, or @mixing according as e(n) 
--*O,p(n)---,O, or q~(n)~0 as n ~ .  It is clear that a p-mixing sequence is e- 
mixing. Moreover, a @mixing sequence is p-mixing (cf. Ibragimov and Linnik 
[20], Theorem 17.2.3, and Ibragimov [21]). 

1.4. Brownian motion in a Banach space. Let (~, II" II~) be a real separable Banach 
space. A probability measure v on N(N) is called a mean zero Gaussian measure 
if for every f ~ N *  vof  -~ is a mean zero Gaussian distribution with variance 
~f(x)2v(dx). Starting from a mean zero Gaussian measure on NOB), the con- 
struction of a corresponding Brownian motion can be carried out analogously 
to the real case (see, e.g., Kuelbs E23]). 

2. Martingale Approximation of Partial Sums of Stationary Sequences 

To describe the general setting underlying Theorems 3.1 and 3.2, we begin with 
some definitions. 

Definition 2.1. Let O be a Polish space. A quadruple ~..=((O, ~ ,  P), z, ~o, Yo) 
consisting of a probability space (~, ~ ,  P), an ergodic automorphism z: ~2 ~ ~2 
on (O, ~ ,  P), a sub-~-field ~o ~ with ~o c z - 1  ~o, and a r.v. Yo: Q ~  O is 
called the germ of a O-valued stationary ergodic F-sequence. (Here " F "  is used 
to remind of "filtration"; cf. Definition 2.2 below.) 

Definition 2.2. Notation is as in Definition 2.1. The sequence (Yk, ~)k~Z defined 
by 

Yk..=Yo~'C k and ~k ::Z'-  k ~0 (2.1) 

is called the stationary ergodic F-sequence induced by ffL 

Definition 2.3. Let ~=((f2,  ~ ,  P), z, ~o, 40) be the germ of an IR-valued station- 
ary ergodic F-sequence, and let (~k, ~k)k~Z be the stationary ergodic F-sequence 
induced by ~.  

(a) Suppose El~ol < ~ .  Then the sequence (~k, ~k)k~TZ is said to be a stationary 
ergodic martingale difference sequence if and only if 

4o is ~o-measurab leandE(~o l~_ l )=0  a.s. (2.2) 

(b) Suppose E e l <  m. Then the sequence (~k, ~k)k~Z is said to have the 
M2-property if and only if the sequences 

Y~ E(r and (~ j -  E(~I ~o) (2.3) 
\ j =  1 ] n E N  x j  = -- n n e N  

are Cauchy in ~e 2 . 

Remark 2.1. If (r ~k)k~Z is a stationary ergodic martingale difference sequence 
in the sense of (a), then 

~k is ~k-measurable and E ( ~ k l ~ -  1) = E ( ~ o  [ ~ - -  1) o ~7 k = 0 a.s. 

for all ks2L 
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The importance of the M2-property resides in the fact that under this condi- 
tion the partial sums of the sequence (~k)k~ behave in a sense like partial sums 
of a stationary ergodic martingale difference sequence; this is a consequence 
of the following 

Propos i t ion  2.1. Let ff~ = ((f2, ~ ,  P), z, ~o, 40) be the germ of an ]R-valued station- 
ary ergodic F-sequence, and let ((j, ~)j~z be the stationary ergodic F-sequence 
induced by ~. Suppose 

E ~o 2 < ~ .  (2.4) 

If 
(~j, ~ ) ~  has the M2-property, 

then the r.v.'s ~k (ke7]) admit a representation of the form 

where 

and 

(2.5) 

~k = ~k + q~_)l- r/(k ~) a.s., (2.6) 

(~j, ~j)j~e is a stationary ergodic martingale 

difference sequence with E ~ 2 < oe (2.7) 

(tl}~))j~z is a stationary sequence of r.v.'s with E l~Ir176176 z < oo. (2.8) 

Proof (see also Gordin [15], and Hall and Heyde [17], Chapter 5). For k e Z  
and I sN,  define 

l 0 

j = l  j = - t  

Using (2.4) and (2.5), we see that the limits 

~/(k ~)'= ~r - lim t/~k ~ (2.9) 
l ---~ oo 

exist and that 

r  , 0  as l ~  (2.10) 
~ 2  

and 

E(r  ,0 as l ~ m .  (2.11) 
.s 2 

(Here we have also made use of the fact that 

E(~j+tl~)=E(~jl~o)O~t a.s. (2.12) 
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for all j, leZ.) This implies that the right-hand side of the identity 

l 

~, (E(4j+kl~k)--E(4j+klYk-1)) 
j = - l  

+E(4k-l-ll~k-1)--E(~k+ll~k-1) a.s. (2.13) 

converges in ~ (as l ~ ~ )  to 

~k*.--;~ .a_,(~) ~/~k~)l. (2.14) 

Since ~ can also be obtained as the ~2-1imit of the left-hand side of (2,13), 
it is easy to check that 

E(~'~' I~k_ 0 = 0 a.s. (2.15) 
and that 

~'* can be assumed to be ~-measurable .  (2.16) 

Moreover, (2.12) entails that 

~*=~*oz k a.s. and rl~k~176 k a.s. (2.17) 

Taking ~k:=~ot k and using (2.14)-(2.17), we arrive at (2.6). 

An alternative characterization of the Mz-property is provided by the follow- 
ing 

Proposition 2.2. Let @=((f2, ~ ,  P), t, ~-o, 4o) be the germ of an N-valued station- 
ary ergodic F-sequence, and let (4j, ~'~);~z be the stationary ergodic F-sequence 
induced by (l?r. Suppose E 4 2 < ~ .  Moreover, let 

x l '=E(4-z l~o)-E(r  for le~,  

let ~ _ ~  := (~ ~ ,  and let Y ~  denote the a-field generated by ~ O~k. Then the 

following two statements are equivalent: 

(i) E(4kl is a Cauchy sequence in .LP2 ; 
\ k  = i / n e ~ q  

(ii) lira sup E x_ < 0o and E (4o I ~ -  ~) = 0 a.s. 
m = l  n ~ ~  \ \ l = m  / / 

Similarly, the statements (iii) and (iv) are also equivalent: 

( -~_n(4k--E(4k' ~0))) (iii) is a Cauchy sequence in ~2 ; 
k n e ~ I  

(iv) lira supE xl < oo and E(4olgoo)= 4o a.s. 
m = l  n ~ o o  \ \ l = m  / / 

Proof See Sect. 9. 
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Heyde [19] and Hall and Heyde [-17], p. 144, implicitly posed the problem 
of simplifying conditions (ii) and (iv) in a convenient way. The result stated 
in Proposition 2.2 can be regarded as an answer to this question. 

In [19] and [17], the representation (2.6) is obtained for sequences (@ ~)j~z 
satisfying (ii) and (iv) instead of (i) and (iii) (as in our Proposition 2.1). Usually, 
conditions (i) and (iii) are easier to work with; but in some cases (e.g., for station- 
ary linear processes) conditions (ii) and (iv) apply in a natural way. (For further 
details, see Corollary 4.1 (below) and its proof.) 

The next definition extends the M2-property to the vector space setting. 

Definition 2.4. Let (]B, Pr'[[~) be a real separable Banach space, let 
= ((f2, ~ ,  P), z, o~ o, Xo) be the germ of a N-valued stationary ergodic F-sequence, 
and let (Xk, ~k)keZ be the stationary ergodic F-sequence induced by t~. Suppose 
that 

Ef(Xo) 2 < ~ for all felB*. 

Then the sequence (Xk, ~k)k~Z is said to have the weak M2-property if and 
only if, for all f e N * ,  the sequences (f(Xk), ~k)k~e have the M2-property. 

3. General Theorems 

After these preparations, we are now in a position to state our main results. 

Theorem 3.1. Let deN,  let I~ = ((f2, ~ ,  P), z, ~o, Xo) be the germ of an Nd-valued 
stationary ergodic F-sequence, and let (Xk, ~)k~Z be the stationary ergodic F- 
sequence induced by fI~. Suppose: 

EllXoll2< oo; (3.1) 

(Xk, ~)k~Z has the weak M2-property. (3.2) 

Write So .'=0 ( eN d) and, for heN,  Sn-'= ~ Xj. Then the limit 
j = l  

C.'= lim 1 Cov(S,) (3.3) 
n ~ o o  n 

exists, and, without changing its distribution, one can redefine the sequence (Xk)ke N 
on a new probability space ((~, ~ ,  P) on which there exists an Nd-valued Brownian 
motion (W(t))t~o with W(0)=0 and Cov(W(1))= C such that 

[I S m -  W(t)ll = o((tL2 t) 1/2) / 5 -  a.s. (as t --, ~). (3.4) 

Taking tc(r)=d for all r e i n  in Proposition 7.1 (below), the proof follows 
directly by combining this proposition and Lemma 6.4. 

Remark 3.1. In the case d = l ,  the assertion of the above theorem coincides 
with an almost sure invariance principle that can be obtained as a consequence 
of the proof of a functional law of the iterated logarithm for partial sums of 
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stationary sequences of real-valued r.v.'s given by Heyde and Scott [18] and 
Heyde [19]. This follows from Proposition 2.2 (above). 

Next we consider r.v.'s taking values in an arbitrary real separable Banach 
space. 

Theorem 3.2. Let (]B, LI'][~) be a real separable Banach space, let ff~ 
= ((~2, ~ ,  P), z, ~-o, Xo) be the germ of a ]B-valued stationary ergodic F-sequence, 
and let (X k, ~k)k~e be the stationary ergodic F-sequence induced by I~. Suppose: 

E f ( X o )  2 < co for all f ~  ]B* ; (3.5) 

(Xk, ~)k~Z has the weak Mz-property. (3.6) 

Ill+ire So:=O (r and, for n~N, S/1:= i Xj. Then the limits 
j = l  

C ( f  g).'= lim 1 Ef(S/1) g(S,) (3.7) 
/I--409 n 

exist for all f, g~]B*, and the following two statements are equivalent: 
(a) there exists a mean zero Gaussian measure v with covariance function 

C (i.e., C ( f g ) = ~ f ( x ) g ( x ) v ( d x )  for all f, ge]B*), and the sequence 
((nL 2 n)-1/2 S,)/1~ is with probability one conditionally H" Jim-compact; 

(b) without changing its distribution, one can redefine the sequence (Xk)k~ ~ 
on a new probability space (f2, oj, p) on which there exists a B-valued Brownian 
motion (W(t))t>_o such that 

II s in-  W(t)llm=o((tg2 t) 1/2) P - a . s .  (as t ~ oo) (3.8) 

(in this case, the covariance function of W(1) is necessarily equal to C). 

The proof of Theorem 3.2 will be carried out in Sects. 6-8. 

Remark 3.2. Together with the functional law of the iterated logarithm for Brown- 
Jan motion in a real separable Banach space (established by Kuelbs and LePage 
[24]), an invariance principle of the form (3.8) implies that the partial sums 
of the sequence (Xk)k~ also satisfy the functional law of the iterated logarithm. 

Remark 3.3. The point of view adopted in Theorem 3.2 is similar to that in 
Kuelbs' [-25] Theorem 3.1 in that both results involve the assumption that (with 
the notation of our Theorem 3.2) the sequence ((nLa n)-1/2 Sn)/1~N be a.s. condi- 
tionally compact in the norm topology. 

Remark 3.4. The criterion (a) in Theorem 3.2 is intimately connected with two 
rather intricate questions, namely: 

(i) Under  which conditions on C does there exist a mean zero Gaussian 
measure having C as its covariance function? 

(ii) When is the sequence ((nL2 n) - 1/2 S/1)/1~ with probability one conditional- 
ly norm compact? 
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As to the first problem, only partial results are known. (For more detailed 
information, see Vakhania, Tarieladze, and Chobanyan [46], Chapters IV and 
V.) In the last years, a great deal of research has been focused on the second 
problem in the special case when the S,'s are partial sums of a sequence (Xk)k~N 
of i.i.d.r.v.'s; an important recent paper on this subject is due to Ledoux and 
Talagrand [28]. For weakly dependent (nonindependent) r.v.'s much less is 
known. Some results in this respect can be found in [-27] (Theorem 5 in conjunc- 
tion with conditions (1.7) (1.9) of Theorem 1), [-7] (Theorem 6), and 1-31]. It 
is natural to ask which of the results so far established for i.i.d.r.v.'s can be 
carried over to the class of r.v.'s considered in Theorem 3.2, in particular to 
stationary r martingale difference sequences. 

We emphasize, however, that further progress concerning the questions (i) 
and (ii) would hardly affect the proofs of the present paper; such results would 
only be of complementary character. 

Remark 3.5. Notation and assumptions are as in Theorem 3.2. The weak 
M2-property implies that the limits 

?k(f),=LPZ-- lim ~ E(f(Xs+k)lO~ ) 
m ~ o o  j = l  

and 
0 

pk(f):=LZ2-- lim ~, (f(Xs+k)--E(f(Xj+k)l~k)) 
m - - +  o~3 . 

J :  - - m  

exist for all ke7Z and all feN*.  Setting 

ttk(f)"=?k(f)-- Pk(f) and ~k(f)'=f(Xk) + qk(f)-- qk-~ (f), 

it follows from the proof of Proposition 2.1 that 

and that 

(~k (f))k~e is a stationary martingale difference sequence 

with E~o(f) 2 < c~ 

(qk(f))k~Z is a stationary sequence with Erlo(f) 2 < cx3. 

Together with (3.7), this leads to the following alternative definition of C: 

C(f, g)= E(~o(f) ~o (g)) (f, g zlB*). (3.9) 

4. Applications 

Corollary 4.1 below gives an impression of the variety of applications of Theo- 
rems 3.1 and 3.2. To formulate this result, we begin by introducing some nota- 
tion. 
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Let (f2, ~ ,  P) be a probability space, let (113, [1. lIB) be a real separable Banach 
space, and let (Xk)k~z be a stationary sequence of r.v.'s Xk: f2-*IB. Suppose 
that 

E(f(Xo)2)<oe and Ef(Xo)=O forall fEN*. (4.1) 

We consider the following conditions A.1-A.7. 

A.1 (stationary ergodic martingale difference sequences). (Xk)k~Z is ergodic and, 
writing fro .'=~qg(X_~ ;jENo), one has 

E(f(XOl~o)=O a.s. forall fEN*. 

A.2 (a-mixing sequences). (Xk)k~e is a-mixing, E([f(X1)I2+o)< oo for some 6EIR + 
and all fEN*, and the mixing coefficients e(k) (kEN) satisfy one of the following 
two conditions: 

(i) writing c~(g,f):= max E f X , the series 
1-<J <2~ i 

~cl(g,f) e(2z) ~/(4+2.) converges for all f eN*;  
l = 1  

(ii) ~ e(k)*/(4+2~)< oo. 
k = l  

A.3 (p-mixing sequences). (Xk)~z is p-mixing with ~. k-  1/2/9 (k)< ct3. 
k = l  

A.4 (~b-mixing sequences). (Xk)k~Z is qb-mixing, E(lf(X1)12+~)<ov for some 
gEl-0, ~ )  and all feN*,  and the mixing coefficients qS(k) (kEN) satisfy one of 
the following two conditions: 

(i) letting cl(6,f) be defined as in A.2, one has 

~'.cl(g,f) qS(2t) (1 +~)/(2+~) < oc for all fEN*; 
l = l  

(ii) ~ k-1/2(9(k)(l+~*)/(2+~ oo, where 6*.'=rain(6, 1). 
k = l  

A.5 (functions of a-mixing sequences). The Xa's possess a representation of the 
form Xk = ~((Yj + k)~e), where 

(i) (Yj)~z is a stationary a-mixing sequence of r.v.'s on ~ with values in 
a Polish space O, 

(ii) E(lf(Xo)[ 2+~) < oc for some 6EN + and all fEN*, 

(iii) ~ e(k)~/(g+zo)< oQ (the e(k)'s being the e-mixing coefficients pertaining 
k = l  

to the sequence (Y~)j~z), 
(iv) 7 z: O z--, N is measurable, 
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and, writing Jgk_k,=d(Yj; -k<=jNk) for keN,  one has 

(v) ~ (E[E(f(Xo)[ Jgk-k)--f(Xo)[2) ~/2 < o9 for all felB*. 
k = l  

A.6 (functions of qb-mixing sequences). The Xk'S possess a representation of the 
form X k = 7J((Yj+k)j~z), where 

(i) (Y~)j'~z is a stationary ~b-mixing sequence of r.v.'s on f2 with values in 
a Polish space 0,  

(ii) E(]f(Xo)]2+~)< oe for some 6ie[0, oe) and all f e ] ]* ,  

(iii) ~ q~ (k) (1 + ~)/(2 + ~) < oo (the ~b (k)'s being the q%mixing coefficients pertain- 
k = l  

ing to the sequence (Yj)j~e), 
(iv) T: 0 Z ~ IB is measurable, 

and, writing ~ k  k '= d (Yj ; -- k Nj N k) for k e N, one has 

(v) ~ (E[E(f(Xo)[jgk_k)--f(Xo)[2) 1/2 < oe for all f e N * .  
k = l  

A.7 (stationary linear processes generated by i.i.d.r.v.'s). The Xg's possess a 

representation of the form X k = ~ cj Yk-j, where 
j =  -oo  

(i) (Yj)j~z is a sequence of i.i.d.r.v.'s Yj: ~?--.]B satisfying E(f(yo)2)< oo and 
Ef(Yo) =0  for all fe]B*, 

(ii) (cj)j~ Z is a sequence of real numbers with ~ c2<0c and 
j = - o o  

l imsup c~ < ~ .  
e~{-  1,1} m = l  n ~ o o  j 

Corollary 4.1. Notation is as above. As usual, let S o.'=O (e]B) and S,,= ~ Xj  

for neN.  Suppose that (4.1) and, in addition, one of the conditions A.1-A.7 is 
fulfilled. Then: 

($1) In case IB=IR d (for some deN),  the conclusion of Theorem 3.1 also 
holds under the present hypotheses. 

($2) The limits C ( f  g),= lim 1 E(f(S,) g(S,)) exist for all f gelB*, and the 
n ~ o ~  n 

equivalence of the statements (a) and (b) in Theorem 3.2 also holds under the 
present hypotheses. 

Proof See Sect. 10. 
Remark 4.1. Notation is as in Corollary 4.1. For h e n  and f, ge~* ,  define 

U,(f, g),=E(f(Xo)g(Xo))+ ~ E(f(Xo) g(Xk)) 
k = l  

+ ~ E(f(Xk) g(Xo)) 
k = l  
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if one of the conditions A.1-A.6 is fulfilled, and 

V,(f, g):= E(f  (Yo) g(Yo)) 
J 

if A.7 is fulfilled. Then the sequences (U,(f g)),~N ((V,(f, g)),E~, respectively) con- 
verge to C(f g). 

Proof See Sect. 10. 

Remark 2~.2 (related results for real-valued r.v.'s). 
(a) If IB=R a, then Corollary 4.1 is a corollary to Theorem 3.1. As already 

mentioned, the case d= 1 of Theorem 3.1 is equivalent to a result of Heyde 
and Scott [18], [19]. Since Hall and Heyde [17] did not exploit the equivalence 
given in Proposition 2.2 of the present paper, their assumption on the rate of 
decay of the q%mixing coefficients in Corollary 5.5 (in [17]) is somewhat stronger 

than our condition in A.4, namely ~ q~ (k) ~1+ ~)/(2 + ~)< oo. 
k = l  

(b) Improving earlier results of Iosifescu [22] and Reznik [38], Oodaira 
and Yoshihara [32], [33] derived laws of the iterated logarithm for partial 
sums of stationary sequences satisfying mixing conditions. For ~b-mixing 
sequences and functions of ~b-mixing sequences, their assumptions are more 
stringent than ours; on the other hand, for a-mixing sequences and functions 

of a-mixing sequences, they only need that ~ a(k) ~'/(2 +~')< oo for some 6' e(0, 6). 
k = l  

(Here 6 and a(k) (keN) have the same meaning as in A.2 and A.5, respectively.) 
(c) In the case fi =0 (cf. A.4), the best condition on the mixing rate for 

sequences of q~-mixing r.v.'s occurring in the previous literature in connection 

with results of iterated logarithm type seems to be ~ ~b(k)a/a<oo (cf. [17], 
k = l  

Corollary 5.5). For be(0, 1], Berkes and Philipp [2] and Dabrowski [6] obtained 
almost sure invariance principles requiring only a logarithmic rate of decay 
of the ~b-mixing coefficients. (For further extensions of these last mentioned 
results to p-mixing and a-mixing sequences, see Bradley [4].) 

Remark 4.3 (related results for Banach space valued r.v.'s). 
(a) Taking Strassen's converse to the law of the iterated logarithm (see, e.g., 

[13] or [43]) into account, we see that, under each of the assumptions A.1-A.7 
except for A.2 and A.5, the above corollary comprises the independent case 
(see [7], Theorem 3) in its full generality. 

(b) Extending the work of Kuelbs and Philipp [27], Dehling and Philipp 
[7], Theorem 2, established the equivalence of the statements (a) and (b) in 
Theorem 3.2 (as to the definition of the covariance function, recall Remark 4.1 
above) for weakly stationary, a-mixing sequences (Xk)kEN satisfying 
supEllXkl[2+~<oO (for some 6e(0,1]), EXk=O for all keN,  and ~(n) 
kEN 

= O(n-(~ +,)(2 +~)/~) for some e e R  +. In the case of a finite-dimensional Banach 
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space N, our mixing condition in A.2(ii), demanding a rate of decay similar 
to e(n)= O(n (1 +~)(4+2~)/~) for some e e R  +, is somewhat more restrictive. 

(c) For some further results related to the present paper, we refer to Morrow 
and Philipp [31], Eberlein [12], and Philipp [37], where invariance principles 
for lRd-valued and Hilbert space valued r.v.'s are obtained. These authors require 
more stringent moment conditions, but, on the other hand, their results also 
apply to a wide class of nonstationary sequences. 

Remark 4.4 (a problem). It would be interesting to know whether the strictly 
stationary case of Theorem 2 in [7] can be obtained as a consequence of our 
Theorem 3.2 (cf. Remark 4.3 (b)). A possible approach (suggested by A.2(i)) to 

n 2+di' 

this problem would be to estimate E k~_l_ G (6'~(0, 6)) for stationary a-mixing 

sequences (G)k~z of real-valued r.v.'s satisfying E ~ 1 = 0, E ]411 z + ~ < ~ for some 

~ / R  +, and ~ ~(k)~/(2+~)< ~ .  Some results (unfortunately too weak for our 
k - t  

purposes) in this direction have been derived by Yokoyama [47]. 

5. A New Proof of Strassen's Invarianee Principle 

Before proceeding to the proof of Theorems 3.1 and 3.2 (in Sects. 6-8), we shall 
sketch some of the underlying main ideas by giving a new proof of Strassen's 
invariance principle (Theorem 0.A above) based on the same type of reasoning. 
Because of its neatness, this proof also seems to be of some interest in its own 
right. 

Compared with previous proofs of Theorem 0.A, the essential advantage 
of the present proof is that the tools employed are more elementary in the 
sense that they are easier to extend to more general situations. Indeed, examining 
this proof and taking into account that Lemma 5.1 is only utilized to simplify 
the presentation (see Remark 5.1 below), it turns out that the only deeper ingre- 
dients are 

(a) the easier upper half of the Hartman-Wintner law of the iterated loga- 
rithm (a short proof of which can be found in a paper by de Acosta [1]) 
and 

(b) the usual central limit theorem. 
Especially, this proof works without estimates of the rate of convergence in 
the central limit theorem. Apart from the proofs employing the Skorohod 
embedding method, all previous proofs of Theorem 0.A and extensions thereof 
required such estimates (see, e.g., Major [29], Kuelbs and Philipp [27], and 
Philipp [35]). As such estimates are often difficult to prove (note that, e.g., 
Philipp's [35] proof is based on a rather delicate estimate due to Yurinskii 
[481 of the rate of convergence in the central limit theorem with respect to 
the Prohorov distance), our approach appears to be particularly attractive. What 
is even more important is that estimates of the rate of convergence in the central 
limit theorem for general stationary ergodic martingale difference sequences 
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(such sequences will play a crucial r61e in the proof of Theorems 3.1 and 3.2) 
are not available and unlikely to exist. 

Though our proof of Theorem 0.A is markedly different from Major's [29] 
one, it nevertheless has two points in common with his proof in that it also 
makes use of the quantile transform technique and the argument stated (in 
a somewhat extended form) in Lemma 6.4 below. 

We preface our proof by two lemmas. 

LemmaS.1.  (Skorohod [39]; see also Dudley and Philipp [9], p. 521f.) Let 
(Y2, ~,, P) be a probability space, let 01 and 02 be Polish spaces, let Y: [2 -~ 01 
and U:/2--+(0, 1) be two r.v.'s, and let Q be a probability measure on N(OI x 02). 
Suppose: 

(a) U is uniformly distributed on (0, 1); 
(b) U and Y are independent; 
(c) the first marginal of Q is equal to P o Y -  1. 

Then there is a Borel measurable mapping ~ : O l x ( 0 , 1 ) ~ O 2  such that 
Po(Y, 7*(Y,, U)) - '  =Q. 

Lemma 5.2. Let (Q,),~No be a sequence of probability measures on B ( ~ )  such 
that ~ x 2 Q,(dx)< ~ for all n~No.  Suppose: 

(a) Q, ~ Qo weakly as n ~ ~ ; 
(b) ~x 2 Q,(dx) + ~ x 2 Qo(dx) as n ~ ~ .  

Then there is a probability space (~, ~,, P) on which there is defined a sequence 
(~,),~o of real-valued r.v. 's 4, with P o ~ 1  = Q, (for all n~No) such that 

E(~,--~o)2 ~ 0  as n--+~.  (5.1) 

Proof Let (/2, o ~, P):=((0, 1), ~((0, 1)), 2), where 2 is the Lebesgue measure on 
~((0, 1)). For each keNo,  let Fk be the distribution function corresponding to 
Qk, i.e., 

Fk(X),=Qk((-- 0% x]) for x ~ N .  
Moreover, let 

~k(y),=inf{teN.: Fk(t)>=y } for y~(0, 1). 

It is well-known (see, e.g., Dudley [8], p. 71, or G/inssler and Stute [14], 
Satz 1.12.6) that 

p o ~k 1 = Qk (5.2) 

and that lim ~,(Y)=~o(Y) except for at most countably many points y~(0, 1), 
n --> ~3 

i.e., 

lim ~, = Go P-a.s. (5.3) 
t l - +  oO 

Because of (b), (5.2) and (5.3), it follows from Scheff6's 1emma (see, e.g., G/inssler 
and Stute [14], Satz 1.6.11)that 

the sequence (~,),~o is uniformly square-integrable. (5.4) 

Combining (5.3) and (5.4), we arrive at (5.1). 
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Proof  o f  theorem O.A. Enlarging the underlying probability space if necessary, 
we may assume that the probability space (Q, ~,, P) on which the sequence 
( X j ) j ~  is defined is so rich that there also exists a family { U}~)k; k, r e N ,  ee{1, 2}} 
(independent of (Xj) j~)  of i.i.d.r.v.'s U}]k: ~ ~ (0, 1) with uniform distribution 

on (0, 1). As usual, we write S0.'=0 and S, ,= ~ Xj for heN .  
j = l  

The proof of Theorem 0.A consists of four steps S. 1-S.4. 

S.1 (approximation of a single partial sum). Combining the central limit theorem 
and Lemma 5.2, we can find a sequence ( l ( r ) )~  in N with 

l ( r + l ) / l ( r ) e N  (5.5) 

and a probability space (f2, ~,, P) on which there are defined r.v.'s S,,), T~(~) g2 
IR such that 

and 

Po(S~,)) -1 = P-o Sl(~),-1 Po(l(r) -I/a Tiff)) -1 =N(0,  1), 

E I S~(.)- Tl(*)] 2 < l(r)/(2r4). 

By virtue of Lemma 5.1, we may assume that 

(s ~,, P ) =  (s ~,, P), * - Sl(r) -- Sl(r), 

�9 - -  1, 1.t~ T~(,)- A,(SI(,), U (r) 

where A,: IR x (0, 1) --* N is a Borel measurable function. 

S.2 (approximation of a single block). Let r e N ,  and let 

Z(() := Ar(SI(~), ~I,T T(r)ll ~ 

(with A~ being as in S.1). For a~lR +, let C[0, a] denote the separable Banach 
space of all continuous functions f :  [0, a] --*IR, equipped with the supremum 
norm. According to Lemma 5.1, there is a Borel measurable mapping 

such that 

~ :  IR x (0, 1) -* C [0, l(r)] 

'J  2, 1.t 

is a Brownian motion with 

satisfying 

V~r)(O)=O and E(V(lr)(1)2)=I 

V~')(l(r)) = Z~( ) P-a.s. 
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S.3 (a sequence of preliminary approximations of the partial sum process). Let 
(l(r)),~, (A~),~, and ( ~ ) , ~  be as in S.1 and S.2. Our next aim is to construct 
a sequence (W~),~r~ of Brownian motions W~= {W~(t); te[0,  oe)} with 

W~(0)=0 and EW~(1)2=I 

having the following properties: 
(a) sr 1) l(r) + t ) -  W~((k- 1) l(r)); te  [0,/(r)]) 

~ ( S k l ( r ) - - S ( k - 1 ) l ( r ) ,  U((!k, " 2 , r r ( r )k j  ~ for all k e N ;  

(b) E I(VV~ (k 1 (r)) - I/V, ((k - 1 ) l (r))) - (Skl(~) -- S(k- 1)l(,)) 12 
< l(r)/(2r 4) for all k e N ;  

(c) ((W~ (k l(r))- W,((k-  1)l(r)))- (Skl(~)--S(k-1)t(~)))k~ 
is a sequence of i.i.d.r.v.'s. 

To this end, we put 

and 

(r) . _  T?(r) 
Zk "-A,(Skt(~)-- S(k- ~1 t(~), '-'1, k) 

,..F 2,k! 

for k, re~T. The desired Brownian motions W, ( t eN)  are then defined inductively 
by setting W,(O):=0 and 

W~(t) := W~((k-- 1) I(r)) + Vff)(t-- ( k -  I) l(r)) 

for te ( (k-1) l ( r ) ,  kl(r)] and keN.  It is obvious from S.1 and S.2 that the thus 
obtained sequence (W,)r~ N satisfies (a)-(c). Moreover, 

(d) lim sup(tL2 t ) - a / 2 l S t ~ ]  - W,(t)l < r  -2 P-a.s. for each r e N .  
t ~ c X )  

To prove (d), let r e N  be arbitrarily fixed, and let the sequences t~ar(~) k l v a  ~,  k]k~N 
(~e{1, 2}) be defined by 

Mllr!k := m a x  [S, . --S(k_l) t(~)  [ 
(k-  1)l(r)<m<kl(r) 

and 

M(') ] W,((k-  1 + t) l(r))- W,((k-  1)/(r))l. 2 , k  : =  max 
O _ < t _ < l  

It suffices to show that 

and that 

lira sup (m I(r) L 2 (m l(r)))- 1/2 [ S m l ( r  ) __  VC~(m 1 (r))[ 

< r -  2 P-a.s. (5.6) 

lim k-l/2M(r)~.k--O P-a.s. (~e{1, 2}). (5.7) 
k---~ oo 
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In view of (b) and (c), (5.6) is an immediate consequence of the upper class 
part of the Hartman-Wintner law of the iterated logarithm, (5.7) follows from 
the fact that the sequences tlva[lDf(r)~a,k)keN (C~E{1,2}) are stationary and satisfy 
Sim(r) [2 d P <  oo. I a ,  1 

S.4 (the final approximation of the partial sum process). Taking (5.5) and S.3 
((a) and (d)) into account, the conclusion of Theorem 0.A now follows from 
Lemma 6.4 below, i.e., by gluing increments of the Brownian motions W~ in 
a suitable way together. 

Remark 5.1. From a formal point of view, the use of Lemma 5.1 is not really 
essential for proving the main results of this paper. Random variables having 
the desired joint distributions can always be constructed by more elementary 
techniques based on the existence of regular conditional distributions and the 
Ionescu-Tulcea theorem. In the case of the above proof, this alternative argument 
would only lead to minor complications in the presentation; however, a detailed 
exposition of the proofs of Theorems 3.1 and 3.2 relying on these "more elemen- 
tary" tools turns out to be extremely cumbersome. 

6. Auxiliary Results 

6.1. Weak convergence of conditional distributions and approximation of r.v.'s. 
One key ingredient for proving Theorems 3.1 and 3.2 is the approximation result 
stated in Proposition 6.1 below. This result will play a similar r61e as Theorems 1 
and 2 of Berkes and Philipp [2] do in previous related work. In contrast to 
the Berkes-Philipp approximation theorems, the proof of Proposition 6.1 does 
not depend on the Strassen-Dudley theorem (see, e.g., [8], Theorem 1), but on 
the conditional quantile transform argument described in Lemmas 6.1 and 6.2 
below. 

Proposition 6.1. Let d e N ,  let (f2, ~, P) be a probability space, let 0 be a Polish 
space, and let (Y~),~ be a sequence of square-integrable r.v.'s I1,: f2 ~ IR d. More- 
over, let U: f2~(0,  1) and X:  f2 -* 0 be two r.v.' s, and let ( Q , ) ~ o  be a sequence 
of  stochastic kernels Qn : O x ~(]R d) ~ [0, 1]. Write # ,= P o X - 1 ,  and suppose: 

(i) for each n~N,  Q,(x, ") is a regular conditional distribution for Y, given 
X =  x (x~O); 

(ii) there is a #-null set N ~ ( O )  such that for each x ~ O \ N ,  Q~(x,.) 
-* Qo(x, ") weakly as n --* oo ; 

(iii) ~ II Y [I 2 Q o (x, dy) # (d x) < oo ; 
(iv) EII II. II 2 __. yy [I y I[ 2 Qo (x, dy) #(dx) as n ---. 00; 
(v) U is uniformly distributed on (0, 1) and independent of (X, (Y.).~N). 

Then there is a sequence ( A . ) . ~  of Borel measurable mappings 

A,:  p*dx 0 x(O, 1 )~ IR  d 

such that the r.v.'s Y* : ~2 ~ IR ~ defined by 

Y* :=A.(Y., X, U) 
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have the following properties: 

P { X e A ,  Y,*~B} = ~ Qo(x, B)#(dx)  for all A 6 ~ ( O )  
A 

and all B ~ ( N f l ) ;  

EI[ Y,-- g*]12~ 0 as n ~ o e .  

(6.1) 
(6.2) 

The proof of Proposition 6.1 depends crucially on Lemma 6.2 below which 
in turn is basically a corollary to the following 

Lemma 6.1. Let d e N ,  let 0 be a Polish space, let # be a probability measure 
on Y)(O), and let Q,: 0 x ~ 0 R d ) ~ [ 0 ,  1], Q~I): O x N ( I R ) ~ [ 0 ,  1] and Q(nk): ( 0  
x IR k- 1)x ~ ( N ) ~  [0, 1] (neNo, k~ {2,... ,  d}) be stochastic kernels. Suppose 

Q,(x, A)= S...I 1A(yl, ..., y~)Q(,~((x, ( y ,  ..., y~_ 1)), dye) 

�9 .. Q~2)(( x, Yl), dy2) Q~X)(x, dyx) 

for all n~N,  x~O,  A ~M(]Ra). Also assume that the functions F,, 1(" 1") and F,,k(" 1") 
defined by 

F,,1 (Yi Ix).'= Q(~l)(x, ( - 0 %  yl]), 

F,,k(yk [ Y l , ' " ,  Yk- 1, X).'= Q(,k)((X, (Yl . . . .  , Yk- 0), (-- GO, Yk]), 

(Yl, ..., Yd ~R,  Xe O, k~ {2, ..., d}) satisfy the following conditions: 

(i) Fn, l (Yl [ X)---~ fo, l (Yl l x) as n-~ oo , 

Fn, k(Yk l Yl . . . . .  Yk-1, X)--+ Fo,k(Yk I Yl . . . .  , Yk-1, X) as n--~ oo 

for all ke{2 . . . . .  d}, Yl, ..., yaelR, x e O ;  
(ii) for all ke{2 . . . .  , d}, Yl . . . . .  ya- leN, ,  x e O ,  the functions Fo, l ( ' lx )  and 

Fo,k (" [ Y l . . . .  , Yk-1, x) are continuous and strictly increasing; 
(iii) inf lira sup sup ]F,,k(yklyl . . . .  , Yk-1, X) 

~ > 0  n---~ oo z ( k - 1 ) e B 6 ( y ( k - 1 ) )  

- -  F . , ~ ( y k  l z l  . . . .  , z ~ _  l ,  x ) l  = O  

for all x e O ,  ke{2, ...,d}, y(k_l)=(yl ,  . . . ,Yk_l)e]R k- l ,  ykE~, where Z(k-1) 
=(Z 1 . . . .  , Zk_ i) and Bo(y(k_ l)):={Z(k_ i)elRk- l: ]]Ztk_ i)-- ytk_ i)]] <fi}. 
Then there is a probability space (f2, ~ P) on which there are defined r.v.'s 
X:  (2--*0 and Y,: f2--* IRe (neNo) such that 

and 

P { X e A ,  Y, eB} = S Q,(x, B)p(dx)  for all A e N ( O )  
A 

and all BeJJ(Nfl) (6.3) 

Y,(co)~Yo(cO) for all coEf2 (as n--, co). (6.4) 

Proof of Lemma 6.1. Let (f2, o ~, P) be a probability space on which there are 
defined independent r.v.'s X, U1, ..., Ua, where X: f2 ~ O has distribution # and 
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U1 . . . . .  Ua: f2 ~(0 ,  1) are uniformly distributed on (0, 1). Further, let the r.v.'s 
Y,, 1, ---, Y,, d: t? ~ N (n e No) be defined inductively by 

Y,,t (co):=inf {telR: F,,1 (t I X(co)) > U1 (co)} 

and 
Y,,k(co)"=inf { t eN:  F,,k(t] Y,,1 (co),..., Y,,k-1 (co), X(co)) > Uk(co)} 

for ke{2, ..., d} and coet?, and put Y,"=(Y,,1 . . . . .  Y,,d). It is well-known (and 
easy to check) that the thus obtained r.v.'s Y, satisfy (6.3) (see, e.g., Skorohod 
[39], p. 630). In order to demonstrate that they also satisfy (6.4), we proceed 
by induction. The case k = 1 requires only a minor reinterpretation of the follow- 
ing argument. Suppose d > 1, let 1 < k ___ d, and assume that the first k -  1 compo- 
nents of Y, converge pointwise to those of Yo. Fix co e~2, and put Yk:= YO,k(co)" 
Then, given e > O, we can (by (i)-(iii)) find an no e N  such that for n > no 

F., k(Yk-- e I Y.,~ (co), ---, Y. ,*-I  (co), X (co)) 

< Fo, k (Yk I Yo, 1 (co),"' ,  Yo, k-1 (co), X (co)) 

< F., k (Yk + e I Y.,1 (co) . . . .  , I1., k- 1 (co), X (co)), 

i.e., using (ii) and the definition of the Y,'s, 

I Y,,k(co)-- Yo,k(co)I <e.  

Lemma 6.2. Let d, 0 and # be as in Lemma 6.1, let b e n  +, and let (Q,)~No 
be a sequence of stochastic kernels O,: 0 x N ( N  d)-~ [0, 1]. For x e  0 and n e N o ,  
define 

Q,(x, ").'=Q, (x, ") * N(O, bid). 

Suppose that, for each x e O, 

Q~(x, ") converges weakly as n ~ oe to Qo(X, "). 

Then there is a probability space ((2, ~ ,  P) on which there are defined r.v.'s 
X:  (2--* 0 and Y,: f2--* N d (n e No) satisfying (6.3) and (6.4). 

Proof of  Lemma 6.2. For x e O  and n e N o ,  define 

O.,k(X, A):=0,(x,  A x l R  d-k) (for ke{1 . . . . .  d}, AeN(Nk)), 

Fn, k(Yk]Yl . . . . .  Yk-D X) 
Yk 

S S e x p ( - ( 2 ~ )  -111(yl, ..., Yk-1, s)--tJl2)O-,,k( x, dt) ds 
- o o  R k  

~ exp ( - (2~)  -1 I](Yl, ..., Yk-1, s)--tll2)O~,,k( x, d t )ds  
R R k 

(for ke{1 . . . . .  d}, Yl . . . . .  yeeN),  

and let Q~)((x,(yl . . . . .  Yk-1)), ") be the probability measure (on NOR)) corre- 
sponding to the distribution function F,,k(" l Yt, ---, Yk-1, x). Then it follows by 
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routine computations that the thus defined Q,'s, Q~)'s, and F,,k's satisfy the 
hypotheses of Lemma 6.1. (To verify (iii), note that the function 

u~---~exp ( - ( 2 6 )  -1 Ilull 2) (ue~ k-I) 

is uniformly continuous.) This means that the conclusion of Lemma 6.2 is a 
consequence of Lemma 6.1. 

Proof of Proposition 6.1. Let Yo: f2 ~ ] R  a be a r.v. such that 

P{X6A, YoeB} = ~ Qo(x, B)p(dx) for all A~(O )  
A 

and all Be~ORa), (6.5) 

and let q: Y 2 ~ R  a be a r.v. with Potl-l=N(O, Ia) which is independent of 
(X, (Y,),~No)" (In view of condition (v) and Lemma 5.1, the r.v.'s t/ and I7o can 
be defined without enlarging the underlying probability space.) 

Now let 6~{j-1: j e N }  be arbitrarily fixed. Using (i), (ii), and Lemma 6.2, 
we find that there is a probability space (s o ~, P) on which there are defined 
r.v.'s Y',~: O ~ ] R  a (n~No) and X: f 2 ~  O such that 

po(y,,a, ~)-1 =po(y~+61/2 t/, X )  - 1  for all n e N  o (6.6) 

and 
Yd, o~Yd,~ P-a.s. as n ~ o e .  (6.7) 

Enlarging the probability space (O, ~ P) if necessary, we may assume that there 
also exists a r.v. U: f2 ~ (0, 1) with uniform distribution on (0, 1) which is inde- 
pendent of (X, (Y" ~),~%). By (6.6) and Lemma 5.1, there is a sequence (~,o),~r~o 
of Borel measurable mappings 

~,~: N d x O x (0, 1 )~ IR  a x ]R .  a 

such that the r.v.'s Yd, ~ admit a decomposition of the form 

~rn, o =  ~-rn, O-]-(~l/2 ~ln , (6.8) 

where 

(L,0, q.)= ~,0(L',~, x, u), 
P~ ~ ) - 1  = po(y , ,  X)-a,  (6.9) 

q, is independent of (Y,,a, X), and Poq21 =N(0,  Ia). 

Because of (iii), (iv), and the definition of the r.v.'s Y;, ~, it follows from Scheff6's 
lemma (see, e.g., G/inssler and Stute [14], Satz 1.6.11) that 

the sequence (Y~',~),~No is uniformly square-integrable. (6.10) 

Combining (6.7) and (6.10), we obtain 

n --* o 9  
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which entails that 

(by (6.8) and (6.9)). 
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lim sups II Y,.a- Yo,6ll2dPN4d3 (6.11) 
n --* oo 

According to Lemma 5.1, there is a sequence (A,,o),~N of Borel measurable 
mappings 

A,.~: F, ax O x(0, I)--*IR a 

such that the r.v.'s 

satisfy 

Y,%.'=A,,a(Y,, X, U) (6.12) 

Po(Y,,X, Y.* - t _  - t  ,,~) - Po(Y,,a, X,  Yo.,) �9 (6.i3) 

Taking into account that 3~{ j - t : j~N}  in our above considerations was arbi- 
trary, it follows from (6.11) and (6.13) that there is a strictly increasing sequence 
(Vk)k~No in No such that Vo = 0 and 

sup E * for all /~N\{1}. (6.14) IIY,,,_~- Y, IlZ<Nd1-1 
n > v l - 1  

We define 
A,,=A,,~-I for vz_~<n<vt  and l sN.  

It is obvious from (6.5), (6.9), and (6.I2)46.14) that the thus obtained mappings 
A, meet the requirements of Proposition 6.1. 

6.2. A conditional central limit theorem. We begin with a technical lemma. (A 
similar result appears in a paper of Eagleson [10], but his proof is somewhat 
unclear.) 

Lemma 6.3. Let 0 be a Polish space, and let P be a probability measure on 
~ ( 0 ) .  Let (~2i, ~ )  (i t  { 1, 2}) be measurable spaces, where the a-field ~2 is assumed 
to be countably generated. Let X: 0 --* g21, Y: 0 ~ f22, and Z: 0 ~ IR be measur- 
able mappings. Suppose S[ZldP<oo.  Put /~'.=PoX -1, and let Q:f21xN(O ) 

[0, 1] be a stochastic kernel satisfying 

S Q(x, A) #(dx) = P(A c~ {X+B}) 
B 

(for all A e ~ ( O )  and all Be~I ) ,  i,e., Q(x, ") is a regular conditional probability 
on ~ ( 0 )  given X =  x. Then there is a #-null set M ~ f f  l such that for all xEY21\M 

Ex(z] Y = y ) = E ( Z I X = x ,  Y = y )  Q(x, ")o Y-l-a.s. (6.15) 

Here E x denotes the conditional expectation on the probability space 
(0,  ~ ( 0 ) ,  Q(x, ")). 

Proof For xe(21, we define Qrl~:=Q(x, .)o y -1 .  (6.15) will be established by 
showing that there is a #-null set M e ~ l  such that for all x c O ~ \ M ,  Beo~2 

S E ( Z l X = x ,  Y=y)Qrl~(dy)  = S Z(O)Q(x, dO). (6.16) 
B y - 1 B  
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For all A e ~ l  and all BES*- z, we have 

~ E ( Z I X = x ,  Y=y)Qrl~(dy)p(dx) 
A B 

= ~ Z d P = ~  I Z(O)Q(x, dO)p(dx), 
X - 1 A ~ Y - a B  A Y 1B 

which entails that for each B e ~  2 there is a #-null set N(B)e~I  such that 
(6.16) holds for all xef21\N(B ). Since ~'~2 is countably generated, we can even 
find a countable field cg generating Yz. We set M , =  ~ N(B). Then #(M)= 0. 

Bs~g  

It is obvious that (6.16) holds for all xe f21 \M and all Beo~ 2. 

The following proposition is a conditional version (essentially due to Eagle- 
son [101, [11]) of the central limit theorem for stationary ergodic martingale 
difference sequences in Re (deN). 

Let O be a Polish space, let P be a probability measure on ~(O), and 
let a: O --* O be an ergodic automorphism on the probability space (O, N(O), P). 
Moreover, let I1o : 0 ~ N d be a r.v. with ~ II Yo [I 2 dP < oe. For k, leZ,  put 

Suppose 

~ , = g o o ~  k and ffl.'=d(Y~; -- oo <j_-</). 

E(Yo [ (q_ 1)=0 a.s. 

For each I c Z with I :~ 0, let f2~..= I~]R d. Furnished with the product topo10- 
k e I  

gy, f2~ is a Polish space. Let O I be endowed with the corresponding Borel 
o--field N(g2f). The mapping ~"  O ~ f 2 z  defined by ~(O),=(Y~(O))i~ ~ is 
N(Ox)-measurable. The corresponding distribution po ~-1  will be denoted by 
#i. Write C.'=Cov (Y o), K ..~{jeZ: j < 0}, and let Q (33,.) be a regular conditional 
probability on ~(O)  given YK=p (cf. Lemma 6.3). 

Proposition 6.2. There is a #K-null set M e~(f2K) such that for all peOK\M 

n- 1/2 k__~ )- 1 Q(~, ")~ Yk --* N(O, C) weakly (as n ~ oo). 
1 

Proof. Throughout this proof, the elements xe]R a are considered as row vectors, 
while x r denotes the corresponding column vector. For kMN, let (r :=d(Yj ;  1 
<j<k). Together with Lemma6.3, the assumptions S][YollZdP<c~ and 
E(Yol c~- 1)=0 a.s. imply that there exists a #K-null set M1 e~(f2~) such that 

(Yk, (~)k~N is a martingale difference sequence on (O, ~(O), Q(p, ")) (6.17) 

and 

E~ IlYkll2 < oo (for all keN)  (6.18) 
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for all ))ef2K\M 1. (As in Lemma 6.3, E y denotes the conditional expectation 
on the probability space (O, N(O), Q(~, ")).) We also have 

:#e{(Y~)j~z: lim -1 ~ E(yk r Ykl --., Y - I : Y - 1 ,  .-.,  

Y~- ~ = Yk- 1) = C} 

=~Q(), ")~ YN-1 {(yj)j~N: lim _1 ~ E(Ykr yk i .... Y-I=Y-1,  
n~oo n k=l 

"",  Yk- 1 =Yk-  1 ) :  C}/AK(d)) ) 

(with ~ = (Yj)j~K) 

~--~Q(f2,')c}rNl{(yj)jsN: lim -1 ~ E~(YkrYk[yl=yl, 
n~co l'l k=l 

�9 .., Yk-1 = Y k - 1 )  : C }  I~K(dy) 

(by Lemma 6.3) 

Combining this identity and the fact that - in consequence of the Birkhoff 
ergodic theorem (note that, for all keN,  E(Yk T Ykl~g_I)=E(Y r Yll~o)OO -k-~ 
a.s.) - P~--1, we infer that there exists a #K-null set M2eN(QK) such that for 
all .~ef2r\Mz 

5 
i EY(Ykr Yk I ~ -  1) ~ C  Q(p, ")-a.s. (6.19) 

n k =  1 

(as n -~ oc). A similar argument shows that 

1 ~ E~(ll~Li 2 l(Liy~14>=~l~k+_l ) 
/~ k=l 

--*~[tYlllZ l~llr, ll>__~dP Q(~, ")-a.s. (6.20) 

(as n ~ oe) for all r e N  o and for all 3~ in the complement of a suitable/~tcnull 
set M3e~(~?K). Setting M,=M1 w M2uM3 and invoking Brown's [5] mart- 
ingale central limit theorem and the Cram~r-Wold device, the assertion of Propo- 
sition 6.2 follows from (6.17)-(6.20). 
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6.3. A law of  the iterated logarithm for stationary martingale difference sequences. 
The following proposition is a generalization of the upper class part of Stout's 
[41] martingale analogue of the Hartman-Wintner law of the iterated logarithm 
to the case of not necessarily ergodic sequences. 

Proposition 6.3. Let (Q, ~ ,  P) be a probability space, and let (~k)kEN be a stationary 
martingale difference sequence of r.v.'s ~k : (2 ~ ( .  Suppose E~ 2 < oo. Then 

lim sup (2n L2 n)- 1/2 i ~k----~ E(~21 J) 1/2 a.s., 
n ~ m  k = l  

(6.21) 

where J is the t>field of  invariant events pertaining to the sequence ( ~ k ) "  

Remark 6.1. By the very argument given below, " < "  in (6.21) can be replaced 
by "=  "; but we shall not need this refinement of Proposition 6.3. 

Proof of  proposition 6.3. If E(~2IJ )>0  a.s., the proof can be carried through 
(with only minor modifications) by following the lines of Stout's [41] proof 
in the ergodic case. If E(~2]d)=0 a.s., then ~k----0 a.s. (for all k), so that (6.21) 
is trivial. Finally, the case 0<P{E(~ 2 ]d)>0} <1 can be reduced to these two 
cases by considering the sequence (~k) separatelY on f2'.-={E(~2IJ)>0} and 
on f2" := f2\f2'. 

Remark 6.2. To establish the upper class part of Stout's [41] theorem (or of 
its generalized version stated in Proposition 6.3), only the upper half of Stout's 
[42] martingale analogue of Kolmogorov's law of the iterated logarithm is 
required. An elegant proof of the latter can be found in Stout's [43] monograph. 

6.4. A subsequence argument. The last result of this section generalizes an argu- 
ment due to Major [29]. 

Lemma 6.4. Let ((J, o~, p) be a probability space, let (~, 11 " 1t~) be a real separable 
Banach space (endowed with its Borel ~-field ~(IB)), and let ((k)k~ be a sequence 
of  r.v.'s ~k: (J--* ]13. Suppose that, for each r6]N, there is a E-valued Brownian 
motion (W~(t))t>=o (defined on the same probability space) with W~(0)=0 and co- 
variance function C of W~(1) (C being independent of r) such that 

P{lim sup (tL2 t) -1 /2  II ~ ~k- w~(t)ll >r -E} _-<r -2. 
t -~ oo k <= t 

(6.22) 

Also assume that there is a system ~,~= {M(s): s~N} of infinite subsets of N 
satisfying 

M ( s ) c M ( s ' )  if s>s '  (6.23) 

such that 

d(W~(t); s<r,  t<n)  and d(W~(t)-W~(n); t>n)  

are independent for each (n, r) ~]N 2 with n ~ M (r). (6.24) 
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Then one can even find a N-valued Brownian motion (W(t))t>=o with W(O)=O 
and covariance function C of W(1) such that 

]l ~ ~k--W(t)l[ =o((tL2 01/2) a.s. (6.25) 
k < t  

Proof From (6.22) it follows that there is a sequence (m~)j-~ of positive integers 
with 

mj+ 1 >2mj  for all j e N  (6.26) 

such that for all r s N  

P{sup(tL2 t) -1/2 ]l ~ {k- W~(t)ll >2r-2} <2r -2, 
t>n~ k < t  

(6.27) 

where n ,= ~ mj~M(r). We define inductively 
j = l  

Vr (Wl(t) if O<-t<-nl, (6.28) 
(t)'=lW(nr)+W~(t)-W,(nr) if nr<t<nr+ 1 

(rEN). In view of (6.24), it is clear that Wis a Brownian motion with W(0)=0 
and covariance function C of W(1). It remains to prove (6.25). Using (6.26) 
and (6.27), we see that on a set of probability __> 1-2 r - 2 

n~l ~k--(Wr(nr+ 1)-- Wr(nr)) <er(mr+l L2 mr+ 1) 1/2, 
k = n - t - r  1 

where at=o(1 ) (as r ~ 00). Hence 

=~1P ~k er(mr+ ~ L2mr+l) 1/2 <o% 
r = 1 =  r 

which, together with the Borel-Cantelli lemma and (6.26), leads to 

"~ W(n,) ~= ~k-- =o((nrLanr) 1/2) a.s. (6.29) 
k 1 

In conjunction with the Borel-Cantelli lemma, the estimate 

P{,r_<t_<nr+,sup (tL2t) -1/z k=~+l ~k--(W(t)--W(nr))-->4r-2}--<2r-2 (6.30) 

(r~N), implied by (6.27), completes the proof of the lemma. 
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7. An Approximation for R.V.'s Taking Values in a Sequence Space 

In this section we shall derive an approximation theorem for partial sums of 
stationary ergodic sequences taking values in IR N (equipped with the usual prod- 
uct topology and the corresponding Borel a-field). This result is of preparatory 
nature; it will, however, constitute the core of the proofs of Theorems 3.1 and 
3.2. 

For teN,  we use p, (A, resp.) to denote the projection ]RN~IR (NN--+IW, 
resp.) of NN onto the z-th component (the first ~ components, respectively). 

Now let tI;= ((12, if, P), z, ~'~o, Yo) be the germ of an RN-valued stationary 
ergodic F-sequence, and let (Yk, o~)~EZ be the stationary ergodic F-sequence 
induced by II~. We write 

To,=0(eN ~) and, for neN,  T~..= ~ Yj. 
j = l  

Definition 7.1. Suppose 
EIp,(Yo)l<c~ for all t eN.  

Then (Yk, ~)k~Z is said to be a stationary ergodic martingale difference sequence 
if and only if, for all teN,  the sequences (P,(Yk), ~)k~Z are stationary ergodic 
martingale difference sequences. 

Definition 7.2. Suppose 
Elp,(Yo)12<oe for all t eN .  

Then (Yk, ~)k~e is said to have the weak Mz-property if and only if, for all 
z eN, the sequences (P,(Yk), ~)k~Z have the M2-property. 

Proposition 7.1. Notation is as above. Moreover, let 6elR +, and let (rc(r)),~ be 
a nondecreasing sequence in N.  Suppose: 

Elp,(Yo)12 < ~ for all zeN; (7.1) 

( Y~, ~ ) ~  has the weak M2-property. (7.2) 
Then the limits 

C, := lira 1_ Cov (A~(r) T,) (7.3) 

exist for all r e N ,  and, without changing its distribution, one can redefine the 
sequence (Yk)k~N on a new probability space (f2, ~ ,  P) on which there exists a 
sequence (VV~)r~r~ of Brownian motions 17V,= {17V,(t); tel0,  oe)} with values in ~ )  
such that 

17V,(0)=0 and Cov(ITV~(1))=C~ (7.4) 

having the following properties: 
(i) there is a sequence (t(r))rEN in N with 

l(r + 1)/l(r)eN (7.5) 
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such that, for each (m, r )eN 2, the a-fields 

d(17V~(t); I N s < r ,  t<ml(r)) 
and 

~r (17V,(t)- 17V~(m l(r)); t >= m l(r)) 

are independent; 

(ii) ?{lim sup (tL2 t)-1/2 II ffV~(t)-A~(~)TmN 
t -*00 

=> 1/(2  ~ r~)} =< r - ~ (for each reN). (7.6) 

Proof The result is established in six steps S.1-S.6. 

S.1 (reduction to the case of a stationary ergodic martingale difference sequence). 
According to Proposition 2.1, the r.v.'s Yk (ksTZ,) can be written in the form 

Yk=~-kRk_l--Rk a.s., (7.7) 
where 

and 

(~, ~)j~z is a stationary ergodic martingale difference 

sequence such that Elp,(Yo)[2< oe for all t~N (7.8) 

(Rj)j~z is a stationary sequence of r.v.'s such that 

Elp~(Ro)[2<oo for all ~eN. (7.9) 

For neN,  we write L :=  i YJ" Then 
j = l  

T , = 7 " , + R o - R  . a.s. (forall neN).  (7.10) 

In view of (7.8) and (7.9), this implies that the limits in (7.3) exist and that, 
for each r e N  and all neN,  

c ,  = Coy (A~(~) "7o) = 1 Cov (A~ (~) L) .  (7. I ~) 
n 

Furthermore, by (7.9) and (7.10), 

lim n -1/2 IM~(,)(T,- 7",)1] =0  a.s. (7.12) 
ii ---~ OO 

(for each r~N). Consequently, it is enough to establish the assertion of Proposi- 
tion 7.1 with T m in (7.6) replaced by ~tl (where 7" 0 :=0~]RN). 

S.2 (an application of the conditional central limit theorem). Let r e N be arbitrar- 
ily fixed. (7.8) entails that, for each k~2g, 

E(A~(r) ~'klfgg)_l)=0 a.s., (7.13) 
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where f#~")_ 1 : = f f  (A~(,) ~ ;  - oe < j  < k -  1). In order to apply the conditional cen- 
tral limit theorem stated in Proposit ion 6.2, we consider the coordinate represen- 
tation process corresponding to the sequence (A~(,)~)j~z, i.e., the process 
(0, ~,/3, (~'j)j~e) defined by 0:=0R~(~)) z, ~- :=Borel  o--field on 0 induced by the 
product  topology, P:=Po((A,~(~) ~)j~z)- 1, ~j.'=j-th projection 0 ~ I R  ~("). By (7.8) 
and (7.13), the process (~j)j~ satisfies the hypotheses of Proposit ion 6.2. Now 
let /)..=Po((~j)~_<o) -1, and let 0(2, ") be a regular conditional probability on 
(f], ~,, 16) given (~'j)j_<_o = x. For  2e  I J  P'~(~) and m e N ,  put  

j__<o 

Then 

Q,,(2, ") is a regular conditional distribution for 

rn-1/2A,,(~)~Fm given (A~r)~)j==o=2 

II 1R+>). 
j_-<o 

(7.14) 

Moreover,  according to Proposit ion 6.2, there is a /~-null set N e N ( I ~  [ N ~)) 

such that for each 2 e ( I-[ N~ (~))\N J --< o 
j~o 

Q,, (2, .) --. N (0, C~) weakly as m --* oe. (7.15) 

(Note that, by (7.11), Cr= Cov (A~(r)Yo)-) 

S.3 (enlargement of the underlying probability space). Let (Q1, if1, P1) be a proba- 
bility space on which there is defined a family t~,,k,r ~,v r e N ,  ae{1, 2}} of i.i.d. 

rr(,). Ot ~(0 ,  1) with uniform distribution on (0, 1), and let (~, ~, /5)  be r.v.'s ~a,k. 
the product  space (0 x ~ t ,  ~ |  P| In the sequel, all r.v.'s originally 
defined on t2 (Q~, resp.) will tacitly be regarded as r.v.'s on (0, o ~, P) by identifying 
a r.v. X (Y, resp.) defined on Q (t21, resp.) with the r.v. X (Y, resp.) defined 
by X(co, coO..=X(e) ) (Y(e), COl):=Y(~Ol) , resp.); note that P o X - I = P o X  -1 and 
po ~ - x = p l o  y -x .  We shall also make repeated use of the fact that, under  the 
above hypotheses, 

/5o(X, y,)-i =(PoX-1)| y - l ) .  (7.16) 

S.4 (approximation of a single partial sum). By (7.11), we have, for each r e N  
and all m e N ,  

m-1 S II A~(,) 7" m II 2 dP = trace (Cr). (7.17) 

Combining (7.14), (7.15), (7.17), and Proposit ion 6.1, we can find a sequence 
(l(r))~+N in N with 

l(r + 1)/l(r)eN (7.18) 
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and, for each r e N ,  a Borel measurable mapping 

At: ~ ( r ) x ( l -  I ~( r ) )  x(0, 1 ) ~ N  ~(~) (7.19) 
j_-<o 

such that the r.v. 
Z] ~) . '=Ar(A~(,)~), (A~(,)~)j=< o, U~)I) (7.20) 

has the following properties: 

p o(Z]r))- t = N(O, l(r) C~), (7.21) 

Z] ~) is independent of (A,(~)~)j_< o, (7.22) 

II A~(~) ~(~)- Z] ~) I12 d/5__< l(r)/(8 62 r6). (7.23) 

S.5 (approximation of a single block). Let r e N  be arbitrarily fixed, and let 
l(r) and Z(( ) be as in S.4. For  aelR +, let C~(r)[0, a] denote the separable Banach 
space of all continuous functions f :  [0, a] ~ ~(~), equipped with the norm ][ �9 r[(a) 
defined by []fl[(a),=sup {[[f(x)l[: Xe[0, a]}. According to Lemma 5.1, there is 
a Borel measurable mapping 

~,.: R~(r) X (0, 1) ~ C~(., [0,/(r)] 

such that 
vl ( r ) .__  l i t / 7 ( r )  l T(r) 

" - -  J t r~ ,~ l  ~ ~ '2 ,  11 

is a Brownian mot ion with 

Vt(')(0)=0 and Cov(VI(')(1))=C, 

satisfying 
V f ( l ( r ) ) = Z ]  ~) P-as.  

S.6 (conclusion of the proof). Let (/(r))~N, (Ar)r~, and ( ~ ) , ~  be as in S.4 and 
S.5. Our next aim is to construct a sequence (I7V~),~ of Brownian motions 
={lYVr(t); te l0 ,  0o)} with values in N ~(~) satisfying (7.4) and the following four 
conditions: 

(a) for all k e N ,  

d(ITv~((k- 1)l(r)+ t ) -  VV~((k- 1)/(r)); t6 [0, l(r)]) 

=d(A~(.)(~,( . )  ~k-1),(r)), (A~(~)~rj)j<(k_l)l(r) , V~ r) ,  U (r) "~" 
- -  2 , k ] ~  

(b) for all k e N ,  the o--fields 

d (lTv~((k - 1) l(r) + t) - VV~((k- 1)/(r)); t~ [0,/(r)]) 

and 
~r (A~ (~) Yj, U[;).,, U(r)2,m," - -  (30 < j  ~<~ ( k  - -  1 ) l (r), 1 _< m _< k - 1 ) 

are independent;  
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(c) for all k e N ,  

11 (17V~ (k l(r)) - VV~((k- 1) l(r))) - A~t,~(~lt~- ~k-  1)l(r))]l 2 dip 

<= l(r)/(8 6 2 r6); 

(d) ((fV~(kl(r))-VV~((k- 1) l(r)))-A~t,~(~zt,~- ~k-l)lt~))k~r~ is a stationary 
sequence of r.v.'s. 

(Here and below, To '=0e]RN.) To this end, we put 

Z~ ~).'= A r (A,, (0(~(,)  - Sk -1),(~)), (A~, (~) Yj)j <= (k -1)l(r), V(i)k) 
and 

V2,kI  

for k, t e N .  The Brownian motions ~ (reiN) are then defined inductively by 
setting I7V~(0),=0 and 

(t) ..= ~ ( (k -  1) l(r)) + Vk ~ (t-- (k-- 1) l(r)) 

for t e ( ( k -  1) l(r), kl(r)] and keN.  It is obvious from S.4, S.5, and the stationarity 
of the sequence (~)j~z that the thus obtained sequence (17V~),~r~ satisfies (7.4) 
and (a)-(d). Moreover, 

(e) P{lim sup (tL2 t)- 1/2 II ff/V~(t)--A~(r) Tm [h > 1/(26r2)} < r - 2  
t ---~ aO 

for each r e N .  

To prove (e), let r e N  be arbitrarily fixed, and let the sequences (M~)k)k~ (~e { 1, 2}) 
be defined by 

M~') "- m a x  ][A~(r)(~Fm--~k_Dt(r))l[ 1 , k ' - -  
(k - 1)  t ( r ) <  m<kl(r) 

and 
M ( r )  .-- 2,k'-- max II rrf~((k- 1 + t) l (r))-  ff/V~((k- 1)/(r))LI �9 

0 < t _ < l  

It suffices to show that 

and that 

/~ {lira sup (ml(r) L2(ml(r)))- 1/2 liAr(r) Tin.r) 
m --* ao 

- VV~(ml(r))ll > 1/(26r2)} ~ r  -2 

lim k-1/2M~)k=O P-a.s. (~e{1, 2}). 
k--* oo 

(7.24) 

(7.25) 

Taking (c) and (d) into account, it follows from Proposition 6.3 that 

lim sup (ml(r) L2(ml(r)))- 1/2 [[A~r) 7"mltr) 
m - ~ o o  

-C/V~(ml(r))ll ~21/2~/, P-a.s., 
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where qr is a real-valued r.v. with 1/, > 0 and E q2 < 1/(8 ~5 z r6). Using Chebyshev's 
inequality, this leads to (7.24). (7.25) is an immediate consequence of the fact 
that the sequences ttM(') ~,,k,k~ (C~e{1, 2}) are stationary and satisfy ~ IlM~r) 1112 dP 
<GO. 

To complete the proof, it remains only to demonstrate that the above defined 
sequence (17r N has the properties (i) and (ii) stated in Proposition 7.t. But 
(i) can easily be deduced from (a), (b), (7.18), and the fact that the sequence 
(~c(r)),~N is nondecreasing, while (ii) is implied by (7.12) and (e). 

8. Proof of  Theorem 3.2 

8.1. Preliminaries. As already mentioned in Sect. 3, Theorem 3.1 is an immediate 
consequence of Proposition 7.1 and Lemma 6.4. The last mentioned two results 
have already been established, and so the proof of Theorem 3.1 too is complete. 

The existence of the limits in (3.7) follows directly from relation (3.3) in 
Theorem 3.1 (case de {1, 2}). We also mention that the case d =  1 of Theorem 3.1 
together with the law of the iterated logarithm for a real-valued Brownian 
motion entails that 

lim sup (2nL2 n)- 1/2 f(Xn)= C ( f f )  1/2 a.s. 

for all f e B * .  (8.1) 

Next we need to introduce some facts and notations concerning Gaussian 
measures in Banach spaces (for further details, see Kuelbs 1-25], Lemma 2.1). 
Let C: ~3" x ~3" ~ N. be as in Theorem 3.2. C is a nonnegative definite, symmetric, 
bilinear functional. Suppose there exists a mean zero Gaussian measure v (on 
~(N)) with covariance function C. To avoid trivial complications, assume that 
C+0 .  Since v is a mean zero Gaussian measure, we have S xv(dx)=O and 
[.llxll~v(dx)<oe (see [25], Lemma 2.1(vi)). Thus v satisfies the hypotheses of 
Lemma 2.1 in [25]. Let the linear operator S: N * ~  113 be defined by the Bochner 
integral Sf,=~xf(x)v(dx), and let ~I~ denote the completion of the range of 
S with respect to the norm II " I1~ induced by the inner product (Sf  Sg)v ,=C(f g) 
( f  geN*). The continuous extensions of ( ' , - ) ~  and [1" [t~ from the range of 
S to all of IH~ will be denoted by the same symbols again, l-t v can be realized 
as a subset of N, and, writing c~.'=(S IJyl[~ v(dy)) 1/2, one has 

Ilxll~c~llxll~ for all xeM~. (8.2) 

(~I~, ( . , . )~ )  is a separable Hilbert space. Proceeding from a weak-star dense 
subset F = {fk : keN} of the unit ball of 113" (note that ]13 is separable), a complete 
orthonormal system of I-I v can be constructed as follows: 

Put Fo,={fkeF:C(fk,fk)+O and fkr D~,={leN: l<__I 
<dimlH~}, and let {C~k: keD~} be an orthonormal system obtained from F 0 
by applying the Gram-Schmidt orthonormalization procedure with respect to 



An Almost Sure Invariance Principle 193 

the inner product C(- ,  .). Then {Sak:keDv} is a complete orthonormal system 
of lily. Moreover, the linear operators HN: IB--* ~3 (NeDv) defined by 

N 

Flux,= ~ c~k(x)So~ k (8.3) 
k = l  

are continuous. When restricted to I-I v, the HN's are orthogonal projections 
onto their ranges. 

8.2. An intermediate result. In a sense, the following proposition is obtained 
by translating Proposition 7.1 into a Banach space result. 

Proposition 8.1. Under the basic hypotheses of Theorem 3.2, suppose there exists 
a mean zero Gaussian measure v with covariance function C. Also assume that 
C=~O, and that for each t e n  there is an N(r)eDv such that for all NeD v with 
N>=N(r) 

lim sup(nL2 n)-1/2 =I~'(Xk--FINXk) ~----< r-2  a.s. (8.4) 
n ~  k 

Then, without changing its distribution, one can redefine the sequence (Xk)ke N 
on a new probability space (f2, ~, P) on which there exists a sequence (l,V~)r~ N 
of B-valued Brownian motions with W,(0)=0 and covariance function C of W,(1) 
such that the assumptions of Lemma 6.4, with (~k)k~N replaced by (Xk)kelq , are  
satisfied for an appropriate system Jig of infinite subsets of N. 

Proof For zeD~, let c~, be as above, and let the operators/7, :  ]B~]R ' be defined 
by 

/7, x- '=(~ (x) . . . . .  ~,(x)). 

Moreover, let the projections p,: ] R ~ ] R  and A,: I R ~ I R  ' ( t eN)  be defined 
as in Sect. 7. We associate with (Xk)k~Z the sequence (Yk)k~Z of r.v.'s with values 
in IR ~ determined by 

p,(yk)={oZ(Xk) if teDv, 
if reiN\Dr. (8.5) 

It is obvious that the thus obtained sequence (Yk, ~k)k~TZ satisfies the hypotheses 
of Proposition 7.1. As in Sect. 7, we write 

T o : = 0 ( e R  ~) and T,:= ~ Y~ for n e N .  
j = l  

Next, invoking Lemma 4.2 of Kuelbs and Philipp [27], we choose a nonde- 
creasing sequence (~c(r))r~ ~ in N such that: 

(a) N (r) < x (r) < dim ~ v  for all r e N ;  
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(b) if W* = { W* (t); t e [0, oo)} is a ]B-valued Brownian motion with W* (0)= 0 
and covariance function C of W* (1), then 

lim sup (tL2 t)- 1/z I[ W*(t)-H~(,) W*( t ) l l~  l r  -2 a.s. (8.6) 
t ~ o 0  

for each rEN. 
(The formulation of Lemma 4.2 in [27] is somewhat misleading; one should 

replace "there is an N such that" by "there is an N(t / )eN with N(q)=< dim Hu 
such that for all N e N  with N(t/) _< N_< dim H,".) 

By virtue of (8.5) and the definition of the linear functionals c~,, it follows 
from Proposition 7.1 that 

lim 1 Cov (A~(,) T,)=I~(~) for each r e N .  
n --+ oo }'~ 

Furthermore, using Proposition 7.1 and (e.g.) Lemma 5.1, we can, without chang- 
ing its distribution, redefine the sequence (Xk)k~ on a new probability space 
((2, ~,/5) on which there exists a sequence (17V~)~ of Brownian motions 
= {17V~(t); t~[0, oo)} with values in IR ~(r) such that 

17V~(0)=0 and Cov(gV~(1))=I~(,) 

having the following properties' 
(c) there is a sequence (l(r))r~N in N with 

l(r+l)/l(r)~N (8.7) 

such that, for each (m, r ) e N  2, the a-fields 

d(17V~(t); l <=s<=r, t<=ml(r)) 
and 

d ( ~  (t) - ~ (m/(r)); t > m I(r)) 
are independent; 

(d) for each r e N ,  

P{lim sup (tL 2 t)-1/2 [] ~V~(t)_A~tr)T[tl [] 
t - - ~  oO 

>= 1/(2c~ ~2)} =<r-:. (8.8) 

(Here, c~ is as in (8.2).) 
We now proceed to construct the Brownian motions W~ (reNT) occurring 

in Proposition 8.1. To this end, we may assume that the probability space 
(f2, ~,,/5) is so rich that there also exists a family {Uk(r); (k, r ) e N  2} of i.i.d.r.v.'s 
Uk(r): O--+(0, 1) with uniform distribution on (0, 1) which is independent of 
((Xk)keN, (~gr)rcN). For k, r c N ,  and tc[0,  l(r)], let 

~'~ (t),= ~ ( ( k -  1)l(r)+ 0 -  ~ ( ( k -  1)l(r)). (8.9) 
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According to Lemma 5.1, there is a sequence (Hr)re N of Borel measurable map- 
pings 

H~: CR~., [0,/(r)] x (0, 1)--+ CB[0,/(r)] 

such that 
(8.10) 

is a Brownian motion with ~ ' ) (0 )=  0 and covariance function C of Vk (')(1) satisfy- 
ing 

/7~( o Vff)(t)= ~')(t)  for tel0,  l(r)-]. (8.11) 

The Brownian motions IV, ( reN)  are then defined inductively by setting W~(0).-=0 
and 

W,(t) ..- W~((k- 1) l(r)) + Vk(')(t -- (k - 1) l(r)) (8.12) 

for t e ( ( k -  1)/(r), kl(r)-] and keN.  
It remains to show that the thus obtained Brownian motions have the desired 

properties. We first notice that the mapping/I~(,)[H~(,)IB: H~(,)]B--.~. ~(r) is an 
isometry from the first space, regarded as a subspace of the Hilbert space 
(~I~, ( . ,  .}~), onto the second space (equipped with the Euclidean norm [I " [[). 
Hence and from (8.2), (8.5), (8.8), (8.11), and (8.12), it follows that, for each 
r e N ,  

/5{lira sup (tL2 t)-,/2 [iF1~(,)(W~(t)_Sm)ll~>�89 < r - 2 ,  (gAB) 

so that 
/5 {lim sup (t L 2 t)- 1/2 I[ Wr (t) -- S[tl I I �9 ~ r -  2} <= r -  2 

t --4 00 

(8.14) 

(by (8.4) and (8.6)). Moreover, writing 

~r 1 <=s<=r, t<=ml(r)) 
and 

d * *  .'= ~r (W~ (t) - W, (m/(r)); t > m/(r)) 

for (m, r ) e N  2, we have 

d*,c~c(17V~(t), U~S); 1 <=s<_r, k<_ml(r)/l(s), t<__ml(r)) 

and 

d * *  c s ~  (ff-V~(t)- ~V~(ml(r)), Uk('); k > m, t >ml(r)),  

which together with (c) and the choice of the family {U~'); (k, r )~N 2} implies 
that 

d~*r and ** dry,,  are independent. (8.15) 

Combining (8.14) and (8.15) (and taking (8.7) into account), we see that the 
proof of the proposition is complete. 
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8.3. Conclusion of the proof of Theorem 3.2. In case C =0, our task reduces 
to proving the equivalence of the following two statements: 

(a') The sequence ((nL2 n)-1/2 S,)n~r~ is with probability one conditionally 
H �9 N~-compact; 

(b') HS, II~=o((nL2 n) 1/2) a.s. (as n ~  ~). 
The implication (b ')~(a ')  is trivial. To prove the converse implication, it is 
enough to observe that, by (8.1), f (Sn) = 0 ((n L 2 n) 1/2) a.s. (as n ~ ~ )  for all f e  ]]3*. 
(Note that the weak-star topology of 113" is separable, and that a conditionally 
If " [l~-compact sequence (x,),~N in ]!3 satisfying 

g(x,) ~ 0 (as n ~ ~ )  for all g in a weak-star dense 

subset of ]B* 

is strongly convergent to 0.) 
We now proceed to the case C + 0. First we consider the implication (a)~(b) 

of Theorem 3.2. In view of Lemma 6.4 and Proposition 8.1, we need only verify 
(8.4). Combining (a), Lemma 2.1 in E25], and (8.1), we see that the conditions 
of the first part of Theorem 3.1 in E25] are satisfied with 

Y,,=n-~/2S, and ~b,.'=(2L2n) 1/z (neN). 

Hence 

lira d((2nLzn)-l/zS,, K ) = 0  a.s., 
/1 ---~ oo 

where, for x~N, d(x, K):=inf{]lx-yl[r~: ycK} and K is the unit ball of the 
Hilbert space IH~ introduced in Subsection 8.1. But this means that the proof 
of Lemma 4.1 in Kuelbs and Philipp [27] remains applicable to establish (8.4). 

Let us turn to the converse implication (b)=c-(a). From Theorem 4.1 in [26], 
applied to the sequence (W(n) -W(n-1 ) ) ,~ ,  and (3.8) we conclude that the 
sequence ((nL2 n)-1/2 S,),~N is with probability one conditionally ]d " [l~-compact. 
The proof that (b) entails the existence of a mean zero Gaussian measure v 
with covariance function C, and that the covariance function of W(1) is necessari- 
ly equal to C, can be adapted from Sect. 5 in [27], the only difference being 
that one has to employ relation (8.1) instead of the Hartman-Wintner law of 
the iterated logarithm. 

9. Proof of Proposition 2.2 

We shall only prove that (i)r (The proof that (iii) r162 (iv) proceeds analogous- 
ly.) Let 

Q ,= lim sup E x _ . 
m = l  n ~ Q ~  l 

We begin by demonstrating that the following three facts (F1)-(F3) hold true 
under (i) as well as (ii): 
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(F1) For all m, n ~ N  with re<n, one has 

[ [ n \ 2 \  cr, z [ n - - m + l  \ 2  

k 
(F2) The sequence x_ t is Cauchy in ~ce 2. 

l ] n e N  

(F3) Q = E x _ z (irrespective of whether Q is finite or infinite). 
m=l I 

To verify (F1), we first recall that 

E(~k+ll~t)=g(~kl~o)OZ z a.s. for all k, IE77. (9.1) 

Next we observe that each of the assumptions (i) and (ii) entails that 

E(~ol~-k)WO as k ~ o e .  (9.2) 

In the case (i) this is evident; in the case (ii) it follows from the martingale 
convergence theorem (note that g(~o]o~_oo)=0 a.s.). From (9.1) and (9.2) we 
infer that, again in both cases (i) and (ii), 

E r = ~, (E(~kIN)--E(r a.s. 
l = - m  k = m  

(for all m, n ~ N  with m <  n), where the infinite series converges in ~e 2 . Hence 

E E k ~k[~O = coE~g=~(E(~kl~l--E(~kl~-~)) 

ao / n - m + l  \ 2  

= ~=mEl ~ X_k) (using(9,1)), 

which gives (F1). (F2) is an immediate consequence of (i) and (F1); on the other 
hand it can also be obtained from the relation 

lim lira_ sup E X_k = 0, 
m ~ m  n oo \ k = m  / 

implied by (ii). Finally, it is clear that (F2)=*-(F3). 
We now consider the implication (i) =,- (ii). Suppose that (i) is fulfilled. From 

the martingale convergence theorem and (9.2), we conclude that E(~o [ ~-oo) = 0 
a.s. Using (i) and (F1), we find that for each e d R  + there is an No(e)sN such 
that 

[ n - m + l  )2 
t=m E|\  ~}-~I X-k <~ for all n, m> No(e) with n>m. 
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Because of (F2) and (F3), this is only possible if Q < ~ .  
The converse implication (ii)=*-(i) follows by combining (F1), the inequality 

E [ ~ < 2 E + 2 E (9.3) 
l=m l X - k  - -  l=m l X -  l = n + l  1 X - k  

(valid for all m, n s N  with re<n) and the fact that, on account of (F3) and 
since Q< o% the right-hand side of (9.3) becomes arbitrarily small if m and 
n are chosen sufficiently large. 

10. Proof of Corollary 4.1 and Remark 4.1 

10.I. Proof of corollary 4.1. In the following we shall use the symbol II YHp to 
denote the p-norm (poll,  oo)) of a r.v. Y:f2~]R with ElYf<o% i.e., [[Yllp 

:=(ElY[P) 1Iv. For m, h e n  with re<n, we write Tm, n"= ~ Xk. 
k - m  

We first consider the cases A.1-A.4. To this end, let (f], ~,, P, ()~k)k~Z) be 
the coordinate representation process corresponding to the sequence (Xk)k~Z, 
i.e., f].'=B Z, ~ :=Bore l  o--field induced by the product topology on ]B e, P,= 
P~ 1, )~k..=k_th projection 0 ~ ]B. Without loss of generality we may 
suppose that (Q, ~, P, ( X k ) k e T Z ) = ( ~ ,  ~ ,  P,  (YXk)keZ). Let fro . '=~r and 
let ~: f2 ~f2  be the shift transformation (i.e., "c((xj)j~z).'=(xj+ 1)je~ for (xj)j~(2). 
Then Xk=XooZk and ~:=z-~Yo=~C(Xj;j<k) for all ke2L Each of the 
assumptions A.1-A.4 entails that the sequence (Xk)k~Z is ergodic (see, e.g., Ibragi- 
mov and Linnik [20]). Hence z is also ergodic. Summarizing, it follows that, 
with the above notations and conventions, (Xk, ~)k~Z is the stationary ergodic 
F-sequence induced by ((f2, ~,, P), ~, ~o, Xo). Therefore, it suffices to show that 

(Xk, ~)k~Z has the weak M2-property. (10.1) 

It is obvious that (10.1) holds under A.1. So it remains only to investigate 
the cases A.2-A.4. For k~No, X-k is fro-measurable. Hence, and in view of 
Minkowski's inequality, it is enough to demonstrate that, for each fe]B*, 

max IIE(f(Tek+x.2k+l)l~o)ll2<oo. (10.2) 
k = l  1<--l<~2 k 

But this is immediate from the following estimates (valid for all m, ne]N with 
m_~/'/). 

Under A.2: ][E(f(T,,,n) l~o)[I 2 <= 5~(rn) a/r I[f(Tm,,)H2 +a 
(cf. McLeish [30], Lemma 3.5), 

[If(Tm,,)llz+a<(n-m+ 1)[[f(gl)ll2+a 
(by Minkowski's inequality). 

Under A.3:IIE(f(T,,,,)IYo)II2 <p(m)IIf(Zm.,)ll2 
(note that IIE(f(Tm,,)l~o)l]~ 
= E(f(T.,..) E(f(Tm,.)l fro)) 
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~p(m) IIE(f (Ym,.) l ~o)ll2 Ilf(Ym,.)ll 2), 
II f(T,.,.)ll 2 ~ c l (f)  ( n -  m + 1)1/2 

(ef. Ibragimov [21] and Bradley [3]). 

Under  A.4: I1E ( f  (Tin, .) I ~-o) I12 < 2 ~b (m) (1 + ~)/(2 + ~) II f (Tin, n)[] 2 + 
(cf. [30], Lemma 3.5), 

q[f(T~, n)llz+,~c2(f)(n--m+ 1) 1/2 
iflim sup E(f(TI,I)2)= oo and 66[0, 1] 

l--+ co 

(cf. [21] and [3]), 

lIE(f (T,,,,,) I ~o) lh < 2cp(m) 1/z c3 (f) 
if lira sup E(f(T1, t) 2) < 

l ~ o o  

(cf. 1-30], Lemma 3.5). 

(Here cl (f), c2 (f), and c3 (f)  are positive constants.) 
Let us now turn to the cases A.5-A.7. In these cases we may, without loss 

of generality, assume that (f2, o ~, P,(Yk)k~) is equal to the coordinate representa- 
tion process pertaining to the sequence (Yk)k~Z. We choose z to be the shift 
transformation on f2, and ~ , = d ( Y ~ ; j ~ k )  (for ke;g). Following the lines of 
the above proof in the cases A.1-A.4 and using some arguments from McLeish 
[30], p. 177, the details for proving that the assertion of the corollary holds 
under A.5 and A.6 are straightforward and hence omitted. Finally, the proof 
that the conclusion of the corollary also obtains under A.7 is immediate from 
Theorems 3.1 and 3.2 in conjunction with Proposition 2.2. 

10.2. Proof of Remark 4.1. For neN,  let 7'1,, be defined as above. Again, we 
begin by considering the cases A.I-A.4. Let ffo.'=d(Xj;j__<0). Since Xo is 
No-measurable, we have 

U.(f g)= E(f(Xo)g(Xo) ) + E(f(Xo) E(g(Ta,.) ] o~o)) 
+ E (g (Xo)E(f(TI, . )  [ o~o)), 

so that the convergence of the sequence (U.(f g)).~r~ follows from the fact that, 
by (10.2), the sequences (E(h(TI,.) I f fo)) .~ (helB*) are Cauchy in 5e 2. It remains 
to demonstrate that 

U(f,  g):= lim U.(f g)= C(f, g) for all f gEIB*. 
n ~ 3  

As the mappings (f, g)~--, U(f,  g) and (f, g)~--, C(f, g) are symmetric bilinear func- 
tionals, the polarization formula tells us that we need only show that 
U(f  f ) =  C( f  f )  for all f e N * .  Now 

n - - 1  

E(f(Tt,.)2)=E(f(Xo)2)+ ~ Uk(f,f) for all neN, fEN*. 
k = l  

Since lim Urn(f, f)--- U(f, f), this entails that 
trl ~ cx3 

C ( f , f ) =  lim 1 ,~ ~ n E(f(TI'")a) = U(f, f ) ,  
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as desired. 
If one of the assumptions A.5 and A.6 holds, the convergence of the sequences 

(U,(f g)) ,~  can easily be obtained by adapting the reasoning in Ibragimov 
and Linnik [20], p. 352ff. The rest of the proof is as above. Finally, if A.7 
is satisfied, the assertion concerning the convergence of (V~(f g)),~N to C(f g) 
follows directly from Proposition 2.2, Remark 3.5, and the proof of Proposi- 
tion 2.1. 
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