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1 Introduction 

We investigate a class of statistical problems, where usual bootstrap methods 
fail, and discuss two alternative solutions. One special case are the eigenvalues 
of a covariance matrix, which is a well-known counterexample of Beran and 
Srivastava (1985, 1987); see also Eaton and Tyler (1991). Other examples are 
given in connection with minimum distance procedures. 

In general we are dealing with a sequence of statistical models that can 
be partially described by an unknown parameter t, in a real Banach space 
(X, I1"11)- For  each n let t', be an estimator for tn defined on a probability space 

((2,, P,). For  the random elements B, ..=~/n(t',- t,) we assume that 

A1 B, converges in distribution to a random variable B, where L. .=~(B) is 
a tight Borel distribution on X 

(the factors ~ n  could be replaced with any other constants r, > 0 tending to 
oo). The second basic assumption is that there are consistent estimators for 
~(B, ) .  That  means, there are random distributions L , =  L~(" [co,) on X, defined 
for co, e f2,, such that 

A 2 g ,  converges weakly to L in probability 
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(we refer to Hoffmann-Jorgensen's, 1984, concept of weak convergence; see the 
appendix for more details). Two examples for A1-2 are given at the end of 
this section. 

It follows from A1-2 that one can construct confidence sets C, c X  for t,,. 
But suppose that one is merely interested in q~(tn), where q5 is any function 
from X into another Banach space (Y, I1" II)- One might use qS(C,) as a confidence 
set for ~b (t,). However, these sets are too conservative in general. Another prob- 
lem is that it is not always clear how to compute or represent ~b(C,). 

An alternative is the naive bootstrap. It estimates the distribution of 

]~n(4) (t~) - @ (t,)) by 

({,,, L, regarded as fixed). Under  some regularity conditions this method works 
well, if q~ is compactly differentiable in the sense of Reeds (1976); see Gill (1989). 
However the functions @ we are interested in are not necessarily differentiable, 
although they have other regularity properties. One consequence is that the 
naive bootstrap fails in general. 

There is a possible modification of the bootstrap, called the 'rescaled boot- 
strap'  hereafter. In an i.i.d, setting it is equivalent to the sample size modification 
described by Bretagnolle (1983); see also Beran and Srivastava (1987) and Eaton 
and Tyler (1991). The naive bootstrap estimator ~ t  is replaced by 

where m = re(n) are numbers such that m ~ oo and m/n ~ O. In the present frame- 
work it typically works in case of constant sequences of parameters, t, = t for 
all n. But if this condition is violated, the rescaled bootstrap might fail either. 
In that sense it is very nonrobust  and shouldn't be used. Both the naive and 
the rescaled bootstrap are treated in Sect. 2. 

In Sect. 3 we discuss an ad hoc method, which is more reliable but computer- 
intensive. The basic idea is to use the classical recipe of inverting tests: Each 
hypothetical parameter in X is tested for being a plausible candidate for t,, 
and then the set of plausible parameters is used to define a confidence set for 
~b(t,). In many classical problems this approach reduces to looking only at 
one or a few possible parameters, but in the present situation no such reduction 
seems possible. Therefore it is proposed to replace the whole parameter space 
X by a random finite subset, which leads to a stochastic procedure as in Beran 
and Millar (1987). 

Some technical details and most proofs are deferred to the appendix. 

Example 1.I : sample covariance matrices. Let X be the space of real, symmetric 
d x d matrices x=(xi, i:  1 <i , j<d) ,  and for a probability measure Q on R e with 
finite second moments let Z(Q)eX be its covariance matrix. Given a sequence 
(Q,), of such distributions, let (~, be the empirical distribution of n independent 
random variables with distribution Q,. Under mild regularity conditions the 
estimators t',..=Z((~,) for t , ,=Z(Q,) meet A1, see Beran and Srivastava (1985): 
Suppose that 

(1) Q, w~kly Q and Ey~o~.([IYll4)~ Ey~Q(I[Yll4)< oo 
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for a fixed (2. Then t, ~ t, and ~ (B,) converges weakly to a centered Gaussian 
distribution L = L(Q) on X. Furthermore (1) holds in probability, if Q, is replaced 
with Q,. Thus by resampling from Q, one gets a consistent estimator L, for 
the distribution of B,. The distribution L is typically nonsingular; for instance, 
if Q is absolutely continuous with respect to Lebesgue measure. This fact is 
needed in Sect. 3. 

Example 1.2." empirical discrete measures. Now let Q,, Q, be probability mea- 
sures on the set {1, 2 . . . .  } of positive integers. Any such distribution Q is identi- 

fied with (Q {1}, Q {2}, ...)E:I or ( Q ~ { ~ ,  ]//Q {2} . . . .  )e:2, where :p is the Banach 
space of real sequences r=(ra, r2 ...) with finite norm []r[[p,=(~[ri[P) l/v. In both 
cases, if i 

(2) Q.{i}--*Q{i}Vi and EVQ,{i}--,E~<oe 
i i 

for a fixed Q, then the B, ..=~/-s Q,) satisfy A1 with a centered Gaussian 
distribution L =L(Q). Again one can bootstrap ~(B , )  in the usual way, because 
(2) still holds in probability, if Q, is replaced with 0,- 

2 Naivc and resealed bootstrap 

In this section we restrict our attention to the following asymptotic framework: 

B1 ] / / - s  for fixed points t, A~X. 

The case A = 0  corresponds to the standard asymptotics ' Q , = Q  for all n' in 
examples 1.1 and 1.2. Further suppose that the function ~b: X ~ Y  is compactly 
differentiable at t in a weak sense: 

B2 There are a linear space XocX containing supp(L) and A and a function 
�9 : Xo--*Y such that 

lim r- l (O(t+rx ' ) - (a( t ) )=cb(x)  V x e X  o 
r ,[ O~ x '  --~ x 

(supp (L) is the smallest closed set A ~ X with L A  = 1). Note that the function 
in B2 is automatically continuous and positive homogeneous on Xo, i.e. 

(rx) = r c~ (x) for all x ~ Xo and r__> 0. If q~ is linear, then q) is compactly differenti- 
able tangentially at Xo in the sense of Gill (1989). At the end of this section 
we give examples for q~ with a detailed discussion of its analytic properties. 
The important thing is that B 2 is satisfied, but �9 is nonlinear in general. 

It is notationally convenient to reformulate the problem in terms of 

�9 + x ) -  

d . :=Vn( t , - -  t ) , 

A.' .=~/-s A . .  
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We also write 

f ( x ,  z):= f (z + x)-- f (z) for functions f :  X ~ Y .  

Then ~,(L],)-  q~, (A,)= ~,(B,,  A,), and 

~I. = ~x~L~ 3.)), 

The next result gives the asymptotic joint distribution of r  
and M,.  While ~,(z~,)- r has a definite limiting distribution, the bootstrap 
estimator M, converges in distribution to a random measure: 

Proposition 1 Suppose that A1-2 and B1-2 hold. Then the random elements 
r converge in distribution to q~(B,A). Further, for any f ixed 
fecg(y,  [0, 1]), the random elements ~i,  f converge in distribution to the random 
variable M(~ + m f, where Mr ,= ~~ ( ~(B, z)). 

Generally, for any fecg(Y • Y, [0, 1]) the random elements M,  f ( r  A,), -) 
converge in distribution to the random variable M(A +B) f (q~(B, A), "). 

An exceptional case is �9 being linear. For then r  z ) = ~  for all zeXo,  and 
~ .  converges weakly to the correct, nonrandom limit M(o) in probability. 

The rescaled bootstrap ~ r  has a different behavior: 

Proposition 2 Under A1-2 and B1-2, the rescaled bootstrap estimator ffi, con- 
verges weakly to M~o ) in probability. 

For A =0  this is the correct limit, but otherwise the distributions Mr and 
Mr can be different, unless �9 is linear. 

Both Propositions 1 and 2 can be derived from an extended Continuous 
Mapping Theorem given by van der Vaart and Wellner (1989); see the appendix. 

Example 2.1: eigenvalues of a symmetric matrix. Let X be as in example 1.1, 
and for any real, symmetric ~ x ~ matrix 2 let q5 (2) be the vector of its ~t eigen- 
values in decreasing order. This function q~ is positive homogeneous and Lip- 
schitz continuous. In order to formulate other regularity properties we have 
to introduce some notation: The set of all orthogonal d x d matrices is denoted 
by T. For a (possibly void) subset E =  {e 1 . . . .  , ek-1} of {1 . . . .  , d--1} with 0=-" e o 
<e~ < e z <  ... <ek:=d define 

cI)(xlE):=(r j:e~_ 1 < i , j<e,): 1 < s < k ) .  

Here is a basic result, which is given in Eaton and Tyler (1991): 

Lemma 1 Let (~,), be a sequence in X. Further let z,, z e T  and E = { e  1, ..., 
ek- 1} = {1, ..., d -  1} such that 

T n --> T ,  

z* ~, % = diag (q5 (4,)) 

4,i(r Ce~A~.)= 0 

r  Ce(~ + 1 (4.)  ~ 

for all n, 

for es_l <i<=e s 

for l < s < k .  

and l <s<<_k, 
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Then 

q~(x, ~.)-  ~(r* xr Ie)--,0 

uniformly in x on bounded subsets of  X ( [ . ] *  denotes transposition). 

A particular consequence of Lemma 1 is condition B2: For  any fixed tEX 
let E(t) be the set of all indices ic{1 . . . .  , d - l }  such that qSi(t)>~bi+l(t ), and 
let T(t) be the set of all r e T  such that ~* t'c = diag ~b(t)). Then 

(3) lim r - l ( (a ( t+rx ' ) - - (o ( t ) )=q~(z*xz lE( t ) )  for x~X and z~T(t).  
r ~ O , x ' ~ x  

This follows by letting 4, = r21 t, where r, $ 0. Formula (3) shows that ~b is differ- 
entiable at t if and only if all eigenvalues of t are different. 

Example 2.2." minimum distance functionals. Let (qo" 0 ~ 6)) be a parametric family 
in X, and define 

q~ (x).'= inf II qo - x H . 

This functional q5 is obviously Lipschitz continuous with constant 1 for any 
parametric family. Minimum distance tests based on functionals of this type 
are discussed by Pollard (1980). It would be interesting to have upper confidence 
bounds for the distance qS(t,) rather than just a test, whether the parametric 
family is correct or not. Suppose that 6) is an open subset of R p such that 

inf Ilqo-qo[I > 0  Ve>0 V0~6), 
~eo, 10-01>~ 

and 6)aO~-*qo is continuously differentiable with nonsingular derivatives 
D O : R p ~ X. Then one can prove 

L e m m a 2  Let  (s.). be a sequence in X such that q~(s.)=O(l/n -1) and s . ~ q o  
for  some 0~6). Let  (0.). be any sequence in 6) such that Uqo.-S.l[ <c~(s.)+n -1, 

and define ~z.,= ~/n(s. - qo.). Then 

]//~r n -{- ] ~  Z1X)--min IlDo h -  r e , -  xll ~ 0 
h~Re 

uniformly in x on bounded subsets of  X. 

In particular, Lemma 2 implies that B 2 is satisfied for t = qo, 0 ~ 6), with limit 

~b(x),=min I]Do h -  xl[ . 
h e r e  

Moreover, there is an expansion for the corresponding minimum distance 
approximations: For  r > 0 let ~b r : X ~ O be any function such that [I Qq, r(~)- x L] 
< qS(x)+r 2 for all xeX.  Then 

lim r l O r ( q o + r x , ) = a r g m i n l l D  0h_xl]  
r~.O,x' ~ x  heRe 

whenever this argmin is uniquely defined. Even if uniqueness is guaranteed 
for sufficiently many x~X, the argmin is nonlinear in general. 
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3 Robust confidence sets 

Now the points A.=l/n( t . - t )  are no longer assumed to converge to a fixed 
point in X. The only assumption (if any) is that 

B 3  t. ~ t. 

Moreover, ~b.: X ~ Y  could be any function; only in the examples we refer 
to r  (x) = ~/n (q~ (t + ~ x) - ~b (t)). 

Generally a confidence set for 4~.(A.) is a random subset C. of Y defined 
on (/2., P.). For a fixed level ae(0, 1/2) the confidence sets C. are said to be 
asymptotically valid, if 

lim sup P~ {~.(A.)~ C.} __(~. 
n - + o o  

In this paper we restrict our attention to confidence sets, which are determined 
by one shape function S: Y--+ R and one confidence bound R. : s --+ R as follows: 

c.={y~v: s(~(3.)-y)<=R.}. 

For instance, if S(y)= I[yll, then C~ is the closed ball with center ~ . (3 . )  and 
radius R~. If Y = R  and S ( y ) = - y ,  then C. is the halfline ( - 0 %  ~ . ( z t . ) + R J .  
Generally it is assumed that S is Lipschitz continuous. 

The naive bootstrap leads to the sets C} b> ,= { S ( ~  ( z ] . ) - . ) <  0. (z].)}, where 

q.(~):=sup {reR: Prx~L~ {So eb.(X, 4)>r} > c~}. 

Alternatively, we test the hypothesis "A.= 4" for all points ~ in a random finite 
subset ~.  of X. The tests are based on the teststatistic 

T~(x, 4),=S(~~ e,(r 

Thus I{T~(z]., ~)>0.(~)} is a test of " A . = ~ "  with nominal level c~. Now the 
confidence bound/~,  is defined as 

/~. '=max {T~(3., 4): ~e~ . ,  T~(z]., ~)<0.(~)}, 

and the corresponding confidence set is denoted by C.. 
This description is convenient for theoretical considerations. But one can 

avoid the computation of all quantiles 0.(~), ~ ~2. ,  by computing/~,  inductively 
after arranging the values T~ (J . ,  4) in decreasing order. 

The particular choice of T~ seems intuitive and often leads to reasonable 
confidence sets. However, one can also find examples, where this particular 
teststatistic does not work well. One possible improvement is to replace T~(x, ~) 
with w.(x)T~(x, ~), where % > 0 is a suitable weight function (studentization). 
The choice of an appropriate teststatistic as well as more flexible shapes for 
C. will be the subject of future research. 

In what follows the asymptotic behavior of C. is studied under conditions 
A1-2, where we also assume that 

A3 supp (L) is a linear subspace of X. 
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It is well-known that this requirement is always satisfied for a centered Gaussian 
distribution L. In addition one needs conditions on the random sets ~,  and 
the functions ~, .  

On the one hand it is assumed that ~n is asymptotically dense in A n + supp (L) 
in a weak sense: 

C1 min II~-An-zll ~ 0  VzEsupp (L). 
r  P 

On the other hand the sets e must not be too large: ~ n  

C2 max 11~-z]n [ [ = o v ( ~ ) .  

An explicit construction of ~.n might be as follows: Let L.  be a Markov kernel 
in the classical sense, and let B1, n, B 2 . . . . . .  be random variables, which are 
conditionally independent with distribution Ln given z]n, L.. Then the random 
sets 

~n.'={&-Bi,.: l__--<i__--<kn} 

meet assumption C1, provided that kn tends to infinity. This follows from the 
fact that the joint distribution of B,,  B1, ., ..., Bk,, converges weakly to L k§ 
for any fixed integer k > 0. For  

lim sup P~ {min 1[ ~ - A n - z II > ~} < inf lim sup P~ {min I[ Bn - z - Bi, n II >-- ~} 
n ~ o o  ~ S n  k n ~ o o  i<--k 

< i n f E ( L { l L B - - z - - "  II >ef t )  
k 

= P r  { L { I I B - z - .  11 <e} =0} 

= 0  Vzesupp (L). 

The second requirement C2 can always be achieved by a proper truncation. 

Note also that max IIBi,, [1 = o p ( ] ~ ) ,  provided that E(IIB1, n II 2 I 3 , ,  Ln) -~ g(llB]l 2). 
i<=kn 

The following assumption for ~n is used in order to establish a lower bound 
for/~n and the asymptotic validity of C n : 

D1 There is a function ~: supp (L)--* Y such that 

~n (xn, A n) ~ ~b (x) whenever xn --* x ~ supp (L). 

Typically one can verify this condition only along certain subsequences (Nk)k 
of (n). Then the results below have to be modified in an obvious way. On 
the other hand one can often prove the following stronger compactness condi- 
tion, which is used in order to obtain an upper bound for/~n : 

D2  For  arbitrary points ~nsX such that II~.-AnII =o(]/-s and for any subse- 
quence of (n) there are a subsubsequence (nk)k and a function ~: supp (L)--+ Y 
such that 

~nk(Xk, ~.k) --* ~(X) whenever Xk ~ X~supp (L). 
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For instance, if Y has finite dimension and the functions 4~, are uniformly Lip- 
schitz continuous, then D2 is satisfied. A special case of D1-2 is" 

D 3 There is a continuous, linear function ~o" supp (L) ~ Y such that 

q),(x,, ~,)--*ebo(x ) wheneverxn~x~supp(L)  and ![G-Anll=o(~n). 

For ~,  = ]~(~b (t + n ~ . ) -  ~b (t)), the latter assumption is satisfied, if B 3 holds 
and q~ is continuously Frechet differentiable in a neighborhood of t. 

Before stating the results let us introduce some further notation: In case 
of D1 the function S(~(x)-q~(z)) is denoted by T(x, z), and q(z) stands for 
the (1-c0-quantile of 5f(SoC~(B, z)). If D l - 2  hold, let ~ be the family of all 

sequences Z = (nk, ~k)k, where (rig) k ~ (n), ~k6X, II G -  A.k II = o (lfnk), and 4~,~(-, ~k) 
converges to some function ~( . ,  Z) as in D2. Then let q(Z) be the (1 - c0-quantile 
of Y(So ~(B, Z)), and define 

T(x, Z).-=lim sup T~k (A,k + x, ~k). 
k--* oo 

This slight abuse of notation can be justified, because ~(x, z )=~(x ,  Z), q(z) 
= q(Z), and T(x, z)= r(x,  Z) for x, z~supp (L) and Z:=(n, An+z),. 

Theorem 1 Suppose that A1-3, C1 and D1 are satified, and define 

f*(x)-'=sup {T(x, z): z6supp (L), T(x, z)<q(z)} (x6supp (L)). 

I f  f :  X-*  [--o% oo) is upper semicontinuous such that f < f *  on supp (L), then 

exp (/~,) __> exp (f(B,)) + %(1). 

Moreover, let 4) satisfy the following assumption: 

(4) 
Then 

supp (L)?z ~ T(B, z) has no local maximum at 0 almost surely. 

lim sup P~ { ~,  (A,) ~ C,} =< Pr {So q~ (B) > q (0)}. 
n ~ o o  

In particular, the confidence sets C, are asymptotically valid, if the distribution 
of So q)(B) is continuous. 

Theorem 2 Suppose that A1-3, C2, and D1-2 are satisfied. Let 

F*(x).'=sup {T(x, Z): Z E ~ ,  T(x, Z)<q(Z)} (xesupp (L)). 

Then F* is bounded from above, and 

R,<=F(B,)+%(1) 

for any lower semicontinuous F: X-*  R such that F > F* on supp (L). 

These lower and upper bounds for /~, are not very handy, but in some 
special cases they lead to good and simpler bounds. Especially in case of D 3 
they imply that the confidence sets C, and C~ b) are asymptotically equivalent: 
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Proposition 3 Suppose that A1 3, C1 2, and D3 are satisfied, where ~(So~bo(B)) 
is continuous. Then the confidence bounds O,(A,) and R, converge to q(O) in proba- 
bility. In particular, 

lim Pn {~b(A,)r = 1 - ~ .  
n ---r ~3 

For under the conditions of Proposition 3, 

f *  = sup {So ~b o (z): z ~ supp (L), So cb o (z) < q (0)} = q (0) 

on supp (L). Further, q(Z)=q(O) for all Z ~ ,  so that F* <q(0). 
In the remainder of this section we apply Theorems 1 and 2 to Examples 

2.1 and 2.2. 

Example2.1 (continued). Suppose that B3 holds, where qSa(t)>0 and 
t=d iag  (qS(t)). Further suppose that L is absolutely continuous with respect to 
Lebesgue measure on X, which is denoted by Leb. Now consider the functions 

gt(x) ==(log 4)1 (x) . . . .  , log qSa(x)), S(y) := max l Yil, 
l ~i<_d 

where log r may be defined arbitrarily for r < 0 (the use of ~ instead of q5 is 
motivated by the asymptotic theory for normal distributions Q in Example 
1.1). Under  these assumptions the confidence sets Cn are asymptotically valid, 
and the confidence b o u n d s / ~  are stochastically bounded. 

Limit functions corresponding to ~ , = ] / n ( ~ ( t +  n ~ . ) - 0 ( t ) )  are denoted 
with the letter T in place of ~b. Condition D2  is satisfied, and all possible 
limits 7/( ., Z) have the form 

(5) t l~b(z*xr, diag(y)[E)=t-l(q~(diag(y)+r*xv]E)-q~(diag(y)lE)) 

for some E=E(Z)={e l ,  . . . ,ek_l}C{1,  . . . , d - l }  with EDE(t), z=z(Z)eT(t)  
and y = y (Z)6 R a. This follows from Lemma 1 together with a simple compactness 
argument. In particular, if t has d different eigenvalues, then D 3 holds with 
limit 

~ o ( X ) ' = - t - 1  ( X 1 , 1  . . . . .  Xd, d)" 

For proving the asymptotic validity of the confidence sets Cn, suppose (with- 
out loss of generality) that D1 holds with limit tI'(x) = t-  1 ~(~. xro, diag (Yo) lEo). 
Since t / ' (z+r Id) equals ~(z)+t- l (r ,  ...,r) for any r~R and zeX, condition 
(4) in Theorem 1 is satisfied. Moreover, 

(6) Leb {x~X: some component of ~(x) equals 2} = 0  V2~R. 

Hence 5~(So T(B)) is continuous by our assumption on L. 
The function F* is given by 

(7) F*(x)=  sup {T(x, z): z~X, T(x, z) < c)(z)}, 

where ~(z) is the maximum of all (1-c0-quantiles of •(So T(z*Bz, z)), r~E(t). 
This is very similar to f*(x)  except that ' < '  and q(.) are replaced with '__<' 
and c) (.) respectively. In fact, if Eo = E (t), then q (-) = ~ (-), because ~b (. [ E (t)) 
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= 4)(z*(')zlE(t)) for all ~ e T(t). If Eo �9 E(t), this does not hold in general. How- 
ever, if L is the distribution L(Q) in Example 1.1, where Q is a nonsingular 
Gaussian measure on R d, then z* Bz =ze B for all z~T(t) and again q( . )=  c~(.). 

Example 2.2 (continued). One can easily apply Theorems 1 and 2, if X is finite 
dimensional with supp (L) = X. Alternatively we consider a Hilbert space X with 

inner product ( . ,  . ) .  Let B3 be satisfied with t=qo, 0~0,  let qS(t,)=O(~n-1), 
and let L be centered Gaussian with supp (L)dgDo R p. If one is interested in 
upper confidence bounds for ~b(t,), one has to consider S ( y ) = - y .  Under the 
present assumptions the confidence sets C, are asymptotically valid. Moreover, 
the corresponding confidence bounds q5 ({',,)+ I /n-1/~ ,  can be bounded explicitly: 
There are a function G*: [0, oo)--. [ - 0 %  oo) and constants c*, d 'e(0,  ~ )  to be 
defined later with the following properties: 

(8) 

and 

(9) G*= - o v  on [0, c*), 

G* is continuous on [c*, oo) with G*(c*)=0, 

G*(r)-r is nondecreasing in re[c*, oo) with limit d* as r ~  oo. 

Note that G*(r)<r for some r>0 .  This indicates that the confidence sets C, 
capture the positive bias of the estimator qS(~',). 

Precisely, let / /  be the orthogonal projection onto (DoR0 • and let N be 
the set of all v~HX with Ilvll _-< 1. For yEN and c=>0 let 

Then 

~(xl c, v)=(c2 + 2c (v, x)  + IlHxll2)l/2=(c2-c 2 [Ivl12 + IIcv + Hxl[2) ~/2, 

c7(c, v)-'=~- quantile of ~ ( ~ ( B  I e, v)). 

G*(r)'.=sup {c>0: gt(c, v)<=r for some v~N}, 

c* :=q(0, 0), 

d* ..=sup {(1 - e ) -  quantile of 5a((v, B>): w N } .  

For proving the preceding claims note first that condition D2 is satisfied 
by the Lipschitz continuity of qS. In particular, let ~(x)'.=l/-ndp(s,+~n-lx), 
where s, ~ t and qS(s,) = O(]/n- 1). It follows from Lemma 2 that there are zne/TX 
such that ~ - I l r c .+ r / ( . ) l l  converges to 0 uniformly on bounded sets. On the 
other hand, for each subsequence of (n) there exist a subsubsequence (nk)k, a 
number c > 0  and a point y e n  such that ~ 4(tn~)~c and 7cnk ,ve,kly~ cv. But 

then ~k converges to ~ ( ' l c ,  v) uniformly on compact sets. These functions have 
obviously no local maximum on supp (L), and 

(10) ~(SU(B I c, v)) is continuous. 

Hence Theorem 1 yields the asymptotic validity of Cn. 
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As for the upper bound (8), one can argue similarly as in the proof of (7). 
Wi thout  loss of generality suppose that D1 holds with limit �9 = T(" ]co, Vo)-Co 
for some voeN and co=lim[/nr If Z=(nk,[/~k(Sk--t))k is a point in 

such that r(x,Z)<oo for some xeX, then q~(sk)=O(]/~l).  Hence ~( ' ,  Z) 
= T(. ]c, v)--c with c=c(Z), v=v(Z). In particular, 

T(x, Z)= c -  T (xlco, Vo), q (Z)= c--7o1(c, v), 

and a little algebra yields 

F*(x)<= 6*(~(XlCo, Vo))-- ~(xlco, Vo). 

Now let G(r)==G*(r) for r>q(0,  0) and G(r),=r--q(O, 0) for 0 < r < ~ ( 0 ,  0). Then 
G is continuous on [0, oo), according to (9), and Theorem 2 implies that 

------l/nr is not greater than G(]~O({.))+Op(1). But (10) implies that the 
asymptotic probability of [/nq5 (~'.) being in (c~(0, 0 ) -e ,  q(0, 0)) is arbitrarily small 

for suitable e>0,  and ]/nqS(~'.)+/~.<0 means that [ /~qS(i ' . )+/~.=-oo.  This 
yields (8). 

Claims (9 10) are proved in the appendix. 

Appendix 

If P is an outer probability measure on a set ~2, we call (g2, P) a probability 
space and P a distribution. A mapping X from ~2 into some other set X is 
called a random element, and the distribution of X is defined to be the outer 
measure s176 o X-1.  If (f2, ~ ,  P) is a probability space in the classical sense, 
P is identified with the corresponding outer measure. In particular, if f2 is a 
topological space and ~r is the Borel c~-field, then P is called a Borel distribution. 
For a bounded, nonnegative function f on f2 the integral of f with respect 
to P is defined as 

Pf:= [. P{ f>r}  dr. 
0 

Here are some properties of this integral: For any bounded f g: (2~[0 ,  oo) 
and r>0 ,  

P(rf)=rPf, P(r + f )=r  + Pf, 
P( f  v g)<=Pf +Pg, [Pf-Pg[ <_ sup I ( f - g )  ((o)]. 

Following Hoffmann-Jorgensen (1984) (see also van der Vaart and Wellner, 
1989), a sequence of distributions L, on a metric space (X, d) converges weakly 
to a Borel distribution L on X, if 

L,,f--+ Lf gfeCg(X, [0, 13) ; 
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~(X,[0, 1]) denotes the space of continuous functions from X into [0, 1]. A 
sequence of random elements X.:(Q., P~)~ X converges in distribution to an 
X-random variable X, if 5 ~ (X.) converges weakly to 50 (X). 

Let L. be random distributions on X defined on (~., P.); that means, L. 
=L.(.IoJ.) is a distribution on X for all ~o.E~2.. Then L. converges weakly 
to L in probability, if 

L . f T L  f Vfec~(X, [0, 1]) 

(' >' denotes convergence in outer probability). 
P 

A basic tool is the following result, see van der Vaart and Wellner (1989): 

Theorem 3 For n= 1,2 .... let L. be a distribution on a metric space X and 
g. a function from X into another metric space Y. Suppose that L. converges 
weakly to a tight Borel distribution L on X and 

g. (x . )~g(x)  whenever x.--+ x~Xo c X ,  

where Xo is such that L(X\Xo)=0 and g is a function from Xo into Y. Then 
g is continuous, and L. o g~ 1 converges weakly to Lo g-1. 

Proof of Propositions i and 2 For proving Proposition 1 it suffices to verify 
the general part, where f maps Y x Y into [0, 1]. With 

G.(x):= L . f  (~b+(x, A+), ~b.(., A. + x)) and g(x):=Lf(~(x, A), ~(., A + x)) 

one has to show that G.(B.) converges in distribution to g(B). Using some 
standard approximation arguments one can deduce that there are events A. c ~2. 
such that P . ( Q . \ A . ) ~ 0  and L. we.kiy >L along (A.).. Now one can utilize 

Theorem 3 iteratively as follows: By B1 2, 

�9 . ( x . , A . + z . ) ~ b ( x , A + z )  whenever x . ~ x ~ X o  and z . ~ z ~ X o .  

Therefore, 

G.(x . )~g(x)  whenever x . ~ x ~ X o  along(A.).. 

With the nonrandom functions g.(x).'= inf G.(xl~%) and d.(x):= sup G.(xlco.) 
o~neAn onEAn 

-g~(x) one can deduce from Theorem 3 that g.(B.) converges in distribution 
to g(B) and d . ( B ) 7 0 .  Thus the assertion follows from 

I G. (B.) - g. (B.)I ~ I (Q.\A.) + d. (B.) = ov (1). 

As for Proposition 2, note that 

~bm(x.,z.)~b(x) whenever x . ~ x ~ X o  and z . ~ 0 .  

Since ~ L].--~-0, one may assume that ~m/n ~. ~ 0  along (A.).. Then Theo- 

rem 3 shows that L.fo~+(.,]fm/nL].)~Lfo~ along (A.). for any function 
fec~(y, [-0, 1]) [] 
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Proof of Theorem 1 By the continuity of S and ~, the limit teststatistic T is 
continuous on supp (L) x supp (L). This implies that f *  is lower semicontinuous 
from supp (L) into [ - o %  oo]. For  that reason one needs an auxiliary function 
f rather than just an extension of f * .  Together with Theorem 3, the continuity 
of T also implies that the quantiles q(z) are continuous in zesupp(L) ;  note 
that they are unique, because L has connected support. 

Since supp (L) is separable, there are events A . c ~ .  with P . ( f 2 . \ A . ) ~ 0  such 
that 

,L and min[]~-A.-z[[- - ,0  V z e s u p p ( L )  along(A.)..  J~n weakly ~e~,n 

In what follows we consider an arbitrary fixed number e > 0  and fixed points 
co.~A* where * , A. c A. such that 

P.(f2.\A*)<L(X\C)+o(1) and B . ~ C  along(A*). 

for a compact set C c supp (L) to be specified later. That  means, we treat all 
random elements as fixed points. 

For  proving the lower bound let C be any compact subset of supp (L) such 
that L ( X \ C ) <  e. It suffices to show that 

exp (/~.) > exp ( f  (B.)) + o(1). 

For  any subsequence of (n) there are a subsubsequence (nk)k and a point csC 
such that B.~---, c. Then lira supf(B.~)<f(c) ,  and it suffices to consider the case 

k ~  
f * ( c ) >  - o o .  We show that 

~,~__>/*(c)+o(1). 

For that purpose let z=z(c) be an arbitrary point in supp (L) such that T(c,z) 
< q(z). Then there are points 4. = 4.(z)~ e such that I I in - -A. - -z l l  ~ 0. But then 

T,,k(3.~,~.~)~ T(c,z) and gl.~(~.~)~q(z), 

according to D1 and Theorem 3. Hence T.~(Z].k,~.k)=<0.k(4.~) for sufficiently 
large k. In particular, 

~,~ >= T(c, z) + o(1). 

The validity of C. can be proved with similar arguments. Let Xo be the 
set of all xesupp  (L) such that supp (L)~z~--~T(x, z) has no local maximum at 
0. By (4), X o is a Borel set with LXo= 1. Now one can find a compact subset 
C of Xoc~{Soeb(.)<q(O)} such that L(X\C)<L{So~b(.)>q(O)}+e. It suffices 
to show that 

T(3., 3.) ~/~.  
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eventually as n - .  oo. We can restrict our attention to a subsequence (nk)k of 
(n) such that B,,~ converges to some csC. By the continuity of T and q, there 
is a point z =  z(c)~supp (L) such that 

T(c, O) < T(c, z) < q(z). 

Given points ~. = ~. (z) a Z.  with II 4. - A. -- z II ~ 0, 

T.k(3.~, A.~) ~ r(c, 0), 
T.~(3.~, ~.~) ~ T(c, z), 

gl.~(~.k) ~ q(z). 

Hence 

for sufficiently large k [] 

Proof of Theorem 2 Condition D2 implies that the functions ~b. are asymptoti- 
cally equicontinuous in the following sense: For  each t/> 0 there are an e(q)> 0 
and an integer N(q) such that ]]qs.(d')-~.(~)l[ __<q whenever n>N(rl), [1~'-~[[ 

_-< e(~), II ~ -  A.II < ~ 07)~fn. In particular, 

llr <=r 1 and T(x l ,Z )<=T(x2 ,Z )+~  l 

for all x1, x2~supp (L) with [Ix I --X2[ [ ~-~(~), and for any Z E ~ ,  where ~ denotes 
the Lipschitz constant of S. Hence T(-, Z) is either real-valued or constant 
(oo or - oo), and the family of all real-valued T(. ,  Z) is equicontinuous. 

Another important consequence of D2 is a compactness property of the 
set ~e: For  each sequence (Z~) t in ~e and for any xesupp  (L) there are a subse- 
quence (Zls)~ and a Z o ~  such that q(Zl~)~q(Zo) and T(x, Zl~)--+ T(x, Zo). The 
proof  is omitted, because it is straightforward (though notationally somewhat 
tedious). In addition to D2 one has to utilize the fact that 

q (Z)=  lim q.k(~k) V Z e ~ ,  
k ~ o o  

where q.(~) is defined as 0.(~) with L in place of L..  This property of ~ certainly 
implies that q(.) is bounded on ~e. Together with the equicontinuity of the 
functions T(-,  Z), one can also deduce that F* is upper semicontinuous from 
supp (L) into [- -  o% max q(Z)]. 

Z e ~  

Since ]lB.lr is stochastically bounded, condition C2 is equivalent to max 

]]~--A.]I = op(~-s With (A.) as in the proof of Theorem 1, one may also assume 

that max []~-A.N =o(] /~)  along (A.).. For  a fixed e > 0  let A*, C be as in the 
~e2. 

proof of Theorem I, where L ( X \ C ) < e .  It suffices to show that 

~.__<F(B.)+o(1) 
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for any fixed sequence of points o),~eA,. Let ~,e~,,, be such that 

/~.= T.(3., ~.)__< ~.(~.), 

provided that / ~ , > -  oo. One only needs to consider a subsequence (nk)k of 
(n) such that 

/~,k>--oz?Vk, Bn~--+ceC , Z:=(nk,~nT,)ke~O~. 

But then, 

T(c, Z) =l im sup T,,,(A,,, + B,,~, ~,,,) 
k ~ o o  

= lira sup/~,~ 
k--+ Go 

__< lim O,~(~.~)=q(Z). 
k ---~ ~o 

Hence lim sup R~k<F*(c), whereas lira infF(B,~)>F(c)>F*(c) [] 

Proof of (6) By the special form of 7' it suffices to consider the function 
q5 instead of 7". Note that T is a compact, continuously differentiable manifold 
with dimension (d-1)d /2 .  The set {x~X:~b~(x)=2 for some ie{1 . . . . .  d}} may 
be written as {z diag(2, y)z*:zsT,  yERd-~}. Thus it is the image of T x R d-a 
under a continuously differentiable mapping. Therefore it has Lebesgue measure 
0, because T x R d- 1 has dimension ( d -  1)d/2 + ( d -  1) = dim (X) - 1 []  

Proof of (7) Without loss of generality let Zo=Id. Fix any point xeX.  For  
Z e S (  the limit 7"( ' ,Z)  has the form (5) with E=E(Z), z=z(Z), and y=y(Z). 
In general, E and Eo are different. However, in order to compute F*(x) we 
only have to consider such points Z e ~  e, where T(x,Z)< oo. This implies that 

II q~ (t,~)-qS(t + ~ ~k)II is bounded in k. Hence one can deduce from Lem- 
ma 1 that E = E o, and one may even assume that 

l / ~ ( 4 ) ( t . k ) -  4)(t + 1 / ~  -1 ~k)) ~ ; o -  y 

without changing T(x, Z). Then T(x, Z) = S (7" (x) - 7' (z)), where z:= diag (y - Yo), 
and q(Z) is the (1-~)-quanti le  of Lf(So 7"(z*Bz, z)). Hence F*(x) is not greater 
than the right hand side of (7). 

On the other hand, for any zET(t) and for any z~X let s.:=z(diag(~b(t,)) 

+ n ~ z ) z * .  Then one can deduce from Lemma 1 that Z:=(n,~(s . - t ) ) ,  
belongstoZwith 7"(x,Z)=7"(z*xz, z) and T(x,Z)=T(x,z) [] 

Proof of (9 10) Standard theory for Gaussian measures on a Hilbert space 
shows that there is a complete orthonormal system (xi:i~I) in supp ( ~  (HB)) 
such that 

HB=ze ~ Zi~ix i, 
i e I  



140 L. Diimbgen 

with i ndependen t  s t a n d a r d  n o r m a l  r a n d o m  var iables  Z i and  cons tan t s  a i > 0  
such tha t  ~ a2 < oo. But then  

ieI  

7~(Blc, v) z = ~  c2(1 - ~ (v, X i ) 2 ) ' ~  - 2 (Zio'i-~-C(V' Xi))2" 
ieI  iEl 

One can deduce  (10) f rom this r ep resen ta t ion  by cond i t ion ing  on all bu t  one 
Zi, i~I. 

F u r t h e r m o r e ,  ~(c,v) is s t r ic t ly  increas ing  in c~[O, ~ )  for any  fixed w N .  
This  implies  tha t  

( c ) :=min  {?/(c, v): yEN} 

is con t inuous  and  str ict ly increas ing in c > 0 .  N o t e  tha t  q( . )  is welldefined and  
cont inuous .  F o r  N is sequent ia l ly  c o m p a c t  with respect  to  the weak  topo logy ,  
and  q(c, ,  v,,) ---, q(c, v) Whenever c, ~ c and  v, weakly ) V. On  the o the r  hand,  for 

all v~N,  6 > 0  and  c > 0 ,  

{x eX: 7'(xIc, v)<= q(c, v)} ~ {x ~X: ~(xlc + 6, v)<_ q(c, v) + 6}, 

because  ~(xlc, v) is Lipschi tz  con t inuous  in c wi th  cons t an t  1. Hence,  Pr  {T(BIc 
+ 6, v) < q(c, v) + 6} > c~, which implies  tha t  q ( c ) -  c is non increas ing  in c __> 0. F i -  
nally,  since 

~(xlc, v)-c=(v,x)+O(c-lllx[I 2) as c ~ o e  u n i f o r m l y i n v e N ,  

one can deduce  tha t  ?l(C)-C ~ - d *  as c ~ oe. Al l  these p roper t i e s  of  c~(') imply  
(9) [ ]  
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