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Summary. Let (f2, H, P) be an abstract Wiener space and define a shift on f2 by 
T(co) = co + F(co) where F is an H-valued random variable. We study the absolute 
continuity of the measures po  T - t  and (AFP) o T -1 with respect to P using the 
techniques of the degree theory of Wiener maps, where As = det2(1 + VF) 
x E x p { -  6F-XlF lZ  }. 
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1 Introduction 

Consider the abstract Wiener space { f2, H, Po } where H is a separable Hilbert- 
space continuously and densely embedded in the Banach space f2. Let F(co) be 
a random variable taking values in H, set 

TCO = co + F(co), 

and let R denote the measure induced by T, i.e. R(A) = Po(T-1A). The problem of 
the absolute continuity of Po ~ T -  1 with respect to P goes back to the early work of 
Cameron and Martin and was considered by many authors (cf. e.g. [-1, 7, 10, 11, 13, 
14] and the references therein, for the key results related to the Girsanov theorem 
in the adapted case, cf. e.g. [-5, 6, 12]). 

Consider now to the degree theorem let y = ~/(x) be a smooth and proper map 
(i.e. the inverse image of compact sets is compact) from IR" to IR". The degree 
of this map at point y is defined to be the summation of sign J,(x) over all 
x such that t/(x) = y; J,(x) denotes the determinant of the Jacobian matrix of the 
transformation t/at x. The degree theorem in IR" (cf. e.g.p. 190 of [4]) states that for 

* The work of the second author was supported by the fund for promotion of research at the 
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any smooth real valued function u(x), x e IR n with compact support: 

f J.(x)u(n(x)) dx = deg(t?) f u(x) dx (1.1) 
hR n I R  ~ 

where deg t/is an integer, it is independent of u and for almost all y in IR": 

deg t / =  deg tt(y) = ~ sign J , ( x ) .  (1.2) 
x:  rt(x) = y  

This result was recently extended to the Wiener space by Getzler [31, (cf. also 
Kusuoka [8]). In this paper we apply the analysis of Getzler to the problem of 
absolute continuity associated with transformations on the Wiener space. The 
result of [3] is rederived here under somewhat weaker assumptions (except for 
Theorem 3.1, which is under the same assumptions and is rederived here in order to 
maintain the paper selfcontained). The results regarding the absolutely continuous 
transformation of measure include a rederivation of the Ramer result [13] under 
different conditions. 

In the next section we derive some relations between the underlying measure P0 
and the two measures R and Q, where R (A) = Po (T-~A)  and a Girsanov measure 
Q possessing the property that the law of T -  1 A under Q is the same as the law of 
A under P i.e. Tco is a Wiener process under Q. Some technical results needed for 
the derivation of the degree theorem are also derived in the next section. Section 
3 starts with the degree theorem of Getzler. It is then shown by an homotopy 
argument that under certain assumptions the degree is actually 1. These results are 
then applied to the derivation of new results on absolutely continuous transforma- 
tions of measure. 

2 Preliminaries 

The following lemma is believed to be of independent interest (cf. also [10]). 

Lemma 2.1 Let (fJ, ~ ,  P) be a probability space. Let Tbe  a measurable transforma- 
tion on f2, set R ( A ) = P( T - 1A ), A ~ ~ .  Suppose that there exists a (possibly signed) 
measure Q(A ), on (f2, ~ ) such that Q( T - 1 A  ) = P( A ), then 

(a) I f  the measures Q and P are mutually absolutely continuous, then Q, P, R are 
mutually absolutely continuous. I f  moreover, T possesses a left inverse, i.e. there exists 
a measurable transformation Ti-1 such that T7 1 To) = co a.s. P, then 

dR (Tco) (co) (2.1) 
dP 

(b) Assume that Q ~ P and R ~ P,further assume the existence of a left inverse T71,  
then the measures Q, P and R are equivalent. 
(c) I f  R and P are mutually absolutely continuous and there exists a left inverse T t  1, 
then R, P and Q are equivalent. 
(d) Assume that T is invertible (T-1Tco = T T  -1 = co a.s. P), let Rr,  Qr(Rr 1, 
Qr-1) denote the measures associated with T( T - 1 )  respectively. Assume that Rr,  
QT, P are mutually absolutely continuous, then Qr-1 exists and for every A ~ ~ 

Rr-~(A) = QT(A) (2.2) 

Qr-~(A) = R r ( A ) .  (2.3) 
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Remarks. (a) It was pointed out to us by E. Mayer-Wolf that the assumption on 
the existence of a left inverse is equivalent to the assumption that a{T-ZA, 
A ~ f f }  = i f ,  where a{T-1A, A e ~ }  denotes the sigma field induced by T-1A. 
(b) It was shown recently by D. Nualart  that if P and R are mutually absolutely 
continuous, then Q exists. 

Proof. (a) By the definition of the Q measure, P(A) = 0 implies Q(T-1A) = 0 and 
since the measures are equivalent, it holds that P ( T -  a A) = 0, hence R(A) = 0 and 
R ~ P. On the other hand, if R(A) = 0, then by definition P ( T - ~ A )  -- 0, hence by 
equivalence of measures Q(T-1A)  = 0 and P ~ R. Turning to the proof of (2.1): 

f-dfi(o)d(O T-  

= R(B) = P(T-1B) 

dP 
= f ~ d Q  

T - i B  

= f (dP -i d e  (2.4) 
~-~ \ d e /  

which completes the proof of (a). Turning to (b), set T f  = (T7 1 ) -1 ;  by definition 
Q(T-1A) = P(A), hence Q(A) = P(T~f A). Therefore Q(A)-- 0 implies 
P(T fA)=O and it follows by the absolute continuity assumption that 
R(T*A) = 0. Consequently P(A) = 0 and P ~ Q. Therefore P and Q are equiva- 
lent and it follows from (a) that P and R are also equivalent. As for the existence of 
QT-, and the second equality - both follow directly from RT(TA) = PA. To prove 
(c), note that by definition P(A) = 0 implies R( T*)A = 0, hence by the equivalence 
of the measures P(T*A) = 0. Consequently, Q(T-I(T*A)) = Q(A) = 0 yielding 
Q ~ P and Q ~ P follows from part (b). Turning to (d), by the definitions 
QT(T-tA) = P(A) and R T - , ( A ) =  P(TA). Hence QT(B)= RT-I(B). As for the 
existence of QT-1 and the second equality - both follow directly from 
RT(TA) = P(A). 

Next we summarize the notation of the Malliavin calculus and define the AF(O) 
functional (Eq. (2.8) below). For  h ~ H* = H, (h, co) will denote the Wiener integral 
W(h). Let X be a separable real Hilbert space; smooth X-valued functionals on 
(~2, H, Po) are funetionals of the form 

N 

a(co) = ~rh((hl,  c o ) , . . . ,  (hm, co))xi 
1 

with xiEX and t/isC~(lRm), h, ef2* c H*. For  smooth X-valued functionals, 
define 

Va(co) = ~ ~, c3jrh((hl, co) . . . . .  (h,,,, co) ) 'x ,  | hi, 
i = 1  j = l  

V k, k = 2, 3 , . . .  is defined recursively. The So.bolev spaces IDp, k(X ) p > 1, k s N are 
the completion of X valued smooth functionals under the norm 

k 

Ihallp, k = ~ IIV'allL~(,o,X| (2.5) 
i=O 
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The derivative V: Dp, k ( X ) ~  Dp, k-1 (X | H) denotes the closure of V as defined 
above with respect to the norm given by (2.5); Va is considered as a mapping from 
H to X, (Va)* will denote the mapping from X to H. 
The adjoint of V will be called the divergence and denoted by 6. Recall that i fF  is in 
D2, I(H) then, for a.a. co, VF is a Hilbert-Schmidt operator from H to H, and for 
any complete orthonormal basis of H, say {ei, i = 1, 2 . . . .  }, we have 

~u = ~. ((F,  el) "(ei, co) - Ve,(F, el}) 
i = 1  

we will denote the sum ~i~ 1 (F, ei} (ei, co) by 6 o u, hence 

o u =: 6u + trace VF 

whenever VF is of trace class. Note that this is always the case for smooth 
functionals. Let A denote a Hilbert-Schmidt operator from H to H and 21, 22 . . . .  
its eigenvalues in decreasing magnitude and repeated according to their multipli- 
city, the Carleman-Fredholm determinant associated with A and denoted as 
det2(I + A) is defined by 

O9 

det2(I + A) = [ I  (1 + 2i)Exp - 2i, 
1 

(cf., e.g., Chap. XI.9 of [2] for a detailed treatment of this notion). The following 
inequalities will be particularly important later: 

[det2(I + A)] < Exp 1[ A I[ 2/2 (2.6) 

where II A II 2 denotes the Hilbert-Schmidt norm of A and 

}[(det2(t + A) ) . ( t  + A) -1110ver,tor =< Exp�89 + IIAN22). (2.7) 

For  F e D2, 1 (H) set 

Av(co) = det2(1 + VF)Exp{ - cSF - �89 2 } .  (2.8) 

Note that Ap(co) is defined without the "customary" absolute value on det2. 

Lemma 2.2. Let F and v denote smooth H-valued functionals, To)= co + F(co). 
Then, with Av as defined in (2.8) 

6{Ap(co)(I + VF)- iv}  = Ae(co)(3 ~ v + (v, F ) )  - trace{Ae(co)(I + VF) -1" Vv} 
(2.9) 

a.s. Po. 

Remark 1 Note that det2(I + VF)'(1 + WE) -1 can be defined by continuity 
whether (1 + VF) is invertible or not [2, p. 1 1 12] and consequently AF(1 + VF) - 1 
is well-defined regardless of the invertibility of (1 + VF). 

Remark 2 Lemma 2.2 plays a key role in what follows. In order to motivate it, let 
To) = co + F(co) be a measurable transformation, such that the sigma fields in- 
duced by T -  ~ coincides with f f  i.e. 0-(T - ~ A, A ~ ~ )  = o~. Further assume that AF 
satisfies a Girsanov type identity E(fo T" AF) = E I f ]  for any smooth f(co). By the 
chain rule (Vf)o T =  ((I + VF)*) -1 "V(fo T). Consequently for any v e H  



Absolute continuity on Wiener space 513 

E[ fav]  = E[(v ,  V / } ]  = E((Vfo  T, v}Av) 

= E[ ( ( I  + (VF)*) -1 "V(fo T), v} "At]  

= E [ ( V ( f o  T), ((1 + VF)-~v})Ae] 

= E[(fo T)6{Av(I + V F ) - l v } ]  . 

On the other hand, E(f6v) = E[fo T" (6v)o T" Av]. Comparing the two results for 
E(f6v) yields 

6{Av(I + VF)- lv}  = Ae(fv) ~ T 

= Av(aV + (v, F})  (2.10) 

which is Eq. (2.9) for a non random v. This equation appears at the bottom of p. 400 
of [3] however here and in several other formulas, the term (I + VF)-:t appears as 
((1 + VF)-1), in [3], the difference between Va and (Va)* was pointed out in 
Sect. 2. In the sequel we will show that (2.9) is "almost" sufficient for T to  satisfy the 
Girsanov type identity E[fo T" AF] = E[ f ] .  

Proof Set 

c~ = E x p ( -  6 F -  �89 

Let u(co) be a smooth H-valued functional, then 

6 { A u }  = A a u  - (VA, u) 

= ASu - c~(V det2(1 + VF), u)  - A(Vlog~,  u)  

= A6u - c~(Vdet2(1 + VF), u} + A(V ,F ,  F}  + A(V6F,  u } .  

For BED2, I(H) and h e H  

Vh(~B = (B, h) + (~Vh B , 

and if, furthermore, VB is of trace class then 

V h b B  = (B, h) + 6~ -- VhtraceVB. (2.11) 

Note that (2.11) remains valid if h is replaced by smooth H-valued random 
functionals. Therefore 

5(Avu) = A ' ( f , u  + V,F} + A'6o[u  + V~F] 

- A trace Vu - AV, trace VF 

- cW, det2(1 + VF) .  

By the lemma on p. 1110 of [2] 

V,det2(1 + VF) = - det2(1 + VF) ' t race[(1  + VF) -1 "VF-V,  V F ] .  (2.12) 

Set, now, 

u = (1 + VF)- Iv  (2.13) 

then V(1 + VF)u = Vv, hence V(1 + VF) 'u  + (1 + VF)Vu = Vv. 
Hence, 

Vu = (1 + VF) - I  IVy - V, V F ] .  (2.14) 



514 A.S. l~stfinet and M. Zakai 

Substituting (2.12) and (2.13) into (2.14) yields 

6(A(1 + VF) - lv )  = A { ( F , u  + V,F~ + 6o[u + VuF] - trace(1 + VF) - l ' V v }  

where u and v are related by (2.13). Using u + V,F = v to eliminate u from the last 
equation yields 

fi(A(1 + gF) - lv )  = A { ( F , v )  + 6ov - t r a c e ( / +  VF)-lVv} 

which is (2.9). 

Proposition 2.1 Assume that for some y > 0  and r > ( 1  + V)/7, F(co)elD~,2(H) 
A e e L  1+~, and also Av(I~ + VF) - l vELI+~(H)  with y a H  non-random. Then 

6[Av(I  + VF)-av]  = Av(T (~ ) ,  v )  (2.15) 

a.s. Po. 

Remark. This result was proved in [3] under somewhat stronger assumptions, in 
particular we do not require F to be in ~p>lDp ,  z(H). 

Proof. Let (h,)~ ~2 be a C.O.N.S in H. Let V~ = a{6hl . . . .  ,6h,},  n a n  and let ~r, 
denote the orthogonal projection on the span of {hi . . . .  , h,}. Consider 

F,(co) = E[z~,U1/,F[ V,] = O,(6h~, . . . , 6h,) 

where Ut denotes the Ornstein-Uhlenbeck semigroup on (2. Since F EDr,2(H), 
(r > (1 + 7)/7) it follows that U~/, F e Dr, 0o (H). Consequently, by the finite dimen- 
sional Sobolev embedding theorem, O, can be selected to be a C ~ function from 
IR" to H. Consequently, for all v ~ ~2" 

AF,~((~)(I H -F VFn)- lv  and det2(I H + VF,)(1 + VFn)-~v 

are Fr6chet differentiable (as pointed out on p. 1112 of [-2], this also holds by 
continuity on {co:detz(In + V F . ) =  0}). Note that as n ~  oQ F,(o~)--*F(co), 
VF,(~o ~ VF(co) and 6F, ~ 6F a.s. and in L (~ +7)/~(H), L (1 +~)/~(H | and L (~ +~)/7 
respectively, indeed, for p > 1 

EI6F.I ~ = EIE(67r.U~/.FI V.)I ~ 

= eP/'.EIE(U~/.6rc.F] V.)I p 

< eR/nEU1/.E(IOrc,,F[R{ V~) 

<= ePI" E[fiF] p 

since EE6~.F[ V.] = E l f  F[ V.]. Similarly 

EIVF, F < e-P/"EIVFF. 

Now by the capacity version of Egoroff's theorem [-9], for every e > 0 there exists 
a measurable set A~ c O such that Cap(l+~)/~, I(A~) < e and outside A~, F,, VF~, 
~F, converge uniformly as n --> ~ .  Let 0~(a~) be a smooth arbitrary function such 
that q~(a~) = 0, for cocAs. Then (denoting AF, AF, by A and A~ respectively): 

qb~f[A,(I + VF, ) -av]  = 6[-q~,A,(1 + V F , ) - ' v ]  - <V~b~, VA,(1 + V F , ) - ' ) .  

By the uniform convergence of F,, VF,,  6F, on A~ the right hand side of the last 
equation converges to 6 [ ~ A ( 1  + V F ) - ~ v ] -  (V~b~, VA(1 + V F ) - Z v )  which 
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equals 
qS~f[A(1 + VF)- lv ]  

since ~b~ is smooth and 6[A(1 + VF) - lv ]  is in ID(I+~),-1. Consequently, by (2.5) 
(with v non random) ~b~f[A,(1 + VF, ) - lv ]  = d A ' A , ( T ,  co, v),  hence 

qS~6[A(1 + VV)-lv] = $~A(T(co), v ) .  (2.16) 

The right hand side is the product of two random variables qS~ and A (T(co), v). 
Had we known that 6(A(1 + VF)- lv)  is also a random variable, then the result 
would have followed since e > 0 and ~b~ are arbitrary. In order to overcome this 
somewhat delicate point, note that ~b, can be chosen so that it converges to 1 in 
IDo+~)/~,~ which is the dual space to ID~+~,_I (this follows from a capacity 
argument, cf. Proposition 2.4 of [3]), consequently (2.16) holds with q~ replaced by 
any ~b in IDo +~)/~ ' 1 and (2.13) follows. 

3 Absolutely continuous transformations 

Theorem 3.1 [31 For all f ~ L  ~(0), under the assumptions of Proposition 2.1. 

E { f(Tco)Ar(co) } = EAF (co)Ef(co). (3.1) 

Proof Set f(co) = Expit(v ,  co) and gt(co) =f(Tco) = Expi t (v ,  o9 + F(co)). Note 
that 

(v, (I + VF)-I"  Vat(co)) =itlv 12 gt(co) �9 (3.2) 

By Proposition 2.1 

E[gt(co)" 6 {A(CO)(1 + VF)- l*v}] = E{ (v, To))A(co)gt(co)} . 

Integration by parts yields 

E{ (v, (1 + VF)-l*Vgt)A(co)} = E{ (v, Tco)A(co)gt(co)} . 

Substituting from (3.2) yields 

l d  
itlv[2 EA(co)g'(co) = 7 dt EA(co)gt(co) . 

Hence 

consequently 

d log E Agt( co ) 
- t l v l 2  

dt 

log EAg~(co) = log EAgo(co) - - -  

EA(co)g~(co) = EA(CO)" Exp - - -  

t21vl 2 

2 

t21vl 2 

2 

= E A ' E E x p i t ( v ,  co),  

which proves (3.1) for f (co)=  Expi(v,  co). This result can now be extended to 
smooth cylinder functions by using standard Fourier transform arguments and 
then to all f ~  L ~ (f2) by a dominated convergence argument. 

From Theorem 3.1 we have the following Girsanov-type result. 
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Under the assumptions of Theorem 3.1 and further assuming EAF +- O, 

A e ~  . 

where e ~ H, [ el = 1 and 

TCO=CO + f ( a e ) ' e  

f ( x ) = - 2 s i n x ,  Lx] < 2 ~  

for x > 2re, f ( x )  is assumed to decrease slowly to - �89 similarly for x < - 2~z, f ( x )  
is assumed to decrease slowly from �89 Then 

A = (1 + f ' ( 6 e ) ) E x p  - f ' ( f e ) E x p  - ( 6 [ f ( f e ) e ]  - �89 

= (1 +f ' (6e ) )Exp  - f ( f e ) f e  - �89 

Consider the measure Po induced on IR1 by the projection (co, e )  and by q the 
projection of (To),  e )  then 

where 

1 X 2 
po(dx) = ~ Exp - --~-" dx . 

x/2rc 

Since (1 + i f ( x ) )  takes on negative (as well as positive) values, q(dx) is not  positive. 
However  by Corol lary 2.1 q ( z - l A ) = p o ( A  ) where ~ x = x + f ( x )  and the 
Girsanov-type result holds. 

As a second corollary to Theorem 2.1 we have the following weak form of 
Sard's lemma: 

Corollary 3.2 Let a( T) denote the a-field induced by { T - 1 A ,  A ~ Y }. Let 

S = {co: E{Av(co)la(T)} = 0} ,  

then, under the assumptions of Theorem 2.1, either 
(a) EAr(CO) = 0 

o r  

(b) There exists a set A ~ ~ where ~ denotes the completed a-field, such that 
B = T - 1 A  and Po(A) = O. 

q(dx) = (1 + f ' ( x ) ) '  E x p [  - xf(x)  - � 8 9  ) 

Corollary 3.1 
set 2(co) = At(co)lEAr(co) and 

Q(A) = f 2(co)Po(dco), 
a 

Then Tco is Wiener under the measure Q. 

Proof Set f(co) = HA(co), substituting in (3.1) yields Q ( T - 1 A )  = Po(A) i.e. 

Q(co: Tco~A) = Po(A) . 

Remark. Note  that  this Oirsanov-type result is obtained under relatively general 
assumptions, T does not  have to be bijective and Q may turn out to be a signed 
measure and not  necessarily a positive measure (however, the measure R induced 
by T will be positive). As a simple example for the case where Q is a signed measure 
consider the t ransformation 
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Proof. Since B is in o-(T) it is in ~ and there exists an A ~ ~ such that B = T -  ~A. 
Therefore 

0 = E{ ]IB(~o)E(A(o~)I a(T))} 

= 

= E{]IA(TC.)A(co)}. 

Therefore, by Theorem 3.1 

0 = EIIA(e) ) �9 EA(cn) 

which proves that either EA(co) = 0 or Po(A) = O. 

Theorem 3.2 Assume that 

Exp( - 6 f  + IIVFII2)~L~+~(O) (3.3) 

for some ? > 0 and F elD2,r for some r > (7 + 2)/7. Then EAF = 1. 

Remarks. (a) By (2.7), condition (3.3) implies the conditions of Proposition 2.1. 
(b) Theorem 3.2 improves the results of Theorem 4.4 of [31, since in [3] it is also 
required that F e ~r> 1 D,, 1 and the conclusion being that E A is an integer. 

Proof. We show, first, that EAF is an integer. Let F,  denote an approximation to 
F introduced in the proof to Proposition 2.1, i.e.: F ,  = E(rc, U1/nF[V~). Set 
Ae, = A,. From the Sobolev injection theorem, F, is of the form 

F,(co) = Y',f~((~hl, . . . , ~h~)hi 

where f/: ]R ~ --+ ]R ~ is C ~. Denote by f the function ( f , , . . .  ,f,). We have: 

E [ A , ]  = f det2(I + D f ( x ) ) ' e x p (  - fir(x) - � 8 9  
N "  

where p(x) is the standard Gaussian kernel on IR ". First let us prove that (A,; n e N) 
is bounded in L~+~(P) for some 0 < e < y. From the inequality (2.7), we have 

l + e  

E [ A ,  ~+~] = e ~ - - g [ e x p ( 1  + e)-( -- 6F, + �89 IL~)] (3.4) 

l + e  

= e 2 "E[exp(1 + e) {�89 U~/,FI g~] II 2 - ~g[~r ,g~/ , f l  g~]}] 

l + e  

= e 2 "E[exp(1 + e) {�89 g~] II, 2 

-- e~/"E[U~/.3F[ V.]}] 

1+. I (e -2 /n  
= e ~ "E exp(1 + e) ~ - -  II Ut/ ,E[rc , 'VFI  V~]. tl22 

- - e l / " U 1 / . E [ d F I V ~ ] } I .  
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Replacing e -;/n by e 1/" and applying Jensen's inequality: 

1 + ~  

E [ A .  l+~] < e ~ - E [ e x p ( 1  + e)e1/"U1/.E[(�89 - c~F)[ V.]]  

l + e  

< e 2 E[U1/.E[exp'(1 + Oel/"(ll[gfl] 2 - ~ f ) l g n ] ]  

l + e  

= e 2 E [ e x p ( l  + ~)el/"(�89 - ~f)], 

it suffices to choose (1 + ~)e~/"__< 1 + 7. F r o m  this majorizat ion,  we see that  
E[A.]  ~ E[AF] as n tends to infinity, consequently,  to show that  E[Ae] is an 
integer, it is sufficient to show that  E[A.]  is an integer for any n E N .  

To  show that  E[A.]  is an integer, let B = {x~lR":  det2(I  + Df(x)) = 0}, f rom 
the implicit function theorem, there exists a sequence of compac t  sets (K. ;  n E N )  
covering B c, such that  T =  Ida~ + f :  K.--+ T(K.)  is a diffeomorphism. Let  
E~ = K1, E.+I = K.+I \E. .  For  any U~Cb(lR"), we have f rom Jacobi ' s  theorem 
and Sard 's  lemma: 

f u(Tx) lA.(x) lp(x)dx = • f u(Tx) lA.(x) lp(x)dx 
g~ n n E n  

=• f u(x)p(x)dx 
n T ( E n )  

where / i~  is defined by An(bhl . . . . .  bh~) = An. In part icular,  taking u = 1, we see 
that  ~ ,  fr(En)p(x) dx is convergent.  Similarly 

f u(Tx)_An(x)p(x)dx = ~ sign(A~; E,) f u (x)p(x)dx ,  
~ "  n T ( E ~ )  

note that  the sum at the right hand  side is absolutely convergent.  Also f rom 
T he o rem 3.1, the above  term is equal  to E[A,]  "fF.. u(x)p(x)dx. 

C o m p a r i n g  them, we conclude that  

E[A.]  = ~ lIT(~.)(x) 'sign(A.;  E.)  a.s. (3.5) 
n = l  

In order  to show that  EA = 1, note the following lemma,  the p roof  of  which is 
s traightforward.  

L e m m a  3.1 Let Tt = I + Ft, if EAFt is continuous in t and an integer for every 
t ~ [a, b], then EAr.  = EAFb. 

Therefore if t ~ F, and t ~ VFt are cont inuous  in probabi l i ty  on [a, b] and 

sup E g x p ( 1  + e)(l[Vf~[l~ - bEt) < oo (3.6) 
a < t < b  

then EAe~ = EAr.. Setting F, -- t" F, 

sup E Exp(1 + e)( t  2 II VF II ~ - tbFt) 
l_<t_<i  

< sup E gxp(1 + e)" t(l[ VF II ~ - c~f) 
0 _ < t < l  

=< sup (EExp(1 + e)(llVFIl~ - Of))~< 0o (3.7) 
O_<t__<t 

and consequently EAF = 1. 
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Theorem 3.3 Under the assumptions of Theorem 3.1 and further assuming: (i): 
det2(1 + VF) + 0 a.s. Po (or, equivalently, (1 + VF) is invertible a.s. Po) and (ii): 
There exists a measurable transformation Ti - ~ such that T~ -~ Tf09 = 09 a.s. Po we 
have 

(a) Either det2(1 + VF) > 0, Po a.s. or also detz(1 + VF) < 0, Po a.s. and in any 
case EAr :~ O, (EAr) -1Av  > 0 a.s. Po. 

(b) The measures Q, Po and R are mutually absolutely continuous where Q is as 
defined in Corollary 3.1. Moreover, Q is a probability measure. 

(c) I f  moreover, the conditions of Theorem 3.2 are satisfied, then EAr = 1. 

Proof Let A1 = {09:A >0} ,  A2 = {09:A <0}  and let fi(09)= lIa,(Tt-109) for 
i = 1, 2. Then by Theorem 4.1 

E[~,(09)A(09)] = E A - E [ f , ] .  (3.8) 

Since Po(A1) + Po(A2) = 1, at least one of the two, P(A1), P(A2) + 0 and con- 
sequently EA :# O. Assuming that EA > 0, Eq. (3.8) for i = 2 yields that the left 
hand side is non positive, while the right hand side is non negative, consequently 
P(Az) = 0. Similarly assuming EA < 0 yields P(A1) ---- 0, which proves part (a). 
Since det2(1 + VF) 4= 0 a.s. it follows that Po(A) > 0 ~ Q ( A )  > 0 namely 
Q(A) = 0 ~ P o ( A ) =  0. Consequently Po ~ Q and Po ~ R follows from (b) of 
Lemma 2.1. Part (c) follows directly from Theorem 3.2. 

Theorem 3.4 Under the assumptions of 
there exists a measurable transformation 
a.s. Po 

Theorem 3.3 and further assuming that 
T -  1 such that T -  a T09 = T" T -  ~ 09 = 09 

dR 
dP~o (09) = C det2(I - gT(Fo T - l ) )  �9 Exp {~'(F o T -1) -- 1]Fo T -1 12} (3.9) 

where C is the integration constant EA~ 1 (and C = 1 under the assumptions of 
Theorem 3.2), ~" is defined as follows: if F o T -1  is in lDp, I(H), for some p > 1, then 
6 ( F o T - 1 ) = 6 ( F o T - I ) ,  otherwise fix a complete orthonormal base {ei, 
i = 1, 2 . . . .  } in H, for i N = ~ ( 4, ei) ei set 

N 

g(~N~ = 2 { ( ~ ~  e l ) f i e~- -qe~(~~  (3.10) 
i = 1  

and define ~ ( f o T  -1) as the Po-limit in the probability of ff(~N~ a s  

N--* oe ,.V(~o T) is defined as the limit in probability of V(~,o T) where ~, is 
a sequence of smooth Dr, 1 approximations to ~ (cf. Definition 2.2 of [14]). 

Proof. By Theorem 3.3 and Lemma 2.1 

dP-~ (09) = det2(1 + V f ) E x p (  - 6F - � 8 9  2) ~ T- t09  

(a different proof of this formula appears in Theorem 7.5 of [11]). Since 
Too = co + F(09), T-109 = 09 -- F(T-lco).  By Theorem 2.1 of [14] (cs also [1]) 

(fif)o T-109 = g(F(T-109))  - ]F(T 109)1 2 - trace(VFo T-a09"V(F(T-109)))  . 
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Hence 
dR C 

- -  = . ( 3 . 1 1 )  
dPo (co) (det2(1 + VF))o  T - l c o  

�9 {Exp [ ~ ' ( F ( T -  1 co)) - � 8 9  2 - t r ace(VF o T - l c o - V F ( T -  1co))] } .  

N o w  (1 + A) -1 = I - (1 + A) -~A ,  and  since detz(1 + A)det2(1  + B) = det2(1 + 
A + B + A B ) ' E x p  trace AB it follows tha t  

(deta(1 + VF))  -~ = de t / [ ( 1  + V F ) - ~ ] ' E x p  + t race{VF(1  + V F ) - t V F } .  (3.12) 

Also, note  tha t  T -  ~ co = co - F o T -  a co therefore 

( I  - -  V ( F  o T -  1))  o r = ( I  + V F ) -  ~ 

= I -  (I + V F ) -  ~ . V F  . 
Consequen t ly  

(V(Fo  T - l c o ) ) o  T =  (1 + VF)  - I ' V F .  (3.13) 

Subs t i tu t ing  in (3.12) yields 

(det2(1 + VF) o T - l c o )  -1 

= detz(1 + (VF)o T - l c o )  -1 "Exp trace {(VF) o T -~ "V(Fo T - l ) }  

= det2(1 - V ( F o  T - ~ ) )  Exp t r ace{ (VF)  o T -1 "V(Fo  T - ~ ) }  (3.14) 

and  (3.9) follows f rom (3.11) and  (3.14). 
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