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Summary. We consider the questions: how can the long term behavior of large 
systems of interacting components  be described in terms of infinite systems? 
On what time scale does the infinite system give a qualitatively correct descrip- 
tion and what happens at large (resp. critical) time scales ? 

Let yN(t) be a solution N (Yl (t))~<-N, N1 of the system of stochastic differential 
equations (wi(t) are i.i.d, brownian motions) 

1 N 
dye(t)= ~ 1  Z 

j = - N  
y~'(t)-y~(t)) dt + ~ d~,(t). 

In the McKean-Vlasov limit, N ~ 0% we obtain the infinite independent system 

dyy (t)=(e(yy (t))-yy (t))dt + ~ (t))aw,(t), fez. 

This infinite system has a one parameter  set of invariant measures vo = | Fo 
x E Z  

with F o the equilibrium measure of dx(t)=(O-x(t)) d t + ~ d w ( t ) .  Let 

Qs( ' , ' )  be the transition kernel of the diffusion with generator ug(x) with 
Ug(X) = S g(y) F~(dy). Then one main result is that as N ~ oe 

~e((YN(s(ZN+ ~)/))~S Q~(o', dO) ~o, O'=K(yo). 

This provides a new example of a phenomenon also exhibited by the voter 
model and branching random walk. In particular we are also able to modify 
our model by adding the term cN-l(A_y~(t))dt to obtain the first example 
in which the analog of Q~(.,') converges to an honest equilibrium instead of 
absorption in traps as in all models previously studied in the literature. Finally, 
we discuss a hierarchical model with two levels from the point of view discussed 
above but now in two fast time scales. 

Mathematics Subject Classification: 60K35 
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0 Introduction 

The aim of this paper is to describe the long-term collective behavior of certain 
very large systems of interacting diffusions which are of interest in mathematical 
biology. The main idea is to describe this behavior in different time scales as 
the system size tends to infinity. This is in contrast to the usual McKean-Vlasov 
limit in which the system is studied in the original time scale. 

A basic question is to determine the range of times, as a function of the 
system size, for which the large system has the same behavior as the infinite 
system and conversely, at what time scale is the finiteness of the system mani- 
fested. This raises also the question of the behavior in the critical range between 
these two regimes. In Cox and Greven [-3, 4] and Greven [-6], an approach 
to the analysis of this type of problem was introduced and applied to various 
interacting particle systems (critical branching, voter model, contact process). 
In this paper we shall apply this approach to a different class of models, namely 
diffusions with mean-field interaction including Feller's continuous state branch- 
ing diffusion, the Fisher-Wright model and Kimura's random selection model 
both motivated by population genetics. With these results it is also possible 
to derive the asymptotic behavior of the trapping times of the finite model 
as the system size tends to infinity. 

An important feature of this work is the extension to systems in a weak 
external field. In this case the finite system can approach a nondegenerate equi- 
librium in contrast to the models previously treated in which the system ultimate- 
ly ends up in a trap. 

An advantage of the mean field case is that some aspects of the proofs 
are more transparent and the basic heuristic principles explaining the behavior 
of the system can be turned into rigorous proofs. The mean field interaction 
allows us to treat a whole class of models and we need not use the rather 
specific (and restrictive) structural properties of the models such as duality rela- 
tions which play a central role in lattice models. Furthermore the results in 
the mean field case are the building block for the analysis of infinite hierarchical 
systems. This is explored in forthcoming papers, see Dawson and Greven [6], 
[7]. For a survey of the role of mean field models, especially in mathematical 
physics, see Dawson and G/irtner [-5]. 

The techniques developed allow us to also study two level hierarchical situa- 
tions, which yield additional insight into multiple scale phenomena in large 
systems and which can be exhibited in large computer simulations of such sys- 
tems. We expect then to have two time scales: the shorter in which the large 
system provides stable boundary conditions for smaller subsystems in which 
case the latter will have their global characteristics relax into an equilibrium 
state which is related to the infinite system in equilibrium with these global 
characteristics. On a longer time scale the whole system will feel it is finite 
and change its global characteristics thus forcing the subsystem to relax to 
a new equilibrium and change its local properties accordingly. For this reason 
we expect interesting longterm behavior of the system with various regimes 
depending on the time scale. In particular we shall study a simple example 
which displays this type of behavior. 

Notation. ~(X)  denotes the law of the random variable X. ~~ ~(X)  

denotes weak convergence of Xn to X and w(t) denotes Brownian motion. 
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1 Model and statement of main results 

(a) Mean field models without external field 

(i) The model. Consider Yt N N = (Yi (t))i<-N.nl which satisfies the system of stochas- 
tic differential equations (ingredients are explained below) 

( N ) 
1 Z f f ( t ) -y f ( t )  d t + ~ d w i ( t ) ,  i e [ -N ,N] ,  (1.1) dy~(t)= 2N-+ 1 j=_N 

where/2 is an i.i.d, measure on R z. (We use the index set Z to allow for compari- 
son with lattice case considered in [3, 4].) 

The corresponding infinite system arises as the McKean Vlasov limit, N ~ 0% 
and is given by Yt = (yi(t))iez, where 

(1.2) d y,(t) =(E'(y,(t))-- yi(t)) d t + ~ dwi(t ), 

~(Yo)=/2. 

In (1.1) and (1.2) (wi(t))i~z are i.i.d. Brownian motions and g satisfies 

Furthermore 

g_>0, {x: g(x)>0)=(a, b), 
g(a) = 0 (g(b) = 0) ira (respectively, b) is finite. 

(a, b)= ( -  oo, ~) ,  (0, oo) or (0,1). 

Some typical examples are 

(a,b)=(0, oo), g (x )=x  
( a , b ) = ( - o o ,  oo), g(x)=a>O 
(a,b)=(0, 1), g(x)=x(1-x)  
(a, b)=(0, 1), g(x)=x2(1 - g )  2 

(Feller's continuous state branching) 
(Critical Ornstein-Uhlenbeck process) 
(Fisher-Wright diffusion) 
(Kimura's random selection model). 

In this paper we shall focus on the case (a, b) = (0, 1) and assume 

(1.3) g(x)>0 for xe(0,1) and g(0)=g(1)=0,  

g is Lipschitz continuous on [0, 1]. 

Under (1.3) the system of stochastic differential equations (1.1) has a unique 
strong solution (of. Yamada and Watanabe [12, Theorem 1]). 

The system (1.1) represents a special subclass of exchangeably interacting 
diffusions and as t ~ oo the finite system reaches, for every N, one of the two 
traps y~-=0 or y~=  1. Hence these are the only extremal equilibria. On the 
other hand from (1.2) it immediately follows that EU(yi(t))= EU(yi(O)) for all t > 0, 
in other words the mean O is a conserved quantity. It then follows that for 
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each 0 < O < 1, the infinite system has for each O a unique equilibrium measure 
Vo given by 

(1.4) Vo = (Fo) | where F o is the unique equilibrium of the diffusion 

dxt=(O - xt) dt + ~g (x , )  dw,. 

We define V0=~{y~_0} and Vl=6~y=~. Recall that the finite systems have as 
equilibria only the traps, so the infinite and finite systems have different ergodic 
behavior. It is however expected that in the times before the finite system reaches 
the traps a quasi-equilibrium is reached. The latter should resemble the stationary 
state of the infinite system. The description of this phenomenon for large finite 
systems is the object of this study. 

(ii) The multiple timescale viewpoint. In order to describe the longterm behavior 
of large finite systems we introduce the following objects (cf. Cox and Greven 
[-3, 4]). 

I. {Vo}o~ ~ is the set of extremal invariant measures of the infinite system. O 
is called the conserved quantity and the range I of possible values of O defines 
the ergodic components of the infinite system. In our case I = [0, 1], 

Vo=(Fo) | where Fo(dy)=C(g(y))-lexp ~ - d x  dy 

and C = C(O, g) is the normalization constant. 

II. The slowly varying variable N_ On O~ -ON(Y~ N) where is a consistent estimator 
of O based on the 2N+l -pa r t i c l e  system, that is, ON--~O as N--,  oo. In the 
case of the system (1.1): 

1 N 

ON(Y~N)=2N+I 2 y~(s). 
i = - N  

III. fl(N) is the timescale such that ~(O~(m-O~)~6  o as N ~ o o  for all L(N) 
= o (fi (N)), but not for L(N) = fl (N). In our case fi (N) = 2 N + 1. 

IV. The macroscopic observable associated with the large system is denoted by 
(Zs)s~+, where in our situation of interacting diffusions, Zs is a diffusion on 

I generated by the operator Ag=ug(x)(~xx) 2 " -  with Ug(O)=E~~ that is, 
\ /  

us(x) = fg(y) Fx(dy). The transition kernel of the resulting diffusion will be denot- 
ed by Q~(-,-). 

(iii) Main results. Before we state the results we adopt the convention that 
r(N)=sfl(N) where s=0 ,  s=oo ,  simply means that T(N)=o(fl(N)), 
fl (N) -- o (T(N)), respectively. 

As initial distribution for the system y N we choose the restriction of a product  
measure ~ on [0, i I  z to [0, 1] E-N'Nj with E"(yo)=~yo(co)#(dm)=O'. We shall 
use the following notation for weak convergence of probability measures on 
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R: ~ (XN)  N=~ ~ ( X ) .  For  weak convergence of probabili ty 

on the pathspace C([0, oe), R z) or D([0, ~) ,  R z) we write: 
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measures 

The following is our main result: (with the objects fl, O~, Z s, Q~, v o as defined 
in Subsect. (ii).) 

Theorem 1 Let/~(N) = 2 N  + 1, O' = EU(yo(0)). Then with Z o = O' 

(1.5) N =~ ~'~ (( O sfl(N))s~II+ ) N~ oo ~ ((Zs)seR + )" 

For s>= 0 let (Y~(%~a+ be the stationary solution for (1.2) with marginal 

v(s)= I dO) 

Then for se[0,  ~ ] "  

(1.6) 

and for s > t : 

(1.7) ~cf( N N 
I O~N)- -  Ysfl (N) [ O[ ~ g,N) N~oo I O~s--t( "0, dO) v o, 

with e N--, 0 as N --. oe. 

We now discuss the result. Thus on a microscopic time scale, the system is 
locally in an equilibrium determined by the current value of O~ which evolves 
on a macroscopic time scale. In other words the system is slaved to the macros-  
copic observable O which itself is a one dimensional diffusion with the new 

generator Ug (x) 

Putting s = 0  we recapture the statement that: up to times L(N)=o(N)  but 
with L ( N ) ~  ~ ,  we see a system that looks like an equilibrium of the infinite 
system, the one in whose domain of attraction # lies. For  s = + oo we have: 

Q~(O', .)=O' 3o + ( 1 - O ' ) 6 , ,  

so that for times >> N the system behaves like a finite system and is absorbed 
by the traps 0 and 1. 

One more remark on the scale is appropriate:  in our models the change 
in the slowly varying variable O~ is driven by fluctuations of the components  
from local equilibrium, since O u is a martingale for fixed N. This results in 
the scale of the form f l (N)=sys tem size. There are cases where the change in 
the slowly varying variable is caused by large deviations of all the components  
from the "current  equilibrium", then we get f l (N)~e  ~ as for example in the 
contact process or ferromagnetic systems (cf. [5]). 
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The specific feature of the systems we consider here is that the estimator 
O N of the conserved quantity O of the infinite system can be chosen such that: 

E. (Of )=E . (Oo  ~) Vs~R +, 

which then implies that Zs is not only a Markov process (which holds in general) 
but it will be a martingale. An additional technical advantage in our situation 
is that already for fixed N, Off is a martingale. 

Notice that the existence of a time scale fi(N) is connected with the existence 
of multiple equilibria for the infinite system. If the infinite system has a unique 
equilibrium v (compare [3]), then instead of (1.6) one would have 

(1.8) ~ce(yN(T(N)))~v VT(N)-* oo as N -*  oo. 

Complementing the results of Theorem 1 is a result on the asymptotics 
of the trapping times of the system of size 2N + 1. Define 

(1.9) rN=inf(t ly~(t)=O V i ~ [ - N , N ]  or y~ ( t )= l  V i ~ [ - N , N ] ) ,  

(1.10) T=inf(tlZt~{O, 1}). 

Corollary 1 Assume that g(x)/x" -*c ' as x-*O, g(x)/(1-x)~ ~ c  '' as x -* l for 
some c~6[1, oo); c', c"6(O, oo). Then we have (6oo is allowed here as limit law) 
for ~+2:  

(i.11) ~(TN/fi(N)) N~oo 5F(T). 

In the case c~ = 2 we need c', c" < 1. 

This is of interest for genetic models: Suppose (y~N(t)) describes the vector of 
frequencies of a gene in 2 N +  1 colonies of a population at time t. A standard 
genetic model corresponds to g ( x ) = x ( 1 - x )  (Fisher-Wright model). Then for 
large N we can approximate the global fixation time, that is the time until 
the gene is present in every individual or totally extinct, by ( 2 N +  1) T, and 
the distribution of T is fairly easy to calculate using classical diffusion theory. 

Our last result in this section is more of an observation and is concerned 
with an special property of the system of Fisher-Wright diffusions, which will 
turn out to be very important  in the study of infinite systems, see [6]. Consider 
the (nonlinear) map which maps each diffusion coefficient g(x) onto ug(x), the 
diffusion coefficient of the associated diffusion Zs. 

(1.12) F: g -* u~ (x) = S g (Y) rx (d y) 

(Note Fx depends on g so that F is nonlinear.) 

Theorem 2 

(1.13) F(dx(1 - x))(O) = d d l  O (1 - O), d>0 .  

In a future paper [6] we establish that x ( 1 - x )  is the only function g with 
the property that for all d~R +' F(dg)=const. g and which lies in the class 
g is Lipschitz, g (x )>0  for x =t=0, 1, g(0)=g(1)=0.  
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Remark. Various other models show the very same features as described in 
Theorems 1, Corollary 1 and Theorem 2. For  example choose 

(i) g (x )>0  for x > 0  and g(0)=0,  g Lipschitz, g ( x ) < x  2. 
(ii) g (x )>0  for x~R, C>g(x)>c>O, g Lipschitz. 

Then again Theorem 1 and Corollary 1 hold (Corollary 1 only for the first 
case) and for Theorem 2 we get g(x)=dx (continuous state branching) as the 
"fixed points" of F in case (i) and g ( x ) - a  2 (critical Ornstein-Uhlenbeck) in 
case (ii). The only changes in the proofs come from the fact that now we have 
to make sure that E(xr~(sfl(N)) 2 exists for every s and remains bounded as 
N ~ oo. Also the calculations proving Theorem 2 have to be modified. In order 
to keep the proofs transparent we have focussed on the case g (x )>0  in (0, 1). 
Similarly, we could have included below the models (i) and (ii) in a weak external 
field and in hierarchical situations, but again for reasons of simplicity we restrict 
ourselves to the case g(x)> 0 in (0, i). 

(b) Meanfield model with weak external field 

The models we discussed so far have the property that the finite system ends 
up in a trap and accordingly the macroscopic observable Z s also exhibits this 
property. The same is true for the models studied in Cox and Greven [3, 4] 
(voter model, critical branching, contact process). 

We shall now discuss a modification of our basic model which will have 
the property that the system of size N approaches an honest equilibrium as 
t --* oo and so does Z t. The initial laws are i.i.d, again. 

Given Ae(0, 1) and i.i.d. Brownian motions {wi(t)}ieZ, consider X~ 

(1.14) 
N 

+ 1/2 g (xf (t)) d wi(t). 

Note that if c(N) is o(1), then the McKean Vlasov limit dynamics is still given 
by the infinite system: Xr = (x~(t))i~N with 

(1.15) d x i ( t ) = ( O - x i ( t ) ) d t + ~ d w i ( t ) ,  O=E"(xo). 

This system has a one parameter set of extremal equilibria {Vo}o~[o. 1]: 

(1.16) vo =(Fo) | Fo: equilibrium of the diffusion generated by 

However the additional term with coefficient c(N)=cN -1 
role in the critical (O (N)) and large (>> N) time scales. 

Theorem 3 Consider the case c(N)= cN-1. 

plays a important  
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(a) The assertions (1.5)-(1.7) of Theorem 1 hold for XU, , and X, with fl (N)= 2 N + i 
and Z~, Q,(.,.) being the diffusion semigroup with generated by: 

(1.17) c ( A -  x) ~ + ug(x) ( ~ )  2 ug(x)= ~ g(y) Fx(d y). 

(b) For all O'e[0,  1], Q,(O',')=>AA(') as s~c~ and 2A is the unique invariant 
measure of the semigroup Q~(., .). 

For L(N)/N --+ co as N --+ c~ : 

(1.18) s ~<g((X, )~R+) with vA=~AA(dO) vo. 
vA 

(c) Let 1) A ' N  be the equilibrium of X u for a given value of A (and fixed N), 
then 

(1.19) vA, N ~ ~AA(dO) v o. 
N--+ oo 

A nice interpretation comes from genetics. Let x~(t) denote the frequency of 
a gene of type I in the colony i at time t. The 2 N + l  colonies are imbedded 
in a bigger environment to which they can emigrate, respectively from which 
immigration occurs. Let us suppose that the gene I has frequency A in the 
larger population. The total exchange with the environment and the 2 N +  1 
colonies is kept of order 1 as N gets larger. Furthermore migration occurs 
between the N colonies. A good model for this is given by (1.14). 

Then Theorem 3 says that for times >> N the situation will stabilize in a 
state which is a mixture in O of states with independent components and mean 
O and the mean of the mixing measure is A. Making c(N)N -1--+oo would 
cause the mixing measure shrink to 6A, while c(N)/N--+O results in the limit 
measure O ' 6 0 + ( 1 - O ' ) 6 ~ .  Therefore we see that the quantity c(N)N-1 regu- 
lates the correlation between components and the formation of clusters for very 
large times. 

(c) Two level hierarchical mean-field model 

So far we have considered finite systems, where the system size N tends to 
infinity and the migration term is suitably scaled. The same multiple scale analy- 
sis should be applicable for infinite systems, where we also scale the migration 
term appropriately. An important  step in this (difficult) direction is to study 
a two level hierarchical model, but which is interesting in its own right. Suppose 
we simulate a very large system on the computer but on the screen we display 
a large window but forming only a small fraction of the entire system. On 
the screen we focus now on local patterns. What  local patterns do we observe 
here for different periods of observation? We expect that the large system 
changes its macroscopic properties very slowly compared to the process visible 
on the screen. Therefore on small time scales the big system provides stable 
boundary conditions for the system visible on the screen. The global properties 
of this subsystem will therefore relax into some equilibrium distribution dictated 
by these boundary conditions. The actual value of them will determine an equi- 
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librium of the infinite system, which describes what we see locally in the window 
of observation. On a second large timescale of course the big system will fluctuate 
and so will these boundary conditions and therefore the system on the screen 
will change accordingly to another quasi equilibrium. 

One would expect this kind of behavior from a large variety of systems 
with local interaction. In particular interesting behavior is expected from systems 
exhibiting multiple phases including voter models (d > 3), stochastic Ising models 
below critical temperature, interacting diffusions with external drift field etc. 
These models are difficult to analyse since the interaction geometry is fairly 
complicated. In order to obtain rigorous results we therefore start by studying 
a simplified caricature of the situation described above, namely, a two level 
hierarchical mean-field model. These results turn out to be the cornerstone for 
a theory of infinite hierarchical systems (see [6, 7]). 

Consider M(N) blocks of size 2N that is, a system 

N N M(N)eN,  Xt =(xi (t))ie[-(2M(N)+ 1)N,(2M(N)+ 1)N- *l' 

with components satisfying the system of stochastic differential equations (1.20) 
below. Let 

IN(i ) = [(2j-- 1) N, (2j+ 1) N--  1], 

1 
Xj(t)= 2N ~ xN(t)" 

(2 j -  1)N<=k<(2j+ 1)N 

if ( 2 j -  1)N<i<(2j+ 1)N 

(1.20) dxN(t)=~N ~ (x~(t)--xN(t)) dt 
j~IN(i) 

a M(N) 

+ 2 M ( N ) + I  ~ (2N(t)--'yN(t))dt 
j= -M(N)  

+]/2g(x~(t))dwi(t) if ie[2(k-1)N,(2k+l)N).  

The initial law p is i.i.d. In the sequel we will write everything for the case 
a = 1 to simplify the notation. 

In order to describe the situation we introduce some objects which generalize 
the picture from Sect. 1 a (ii). In particular due to the two levels, 0 is replaced 
by the pair O, A; similarly Z,  is replaced by Z~ 'A, Z~ "~ and O~ is replaced 
by O 1'~, O~ "N and the time scale fi(N) by two time scales ill(N), fi2(N): 

I. Vo is the unique invariant measure of the system X t-- (xi(t))i~z solving 

(1.21) d x i ( t ) = ( O - x i ( t ) ) d t + ~ d w i ( t ) ,  ieZ. 

II. The time scales are: fll (N) = 2 N, fi2 (N) = 2 N (2 M (N) + 1). 
III. l,A QI,A Z~ , is the diffusion respectively transition kernel generated by the 
differential operator: 

(1.22) 
2 
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We star t  this diffusion in its equi l ibr ium FA. (Note  A in Z I'A does not refer 
to an initial state !) 
IV. 2,o Z~ , Q~(-, .) is the diffusion respectively its t ransi t ion kernel  with initial 
value Z2"~ O' genera ted  by the differential opera tor :  

(1.23) ug(x) , where ug(x)=~vg(y)F~(dy). 

V. The  slowly varying functions on the two levels are O~ '~, O~ 'N given by 

1 N - 1  

(1.24) O I'N 

1 Mm) 
(1.25) O} "N- E "2JY (s). 

2 M ( N ) +  1 j= -M(m 

With  these objects we are able to formula te  our  results as follows: 

Theorem 4 Let M(N) ~ oo as N --* oo. 

a) Then 0 a'N fluctuates in the time scale fl2(N) and is described in the limit 
by the diffusion Z]'~ and 0 a'N fluctuates on the smaller time scale ill(N) and 
is described in the limit by the diffusion Z 1"zI"~ That is, 

(1.26) S , O 2 , N  ~ ~ 2,o' 

(1.27) ,,N 1 z ... .  

b) The components of the interacting system relax into the equilibrium determined 
by these processes, that is, after a very long time the process looks as follows: 

(1.28) N ::::> v(s) ~e((Xs~a)+u)ue~+)m~ ((X ~ )u~+) S>0, 

2 ! with v(s )=~  Qs (0 ,  dA) ~ FA(dO)Vo, while after a shorter time L(N) we have 

(1.28') N 

here L(N)-~ o% L(N)= o (fi2 (N)) and v(O')= S Fo' (dO)v o. 

Remark. The essential poin t  here is tha t  in (1.28) instead of SQs(O', dO)vo as 
in T h e o r e m  1 or  ~Fa(dO)vo as in T h e o r e m  3 we have  now a combina t i on  of 
these opera t ions  and  obta in  

~Q2~(O',dA)#A with flAm~FA(dO)vo, 
so that  we find more  corre la t ion in this system imbedded  in a larger one than  
in the case of a free system. We  obta in  a mixture of states of a system in a 
weak externalfield, the mixing measure  being a kernel  of  a diffusion. F u r t h e r m o r e  
the densi ty O1~ N visible on the screen of  observa t ion  is now subord ina ted  to 
the b a c k g r o u n d  diffusion a,o, Zs , which is f luctuat ing only on a m u c h  larger 
timescale. 
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(d)  Organization of proofs 

The proof of our results are given in Sects. 2M. The approach we take is guided 
by the goal to give proofs which can be modified to treat infinite hierarchical 
models (see [-6, 7]) and lattice models and furthermore are in line with the 
structure of proof needed to get general statements for systems with interacting 
components (such as interacting Fisher-Wright diffusions, voter model etc.). 

In Sects. 2 and 3 we prove the main ingredients needed to deduce Theorem 
1. In Sect. 2 we prove, that if the density process (O~(m) is tight, then 5r ) 
has as weak limit points as N ~ o% mixtures of equilibria of the infinite system. 
In Sect. 3 we then use these results to prove that O~( m in fact converges and 
with the results of Sect. 2 we can then also identify the limit. 

Finally, Sect. 4(a) uses the results obtained so far to prove Theorem 1. In 
the same subsection we prove Corollary 1 and Theorem 2. Section 4(b) outlines 
how to modify the proofs to get Theorem 3 and so does Sect. 4(c) for Theorem 4. 

2 Convergence to mixtures of equilibria 

(i)  Formulation and proof of Proposition 1 

In this paragraph we shall establish that the finite systems in the time scale 
sN look like mixtures o f  equilibrium states of the infinite system. The actual 
identification of the mixing measure and the proof of convergence of ~(Ys%) 
as N ~ oo will be done in the next section. 

Proposition 1 Let (Nk)ke:V be a subsequence and L(N)~ 0% L(N)= o(N) such that: 

(2.1) Nk N N 5e(Os~(~rk)) k~o P~('), 5r sup IOi~(m--O~(m+tl)N~5 o 
t ~ L (N) 

Nk ~e(Y~(N~)) ~ v(s). 

Then v (s) necessarily has the form 

(2.2) v(s) =S P~(dO) Vo. 

The proof will be based first of all on some facts from the ergodic theory of 
the infinite system which is collected in two Lemmata 2.1, 2.2, a comparison 
of infinite and finite systems (Lemma 2.3), and a comparison of two infinite 
systems starting with initial distributions close to each other (Lemma 2.4). 

We shall state these results first, then derive the proposition from them 
and finally we shall prove the lemmata step by step. For a Polish space E 
let MI(E) denote the space of probability measures on E. A measure 
#~ M1 ([0, 1] z) is called L 2 (#) ergodic, if the subspace of L 2 (#) which is invariant 
under the shift on Z contains only the constant functions. 

Lemma 2.1 (Ergodic theorem for the infinite system) Let # be a translation 
invariant probability measure on [-0, 1] z which has the property 

(1) ~t is Lz(#)ergodic  

(2) Syo d ~ = p <  oo. 
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Then we have for the system Yt given by (1.2): 

(2.3) Y(Y*) N ~  v~ 
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1 YX , - -Z  

Lemma 2.2 The mapping [0, 1] -~  M 1 ( [0 ,  1] z) given by 

O ~ v  o 

is continuous. Furthermore if f is a Lipschitz function of a single component 
k, define 

f: f ( o )  = E TM f(Yk). 

The function f is also Lipschitz. 

Lemma 2.3 (Comparison of finite and infinite systems) Fix some seR + and 
a sequence L(N). Denote by Yfl~ the infinite system starting at t = 0 in the distribu- 
tion defined by continuing the configuration of Y~(m-L(m periodically to [0, 1] z. 
Similarly, consider Yt N as element of [0, 1] z. Assume that L(N) has the property 
L ( N ) ~  ~ as N ~  ~ but L(N)=o(N).  Assume that 

s u p  I O~p(u)u __ OJfl(N)N -t[ N ~ m  0 in probability. 
t<=L(N) 

Then the following holds: 

(2.4) [Ef (Y~) ) - -E f (Y~(N)) I~ooO,  V f ~ ( [ 0 ,  1]z, R). 

Lemma 2.4 (Uniformity of the ergodic theorem for the infinite system) Let 
Yt u~' be defined as above in Lemma 2.3. Since {#1v} is relatively weakly compact, 
we can find convergent subsequences. Let # = lira #Nk for some such sequence 

k---~ oo 

Nk. Then for any sequence L(N) with L(N) --+ ~"  

(2.5) E f(Y[('~,~,)--E f(Y~(N~,) ~ O. 

Lemma 2.5 (Stability of the estimator of the conserved quantity) Let (Y~)~t-N NA 
be distributed as the restriction of a translation invariant measure #N on [0, 1] L 
to [-0, 1] [-N'm. Suppose #N=*.#. Define a random variable q) on (#, [0, 1]z): 

1 + n  

(2.6) 9 = lim ~, y~ 
2 n + 1 n ~  i = n 
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and random variables qo N on (l~N, [0, lJZ): 

1 N 

E (2.7) ~~ 2 N + l  i= -N 

Then 

(2.8) ~(~0N)N~ ~ Y(q)). 

Proof of Proposition 1 

Since M1 ([0, 1] z is compact,  we can choose a subsequence Nk of Nk such that 
for a given sequence L(N): 

(2.9) ~ ( Y ~ k ) -  L(~)) converges weakly. 

The limit, denoted by #, is translation invariant. We shall choose a sequence 
L(N) with L(N)T + oo as N o  o% L(N)=o(N). In the sequel we suppress the 

on Nk. Condit ion on c# (see (2.6)) and write 

(2.10) # =  ~ #pdA(p). 
[o ,1]  

Here #p is a measure on [0, 1] z which is translation 

irlvariant, Lz(pp ) ergodic and 5Yo d#p = p. 

A(.) is a probability measure on [0, 1]. 

By assumption (2.1) we know 

(2.11) 

and 

(2.12) 

Since A in (2.10) is given by 

N 

(2.13) A = 5r ( l i m  ( 2 ~ +  1 ~_~_N y~) ) 

Nk o  e(Os (Nk)--L(Nk))kVOO )" 

Lemma 2.5 tells us that 

(2.14) 

and therefore 

(2.15) 

A( ' )=P~( ' )  

# =  S 
[O, l l  

with ~ ((Y~)iEz) = #, 
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Now apply Lemma 2.1 to the L2(#) ergodic components #p in the decomposition 
(2.10) of the measure # and conclude 

(2.16) ~ ( YL~(m) N ~  ~ v p P~(d p). 

Let ~N be the distribution of N Y~p(m-L(N) continued periodically to [0, 1] z. Write 
now 

(2.17) Y (Y~Nk)) = (of ( y~k ) )  _ ( ~  ( y ~ ) ) )  

+ (~e (Y3~) - ~e (yt(N~,)) + ~e (Yt(N~). 

By Lemma 2.3, respectively 2.4, the first two signed measures converge weakly 
to the 0-measure and by (2.16) above the third summand converges to ~v o P~(dp), 
therefore 

(2.18) Nk ~ (Y~(N~))k~ ~ vp P~(dp) q.e.d. 

(ii) Proof of Lemma 2.1 For a shift ergodic measure /~ with EU(go)=O the 
system consists of independent components evolving according to 

d yi(t) = ( 0 -  Yi(t)) dt + ~ dwi(t). 

It suffices therefore to show that each component will tend to the unique invar- 
iant measure of the diffusion given above. These are classical results and we 
shall not elaborate on them further. 

(iii) Proof of Lemma 2.3 The proof uses the concept of coupling and proceeds 
in six steps. 

I. We start by rewriting the problem in a more convenient form. First view 
the system of size N with initial distribution 5r as a system on 
[0, l]  z by periodic continuation and rewrite the drift term: 

Z (yy(t) - o ~  dt (2.19) dyU(t)=(OU-y~(t))dt+ 2 1 j=-N 

+ ~ ~ d ~ , , ( t ) ,  i~z 
1 N 

oN- Z y';(o). 
2 N + 1  j=_u 

Here ~i+k(ZN+l)(t)=wi(t) for ie[--N,N],  and {wi(t)}i~z are i.i.d. Brownian 
motions. 

This system has to be compared with the following system of equations 
the solution of which we have called {y~'N(t)}i~ z. 

(2.20) dy,(t) = (ON--yi(t)) dt+ ~-g(yi(t)) dwi(t), i~Z 

1 +• 
o N ~ y~(O), ~e(V(o~)=~N. 

2 N + 1  i=-N 
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That is, our problem can be formulated abstractly as follows: Compare 
two systems X (t) = (x~ v (t))i~z and Z (t) = (z~ (t))i~z defined as: 

(2.21) dx~V(t) = fN(t, co)dt+(ON--x~(t))dt + ~ d#i(t) 

with ,z,(t),vi+( 2N+ 1)k =wi(t ) for i e [ - N , N ]  and keZ,  with {wi(t)}i~t_u, Nl i.i.d. Brow- 
nian motions. The nonanticipating stochastic process fN(t, w) will be specified 
later. 

(2.22) d z~ (t) = (0 N -  z~ (t)) d t + ~ d w i (t). 

II. The problem of comparing two such systems X(t), Z(t) as in (2.21), (2.22) 
(N is fixed for the moment and suppressed in the notation) is now approached 
by the coupling method. We shall introduce a coupled dynamics, that is a dynamic 
of the bivariate process (J((t), Z(t)) such that: 

(2.23) (X (t)) = Y (X (t)) 
S (Z(t))= 5F(z(t)) 

a X  (0), Z(0))= ~(X(0)) | S(Z(0)) 

and the property that the difference between X(t), Z(t) becomes small as t ~ oe. 
This can be achieved in our situation by using the same collection of {wi(t)} 
for both X(t) and Z(t) in those components with index i e [ - N , N ]  and using 
the fact that the equations have a unique strong solution. The coupled dynamics 
is given by the following system of stochastic differential equations: 

(2.24) 

(2.25) 

d 2~ (t) = fN (t, co) d t + (O N - ~ (t)) d t + ~ d coi(t) 

dS~V(t)=(ON--57(t)) d t + ~  dcoi(t) for all i e [ - N ,  N] 

-N 
Xi+(2N+ ,)k(t)=2~(t) ie[--N,  N], kE Z\{0}  
=N N ZI+(2N+ ~)k(t)=zi+(ZN+l)k ie[--N,  N], keZ\{0} .  

We write the system immediately in a form suitable for studying )~ ( t ) - i f ( t ) ) :  

(2.26) d 2~ (t) = fN (t, co)dr+ ( ON-,2~ (t) A i~ (t)) d t + ~ N ( t ) )  

A ~ d w, (t) - ( ~  (t) - 5~ (t)) + d t + (]f2 g (:~N (t)) 

- - ~ ) +  dwi(t ) for all i e E - N , N ]  

d ~ ( t )  = ( o " -  x~(0  A g'(t)) dt + ( ~  A ~ )  dw~(t) 

- ( ~  (t) - ~7 (t)) - d t + ( ~  - ~ "  (t)))- d w~ (t) 

for all i e [ -  N, N]. 

In the second part of (2.25) we use that the components of Z(t) evolve indepen- 
dent of each other. 
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In the following i will be always an element in [--N, N]. From the relations 
above we obtain the following dynamics for I~( t ) -2~(t) ] :  

(2.27) dlyU(t)--~(t)[ = sgn(o~/N(t)--z~(t))f~o)dt-12~(t)-~(t)[ dt 

+ sgn (2~ ( t ) -  e~ (t)) ( ~ ( ~  - ~ ~ ) d  w,(t) 

using a result by Yamada and Watanabe [,12, pp. 165, 166] to overcome the 
difficulty that Ix-y[ is not a smooth function in R 2 ~ R .  Here s g n x = - 1  for 
x_<0, + 1for x>0 .  

III. We define now the Lyapunov function hN(t): 

(2.28) 

and obtain from (2.27) 

(2.29) 

where 

(2.30) 

hN(t) = E leon (t) -- Yon(t)[ 

d hN(t) = --hN(t)+ GU(t) 

GN (t) = E (sgn (y/u (t)-- e~ (t)) fN (t, " )). 

The linear differential equation in (2.29) can be solved explicitly as: 

(2.31) hN(t)=hN(O) e t+ i e-(t-~)GN(s) ds 
0 

and this given us the relation 

(2.32) hN(r) < hN(0) e- r + sup [-JaN(t)[]. 
t < T  

IV. Now we shall estimate the probability of the event that (YoU(t), ~oU(t)) are 
further than e away from the diagonal: 

(2.33) Prob(leon(T)--XoU(T)>e)<I EIzon(T)-XOn(T)[ 

< I ( [ E  h N (0)] e-  r) +_1 sup E If  N (t,')l. 
g 

I~ t<=T 

Since we know by assumption that for L(N)= o (AT) we have the relation: 

(2.34) sup E O u 1 +=~u y~/(t) s t<=L(N ) 2 N +  1 i ~0~ hN(O)<=2EU(]Y~ 

weapply(2.33) to T=L(N) andfN(t,')=(ON 1 ~ Y~(t))toget 
2 N +  1 i= -N 

(2.35) lira Prob (leon (L(N))-- YOn (L(N))[ _-> e) = 0. 
N ~ c o  
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V. Suppose now that f is a Lipschitz function on [0, 1] and define 

[f(x)--f(y)[ 
(2.36) L i p ( f  ) = s u p  

x , ~  [x-yl 

Now we want to see what (2.35) tells us about  the difference of the systems 
(2.19) and (2.20). Using (2.23), the result (2.35) implies that 

(2.37) I E f (you (L(N)))-  E f (Yo (L(N)))[ = I E f (5~ (L(N)))-  E f (2~ (L(N)))I 

< E I f  (~o u (L(N)))--f  (Yo u (L(N)))I 

< Lip (f)  E[go u (L(N)) - X~ (L(N))I N ~  O. 

Since the Lipschitz functions are dense in cg([0, 1]) we have: 

(2.38) lim IEf(y~(L(N)))--Ef(yo(L(N)))I = 0  Vf~cg([0, 1]). 
N--* ao 

This argument can be carried out not only for the component with index 0, 
but for every component k with Ik[ <L(N) (compare 2.26). This completes the 
proof of Lemma 2.3. 

(iv) Proof of Lemma 2.4 and 2.2 

We start by proving Lemma 2.4, and the Lemma 2.2 will be a by-product. 
Note first that the components of the infinite systems evolve independent of 
each other, so we are really left with showing that for two one-dimensional 
diffusions: 

(2.39) dA N (t) = (O N -  A N (t)) d t + ~ d w (t) 

(2.40) dA (t) = (O - A (t)) d t + ~ d # (t) 

with w(t), #(t) independent Wiener processes, satisfying 

(2.41) 

the following is true 

S (A~o), ON)N~ ~ ~((A(O), 0)), 

(2.42) (A (L(N))) - ~f (A N (L(N))) N~o O. 

It clear that ~(AN(t)) converges as t-~ oe to a unique equilibrium measure 
F N, and 5Y(A(t)) converges to a unique equilibrium F (compare Lemma 2.1). 
It can be shown that F N ~ F  and this will be done below. So we have an 
a r r a y / ~  of measures with/~tu ~oo #%N=~o/~ and the question is whether the 

trend to equilibrium is uniform enough in N to give (2.42). This can be seen 
by coupling as follows: 



484 D. Dawson and A. Greven 

Denote by BN(t), B(t) the stationary solutions of (2.39), (2.40). We shall con- 
struct a coupling for AN(t) and BN(t), A(t) and B(t) and for BN(t), B(t), so that 
we are able to estimate as follows: 

(2.43) IE f (AN(L(N))) -  E f ( A  (L(N)))] < [E f ( A  N (L(N)))- E f ( B  N (L(N)))I 

+ [E f (B N (L(N))) - E f (B (L (N)))I + ]E f (A (L (U))) - E f (B (L (U)))l 

and show that each of these summands on the right tends to 0 as N ~ o0. 
Recall that a coupling of two stochastic processes X(t), Y(t) is a bivafiate 

process (X(t), Y(t)) such that ~( .~( t ) )=~(X( t ) ) ,  5r We want 
to define the bivariate process such that E r)((t)-Y(t)J gets as small as possible 
as t ~ 0o. Again the trick is to use the same Brownian motion in both compo- 
nents. 

We define the dynamics for the coupling of AN(t), BU(t) as follows 

(2.44) dAN (t) = (O N - .~N (t)) d t + ]/2 g (,~N (t)) d w (t) 

(2.45) dBN(t)=(ON--J~N(t) dt +V2g(BU(t)) dw(t) 

(2.46) ~r ((/~N (0),/~N (0))) = L,r (A N (0)) | 5~ (B N (0)). 

As in the proof of Lemma 2.3 we obtain this time 

(2.47) ~ t  E I,~N (t) --/~N (t)] = -- E Ix4 N (t) - /~N (t)[, 

SO that with the abbreviation hN(t)=E IAN(t)--BN(t)r we have 

(2.48) hN (t) = hN (O) e -t < 2 e- t. 

Similarly, we can perform the above construction for A(t), B(t) and get 

(2.49) h (t) = h (0) e-t  < 2 e t 

Next we couple BN(t) and B(t). Here is the dynamics of (/~N(t),/~(t)): 

(2.50) dBN (t)-= (O N -  BN (t)) d t + ]/2 g(BN (t)) dw(t) 

dB(t) = (0  -- n (t)) d t + (~g(/~(t))) d w (t) 

5~((BN(0), ON), (1~(0), O)) is chosen such that: 

(2.51) 167 N - - O I N ~  0 in probability. 

This last requirement can be met since by assumption 5.f(ON)~ o~r 
Define 

(2.52) gN (t) = E [/~N (t) --/3(t) ]. 

We have from the dynamics the relation (recall the remark following (2.27)): 

(2.53) d gN(t) = -gN (t) + E ((ON-- O) + 1 (/~t) =/~(t))--(O N -  O)- 1 (/~) N B(t))). 
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Abbreviate the expectations on the r.h.s, of (2.53) by LN(t). The Eq. (2.53) is 
solved explicitly and then bounded as follows: 

t 

(2.54) gN(t)=gN(O)e-t+ [. e-('-~)LN(s)ds<2e-t+ElON--OI . 
0 

From this we can deduce 

(2.55) lim gN(L(N))< lim ElON-OI. 

Now insert (2.48) (2.49), (2.55) into the r.h.s, of (2.43) and obtain for all 
Lipschitz functions f on [0, 1], 

(2.56) lim IE f(AN(L(N)))--E f(A(L(N)))[ <= Lip(f)  lim EION-- @l. 
N --+ oo N ~ o o  

The right hand side is equal to 0 according to (2.51). Since the Lipschitz functions 
are dense in C[0, 1], we have proved (2.42), and therefore established Lemma 
2.4. []  

We now prove Lemma 2.2. From (2.55) it follows especially that we have 
the following facts for the equilibria of the diffusion in (2.39), (2.40) denoted 
by F ~ F ~ (but with ON, O just numbers and not random variables): 

(2.57) F ~  ~ as O N t O  

(2.58) IEr~176 for f Lipschitz. 

The first relation shows that O--*F ~ is a continuous map from [0, 1] 
M1 ([0, 1]), while the second relation shows that for a Lipschitz function f :  

(0, 1] ~ R, the function f :  0 ~ E r ~  is again Lipschitz. This immediately proves 
Lemma 2.2 since 

(2.59) Vo =(Fo) | 

and the components of the infinite system evolve independent. 

(v) Some further consequences of the coupling 

We shall later need two additional consequences of the couplings we constructed 
so far. If we combine the couplings from (2.24), (2.25) and (2.44), (2.45), (2.50) 
by simply using one set {wi(t)t~+} of Wiener processes driving the stochastic 
differential equations, we obtain the following consequence of (2.35) and (2.56). 
We can c o n s t r u c t  (ysNfl(U)+u)ueR+, (YuN)uell+ with/~ = w--l im &P (Ys~uk)) on one prob- 
ability space such that: 

(2.60) E(lyNk(sfi(Nk))--;~(U)l)k~ooO, Vu~O,j~Z. 
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The other fact we shall need later reads as follows: 
Suppose that L~~ u) and 5r can be constructed on one probability space 
such that 

2 ~N+ +N O 1 +U sup E 2 y~(t)-- <J(N) ,  with O =  l i m -  2 yj(0). 
t_<K(N) 1 j= -N N~oo 2 N +  1 j= -N 

Then there exists a sequence e(n)> 0, E(n)--* 0 as n ~ 0% such that: 
Let L(N) be a sequence with L(N)'F+oo, L(N)<K(N). Then (YtN), (Yt) can be 
constructed on one probability space such that 

(2.61) E ([ y fV (L(N)) -- yj (L(N))I) < e (L(N)) + ~ (L(N)). 

Finally we need later on the following statement, which generalizes Proposi- 
tion i. 

Proposition 1' For every subsequence N k along which ~~ converges 
the following holds 

~((Y~(N~), .--, Yn~(st fl(Nk)))~ P(O~, ~dpl .... O ~ d p t  ) vp, |  | vp~. 

The proof  is as follows: 
The system zN(t) N =(Z i (t))i~tN,N j, which evolves in the time interval Is 1 fl(Nk) 
-L(Nk), s 1 fi(Nk)],... [s~fi(Nk)--L(Nk) , sefl(Nk) ] with L(N)=o(fl(N)), L(N) 
< rain (sj+l fi(N)-sjfi(N)), but L(N)-* oe as N-+ oo; as follows 

j = I  . . . . .  

dzN(t) = (0 j 'N- z~ (t))) d t + ~ dwi(t) 

ZN(Sj fi(N)-L(N))=Z(sj) with j =  1, ..., 

has by construction the property that for fixed path (Z(t)): 

C 

5F ((ZN (sl fi(N)), ..., ZN (st fi (N)))= @ 5a(ZN (sk fl (N)). 
k = l  

Then by Lemma 2.3 the assertion follows immediately. 

(vi) Proof of Lemma 2.5 Since # has the property ~y~ dkt < 0% and is translation 
1 +N 

invariant, we know that the L2(#)-limit o f -  ~, Yi exists (L2-ergodic 
2 N +  1 i=-N 

theorem). Introduce the following notation: 

1 +N 
DU(Y)=2N+I ,=-~NYi' D(Y)=L2-- s~lim DN(Y). 

Since (as mentioned above) 5~ u (D N (Y)) ~ ~ (D (Y)) as N ~ 0% and by assumption 
~ ( D M ( Y ) ) ~ ( D M ( Y ) )  for fixed M as N ~  o9, it suffices to prove that: 

(2.62) lira sup ]l DM(y)-  D~V(Y)I]L2(~N)= O. 
M ~ o o  N >  M 
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This is easily done using Fourier transforms. By standard results on the 
spectral representation of Lz stationary sequences (see for instance [10, Chap. 3]) 
there are finite measures 2, 2u on [--re, ~] which represent/~, #N via the Hilbert 
space correspondence 

yx~-->e ~x", x~Z, u ~ [ - ~ , ~ ]  and [.y:,yyd#= ~ e'(X-Y)Ud2(u). 
[-~,~1 

In particular, #u ~ # implies 2 u ~  2. If we define 

1 +u 
DU(u) -2N+l  ~ e ix", u~[ -~ , r c ] ,  

x = - N  

then 

[] DM ( Y)-- DN ( Y)[]Lz~.N)= H D~ (u)-- DN (u)I[Lz(~). 

The trigonometric polynomials DN(u) satisfy: (i) DN(u)-* 1~o ~ (u) as N-* oe, 
DN(O) = 1, (ii) for 6 > 0 and M < oo there exists e(M, ~) such that for all N > M 

[DU(u)--l(o~(U)]<l(_a,a)\(o~(U)+e(M, 6) e(M, 6)~O as M ~ o e .  

Consequently with letting K 0 abbreviate ( - ~ ,  ~)\{0} we have: 

(2.63) I I DM (u) -- D N (u) ll L2~.,,) = 22N (Ko) + 2 e (M, 6). 

Let first M tend to infinity to get 

lim (sup 11DM(u)--DN(u)IIL~z,,))<22(K~) V6>0. 
M---:'o~ N > M  

Since K~ ~ 0 as 6 ~ 0, we get finally letting 6 ~ 0 that 

lim (sup IIDN(Y)--DM(y)I]L=(~,~,))= lim 22(K~)=2(0)=0. 
M - - + ~  N > M  6 ~  

This finishes the proof of Lemma 2.5. 

3 Convergence of the slowly varying variable O~N) to Z~ 

In this section we shall use the results of the previous one, to prove the statement 
(1.5) of Theorem 1. 

Proposition 2 

(3.0) N ~ e  (( O~p~N))~R + ) u _  ~ ~ ~e((z3s~R +). 

Proof The proof consists of three parts corresponding to Lemmas 3.1 to 3.3 
proving tightness, an equation for weak limit points and finally the uniqueness 
of the limit point. 

We start with a lemma establishing some tightness results. 
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L e m m a  3 .1  (a)  N (Os~(u))~R+ is a square integrable martingale with continuous 
path and increasing process 

i( 1 ) 
<O~t~(N)>- o ~ 4 - 1  i=~_N g(y~(ufi(N))) du. 

(b) The sequence N {LW((O~r is tight as a sequence of probability mea- 
sures on cd([0, oo]). 

Proof Since the yff(t) are solutions of the system of the stochastic differential 
Eq. (1.1) it follows for N fixed, that Off is given by: 

N 

(3.1) O~=O~ 2 N + l  ~=-No 

Since stochastic integrals with respect to Brownian motion are local martingales, 
we know already that (Of )~+  is a local martingale so that since g is bounded 
(O~)t~a+ is a square integrable martingale. As a stochastic integral with respect 
to Brownian motion it has automatically continuous path. 

By Ito's formula we derive from (3.1): 

(3.2) E(O,~) 2 =E(Oo~) ~ 
1 N t 1 

(2N+1)2 ~ ~ ~Eg(yT(s))ds<-_2N+ll[glloo-t+l. 
i = - N  

We see from (3.2) that for L(N)= o(N) and every fi(N) 

(3.29 sup l N N O;p (u) +t - O ~  (u) I N ~  ~ 0 
t<=L(N) 

in probability by the optional sampling theorem. 
We have to establish the tightness of {(O~(u))s~+}. The representation (3.1) 

together with the fact that as processes 5~'(]/~w~(t))=~(wi(et)) implies that 
N O;B(m can be represented equivalently in law as 

(3.3) N l +N I V  Z 2 g (y~ (u fi (N))) d w~ (u) 
O~(m V 2 N +  1 ~: -N 

and then the increasing process is given by 

(3.4) <O~(N)>= 2N-+l  ~ g(yf(ufi(N))) du 
0 i :  - N  

so that 

(3.5) o ~  d <O~(u)> < IIg II V s ~ R  + 
- -  d s  = cx), 
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This implies in particular that the path of ((Os~(m))~>__o are equi-continuous 
on compact time intervals. Therefore ((O~(N)))~<_T form a relatively compact 
subset of cg([0, T]). As a consequence the sequence 

is a relatively weakly compact sequence of probability measures on cg([0, oo)). 
Observe furthermore that (O~(tv)) is strictly increasing up to the point in time 
were it becomes a constant (that is the underlying process has hit the traps 
0 or 1). The martingale (O~{N)),>=o is a stochastic integral, and therefore a time 
changed Brownian motion (see Ethier and Kurtz [-18, Chap. 6J): 

O~(N)= W(SU(s)), SU(T):=(ONra(m). 

It is therefore clear from the path continuity of W(.) that the tightness of the 
5r ) implies the tightness of the sequence {(O~{m)~,+ } of mart- 
ingales in the path space cg([0, oo]). This finishes the proof of Lemma 3.1. []  

In the next step we characterize weak limit points of 5r 

Lemma 3.2 Let Nk be a subsequence such that: 

(3.6) 

Then (Q)~R+ is a square integrable martingale with continuous path and 

(3.7) 
s 

( -So 
is a martingale, where q) is given by 

�9 (o) = E~-g(yo)= u,(O). 

Proof Since our state space is [0, 1] we know that Os is square integrable. 
The problem is to show that Q is a martingale and the increasing process 
of Q is given by the integral in (3.7). The fact that O~ is a martingale will 
follow as a side result from an argument we give in the sequel of (3.10) below 
to prove (3.7), so it suffices to show that O~ satisfies (3.7). 

Step 1 We start by finding the limit of (O~(m).  For  that purpose we apply 
our Proposition 1, to conclude from our assumption, namely, 

and from the relative compactness of {~(YNk(Ufl(Nk)))}k~N that: 

(3.8) /~r k co  
5e(Y,r ~ ( ( Y  (u)))  VueR +, as k--, oo 

~(r , )=Sg(dO)v  o, P,( . )=~e(o,) .  
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This implies that  in the sense of  weak convergence of  distributions we have 
for all u: 

1 ~ g(y~(ufi(Nk))) k ~  (q~(O,)). 
i =  - - N  k 

To verify this apply L e m m a  2.5 to N {g(Yi)}~-N ..... N and use the fact that  

1 +~r 
g (y~ (u)) (y?(u))i~ z is i.i.d. (see (2.2) and (1.4)) to conclude 2 N + l  ~=~s 

E (g (y~ (u)) as N ~ m. 
This a rgument  will be extended to give for all us, ..., u~ 

1 u~ ) 
g(y~(Utfl(Nk))) ~(q~(0,~))e= ~ ...... 2~+1 i = _ N k  g =  1 , . . . , m  " 

in the sense of weak convergence. Fo r  this purpose  we need the following fact, 
p roved in Propos i t ion  1'. 

Nk Nk ~ ((Y;,1 ~(u~)) . . . . .  YueB(Nk)) k~oz ~ P(O,I ed p~, ..., O,~dpe) v m | | vp~ 

which immediately gives the desired convergence result above using the same 
line of  a rgument  as used above  in the case # = 1. 

Step 2 Observe that  the integral 

can also be written as 

o r  

s k ~ l  

1 

1 ~'+lP(m{ l ~g(y~(s)))ds 

for a part i t ion s < ti < . . .  < t~ = t, I ti+ ~ -  t a l=  < e. Hence we have as N ~ oe averag- 
ing in time and space taking place. We want  to show that  

with 6 (e) --* 0 as e ---, 0. 
Fo r  that  purpose  we compare  for a given par t i t ion (t~) the system in the 

time intervals [tiff(N), ti+l fl(N)] with a new system (Zi(t)) defined with the 
same brownian  mot ions  used for (y~),=-N ..... N as follows: 

d z i ( t ) = ( O k ' S - - z i ( t ) ) d t + ~ d w i ( t ) ,  ie[--N, + N ]  

0~'~= Ot~p(iv ). 



Interacting diffusions 491 

The dependence on the partition is suppressed in the notation. For  such a 
system we would have by the independence of the components and the continu- 
ous time ergodic theorem: 

fl(N) I 1 g(zi(s)) ds~(Fo~k'g)(tk+t--tk)=~(Otk)(tk+l--tk)" 
tk/~ ( N )  i = - N 

The sum over the righthand side forms an approximation of the integral 

i~(Ou) du. Hence as the partition becomes finer 
0 

\ i = 1  ! / t > O  \ 0  ] t = O  

It remains to compare the {yi(t)}~{1 ..... N} and the {zi(t)}i~{1 . . . . .  N}, in the limit 
of finer and finer partitions. 

For  this purpose we resort to our coupling results in Sect. 2, (2.21)-(2.38) 
which immediately gives the desired estimate (3.9), since we can apply to 
{~(t)}~z, {Y,u(t)},~z the bound (2.38)~ where the - indicates the periodic continua- 
tion from a process indexed with { - N ,  N} to one indexed by Z. 

We have shown now that for any collection 0 < tl < ta < . . .  <tm : 

(3.9) 
2N-+ l  i=_U g(y~(ufl(N))) k = l  . . . . . .  

('! ) ~ ~(O,)du , in law. 
N-4 oe k =  l , . . . , m  

The paths of the processes are increasing with (in N) uniformly bounded deriva- 
tive, i.e. the values lie in an equi-continuous subset of paths in C([0, oo]). Hence 
the N ((O~B(m)s >= o) are tight. This means that 

(3.1o) 

This statement is now strengthened to 

(3.10') 2Nk+ 1 ~ g(YN~(ufl(Nk))du, Oi~(N~) 
i = Nk t>=-O 

k ~ o o  t>O 

which is easy to see using the method of moments together with the previous 
results. 
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Step 3 Next we show that the r.h.s, of (3.10) gives the increasing process of 
Q and on the way we get that Q is a martingale. Observe that by the Doob- 
Meyer decomposition [-5] : 

(3.11) (O~e~ Nk))2 Nk N~ = Ms + (O~0Vk)), where M~ k is a martingale. 

What we need next is the following fact: 
Suppose {(M~)t~+)N=I .... is a sequence of continuous martingales with respect 
to the a-algebras {~) ,  and all these martingales are defined on one probability 
space. If this sequence has the following additional properties: 

supE(M~)2<=Ch(t), C~(O, ~) ,  h(t)<cx~ Vt>O 
N 

5Y ((M~)t~R+) U~o ~ ((Mt)t~,+) 

then 
(Mt)t~R + is a square integrable martingale. 

Proof Let g =  1A with A ~ .  Then by assumption 

E ((MS~ - M~) g) = 0 V s > 0 

E ((MS s - Mt u) g) N ~  E ((Mr +~ -- Mr) g), 

wher g ~ r  g is a continuous function of the path and 

d t  = {events depending on the path up to time t} 

and therefore 

E ((Mr+ s -  Mr) g) = 0 V g, which are d t  - measurable. []  

In order to apply this statement to our situation observe that 

~(~/~w~(t)) = S(w~(~t)) 

so that we can define { ( & ) ~ , + ,  N6N}, { {(y~(t)),~,+, i~Z}, N~N} on one proba- 
bility space as strong solutions of: 

s 

& =  0OU+o~ 1 +u Z /2g(y~(ufl(N))) dwf(u) 
2 ~ +  ]- i=-N 

+N 

Combining these two relations we can write 

&=Og+i  1 +~ 
0 -N 
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and we see that 

~ ( ( & ) , ~ . + )  = ,, 

Therefore by defining either 

VN. 

with respect to the filtration 

= d { { ( w ~ ( s ) ) ~ } ~ }  

we can use in both cases the observations made above, following (3.11). 
From the assumption and (3.10) and (3.11) we conclude now from the above 

discussion: 

(3.12) (Q)s_>_ o is a martingale 

5~ ~ ~( (Ms)s~  +), and Ms is a martingale. 

Step 4 Therefore by combining (3.10') with (3.12) we obtain 

(3.13) O2=Ms+ [ ~(O.)du, (M~)seoisamartingale. 
O 

The second term on the r.h.s, is increasing and d((Ou)u~)-measurable, this 
implies that 

(3.14) (Or) = i ~)(Ou) du, 
0 

since the increasing process is uniquely determined (see Ethier and Kurtz [18, 
p. 74, Theorem 5.1]). According to Lemma 2.2 the map q~(.) is continuous, 
therefore (3.14) implies that Q has continuous path. This proves (3.7) and the 
proof of Lemma 3.2. is finished. 

The last piece of information needed, to complete the proof of Proposition 
2, is that there is only one process which satisfies (3.7). 

Lemma 3.3 I f  we denote by ~b(u)= E~~ then the following martingale prob- 
lem has a unique solution: 

(3.15) 

(3.16) 

(Os)s>_ o is a continuous martingale with values in [0, 1] 

0 2 -  ~(Ou)d isamartingale.  
/ s > O  

The solution of (3.15) is given by the diffusion generated by �9 (x) 
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Proof By Lemma 2.2 the map ~(.)  is Lipschitz. Therefore we obtain the assertion 
(3.15) from Stroock and Varadhan [11, p. 152]. Finally (3.16) is a standard 
fact in diffusion theory. 

Proof of Proposition 2 By Lemma 3.1 we can choose a subsequence Nk such 
that ~ ~((O~O(N~))~R+) converges. Lemma 3.2 combined with Lemma 3.3 then 
implies that the weak limit point is 5~ o) independent of the subsequence 
so that we have in fact convergence. [] 

4 Proof of Theorems 1-4 

(a) Proof of Theorem I, Corollary 1 and Theorem 2 

Proof of Theorem I I. (1.5) was proved in Proposition 2. 

IL Proof of (1.6). The combination of Propositions 1 and 2 and (3.2') gives 
us (M1 ([0, 1] z) is compact in the weak topology) 

N ( 4 . 0 )  5#(Y~(N)+,)u~ ~ Q(O, dO) vo=v(s ) VueR +. 

From the coupling techniques used to prove Lemmas 2.3, 2.4, namely, the rela- 
tion (2.60) we derive 

(4.1) y N N 
attl +112]]. 

Since these considerations apply as well to time points s fl(N)+ u l . . . . .  s fl(N)+ Uk, 
we have established that the finite dimensional distributions of the process 
~~ ) converge to those of the process 50((Y](S)),~R+). 

It remains therefore to establish the tightness of the distributions 
~((Y~(m+~)~a~) as measures on the space D([0, ~) ,  [0, 1]z). To see this we 
use again the coupling result (2.60), Tightness on D([0, oo), [0, 1] z) is established 
verifying tightness of the components on this product space. First note that 
a criterion for tightness of a sequence of processes in the space of the components 
is the following (see Ethier and Kurtz [18, p. 128, Theorem 7.2]): Let X, be 
a sequence of random variables with values in D [(0, oo), [0, 1]). The sequence 
is tight if for all t />0, T > 0  exists a 6 >0  such that: 

sup P (w' (X,, 6, T) > t/) =< q 
il 

w'(x, 3, T ) = i n f m a x  sup (]X(s)-X(t)]) 
(ti) i s , t~[ t i  1,ti] 

ti+l-ti>_>_6Vi, O<tl<...<_T<_tn. 

Next observe that by (4.0) we know that we can apply (2.60) with Nk = k. There- 
fore tightness follows from our coupling in (2.60) between {y~(t)}~z-N Nj and 
{yi(t)}i~z = Y~(~)(t) (as before - refers to be bivariate dynamics): Since I)57(ti-;5i(t)l 
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is a semimartingale, using (2.60) and the optional sampling theorem we can 
obtain that: 

(4.2) Prob(ly~(t)-  )Sdt)[ _-< ~, Vt~Esfi(N),sf i (N)+T])N~ool.  

We can therefore estimate for all v, u + ve [sfi(N), s f i(N)+ T]: 

(4.3) ly~'(u + v ) -  y~(u)l _-< ly~'(u + v ) -  ydu + v)l + lye'(u)- y~(u)l + ly~(u + v ) -  y~(u)l. 

(4.2) and (4.3) then implies tightness using the criterion quoted above. 

III. Proof of (1.7). Denote by SN(t) the semigroup of the process defined by 
the system of stochastic differential Eqs. (1.1) and let v o be the invariant measure 
of the infinite system (1.2). Then the relation (2.5) together with (1.7) and (2.3) 
in connection with (2.8) applied to our situation reads as follows: 

Let {/~o ~} N = 1, 2 . . . .  be a sequence of translation invariant probability measures 
on [0, 1] z satisfying 

({  1 ~,N y~: }) 
~ 2 N ~ 1  _ O =1.  

Then we have 

(4.4) (#~)  S N ( L ( N ) )  ~ v o . 

Therefore we write with bN = L(N)/N 

(IX~) S N ((t - s) f l  (N ) )  = (11~) S N ( L ( N )  + ( t -  s - 5N) f l  (N ) )  

= [(#o N) SN(L(N))] SN((t -- s -- aN) fi(N)). 

By Lemma 2.4 and (4.4) we can replace the right side above for N ~ oo by 

vo sN((t- s -  G) ~(N)) 

and by (1.6) this will be for N ~ o% approximated by 

voSN(( t - - s ) f l (N) )N~ SQt_s(O, dO)vo,  forall Oe[0,  1]. 

Now simply consider a sequence #~ obtained by taking for each N a translation 
invariant version of 

~(Ys~(N) I O~(N)= O). 

Then we know from the argument above that with this choice of a version 
of the conditional probabilities: 

(4.5) N N ~e(Yt~(N)lO;~(N)=O)N_~ooSQt_s(O, dO)v o for all Ocl-0, 1]. 
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N Then we have, with p N denoting the law of 0s~(m 

0+~N 

j" ~e (~ ' (N)  I o+p(N>" -- o) p+N (d O) = ~ (N~(,,) , I Of~ (,,) - O I _-< eN). 
0-e~r  

Note that O --, Vo is a continuous map [0, iI  ~ d/{~ ([0, 1] z) and Qt-~(', dO) is 
a continuous map R ~M~( [0 ,  1]z). It is then straightforward to derive from 
(4.5): 

Proof of Corollary 1 

The proof  of relation (1.11) consists of two steps, first a soft argument using 
the invariance principle established in Theorem 1 and then second a comparison 
argument using special properties of the process (Off) to complete the argument. 
It is for this second step we need the additional regularity assumptions quoted 
in the assumptions of Corollary 1. 

Step 1 First note that T N, T can be characterized as 

(4.6) inf{t I Yff+ h = 0 or Yff+ h = 1 for all h > 0 respectively}. 

This means that T N, T are lower semi-continuous functions of the path. 
Therefore the result (1.6) of Theorem 1 implies ( " > "  means stochastically larger 
here): 

(4.7) w -  lim 2#(TNk/fi(Nk))>= ~ ( r )  
k--+ oo 

and here Nk is a subsequence such that ~(TNk/fi(Nk)) converges in the weak 
topology of measures on R u {oo}. We denote such a limit point by ~ ( T + ) .  

By Theorem 1 and Skorohods'  Theorem (Yff)t~,§ (Yt)t~.+, T +~ can be defined 
on one probability space (cf. E2]) such that 

s .~, Os T~176 a.s. as N--*oo. (4.8) (O~(m) ll- ~ ' - 

It is therefore our task to prove that: 

P r o b ( T -  T ~ < 0) =0.  

Step 2 Here we have to distinguish the cases of accessible respectively inaccessi- 
ble boundaries. 

Case I {0, 1} are accessible boundary points for g(x) 

Consider an enlarged probability space in which (4.8) holds. To get an estimate 
on Prob(T--TO~ 26) for 6 < 0  we observe that on the event {T--T~176 6} the 
following relations hold (compare (4.8) and the fact that {0, 1} is accessible 
for Off): 
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For all e > 0 there is a No (e, co) such that on this event 

(4.9) 0<O~_-<e Vse[TN- f f i (N) ,  T ~] for N>No(e, co) 
or 1--e__<Off<l Vs~[T~-613(N) ,T  N] for g>No(e,  co ). 

But the fact that O~ is a solution to (3.1), implies that O~ is a time-transformed 
Brownian motion: w(St'N). In order to exploit these facts, we introduce now 
a convex function ~ which is an "effective" minorant of g at one boundary, 
that is for some c~[1, 2), c e R  +, 

~,(x)=cx ~, 

so that, using the regularity assumptions of g (g behaves like some power close 
to 0 and 1), we have for some prescribed 13 > 0 

~(x)<g(x) Vx~[0,1-13]. 

We shall see that this implies that on the event {Qp(mm(0, e] for sm[T, T+g]}  
we have for some b > 0 

(4.10) 
T + 6  1 N 

2 N + l  Z g(y~(sfl(N))ds 
T i = - N  

T + 6  1 N 

=>b ~ 2 N + l  ~ ,~,(y~(s13(N)))ds 
T i =  - N  

VN> No. 

In order to see that we can achieve this for some No, b>0 ,  we first use: 

T + ~ 1 ~ 1 (T  + ~)fl(N) 1 N 

rl 2 N + l  ,=Z-ug(yf(s13(N)))ds=13(N) ~ 2 N + l  Z g(y~(s))ds 
Tfl(N)  i = - -N 

in connection with Theorem 1 and (3.8~(3.9) in the proof of Theorem 1. Then 
in order to estimate the contribution where g (x)> ~ (x) we use the facts that, 

[sup ( F o (y(t)~ [1 -- fl, 1]))/sup(Io(y(t)6 [0, 1 -- 13]))] =< a(e) ~ ~ O, 
O < e  0 < e  

F0([1--fl, 1 - f l /2] [y~[1 - f l ,  1])> 1/2. 

The latter relation can be read off from the explicit form of Fo (see Sect. 1, 
(ii)). 

Since ~(x) is convex we can conclude by Jensen's inequality: 

1 N 

2 N + l  ~ ~(x~(s))>~(O~). 
i = - - N  

If we denote now by ~x the random time transformation such that 

O~ = w(SX(t)) isa  diffusion generated by ~(y) (~fiy)2 
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starting at x, we conclude from (4.10) via the well-known relation between the 
time transformation S(t) and the increasing process of xt, namely St=(xt) ,  
that we can construct Off and 0{  on one probability space such that (simply 
use the same Brownian path) 

(4.11) ~ , N ( . ) >  g~(.), 

holds on the event {Q~(N)~(0, ~], Vs~ IT, T +  fi]}. 
Since ^x (O~)s> o is strong Markov, has 0 and 1 as accessible boundaries and 

since ^x (Of)~>o i s a  martingale with continuous path we know that for 6 > 0: 

Prob( inf{s l02=0},6)T1 as x$0. 

Consequently for 0 < x < y __< e 

P r o b ( 0 [ e [ 0 ,  y) V s < 6 ) % 0  

for every 6 > 0. Due to the representation (4.11) we then know that also 

P r o b ( O f e [ 0 ,  y) V s < 6 1 O o = x ) ~ O .  
e--*0 

From the last fact we conclude with (4.9) that for all 6 < 0 

P r o b ( r -  T ~ < 6 ) = 0 ,  

which finishes the proof. 

Case 2 {0, 1} are inaccessible boundaries for g(x) 

Since Q is a martingale we know that O~ ~ O~, where Ooo takes the value 

0 or 1. Since in (0, 1) the diffusion coefficient of O~ is strictly positive, we shall 

prove below that if 0, 1 are inaccessible for g(x) ~xx then they are inaccesible 

for Ug(X) ~-x " Therefore we have the following 

O~ - - ~  0 a.s. 

(4.12) or and 0 < O ~ < 1  VsER +. 

Q ~ , 1 a .s .  

Then it is clear that the result of Theorem l, that 

N 

implies now 

(4.13) TN/N--,oo a.s. 

and therefore To = ~ a.s., that is T o = T a.s. 
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It remains to show that under our assumptions 

(4.14) (')' 0 is inaccesible for g(x) ffxx 

0 is inaccessible for ug (x) 

Using the criterion for inaccessibility f x o ~ - ~ d x =  oo (cf. Breiman Prob. 16.43), 

(4.14) follows from the following useful relation. 

Lemma 4.1 

x~o / />2  
(4.15) g(x)x2~oCXP for fi>-2~ug(x) < c'x2[logxl, c'>O for f i = 2 c < l .  

x ~ O  

Proof The result is proved by using the formula ug(x)=yg(y)Fx(dy) with Fo(dy ) (;0.) 
= c o ~ g~y) exp ~ d z . We start with the case fi > 2. 

I. The quantity C o for O ~ 0 fl > 2. 
We start by considering the following special case for g: 

g(x)= x k for k>2 .  

Assuming the special form of g as above, the quantity Co can be calculated 
to be (for k > 2) 

i•exp k 1 0 

)/) f' kY_2 yk-1  dy ,~  - -}- I"  
0 

We treat each integral separately. 
The second integral is estimated using the substitution z = ( k - 1 ) - l y - ( k - 2 )  

as follows 

1 

0 

= e -  l /Ok-2  I z k l ( k - 2 ) e Z d z ~ O - k  
i/(k- i) 

as (9-*0 with " 
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Therefore the denominator is asymptotically at least of the order O .k . The 
first integral does not contribute, it is estimated as follows using the substitution 
z = (O(k- 1) (k-  2))- 1 y-(k- 1): 

f l  / / 0  7 exp [ -~k_- - i  kY2)/yk-X)dy 

o1 ( _1 , )  ; 
__<o~ ~ e x p  O(k-1)(k-2) yk--1 =-c/ok+~ 

<~Oe-1/~ for all j > 0 .  

O k ~ e - ~ d z  

(! ) 2. The behaviour of exp ~ - d z  for O ~ 0. 

This quantity is easily seen to be bounded above and below by numbers c~ > 0, 
c2 < 0% respectively. 

Therefore by putting things together we have for the special choice of g 
that ug(x)> x k for x --+ 0. Using monotonicity it is clear that the statement remains 
valid for all g with g ( x ) ~ x  k as x ~ 0 .  The details of this exercise in analysis 
are left to the reader. The same reasoning applies to x--* 1. This proves the 
assertion for fi > 2. 

3. f l=2  
Again it is enough to consider the case g ( x ) = x  2. 

The constant C o is now given by 

)) 1o exp -- + l n y  dy= - e - / r d y =  ~ lezdz 
o oY -o z 

~ - - l n O  as O--+0 

using the substitution z = - O / y .  
The density is now treated as follows: 

i ~exp ( - (O+lny ) )dY=i~xexp ( -O /y )dy  
0 0 

oo 

"~ 02  S 
- O  

zeZdz~constO .2 as O ~ 0 .  

Putting both things together yields 

ug(O)~constlln O[ O 2 as O ~ 0  

which proves the assertion in the case f l=2.  []  

Proof of Theorem 2 Since g (x)= c x ( 1 -  x) the invariant measure is 

const (~o O--y 
Fo(dx)- x( t  --x~ exp cy(1 --y) c o n s t x T -  ( l - -x )  ~ - , 

_ _  d , , ~  ~ o 1 i - o  1 

-1 
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and by (1.12) 
1 

I x~ 1 - x ) " - ~  
0 f(cx(1--x))(O)=c 1 

I X(O/c) - 1 ( 1  - -  X )  ((1 - O)/c) - 1 d x 

o 

cB +1, c 

c+1 

(4.16) 

where 

(see Abramowitz and Stegun [-1, p. 256]) 

o(1-o) .  [] 

(b) Proof of Theorem 3 

Proof of Theorem 3 (a). The proof is based on the techniques from Sects. 2, 
3. Here we shall explain how to adapt our previous arguments to the new 
situation. The first observation is that we can transform the state space of the 
components of the interacting system to [_1 ,  1] and A=0,  g to g oh where 
h is piecewise linear. Assume now that we have done this transformation, then 
we can rewrite the system (1.14) in the form 

t 

y~(t) = y~(O) e-c(m~ + I e-~(m(~-~)d~ (s) 
0 

j = - N  

0~= Og e-C~m' + i e-C(m(~-S)dO~ 
0 

N 

2 N +  1 i= -u  

This implies that 

(4.17) 

(4.18) 

From (4.18) it is clear that Off is a martingale whose increasing process is 
a functional of (y~(u), i~[--N,N]) and with the very same arguments as in 
Sect. 3, we can now prove (we do not repeat the argument here) that ~((O~)~R+) 
is tight and that once we have proved the analog of Proposition 1, (2.1) (with 
O7 replaced by Off) we will obtain: 

N ~ N  =:~ ~ ((( o;B(,,))s~.+ , ( o/r ) , ,~ o~ ~e (( o 3 ~ n  + , ( Os)~.  +) 

dO.  = ~(Ou) dw(u) 
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�9 (o)  = e~o (g(yo)). 

We can then realize these processes on a common probability space such that 

(4.19) -N ~ O~a~mN~ ~0~ a.s. in H'lE~-norm. 

This implies with (4.17) (everything takes place on [ -  1 1 y, y ] ) tha t  ((Os)~_> o, (O~)s__> o) 
satisfy: 

(4.20) Q = O o  e-CS+ f e-C(~-")dO,,. 
0 

Together with Lemma 2.2 this implies that: (cf. Ethier and Kurtz [-8, p. 290-307]), 

(4.21) (Q)s~R + (is a non-Gaussian Ornstein-Uhlenbeck type process) generated by 

( ~ t  2 -CX ~x+~(x) 

It remains therefore to prove the analog of Proposition 1. First of all to 
get (4.19) above and second to be able to repeat the argument of Sect. 4(a) 
to also verify (1.6), (1.7) for the system in a weak external field. However the 
latter is straightforward and proceeds exactly the same way as in 4(a), since 
the McKean-Vlasov limit of our new system is the same as before. 

The proof of Proposition 1 uses only the statements made in Lemmas 2.1-2.5. 
It therefore suffices to establish these lemmas in our new situation. Since our 
new system and the system in part l(a) both have as McKean-Vlasov limit 
independent diffusions with linear drift term, the only new thing we have to 
do here is to show that the assertion of Lemma 2.3 also holds in the present 
situation. 

That  is, it remains to show that the finite system and the infinite system 
started in the periodic continuation of the initial state of the finite system, remain 
close for time t~ T(N) for some T(N) such that T(N) --+ oe but T(N)=o(N). 

Again since the McKean-Vlasov limit of our new system with the extra 
term --c(N)y~(t)dt is of the same type as for the model with c (N )=0  treated 
earlier it suffices to show, that for suitable L(N), the following systems are 
close for all t < L(N) as N-~ oo (recall A = 0, transformation of the state space 
to [ - -  1/2, 1/2]): 

1 Z ( y f ( t l - y f ( 0 )  dr- y f ( t ) d t + ~ d w , ( t )  (4.22) dye(t)= ~ 1  j=_N 

(4.23) d)~f(t)= 2 N + - I  .= 
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which start  in one and the same initial configuration.  The  compar i son  of these 
systems is easy since we have the representat ion (cf. (4.16)): 

(4.24) 
t 

y~(t) = yN(O) e-C'/N + ~ e-~(t-~)/U d~(s)  
0 

d)Sf (t) = 1 Z ( y ~ ( t ) - y ~ ( t ) ) d t + ~ d w i ( t )  

and therefore for t < L(N): 

(4.25) y~ (t) = )7~ (0) + (y~ (t) -- )5~ (0)) -- (1 -- e - a/N) ~ (0) 

- -  i ( 1 - -  e -~ (* - ~)/N) d j ~  (s) 
0 

= f~(t) + 0 (L(N)2/N)) uniform in t =< L(N) as N ~ ~ .  

Using this in the right side of the second equat ion  in (4.24) (compare  (2.24)-(2.32) 
for details) gives then that  5r  as N--* oo for all t<L(N) if 
L(N) is such that  L(N)= o (NX). This completes the p roo f  of Theorem 3 (a). 

Proof of Theorem 3 (b) In order  to prove Theorem 3(b), it suffices to have 
established the following two facts: 
(i) Suppose that  N k ~  oo as k ~  oo and M(N)T + oe as N ~  o% M(N)>>N. If 

(4.26)  ~(O~t}N~))~ P('), ~ 

then 
v = ~v o dP(O). 

(ii) (4.27) Sk 50(O~t(Nk)+t)~+~((Ot)t>=O) with ~(Oo)=V A. 

The p roo f  of the first assertion was given before in the p roof  of Theorem 3 (a). 
(See in par t icular  the sequel of (4.21).) 

A little bit more  subtle is the second fact. It is clear that  

~(0~) ~ A A, 
s ~ o o  

so the quest ion is whether  the uniformity (in s) in ~ ( O ~ t ~ ( m ) ~ Y ( Q  ) as N ~ oe 
is sufficiently strong to give for a sequence s(N) ~ co as N ~ oo that:  

N A 

In order  to see this required uniformity we shall need some preparat ion.  Define 

(4.28) - N _  N o / -  o~p(N). 
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By definition of O~(N) and by the scaling property of Brownian motion, we 
can rewrite the stochastic differential equation for Off as follows: 

(4.29) d O ~ = c ( A - ~ )  ds-t 
N 

1 ZN[]/2g(y~(sfi(N)) ) dNi(s)]. 
~ / 2 N +  1 i=-  

From this equation we derive below (in order to obtain the required uniformi- 
ty in s in the convergence of O~( m to Q) that it suffices to show 

(4.30) 2 N - + l  n --E~(~ 2 E 1 ~ g(yN(sfl(N))) _-<e(N), VsE[-0, oo) 
i =  - N  

with g ( N ) ~ 0  as N ~ o %  

To see this fact note that with w(s) denoting a version of standard Brownian 
motion and 4~(O) = E T M  (g (Yo)): 

N 

1 E d w,(s), 

so that we can represent O~ in the form 

N 

d Q - ] / 2 N  + I i=-u 

Now use this coupling between O~ and O~. The difference O s - O ~  is then 
represented as in (4.16). We see that O~ and Os on this probability space satisfy 
E (Off-- Os) 2 <= g (X), V s >= O, if (4.30) holds. 

It remains to verify (4.30). Due to Theorem l(a) for every fixed se[0,  oo) 
relation (4.30) holds trivially. The point is to show that the convergence as 
N ~ oo is uniform in s. The key here is again an Lz-argument as in the proof  
of Lemma 2.5, which exploits the fact that v(s )~v  A as s -~ oo. For  that purpose 
we write: 

zi(N, s)=g(y~(sfl(N))), zi(cc, s)=g(yi(s)) 

zi(oo, oo)-- g(yl), s176 = va. 

We realize all these random variables on one big probability space, we call 
this measure P, such that: 

zi(N,S)N~ooZi(OV, S) a.s. 

zi(oo, s) ~ zi(oo, co) a.s. 
s---> oo 
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and the marginal distributions 2e({zi(N, s)}~N) are the prescribed ones. Denote 
by 

1 N 1 N 
D ~ . . . .  ~, z,(N,s), D~"= l i m -  Z yi(s), 

2 N + I ~ = _ N  N~ 2 N + l  
i= - N  

1 N 
D = lim ~, yl. 

N-*o0 2 N + l  i=-N 

Then we have to prove the following, in order to get (4.30): 

(4.31) lim sup (ll DN's-- DM't [I L2(P)) = 0. 
s-*r M>_N 
N --~ ~176 t ~ s  

By writing 

(4.32) IIDN'S--DM'~I]L2W) 

< ]1DN'~-- D~'~ II L=(P) + II O . . . .  D~" [I L=(P) + II O~'t-- OM't }1L~(P) 

< ][ DN'~--D~176 ]IL2(P) '']- II D~176 II L~<P)+ II O~176 ]l Lz(V)+ II D~'t 
-- DM't [[L:(p) 

we prove (4.31) following the scheme in the proof  of Lemma 2.5, i.e. (2.62)-(2.63) 
to treat the first and fourth summands (the second and third are trivial). We 
omit the details and leave it to the reader to adapt the steps to the new situa- 
tion. []  

Proof of Theorem 3 (c) This can be derived from part (b) as follows. Suppose 
that d [ - , . ]  is a metric generating the weak topology of probability measures 
on [0, 1] z. For  N fixed we choose a function s(N) with Ns(N)>=N 2 and s(N) 
large enough so that 

N A , N  N. . . .+  d[Se(Y~(mm),v ]--*0 as oo. 

But since s (N)~  oo as N ~  oo we know by Theorem 3(b) that 

N d[L,a(Y(~(N)N)),~vodAA(dO)] ~ 0  as N ~  ~ .  

Combining the last two relations gives, using the triangle inequality for the 
metric d, the assertion 

d[~vodAA(O),vA'N]~O as N ~ .  []  

(c) Proof of Theorem 4 

Since the arguments here resemble the ones in Sects. 2 and 3 very closely we 
are very short here and indicate only briefly how to bring the techniques used 
to prove Theorem 1 and the result of Theorem 3 into play in this situation. 

In particular it is easy to derive the analogue of Proposition 1 for the time 
scale ill(N), that is, given that the means converge in the time scale ill(N) 
along a subsequence, then the components converge in that time scale to a 
mixture of equilibria of the infinite system, the mixing measure being the limit 
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law of the density process. This is since the term involving the means of 2i(t) 
values plays no role in the time scale fil (N). 

On the other hand dealing with the averages in the time scale fi2(N) it 
suffices to deal in (1.20) with the 2i(t) terms since the terms involving the compo- 
nents x~ themselves are zero. It is straightforward to show that it suffices to 
study the same system as before in Sect. 2 only replacing the diffusion coefficient 
g with vg. We do not repeat these arguments here in detail, see Sect. 2 for 
that purpose, the modifications needed are straightforward. 

In order to prove (1.26) we proceed as in Sect. 3, where the main point 
was to calculate the limit for N ~ Go of the increasing processes 2,'` (O;~(N)). We 
present below the necessary modifications to the argument of Sect. 3. Observe 
first that 

( 1 M(m ) 
= Z , dO?," -2M(?V)+ I 

from which we obtain: 

(4.33) 

(4.34) 

1 M.Lm / 1 _ ) 
-- L 12/2N )-" g(xj'~ dO'Z'h~(m ] /2M(N)+  1 i=-M(N)[ 21/2N ~t~,(1) 

1 M('̀ ' (2 N 2 d (Ot~'~(~))= 2M(N)+  1 ~= ~M(N) j~IN(i) 

From the representation of O 2'N above we see (compare Sect. 3 for details) 
that 

(4.35) s u p [  2,N Oi+s--O,2"S[~o in probability as N ~ o o  
s < T(N) 

if T(N)= o(fl2(N)) where t may depend on N and furthermore 

(4.36) ~ [[ 0 2"N "~ ~ is tight. kl, sfl2(N)lseR + ) 

We are then left to prove that the weak limit point for N ~ oo of the sequence 
(4.36) is unique also in this model and to identify it via the increasing process 
which proves (1.26) and then we have to show that this implies (1.27), (1.28). 
This is done in two steps, starting with the second part. 

First observe that (4.35) means that our original system (1.20) behaves, for 
N ~ ~ and times s f12 (N) + t with times t = o (f12 (N)) ,  like 2 M (N) + 1 independent 
systems with weak external field. In particular in the time scales 1 and fll (N), 
O 2,N is essentially constant and the original system can be approximated by 
considering 2 M(N) + 1 independent blocks (2}(t))j~ t_u,N_ IT, i~ [ -  M(N), M(N)] 
of 

1 N 
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where we substitute for A the value of O 2,N. Applying Theorem 3 to each of 
the 2 M ( N ) + I  systems we see that for i6[ -M(N) ,M(N)]  the process 

1 N - 1  

Xk(S fi2 (N)+ fil (N) t) can be approximated by 2i(fil (N) t) where 2 N  ~ -i 
k=  - N  

(4.38) d 2i(fll (N) t)=c(A-- 2i(fll (N) t)) d t + /2v,(2'( t  fil (N)) d ~i(t), 
N 

2~(0)=(2N) -~ ~ 21(Sfiz(N)) �9 
k=  - N  

This means that, assuming for the moment  that (1.26) holds, the proofs of (1.27) 
and (1.28) now follow along the same lines as the proofs of (1.6) and (1.7). 

In order to verify (1.26) we have to consider the time scale fl2(N). We must 

replace (4.38) with a system for 2 = G ~, 

(4.39) d2(fia(N) t ) -  
1 M (N) 

E /2vg(2i(tfi2(N))d~i(t)" 
~ 2 M ( N )  + 1 i= -M(m 

Using the same line of reasoning as in the proof  of Proposit ion 2 in Sect. 3 
we can continue (4.34) as follows 

1 [ 1 N-, ] 
(4.40) d(O~d~m)~-2M(N)+l E ~ E g(Yc}(sfl2(N))) / i = - M ( N )  j =  - N  

1 M(N) 
Y 

-- 2 M ( N ) +  1 i=-M(m 

2,N ug(O; 2(  )) ds. 

As in Lemma  3.3 this establishes the uniqueness of the weak limit point of 
5 f a O : , ~  ~ tt ~&(N)h~l~+) as N ~ o% as the unique solution of: 

(02) 2 -  i ug(O, 2) du is a martingale. 
0 

This yields (1.26) thus completing the proof  of Theorem 4. 
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