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Summary.  Let (W,H, I~) be an abstract Wiener space and let R(w) be a strongly 
measurable random variable with values in the set o f  isometries on H. Suppose 
that VRh is smooth in the Sobolev sense and that it is a quasi-nilpotent operator 
on H for every h ~ H.  It is shown that ~(R(w)h) is again a Gaussian (0, [hl~4)- 
random variable. Consequently, if (el, i ~ N )  C W* is a complete, orthonormal 
basis of  H,  then v? = ~i(cSR(w)ei)ei defines a measure preserving transforma- 
tion, a "rotation", on W. It is also shown that if for some strongly measurable, 
operator valued (on H )  random variable R, ~5(R(w + k)h) is (0, IhlZ)-Gaussian 
for all k, h E H, then R is an isometry and VRh is quasi-nilpotent for all h E H. 
The relation between the stochastic calculi for these Wiener paths w and v?, 
as well as the conditions of  the invertibility of  the map w---+ ~ are discussed 
and the problem of  the absolute continuity of  the image of  the Wiener measure 
# under Euclidean motion on the Wiener space (i.e. w ---+ v? composed with a 
shift) is studied. 

Mathematics Subject Classification: 60G30, 60H07 

1 Introduction 

Let {Wt, t E [0,1]} be the standard Brownian motion on [0,1]. Consider 
the following random transformation on the Cameron-Martin space R ( w ) :  

fo" h, ds-+ fo" hs sign W~ ds, then R(w) is a.s. an isometry, even a unitary 
transformation, on H.  This transformation induces a transformation w ---+ @ of  
the Wiener space where @ is defined as 

t 

W(#)t  = f s ign  W,(w)dWs(w) ,  
0 
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where W~ is the coordinate or the evaluation map at t c [0, 1]. From the cele- 
brated theorem of  Paul L6vy, W(v?) is again a standard Brownian motion and 
hence, w ~-+ ~ preserves the Wiener measure It. Consequently, F(w) ~-~ F(~) 
defines an isometry of  LP(p) for any p > 1. Note that a ( ~ )  - the a-field 
induced by v? on (70([0, 1]) is strictly smaller than the a(w) the a-field in- 
duced by w on C0([0, 1]), since u? = ( w)7 The purpose o f  this paper is to 
consider, in a general setup, isometrics R(w) on H and the induced transfor- 
mations w ~ % and F(w) -+ F(~). We will refer to this collection of  topics 
as "random rotations". With the exception of  the last section, the results that 
will be presented will, unfortunately, not include the particular case presented 
above where R(w) is induced by sign W, since the analysis will be based on 
the Malliavin calculus and sign W does not possess the necessary smoothness 
needed for the analysis. 

In the next section we consider the abstract Wiener space (W,H,p) and 
show that if R(w) is a random isometry on H, Rh is smooth in the Sobolev sense 
and VRh is a quasi-nilpotent operator on H (a Hilbert-Schmidt operator A on 
H is quasi-nilpotent, if the only eigenvalues of  A are zero, cf. e.g., [1,8] for 
characterizations of  this notion), then the Skorohod integral (~Rh is a Gaussian 
(0, ]hl~)-random variable. Consequently, for e i C V(* ,  where (e i ,  i ~ N) is a 
complete orthonormal basis of  H (identifying the elements o f  W* with their 
injection in H* = H) ,  

= ~(fiR(w)ei) �9 ei 
i 

defines a measure preserving transformation of  W. Note that if R(w) is an 
isometry and VRh is quasi-nilpotent, then R(w + k) has the same properties for 
any k ~ H. In Sect. 3 it is shown that the assumptions that R(w) is an isometry 
and VRh is quasi-nilpotent, then they are "natural" in the sense that, under some 
smoothness conditions, if 6(R(w + k)h) is Gaussian (0, Ihl 2)-distributed for all 
h and k in H,  then R is an isometry and VRh is quasi-nilpotent. The results 
of  Sect. 2 yield two "coupled" abstract Wiener spaces (W,H,p) and (W,H, ]0 .  
Some relations between the stochastic calculi in W and lg are discussed in 
Sect. 4 as well as conditions for the invertibility of  the map from W to W. 
Section 5 raises the following problem. Let y = ~ + u(w) where u is an H-  
valued random variable and ~ is the rotated path, consider the problem of  the 
absolute continuity of  the measure induced by y (on the underlying Banach 
space) with respect to the measure II and the corresponding Radon-Nikodym 
derivative under the assumption that the a-field induced by ~ is strictly smaller 
than the one induced by w. In particular let 

t t 

Yl = f s ign  WsdW~, + fa , (w)ds  
0 0 

where as depends on W and not on I~. And the problem is to find a condition 
for the absolute continuity of  the measure induced by y on C0[0, 1] with respect 
to the Wiener measure on the same space. This seems to be a delicate problem 
and a solution is presented, in a special case. 

In the remaining part of  this section we will summarize the notation of  the 
stochastic calculus o f  variations and present some results for later reference. 
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Let (W,H,I~) be an abstract Wiener space, i.e., H is the Cameron-Martin 
space i.e., a separable Hilbert space which is densely and continuously injected 
into Banach space W. We assume that H = H* (its continuous dual), hence 
W* is also densely and continuously injected into H.  # denotes the standard 
Gaussian measure on W. 

A mapping q0 from W into some separable Hilbert space X will be called 
a cylindrical function if it is of  the form qo(w)= f ({v l ,w)  . . . . .  (vn, w)) where 
f C C~~ ") vi C W* for i = 1 . . . .  ,n. 

For such a qo, we define Vcp as 

J l  

Vq)(w) = ~c?gf((v~,w} .. . .  , Q)n,W) )~i, 
i=1 

where vi is the image of  vi under the injection W* ~ H. 
It follows that V is a closable operator on  LP(tl; H'), p > 1 and we will 

denote its closure with the same notation. The powers V k o f  V are defined 
by iteration. For p > 1, k > 1, we denote by Dp, k(H" ) the completion of  X-  
valued cylindrical functions with respect to the norm: 

k 

i=0 

Let us denote by 6 the formal adjoint of  V with respect to the Wiener measure 
/~ and define 5# as cS �9 V. The well-known result of  P. A. Meyer assures that 
the norm defined above is equivalent to 

IIIqolllp, k I I ( I+  S)k/2~011L~<,,,~), 

where 5 ~ is the Ornstein-Uhlenbeck operator or the number operator. Note that, 
due to its self adjointness, its non-integer powers are well-defined. Moreover we 
can also define Dp, k(,~") for negative k using the second norm and we denote 
by l D ( f ) =  Np>INkENIDp, k(H ") and, I D ' ( H ' ) =  Up>lUkE~IOp, k ( f ) .  In case 
H ' =  IR we write simply lDp, k,ID, lW instead of  IDp, k(IR),ID(IR),IW(IR). 

Let us recall that V : lDp, k(H') ---+ IDp, k_l(H" | H)  and 6 : IDp, k(H" | H)  
lDp, k_l(H') are continuous linear operators for any p > 1, k c 7/. 

In the sequel we will derive H-valued random variables to obtain operator- 
valued random variables, and then apply then to the vectors of  H.  Since in 
general these operators will not be self-adjoint, we have to be careful about the 
order of  these operations. Henceforth the following convention will be used: if 

is an H-valued random variable (or Wiener functional) then V~ will be a 
Hilbert-Schmidt operator and for h and k, we define 

d ~(~(w+th),k)b=o (V~h,k) 

= (Vh~,k)  

= ( V ~ , h  @ k ) 2 ,  
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where ( . ,  �9 )2 denotes the inner product in the space of  Hilbert-Schmidt 
operators. We conclude this section with the following lemma which will be 
needed in later sections. 

Lemma 1.1 Let ~ E IDp,2(H), q E ]Dq,2(H) with p - I  + q - I  < 1. Then we 
have 

~(Vh~)lh=,7 = 6Vr + trace V~ �9 V~/ (1.1) 

and 
V , ( ~  = (q, ~,)H + 6V,~  + trace (V~ �9 Vt / ) .  (1.2) 

Proof  For cylindrical ~, q in ID(H), we have 

oo V 
3(Vh~)lh=,7 = ~ ( (  ,lr -- V,TV<(r 

i--1 

where (ei; i E N )  is a complete, orthonormal basis in H.  Since 

~V,1V~i(~,ei  ) = ~V<(V,7~,e~ ) - trace (V~ �9 Vt / ) ,  
i i 

we have (1.1). The general case of  (1.1) follows by a limiting procedure and 
(1.2) follows since 

V,ja~ = a(Vh~)~=,~ + (~, ~/)~. []  

2 Random rotations 

Theorem 2.1 Let R(w) be a strongly measurable random variable on W with 
values in the space o f  bounded linear operators' on H, Assume that R is 
a.s. an isometry on H (IR(w)h[H]hIH a.s. for all h ~ H). Further assume that 
for  some p > I and for all h E H, Rh C IDp,2(H) and VRh E IDp, I(H |  

n ltn is a quasi-nilpotent operator on H (i.e. l im, ,+~  [I(VRh) HL(H,H) = 0 H.S. or ,  

equivalently, trace (VRh)" = 0 a.s., for  all n > 2, c f  [I, 8]). I f  moreover, 
either 

(a) ( l  + iVRh) -1 �9 Rh is in Lq(t~,H),q > l for  any h e H  (here q may 
depend on h E H)  or, 

(b) Rh C D ( H ) f o r  any h ~ It. 

Then 

E[exp i6(Rh)] = exp - ~ [h]~. (2.1) 
Z 

A. Proof o f  Theorem 2.1 under assumption (a): For this purpose we state and 
prove the following three lemmas. 

Lemma 2.1 Let R be an isometry valued (on H)  strongly measurable random 
variable, on ( W , S , # )  where .Y: is' the Borel a-field o f  W. Suppose that Rh 
Dp,~(H) and (I + iVRh) is a.s. invertible for every h ~ H. Then 

(Rh, (I + iVRh) 'Rh)~ = thl~. 
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Proof  of  Lemma. Since 0 = V~,(Rh, Rh)H = 2(Rh, VuRh) setting u = (1 + 
iVRh)-JRh,  we obtain (cf. the conventions preceding Lemma 1.1) 

(Rh,(I + iVRh)-IRh)H = (Rh,(I + iVRh) IRh + iV(~+iVRh)-~RhRh)H 

-- (Rh,(l + iVRh)(I  + iVRh)-IRh)H = Ihl 2 

[] 

Lemma 2.2 Let R be a strongly measurable isometry, Rh ~ IDp,2(H). Fur- 
ther assume that Jbr every h r H, VRh is a.s. quasi-nilpotent and ( I +  
iVRh) -I Rh ~ LP(#,H) Jbr some p > 1 which may depend on h. Then, a.s. 

trace (VRh �9 V ( ( I  + iVRh) - lRh) )  = O. 

Proof  of  Lemma. The invertibility of  (I + iVRh) follows from the assumption 
that VRh is quasi-nilpotent. Note that 

trace (VRh �9 (I + iVRh) -I �9 VRh) = - / t r a c e  (VRh �9 (I - (I + iVRh) -I )) ,  

where the last equality follows from the fact that 2 H trace(VRh �9 ( I -  ( I +  
2VRh) - l ) )  is analytic, hence we can calculate it with Taylor 's  series, whose 
coefficients are trace (VRh �9 (VRh)k),  k > 1, and they are zero by the quasi- 
nilpotence hypothesis (cf. Theorem X1.6.25 of  [1]). It remains then to prove 
that 

trace (VRh �9 (I + iVRh) IV2Rh(I + iVRh) IRh) = O. 

Since the VRh is quasi-nilpotent, Carleman-Fredholm determinant det2(I + 
2VRh) = 1 for any 2 r 112. By taking its Sobolev derivative in the direction of  
the vector field u = (I + iVRh) IRh, we have 

trace [((I + 2VRh) -1 - I)  �9 V2Rh(I + iVRh)-IRh] = O. 

This completes the proof  since 

2 V R h .  ( I + 2 V R h )  L = I - ( I + 2 V R h )  - 1 .  [] 

Lemma  3.3 Let R satisfy the condition o f  Lemma 2.2, then 

6[e i~Rh(I + iVRh) -I Rh] = e-i6Rh(ilh[ 2 + 6Rh). (2.2) 

Proof  o f  Lemma. Applying Lemmas 2.1 and 2.2 yield, 

6[e -i~ Rh(I + iVRh)-IRh] 

e-i6Rh{6[(I + iVRh) -I  Rh] + i(V~Rh, (I + iVRh) 1Rh)H} 

= e i~Rh{i~[(I + iVRh) -I Rh] + i(Rh, (I + iVRh) I Rh)H 

Jr i6(~7(l+iV Rh) IRhRh)} " 
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Hence, by Lemma 2.1, 

6[e-i~eh(l + iVRh)- 'Rh]  e i~Rh{ithl~ + 6[(1 + iVRh)(1  + iVRh)  -t  �9 Rh]}, 

which completes the proof of  the lemma. [] 

Turning to the proof of  Theorem 2.1 under (a): 

Taking expectations on both sides of  Eq. (2.2) yields 

E[e -i~ af~6Rh] = - i lhl~ E[e -i6 Rh] 

replacing h by th yields 

~E[ed -it6 eh] _tlhl2H E[e-i,~ Rh] 

and (2.1) follows. [] 

B. Prooj 'of  Theorem 2.1 under assumption (b): We prepare, first, the following 
two lemmas. 

Lemma 2.4 Assume that for all h ~ H, Rh E IDp, I(H) and VRh is a.s. quasi- 
nilpotent. Then, for  any n and hl , . . . ,hn C H, 

trace (V  Rhl �9 ~7 Rh2. . .  V Rh~,) = O. 

Proof  o f  Lemma. For any x~, -- -x~ ~ IR, 

trace {(VR(xlhl  + - . - +  x,,h,)) ~ } = ~ M! ;, ,,, 
il+i2+...+in=M il! in! x " " "xn 

trace {(VRhl )il . . .  (VRh,,)i'~ } 

= 0 .  

Hence, the coefficients of  this polynomial must be null and the result follows. 

Lemma 2.5 Let ~ c Dp.2(H), q E Dq,2(H), o~ ~ Dr,2(H) with p- I  + q- l  + 
r -1 < 1. Then we have 

trace (V~ �9 VV,7:r - t r ace  (V{ �9 VJl �9 V~) + trace (V~ �9 V,1V~) 

=trace (V~ �9 Vr 7 �9 V~) + V,~trace (Vd �9 Vcr 

- trace (V,TV{ �9 Vcr 

Proof It is sufficient to prove when {, r/ and ~ are in D(H).  Moreover, the 
second equality follows from the first one and from the fact that 

V, 7 trace (V~ �9 V~)  - trace (V~V~ �9 V~) + trace (V~ �9 V , V ~ ) .  

For the first one, let (el) be a complete, orthonormal basis o f  H. Denote Ve, 
by Vi and (~,ei) by ~j. 
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Then 

oo 

trace (V{ �9 VV,Tc~ ) = ~ Vi~j �9 Vj(V,~cQi 
i , j = l  

= ~ V i ~ j  " V j ( / ~ k V / , , ~ i )  
i ,j ,k 

= ~ V~j (V/~ IkVk~  + ~/kV~Vj~) 
i , / ,  k 

trace (V~ �9 Vr/ �9 V~)  + ~ V i ~ i  �9 V,/Vj~i 
t, J 

= trace (V~ - Vt/ �9 V~)  + trace (V~ �9 V,TVct ) . [] 

To prove the theorem under the hypothesis that Rh ~ ID(H) and that V R h  is 
a.s. quasi-nilpotent, for any h ~ H,  we will show that E[(gRh)"] = E[(6h)"] 
for any n d N;  we have, evidently E[g~Rh] = 0, moreover 

E [ ( 6 R h f ]  = Ihl 2 + E[trace ( V R h  �9 VRh) ]  

- Ih l ' ,  

since V R h  is quasi-nilpotent. 

For n = 3, we have 

E[(~ Rh) 3] = E{(~ Rh �9 (c~Rh) 2] 

E{(Rh, V(6 Rh)')] 
2E[(Rh, Vi} Rh)H(~ Rh] 

2E[]h12 6 Rh 4- 6 V  Rh Rh �9 6 Rh ] 

2E[6VRh Rh �9 6 Rh] 

2E[(VRh Rh, Rh ) ] 4- 2E[trace (VVRh Rh �9 V Rh ) ] 

2E[trace (VVRh Rh . V Rh)] ,  (2.3) 

since (URh Rh, Rh) = 1 yVRhlh[ = 0. VR/, (Rh, Rh) J 2 
From Lemma 2.5, we have 

trace (UURhRh .  U Rh) = trace ( V  Rh .  U Rh .  U Rh) + trace (U Rh .  URhU Rh) 

= trace ( U R h  �9 VRhURh)  

1 
= ~VRh trace (V Rh �9 V Rh) 

- 0  

by the quasi-nilpotence of  V R h  and by the fact that R preserves the norm 
in the Cameron Martin space H.  To complete the proof  we will proceed by 
induction. Note first that 

E [ ( 6 e h )  2] = Ihl 2 E[6VRhRh] = 0 

E[((~Rh) 3] = 0 ,  E[ORh �9 6VRhRh] O. 
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Suppose  that E[(6 Rh)"] = E[(ah)"]  and El(6 Rh)"-2g)VRh Rh] = O. 

We will show that the same relations hold for n + 1: 

E[(6 Rh) n+l ] - E{6 Rh(3 Rh)n] 

= nE[(Rh,;5 | V R h  + Rh)(g)Rh) "- t  ] 

_ nE[[h]2(3Rh) n-l ] + nE[ fVRhRh(bRh)  "-I  ] 

nlh[ 2 E[(c~h) n- l  ] + nE[bVRh Rh �9 (6Rh)  ' - I  ] 

= E[(3h) n+l] + n E [ f V R h R h ( f R h ) "  I]. 

Let us define z,~ inductively as 

zl = Rh,  r~+j = V : , , R h ,  n 6 N .  

We have 

E[bVRhRh(6Rh)  n-I ] E[6Vq  Rh �9 (6Rh)  "-~ ] 

- ( n -  1)E[(Vq Rh, R h + 3 |  'z 2] 

- (n - I )E [ (Vq  Rh, ~ @ VRh)( i~Rh)  n-2] 

= (n - I )E [3V:  2 Rh �9 (6Rh)n-2] .  

Since we have Vq  Rh = z2, applying Lemma 1.1 yields. 

(z2, i} | V R h )  = 627:2 Rh + trace ( V R h  �9 V~2) 

and from Lemma 2.5, 

trace ( V R h .  V r 2 ) =  trace ( V R h -  V V q  Rh) 

= trace (V  Rh �9 VzI �9 Rh) + trace (V  Rh �9 V:,  V Rh) 

= t r a c e ( V R h .  V R h .  V R h )  

z O .  

This explains the last line of  the above inequality. 

Furthermore, continuing this way we also have 

(V:,, Rh, ~ @ V Rh ) = 6V~,,+~ Rh 

and 

E[6VRhRh �9 ( 6 R h )  '~ 1] = ( n -  1 )E[3Vr2Rh(3Rh)"  2] 
--  (n - 1 )(n - 2 ) E [ 6 V ~  3 Rh �9 (c~Rh)" 3] 

- -  (n - 1 ) !E[6V~.  Rh] = O, 

hence,  the induction hypothes is  is satisfied. []  

The same arguments  as those  used to prove part A o f  Theorem 2.1 also yie ld 
the fo l lowing  results which  are o f  independent interest. The reader is referred 
to [5, 6] for a different approach. 
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Proposition 2.1 Let ~ E IDp, I(H),  p > 1 and set 

1 
A = exp - a~ -  141 , �9 

Suppose that ~7~ is quasi-nilpotent and that 
�9 E e x p  64 < oc, 
�9 A �9 ( I +  V4) -1~  E lDq, l ( H ) f o r  some q > 1, 
�9 (I  + V ~ ) - I ~  E lD,.,l(H) for some r > 1. 

Then EA = 1. 

Proof Using the same arguments as in the proof of  part A of  Theorem 2.1 
yields 

6[A(I + V4)  14] = (64 + ]~.t2)A. 

Replace 4 by t �9 {, t C IR and denote by At the corresponding exponential. 
Taking expectations yields 

d 
dtEA,  = E { ( - 6 ~  - tl4lZ)A,}, 

hence d E A j d t  = 0 and EAt EAo = 1. [] 

Proposition 2.2 Assume that for all h: Rh E I D p , 2 ( H ) f o r  some p > 1, VRh 
is quasi-nilpotent and VRh C L ~ ( g , H  | H), where H | H denotes the space 
of  Hilber~Schmidt operators on H. Set 

o n 

I p(R) = {4 C IDp, I ( H )  " V4  = y]cq(w)VRhi, ~i E L~176 h, C H ,  n C N} 
1 

o 

and by Ip(R) the closure of  Ip(R) in LP(#,H). Then, for any q E Ip(R) we 
have 

E[la,lIq 5- ~pE[I,71'], 
where Cp is independent of  t 1. 

Proof Let us note first that, by Lemma 2.4, if q ~ lp(R) has a (Sobolev) 
derivative Vr/ in some LP-space, then the derivative is almost surely a quasi- 

o 

nilpotent operator. By Theorem 3.1 of  [6], if 4 E Ip(R) then 

E expt6~ ?-141 -- 1 

for small t. Differentiating p times with respect to t at t = 0, for p even, yields 

ElgS~h p < Cptl ~ qlLpv,,H~" 
o 

Consequently, if t I C Ip(R), let 4,, E Ip(R) converge to /7 in LP(I~,H), then &/ 
is in L p, 6~n --+ &l in L p. [] 

We conclude this section with an example of  an isometry R(w) satisfying the 
assumptions of  Theorem 2.1. 
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Example. Let (ei) ~ W* be a complete orthonormal base for H. Set R(w) as 

R(w)el = cos ~(6e3(w) )el - sin ~(6e3(w) )e2 , 

R( w )e2 = sin ~( c~e3 ( w ) )e l + cos ~( 6e3 ( w ) )e2 , 

R(w)ek = ek , k >= 3, 

where c~ is any nice function on Ill. Then R(w) satisfies the hypothesis of  
Theorem 2.1. 

3 Quas i - invar iance  and a (partial)  converse to Theorem 2.1 

In general the shift w ~ w + R(w)h, h ~ H, is not invertible, however we have 
a Girsanov-like result: 

Proposi t ion 3.1 Under the assumptions of  Theorem 2.1, Jot any F E Cb(W), 
h E H, we have 

E [F(w + R(w)h)exp  6Rh ~]hl 2] E[F] . 

Proof From the density of  the cylindrical functions in any LP(tl) (p ~ 1 )  and 
Fourier transform, it is sufficient to prove the identity 

/ 2 E[e6k(w+Rh)~o(_6Rh) ] = e l, 21klH 

for any k E H,  where 6~(-6Rh) denotes e x p ( - 6 R h  - I 2 ~lhl~) Since 

6~(w + Rh ) = 6k(w) + (Rh(w), ~ ) ,  

this amounts to prove that E[exp 6(Rh + k) - �89 ]Rh + k] 2] E[,d~( 6(Rh + k))] 
1. We have, denoting by zk the map zk(w) - w + k, 

E[g(6(Rh + k))] = E[g(6Rh) o T~,e -(Rh'k)~ ] 

= E [ e x p { c ~ ( R h o r k ) + ( R h o z k , k ) - ~ l h [  2 (Rh, k ) o z k } ]  

= E [exp ' (R o z k h ) -  ~lhl2] = l . 

where the last equality follows from Theorem 2.1, since (R o T/,-)h satisfies the 
same hypothesis of  quasi-nilpotence as Rh. [] 

The following result is a partial converse to Theorem 2.1. 

Proposit ion 3.2 Suppose that R:  W ~-+ S ( H , H )  be a strongly measurable 
random variable such that Rh C IDp, I(H),  for  any h E H and Jot some p > 
1. Assume moreover that VRh ~ L~176 | H)  ./or any in h C H. Then the 

jollowin9 are equivalent: 
(i) a.s. R(w) is an isometry and VRh is quasi-nilpotent Jor any h C H. 
(ii) E e x p 6 R ( w + k ) h  exP�89  k E H .  
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Proof. (i) ~ (ii) follows from the Theorem 2.1, since we have 

I](I + VRh)-' II --< e '§162 

and VRh ~L~(kt, H|  To show (ii) ~ (i), note that the hypothesis of  
(ii) is equivalent to the Girsanov theorem. In fact, for k, h E H ,  

E [e('~r)(w+Rh)exp (-i3Rh -1]h,2) ] 

= E [exp6k +(k, Rh ) -  3Rh- ~]h[ 2] 

= E[e_6Rh(w+ k)_ 1 ih[z+(k, R(w+k)h)]e (I/2)1~ ]2 

= ell/2)lkJZE[ e 6R(w+k)h �89 2] 

= e(l/2)lkl 2 . 

On the other hand, for small [h[, we have (cf, [6]), 

[ ' ]  E F(w + Rh) �9 d e t 2 ( / +  VRh)lexp - 6Rh - ~lRhl 2 = E[F], 

for any F E C~(W), since the map w~-+w+R(w)h is invertible when 
IIVRhll < 1. 
Comparing this expression with the one obtained above, i.e., with 

E [F(w + Rh)exp 6Rh - ~lh] 2] = E [ F ] ,  

we find immediately that 

]det2(l + VRh)[e (l/2)]Rh]2 = e -(1/2)1h12 a.s. (3.1) 

For small Ih], d e t 2 ( / +  VRh) has constant sign almost surely since rlVRhll 
L~176 Hence we can suppose that it is positive. Moreover, replacing h by 
th, t ~ [ -e ,e ] ,  we have 

d e t 2 ( / +  tVRh)e -(t2/a)lRh12 = e (t2/2)]h]2 . 

For small t, we have (cf., [1]) 

c~ t/ . 
det2(I + tVRh) = e x p , (  - l )/+l _trace((VRh)2 ) ,  

j=2 J 

By comparison, we should have trace ((VRh)i)=O for any j > 2. 
Consequently, (VRh) 2 is a quasi-nilpotent operator. On the other hand, if  2 
is an eigenvalue of  VRh then 2 2 is an eigenvalue of (VRh) 2. Hence 2 0, 
i.e. VRh is also quasi-nilpotent. Consequently d e t 2 ( / +  tVRh)= 1 and hence 
IRhl = Ihl. [ ]  
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4 Some stochastic calculus associated with rotations 

Let R(w) satisfy the assumptions of Theorem 2.1, and for reasons of simplicity 
we further assume that Rh E ]D(H) for all h C H. For any cylindrical functional 
F on W of the form 

F(w)  : f (c~hl , . . . ,  6hn),  

where hi C H, define 
RF = f (3Rhj  . . . .  ,6Rh,,) .  

Then/?F extends to a linear isometry o n  LP(/~) for any p > 1. 

Remark. Note that since R is an isometry, it always has a left inverse, in fact 
k*k = 1, where R* is the formal adjoint of R. 

Let (el) C W* be a complete, orthonormal basis for H. Since, for id:j,  c~Rei 
and grey are independent, the series 

o o  

~ ( 6 R e i )  �9 ei 
i : I  

converges almost surely in the strong topology of W (cf. [2]). We will denote 
the resulting path by ,Rw, i.e., 

oo  

Rw ~(ORei  )(w)ei . 
i = l  

If v C W*, then we have {v, R w ) =  3R(j(v)),  where j ( v )  is the image of v 
in H under the injection W* ~ H. Consequently, /?w, as defined above, is 
independent of the particular choice of the basis (el) and 

k F ( w )  = F ( R w ) ,  

for F r Ll(/~). 

For F as above, we define the derivation operator D on the range of /?  by 

tl 

DRF = ~ O i f ( d R h l , . . . ,  6Rh~,)hi 
i = 1  

= k V F .  

Consequently D extends continuously from/?IDp4 to  RIDp, k_I(H), p > 1, k 

N and since k is injective D F ( ~ )  kVk*F(~) .  

Let D* denote the dual to D on the range of R, then for ~p ~ ID(H) 

E[RF �9 D*k~p] = E[(OkF, k~o)] 

= E[ (kVF ,  k~p)] 

E[(VF, ~p)] 

= E [ ~ 0 ]  

= E [ k ~  k&0] 
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and consequently 
D*k~ = R&p 

and D* extends on t~]Dp, k(H ) to k]Dp,~_l, p > 1, k E N and for any q(~)  r 

R]D p, k(H) 

D*~(~) = kak*~( r  

In order to clarify the operations D and D*, note that the map R : W ---+ W con- 
structed above preserves the Wiener measure #. Let ~ denote the Borel a-field 

~-1 
on W and ~ and the subsigma field R (Y) .  In general, ~ is strictly smaller 
than Y and we have two different measure spaces ( W , ~ , # )  and ( W , ~ , # )  

where ~ = R - I ( Y ) .  Denote by V the Sobolev derivative on ( W , ~ , H ,  #) 
and setting b = Rw: 

d 2h) %~o(b) = ~ ( b  + 
2=0 

d k 
~ - ~ o ( w + 2 h )  ~,=0 

- ~o k~(w + ;oh) 
a~ Iz:0 

= kx7h~(w) 

= Dh~o(kw). 

Similarly we can verify that b = ( V ) * =  D*. Consequently, as long as we 
restrict ourselves to ~-measurable random variables, the theory remains un- 
changed (just the notations are different). 

As mentioned earlier, since /~ is an isometry, we have always /?*R = Id, 
however/~R* is in general different from the identity map. 

Proposition 4.1 Let  ~ be the a-field k - l ( ~ )  = a{3Rh; h C H}.  We have 

Jor any q~ ~ LI(#). 

Proof  It is sufficient to prove the proposition for bounded ~p. 

Let F(w)  f ( 6h j  . . . . .  6h,), f E C~(IR") ,  hi C H. 
We have 

E[kk*~o �9 RF] = E[k*~o �9 F] 

= E[~ �9 kY]  

= E[Elcp]~] , R e ] .  

Since, by definition /~F is N-measurable and the set of RF, when F runs in 
the set of cylindrical random variables, is dense in LP(# ,N) ,  for any p => 1, 

we have E[~pl~] = RR̂ ~*~o. [] 

Corollary 4.1/~ is invertible on LP(#), p => 1, i.e., there exists some ~-1 such 

that Rt? -1 = ~ - 1 ~  Id, i f  and only i f  ~ = Y upto negliqible sets. Moreover, 



422 A.S. Ustiinel, M. Zakai 

is almost surely invertible on W if and only if, R is' invertible and then 

(R)*F(w) - F ( k - J w )  = R - I F ( w )  almost surely. Note, however, that in gen- 
eral even i f  the isometry R is unitary, i.e., on to H, this does not imply that 

Proposit ion 4.2 Suppose that R is' also unitary, then ~ = ~ (up to negligible 
sets) i f  and only i f  Rh and VRh are N-measurable for any h C H. 

Proof The necessity is evident. To prove the sufficiency, it is enough to show 
that, for any h E W*, 6h is N-measurable under the hypothesis that Rh and 
VRh are ~-measurable .  

We have 
c~h = 6RR* h 

z (~ ~ e i  e i 

L i=l / 

where (ei, i ~ N )  C W* is a complete orthonormal basis for H.  We have then 

o o  

6h = ~ [(h, Rei)6Rei - Vaei (h, Rei)] . 
i = 1  

i~Rei is #-measurable  by definition, Rei and VRei(h, Rei) are N-measurable by 
hypothesis and the sum converges in probability. [] 

Let us denote by Ap, k(Y'), p > 1, k E 77, the Sobolev spaces of  ~'-valued, 
~-measurable  random variables, where ,Y' is any separable Hilbert space. Let 
us recall that Ap, k(~df) is defined as the isometric image of  IDp, k(Y') under R, 
or, which is equivalent, as the completion of  {f(D*hl  . . . . .  D'h, ,) ;  hi C H, f 
C ~ ( I R  n, f ) ,  n E N}  under the norm 

II~llp, k --  I1(I + m)k/2~llL~<#,.~), 
where A is defined as k o 5~ D* o D o/~ = A o/~. 

Lemma  4.1 E[ �9 IN] is a bounded map from IDp,k into Ap, k, for any p > 1. 

Proof Suppose that q) E IDp,~. We have E[lqo]~] =/~/~*(0. Hence it is sufficient 

to prove that R*cp is in IDp,k. Therefore it is sufficient to show that (I  + S )  k/2 o 

R*qo is in LP(/x). However, we have (I  + S )  k/2 oR* = (/~ o (I + 5~)k/2) * and 
o (I + y,)k/2 is continuous from lD,-i into A~,I-~ for any r > 1, l C 7/, hence 

by duality, ( I  + S )  k/2 o/?* is continuous from A~,I into ID,-,/-k. This shows, in 

particular, that (I  + L-W) k/2 o/~*qo is LP(#). [] 

In order to be able to consider expressions of  the form VRF(w)  and for 
other applications we have to consider an additional operation as follows. 

Let R be a random rotation as in the preceding section. For the sake of  
simplicity, we shall suppose, unless the contrary is explicitly mentioned, that 
Rh C ID(H) for any h E H.  Since the Sobolev derivative V commutes with 
the deterministic shifts, for any k E H and t C IR, w ~ R(w + tk) defines an- 
other rotation such that a.s., VR(w + tk)h is quasi-nilpotent for any h ~ H.  We 
denote by /~k the isometry (on LP(#), p > 1) corresponding to it. 
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I f F  = f ( & h l  . . . . .  6h . ) ,  hi E H J" c C ~ ( I R ) ,  define 

d ~  
X k F  = ~ t R t k F  t=0 " 

If  G is another cylindrical function as F,  from Theorem 2.1, we have 

E l F .  G] = E[Rtk(F . G)] 

= E [ k t k ( F )  �9 k ,k (G) ] ,  

hence 

423 

E [ X k F  �9 RG] + EERF �9 XkG] = O, 

and, in particular, setting G = 1 yields 

EX~ F = O . 

Returning to the definition of  Xk, note that 

Xk&h = &VkRh 

~- V k 6 R h  (Rh, k )  

and for F - f ( & h l  . . . . .  f h , )  as above 

X k F  = f i c t i f ( & R h l  . . . . .  &Rhn)&VkRhi 
i = 1  

= V ~ k F  - k V ~ F  

= V k R F  - DR*kRF , 

consequently Xk is closable. 

Proposit ion 4.3 I f  F ~ ID and ~ E ID(H)  are cyl indrical  Wiener  func t ionals ,  
then 

(XF, ~) = trace((6  | VR) �9 ( k V F  | ~) ) . 

P r o o f  We have by definition, 

o o  

(XF, ~) = ~ X ~ j F ( ~ ,  eJ), 
j - I  

where (ej, j C N )  is a complete, orthonormal basis of  H.  On the other hand, 
the following identity holds: 

�9 o ~  F . 
Xej = ~ V .  i o kfi(V.jRe~) 

i - - I  

Inserting the second one in the first gives the required result. [] 
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Let X* denote the formal adjoint to X defined for cylindrical functions. For 
cylindrical F ~ ID and r /~  ID(H), we have 

E[F �9 X'r/]  = E[(XF, q)] 

= E [ (VRF  - RRVF,  t/)] 

= E[F �9 /?*6r/] - E [ F  �9 3R*R*r/], 

hence 
X*~ = k* 6~ - 3k*R*q. 

Proposition 4.4 For any p > 1 and k ~ 2~, X (respectively X * )  has a con- 
tinuous extension f rom IDp,k into ]Dp, k_l(H ) (respectively f i 'om ]Dp,k(H ) to 
ID p, k_ l ) and 

j o r  any q ~ D(H) .  

Proof  Suppose first that r/ is an H-valued, cylindrical random variable. If 
is a real-valued cylindrical random variable, we have 

= {t1,X~b + R/?V$/ 

= (P~*,1,k~)  + (E[R*,71M],Dktb) 

= ( k x * q , k $ )  + (D*E[R*t l I~] ,k~) .  

Therefore, for cylindrical r/ we have the identity 

E[3r/]~] = / ~ * r / +  D*E[R* tlI~ ] . 

Suppose now that (t/k) is a sequence of  cylindrical, H-valued random variable, 
converging to r/ in Dp,;(H),  p > 1, k E 77. From Lemma 4.1, E[btlk[M ] -+ 

E[br/[~] and D*E[R*~I/,I~] ~ D*E[R%I[M] in Ap, k-1. Consequently, (/~*~/k; 
k ~ N )  is convergent in Ap, k I. This implies that it is closed and R oX* has a 
continuous extension from ]Dp, k(H ) into Ap, k - l ,  for any p > 1, k ~ ~,  hence 
X* has a continuous extension from ~p,i~(H) into IDp, k-i  and, by duality X 
has a continuous extension from IDpd ~ into IDp, k - l ( H ) .  [] 

Corollary 4.2 For any h E H,  we have 

E[~hl.~ ] = D*E{R*hI~ ] . 

in particular, if" Rh is independent o f  ~ ,  then 

E[bh[~] = D*(E[R*]h).  

In case E[R] = O, the projection oJ" the f irst  chaos in L2(/2, ~ )  is zero. 

Proo f  We have E[R*] = E[R]*. [] 
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5 Transformations of measure induced by Euclidean motions 
of the Wiener path 

Let R be as in Theorem 2.1 and ~ the rotated path. Consider the Euclidean 
motion (rotation plus shift): 

v(w) = ~ + U ( w ) ,  

where U is an H-valued random variable. Let #'~ denote the measure induced 
by v on the Banach space W. The question arises regarding conditions for the 
absolute continuity of y with respect to /~ and the related Radon-Nikodym 
derivative. This problem for N 4= i f ,  is not easy, we consider here the following 
case. Let (Wt; t E [0, 1]) be the standard d-dimensional Brownian motion and 
let ~ t  denote the a-field generated by {Wo;O E [0,t]}. Let {y t ; t  E [0, 1]} be 
a rotated and adapted d-dimensional Brownian motion i.e., we assume that 
{ (Yt ,~) ;  t E [0, 1]} is a Wiener process (and therefore R plays no role in the 
assumptions). Set: 

t 
vt = yt + f u , ( w ) d s ,  (5.1) 

0 

where the process (u~; s C [0, 1]) takes values in IR d, has measurable sample 
paths and is adapted to the filtration (-Yt; t E [0, 1]). 

As the example y~. = fo sign wo dwo shows it is possible that the a- 
field generated by {y~, 0 < s _< t} is strictly smaller than the one generated 
by { His, 0 < s _< t} and then the problem of the absolute continuity of the 
measure on function space induced by v. With respect to the measure induced 
by w. (or y.) is not covered by previously known results. 

Proposition 5.1 Let  Wt, Yt and u~ be as defined above. Assume that E f~ [u~lds 
< oo. Let  ~7~ denote the a-field induced by {vo, 0 <- 0 < t}, set 

= e { u ,  

Note that since ~ is a measurable Junction on Co([O, 1]) we can also consider 
~(w). 

(a) S << # i f  and only i f  )o' I~(v)[ 2ds < oc a.s. 
(b) Assuming that ~ is ds-square integrable on the v-trajectories, i.e., 

f2 IFt,(v)12ds < oc a.s., set 
1 

G = {w "flt~ts(W)l 2 ds < oo} ,  
0 

then 
I 1 

d S  1 

0, 17 E G C 

and S ~ I~ i f  and only i f  I~(G) = 1. 
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Proof Rewrite (5.1) as 

t t 

v, - y,  + f ( u ,  - ~ )  ds  + J ~  ds  
0 0 

t 

= a, + f ~  ds ,  
0 

where we have denoted Yt + fo(U~.- z~)ds by at. Note that since at is ~ '  
adapted, so is c~t. Next we are going to show that at is the innovation process 
for vt i.e., at is Wiener on the Y [  filtration (this argument goes back to Kailath, 
Frost, Shiryayev and Kallianpur, cf. [3] and the references therein). To show 
that at is Wiener on ~-[, note that 

t+ r  

E ( a , + ~  - ~ , l g ? )  - -  E(y,+~ - y , [g / ' )  + f E(us - ~s l .~;)ds  
t 

= E{E(yt+r y, l Y , ) l * [ }  + 0 

= 0 .  

Consequently, at is an .7[  martingale whose increasing process is the same one 
as that of  y, hence by LSvy's  Theorem c~ is a Brownian motion. The problem 
reduces therefore to 

t 

v~ = ~, + f~s ds ,  
0 

where both at and ils are ~-~ adapted, and the results of  the proposition follow 
now by standard arguments (cf. e.g., Theorem 2 of  [4]). [] 

We shall now give a version of  this result in the setting of  abstract Wiener 
space without any requirement of  non-anticipation and some consequences 
of  it. 

Lemma  5.1 Let u ~ Ip(R) ( p  > 1), where R is a random isometry of  H 
satisfying one of  the two hypothesis of  the second section, Suppose moreover 
that u C IDp,I(H), w ~ "Cu(W ) = w + u(w) is almost surely invertible, with the 
inverse shift z~(w) = w + v(w) such that v C lDr, l(H) for some r > 1. Assume 
that the shift ~, satisfies the Girsanov identity 

E f F o ~ , . e x p  cSu -~ [u ,  2] ----E[F], 

for any (smooth) cylindrical function F on 14d We have then 

(~(R o ~ ) h  ) o ~ = ~Rh + (Rh, u) , 

B-almost surely for any h E H. 

Proof We have (cf. [6]) 

[c$(R o r,,)h] o % = cSRh + (Rh, u) + trace(Vu �9 (V(R o z~)h) o ~,) . 
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Since V[(R o rv)h] = (I  + Vv) (VR o T~)h, we have 

VE(R o r~)h] o ru -- (I + V v ) V R h  

=- (I + V u ) - I V R h .  

Since u E Ip(R), t race(Vu �9 (I + V u ) - l V R h )  = 0, hence the lemma follows. 
[Z 

Lemma 5.2 Suppose that the hypothesis o f  Lemma 5.1 hold and assume that 
Vv  has an essentially bounded Hilbert-Schmidt  norm. We then have 

E [ F ( R w + R * u ( w ) ) e x p - c ~ u  ~,u,2] ~ E [ F ] ,  

for  any cylindrical function F on W. 

Proof  Let (el) C W* be a complete, orthonormal basis of  H.  We have 

O Q  

Rw = ~ (1)Rei)(w)ei 
i--1 

for almost all w E W. I f F  = f(g)el . . . .  ,6e~), then, from Lemma 5.1, it follows 
that 

F(Rw + R*u(w))  = J(6el  (Rw + R*u(w))  . . . .  ,6e,,(Rw + R*u(w)))  

= f (6Re l  + (Rel ,u)  + . . .  ,6Re,, + (Re , ,u) )  

= f ( g ( ( R  o z~)el ) , . . .  ,c~((R o %)en)))  o % . 

From the Girsanov identity, we obtain 

E [ F ( R w + R * u ( w ) ) e x p - c ~ u - ~ l u l  2] 

= E[ f (6 ( (R  o z~)el) . . . .  ,6((R o ~ ) e n ) ) ] .  

Now remark that 

V(R o zv)h (I  + Vv) \7Rh o ~ ,  

hence 
(V (R  o zv)h ) o z~, = (I + Vv )  o zuVRh 

= (I + V v ) - l V R h  . 

Consequently, (V(R o rv)h) o ru is a quasi-nilpotent operator, 
V(R o ~ ) h .  Therefore we can apply Theorem 2.1 to obtain 

E[ f (~ ( (R  o zv)el ) , . . . ,  6((R o zv)e,,))] = E[f (6e l  . . . . .  (~en)] 

= E[F] .  [] 

hence so is 
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Theorem 5.1 Suppose that R is a rotation as beJore and moreover that VRh 
has an essentially bounded Hilbert-Schmidt  norm, Jbr any h C H. Then we 
have 

E[(VF(kw), R ' u ) ]  = E[c~u �9 F(kw)], 
f o r  any smooth cyIindrical fimction F and u c Ip(R) ( p  > 1). 

o 

Proof  Let (un) be a sequence from Ip(R)  such that u,, ~-+ u in LP(#,H) .  By 
definition, 

k 
Vu,~ = ~ cqVRhi , 

i=1 

with hi E H and ~i ~ L~176 consequent ly  the map ~., , ,(w) = w + 2un(w) sat- 
isfies all the hypothesis  o f  this section for small  2 > 0 and from Lemma 5.2, 
we obtain 

E (Rw + 2R*u~(w))exp - 2 ~u ~  - 7 lunI2 = E [ F ] .  

Differentiating both sides, we obtain the claimed identi ty for un, then we can 
pass to the limit. [] 

CoroLlary. Under the hypothesis o f  the theorem, we have 

X*u  = 0 .  

for  any u ~ Ip(R), p > 1. 

Proo/." From the theorem, we have 

E [ ( k V F ,  R*u)] = E [ k F  �9 6u] . 

Moreover  

Hence E[X*u �9 F] 0 for any cylindrical  function F .  

E [ R F .  6u] = E [ ( V R F ,  u)] 

= E[(u, X F  + R R V F ) ]  

= E U * u  �9 F] + E[(RVF,  R*u)].  

[] 
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