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Summary. One-dimensional stochastic Ising systems with a local mean field 
interaction (Kac potential) are investigated. It is shown that near the critical 
temperature of the equilibrium (Gibbs) distribution the time dependent process 
admits a scaling limit given by a nonlinear stochastic PDE. The initial condi- 
tions of this approximation theorem are then verified for equilibrium states when 
the temperature goes to its critical value in a suitable way. Earlier results of 
Bertini-Presutti-Rfidiger-Saada are improved, the proof is based on an energy 
inequality obtained by coupling the Glauber dynamics to its voter type, linear 
approximation. 
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1 Introduction 

The main purpose of this paper is to investigate the scaling limit of  a stochastic 
Ising ferromagnet with a Kac type, local mean field interaction. This is an ex- 
tremely simplified model of  the following physical phenomenon, see [HH] for a 
more authentic explanation. In a vicinity of  the critical temperature the equilib- 
rium fluctuations blow up, while the time dependent fluctuations slow down and 
they are described by a nonlinear stochastic PDE, a Ginzburg-Landau equation. 
From a mathematical point of view we study a family of Markov processes in an 
infinite product space (S ,  ~ s ) ,  where 2? := { - 1 ,  +1 }z is the set of spin config- 
urations cr = or(k) on the one-dimensional integer lattice Z ,  and ~ s  denotes the 
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associated Borel field. The so called local mean field, h-y = h.~(k, (7) is defined 
f o r k  E g , ~ r E Z a n d 2 / > 0 a s  

h,,/(k, (7) := ~ J~,(k - j )  (7(j), (1.1) 

jCk 

where J-y is a symmetric probability distribution on Z such that Jr(k) = 0 if 
k = 0 or 3@1 > 1. Let * denote the convolution in the space g(g) of  real 
functions g~ : g ~-+ R ,  then h.y = J.y * (7. Technical conditions expressing that 
J.y is an asymptotically uniform distribution are to be listed in the next section, 
typical examples of J'r are such that J.c(k) = z.vJ('yk), where J is a nonnegative 
symmetric function on the interval [ - 1 ,  1], and z-y ~ 2~ is the normalization. 

For %/3 > 0 let ~ ~ e -~ '% denote the Gibbs state at inverse temperature 
/3 > 0 with energy H.y, 

1 Z (7(k)h../(k, (7) (1.2) H.~((7) := - ~  
kCg 

In one space dimension &~ is a unique Borel probability on S specified by the 
DLR equations 

~[(7(k)l(7(j) :j r k] = tanh(/3h.y(k, (7)) for all k E g ,  (1.3) 

where ~[. I'] denotes the conditional expectation. It is well known that this model 
exhibits a phase transition at/3 = 1 as 7 ~ 0,  see [KUH],[LP],[COP]. In fact, ,k~ 
converges weakly in Z to the uniform Bernoulli measure as "7 ~ 0 if 0 < / 3  _< 1, 
while its limit distribution is a superposition of  two product measures of  mean 
spin -l-g;~ if/3 > 1, where ~ = tanh/3t~;~. A much richer picture is seen from a 
perspective of continuum limit when the spacing of  the lattice goes to zero and 
we are interested in the limit distribution of  the properly scaled local mean field 
process. This means that we have a limiting process ~ = ~(x) with continuous 
parameter x E I~ such that h.y(k, (7) ,~ cS.v~(e.~k) in a weak sense as % 6.y, e.y ~ 0 
in a proper way. At this level there is a transition from white noise (/3 << 1) to 
a non-Gaussian limit process (/3 ~ 1), the so called P(~b4)l Euclidean field, see 
[Sim]. At an intermediate scale the Ornstein-Uhlenbeck process appears as the 
continuum limit of  the local mean field. As it was pointed out by [BPRS], this 
critical behavior is reflected also in a time dependent situation. 

A stochastic spin flip dynamics with jump rates c = c(k, (7) is generated by 
an operator L acting on local functions f : Z ~-+ ]R as 

( , . s ) ( (7)  = L s ( ( 7 ) : =  
keg 

(1.4) 

where ~r t C ~' is defined by (7k(k) = -(7(k) and (7k(/) = ~r(j) i f j  r k .  An 
associated quadratic (Dirichlet) form D = DL characterizes the intensity of  the 
noise, it is defined for local functions f ,  9 by DL(f, 9) := L(fg) --fL9 - 9L f ,  thus 
from (1.4) 
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Dr( f ,  g) = ~ c(k,  cr) ( f (a  k) - f ( a ) ) ( g ( c r  k) - 9(cr)).  (1.5) 
t c z  

Notice that Lh. r = - 2 J ` / � 9  (o'c) and DL0ek,J)) = 0 iffk(~r) - a(k) and j  r k ,  ,while 
Dr(fk , fk)  = 4c(k,cr).  The evolved configuration at time t >_ 0 will be denoted 
by at = (at(k))kcz.  A familiar version of the Glauber dynamics associated with 
H e at inverse temperature/3 > 0 is specified by the jump rates c`/, 

c`/(k, a)  := 2 (1 - a(k)tanh(/3h`/(k ,  a ) ) ) ,  (1.6) 

the generator of this process will be denoted by L`/. Let us remark that A~ is a 
stationary and reversible measure of the spin flip evolution defined by L`/, see 
[Lig]. 

Motivated by (1.3) and (1.6) we claim that the local mean field h`/ plays 
a crucial role here, first of  all we evaluate L`/h`/. Since tanhx ..~ x - x 3 / 3  + 
2x5/15 . . . .  near zero, and h`/is supposed to vanish in view of the law of large 
numbers as 3' ---+ 0,  expanding L` /h` /up  to its first nonlinear term we get 

/33 
L.~h.y ,~ A.yh`/ + (/3 - 1)J`/* h ` / -  - ~ J ` / *  h.~ + - - -  

where A`/~ := J`/ , ep - 79 for 7~ C g(g) .  Observe now that the asymptotic 
behavior of this expression changes in a very radical way at/3 = 1 because there 
the leading term (/3 - 1)J`/�9 h`/ diminishes, thus the diffusive effect of A`/ can 
not be neglected any more. Let e > 0 be the macroscopic size of the lattice and 
interpret a smooth function cp " ]R ~ IR as a sequence g)e E g(~),  ~o~(k) := cp(ek), 
then 

~'2~"(gk)  ~ J ` / ( k  - J ) ( " y k  - ,.yj)2 + o(e2/,.y2) A`/r - ~ , ~  
jEg  

= a e2r + 0(e2/7 2) 

ifE = o(7) as 3' --~ 0 ,  where a > 0 is the asymptotic variance of J`/, see condition 
(2.1) below. This means that A`/ turns out to be a lattice approximation of  mesh 
e/',/ to the differential operator aO2x . Suppose that there is a macroscopic field 

= ~(x, r ) ,  x E I~, r >_ 0 such that h`/(k, ~rt) ..~ &/~(e`/k, c%t) in a weak sense 
as 7,  o!`/,~5`/,~`/ --+ +0. Then the rate of change of Eh`/ and the orders of the 
linear terms A`/h`/ and (1 - / 3 ) J ` / *  h`/ of  L`/h. r are the same if c~`/= e2/-,/2 and 
1 - ~ = pc%, where p is a constant and E denotes the expectation. The space- 
time intensity of the noise remains positive and finite if c~`/6 2 = e`/, see (1.5) and 
the calculation of  the quadratic variation of  the martingale part of  the evolution 
in Section 3. Therefore the contribution of the nonlinear term J` / �9  h 3 diminishes 
if 6 2 = o(c~`/), and a nontrivial scaling limit is obtained if c~`/= 6 2 , whence 

6.y ----- 71/3 , O@ ---- , . /2 /3  /3 : /3-/ ---- 1 -- D"y 2/3 , E ' ` / :  ,.~4/3 (1 .7)  

Define now the scaled field ~ = ~(x, r )  for x C II~ and r >_ 0 by 
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~.~(x,T):=6~lh.y(k,cr~-/c~.y) if ke . y -c . y /2<_x  < k c . ~ + e - r / 2 .  (1.8) 

In view of the multiscale analysis above, we expect that ~.y converges in a 
weak sense to a macroscopic field ~ = ~(x, 7-) specified as a weak solution to a 
stochastic partial differential equation of type 

d~(x, 7-) : (aOZx~(X, "I-) - p~(x, 7-) - b~3(x, 7-)) dT- + v ~ d w ( x ,  7-), (1.9) 

where b = 0 if 62 = o(ct.y), while b = 1/3 if a scaling (1.7) is adopted. Therefore 

if l1 - /31-1  = 0(7 -2/3) and the linear terms and the intensity of  the noise are 
1/2 of  the same order, i.e. o~.~ = p]l - / 31 ,  e.y = 7c~.y and 6 3, = 71/20~ 1/4 , then we 

see Gaussian fluctuations at a time scale o~.~ as b = 0 in (1.9). However, non- 
Gaussian fluctuations take place if 1 - / 3  = 0(72/3) and the scaling parameters 
are given by (1.7); they are governed by (1.9) with b = 1 /3 .  In this paper we 
focus on the second, more interesting case. In view of the physical interpretation, 
it is reasonable to distribute the initial configuration of the microscopic process 
by a Gibbs state A~ such that/3 = 1 - p 7  2 / 3  . 

In our basic reference [BPRS] it is shown that if /3 = 1 and the initial 
distribution of cr is the uniform Bernoulli measure then the scaling rule (1.7) 
results in a macroscopic equation (1.9) with p = 0 ,  b = 1/3 and ~(x, 0) = 0.  
Since the proof is based on Girsanov's  formula, this nice result is restricted to 
finite volumes. In fact, it is assumed that the system is periodic with period 
[27-4/3],  where [u] denotes the integer part of u E I~. Using a method of 
parabolic energy inequalities we can handle the large scale description (1.7)-(1.9) 
of model (1.6) with 1 - / 9  = 0(72/3)  in an infinite volume, and on the initial 
distribution we only need a moment  condition of type Eh4(k, Cro) = 0(64).  We 

also show that the Gibbs states A~ satisfy this moment  condition, thus (t.9) 
really describes the time dependent fluctuations of the Kac-Glauber model (1.6) 
near its critical point. Since (1.9) has a unique stationary and reversible state, 
a P(r field, the stationary distribution of ~.y should converge to his object. 
From a technical point of view, our basic result is an approximation theorem for 
(1.9), see Theorem 2.10 below, and Theorem 2.12 of [FR] for a more general 
formulation. Even the study of the equilibrium states A~ is based on dynamical 
properties of the system. 

2 Condit ions and main results 

First we list the conditions we need on J.y and on the initial distribution. Through- 
out this paper we assume that J.~ satisfies 

7 2 
-y~olim -~- E J ~ ( k ) k 2  = a , (2.1) 

kCZ 

1 
l i m s u p -  ~-~j2(k)  < +cxD, (2.2) 

7--~0 7 kEZ 
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a ! 

1 - J.r(co ) > ~ min{co 2, ")/2X/'~ } (2.3) 

for all w 6 [- r r ,+Tr] ,  where 0 < a '  < a are given constants, c~. r > 0  is the 
macroscopic unit of microscopic time, and 

3"r(c~ := E e*a'k J'r(k) 
k 6 ~  

denotes the Fourier transform of J.r,  i.e. z := x / s T .  Obviously, .7.~ is a 27r-periodic 
real function such that ).y(0) = 1 and ]J.r(cJ)l < 1 otherwise; (2.1) and (2.2) can 
also be formulated in terms of J-y. The above conditions can easily be verified 
if J.r(k) ~ 7 J ( T k ) ,  cf. [BPRS]. Here and in what follows c~-~, r c.r, denote the 
scaling parameters, i .e.h.r(k, ~r,) - &r(.r(c.~k, ce.rt ) and/3 =/3. r = 1 - pc~. r with 
some fix p 6 IR. 

The initial configuration of the microscopic evolution is distributed by a 
family of  probability measures {#'r : 7 > 0} on (s J3 ' s )  satisfying the following 
moment condition 

limsup ~"~ exp(-q~lkl) / 4 h.r(k , a)#.r(da) < +oo 
"y---+O k 6 2~ 

(2.4) 

for all q > 0.  Since c. r = 64 , cf. (1.7), (2.4) is actually a statement on the scaled 
magnetization ~.~ = ~54-1h- r . The initial value of the macroscopic equation (1.9) 
is a locally integrable function ~0 " Ii~ ~-+ ~ such that 

/5 l i m ~ Z r ~ ( g . v k ) h - ~ ( k , ~ r ) =  ~(X)~o(x)dx 
%"--+0 oo 

(2.5) 

in probability with respect to #'r for all test functions g~ from the real Schwartz 
space ~.~(IR) of  infinitely differentiable functions with compact supports. 

Solutions to (1.9) are to be interpreted in a very weak sense. Let IR+ := [0, +co) 
and IR 2 := R x N+, the second coordinate of (x , r )  E 1I~ 2 is interpreted as 
time, the first one is the space variable. The spaces of  integrable or locally 
integrable functions on Z = IR, I~ 2, R 2 will be denoted by LP(Z) or by L~oc(Z),  
respectively; they are considered as subsets of  the corresponding Schwartz space 
of distributions, -~" (Z) .  For example, ~.~(I1~ 2) denotes the space of infinitely 
differentiable and compactly supported cp - N: 2 ~ R ,  its dual space is ~"(IR2) .  
If ~ : R2+ ~ R is jointly measurable and ~(-, r )  6 Lloc(R) for all r _> 0 then 

F X(~,  r )  := ~(x)~(x, r) dx for ~ 6 ~(II~) 
o<3 

(2.6) 

defines a trajectory in =.w~"(IR). The Skorohod space of right continuous func- 
tionals X : R+ ~ ~ ' ( I R )  having left limits at every r 6 IR+ will be denoted by 
D[R+, ~ ' ( I R ) ] ,  see [HS] or [EK], and X(gb 7-) is the value of X 6 D[IR+, ~.~"(I~)] 
at ~ 6 ~.w~(R) and r > 0.  The scaled magnetization ~-r shall be interpreted as a 
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random element of  D[I~+, ~_~'(]R)], cf. (2.6),(2.9), and we are going to describe 
its limit distribution on this space as 3' ~ 0.  

Suppose now that we are given a white noise on •2, that is a Borel probability 
on ~ ( I ~  2) such that the substitution functional W(4), w) ~- w(4)) is a Gaussian 

random variable of  mean zero and variance 

/Io /5 W2(4), w) ~ ( d w )  = d r  4)2(x, 7-) dx 
O<3 

for all 4) E _%_%_%_%_%_%_~-(~2). Intuitively, the random functional W can be considered as a 
stochastic integral: W(4), w) = f0 ~ f-~o~ 4)(x, 7-) w(dx, dT).  

2.7 Definition. Consider the following formal SPDE: 

d~(x, 7-) = (aO2x~ - ~B(~)) dT + v / A d w ( x ,  T), (i) 

where B : R ~ R is a continuously differentiable function, a, A > 0 are given 
constants, and w is the white noise, i.e. w E ~ ( ~ 2 )  is distributed by ~ as 
specified above. A jointly measurable map ~ = ~(x, T, w) o f  I~2+ x _@'l(R2) into 
is called a weak solution to (i) with initial value Go E L}oc(R) if  both ~ and ~B(~) 

belong to ]Lloc(RZ+) for  ~-a.e .  w ,  and 

/ 55  +aO  - 
CX? 

/5 + ~o(x)4)(x, 0) dx + x/A W(4), w) = 0 (ii) 
O<) 

~-a.s .  simultaneously for  all 4) E ~ ( I~2 ) .  

Since the diffusion coefficient A does not depend on ~, we need not refer to 
an underlying filtration. In fact, we have a very good uniqueness result for weak 
solutions allowing us to identify the solution we obtain as the weak limit of the 
scaled field ~ ,  see Section 6. 

2.8 Theorem. Suppose that we have two constants p > 0 and d > 0 such that 

xB(x)  - yB(y )  
- d  <_ C ( x , y ) : =  _< d(1  + [x[ + [yl) p (i) 

x - y  

for  all x ,  y E R .  Then (2. 7) has at most one weak solution ~ = ~(x, ~-, w) satisfying 

d~- e-qlxll~(x,T,w)lP+l dx < +oc w-a.s (ii) 
C2~ 

for  all T, q > 0. 

To prove existence of  solutions we have to assume that the drift has the right 
sign. The condition d + dB(x)  >_ IxlP is certainly sufficient, but we need not go 
into details of this issue because the existence of weak solutions to equation (1.9) 
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is implied also by our approximation procedure as follows. Consider the scaled 
field ~-~ = ~.~(x,~-) defined by (1.8) for x C ~ ,  T >_ 0 ,  7 > 0 and set 

/? X.~(q0, T) := ~(x)~.y(X,T)dx for ~ E ~( l I~) .  (2.9) 
o o  

We interpret X.y as a random element of D[It~+, ~ / ( ~ ) ] ,  its law will be denoted 
by ~ .  By means of the a priori bounds of Sections 4 and 5 we show that the 
family { / ~  : 0 < "y _< 1} is tight on D[R+,_~/ (~) ] ,  which is a crucial step 
towards proving 

2.10 Theorem.  Suppose (1.7) and (2.1)-(2.5), then 2~ 7 converges weakly to a 
probability measure . ~  on D[~+, _~.~t(II~)] such that ~ is the distribution o f  a 
jointly measurable process ~ = ~(x, T, W) satisfying (1.9) with initial value ~o, i.e. 
B(x)  = p + x2/3  and A = 2 in (2.7). Moreover 

dT e-qlxlE~4(x, T) dx < +oo 
O(3 

for  all T, q > O, thus ~ is uniquely specified in view of  Theorem 2.8. 

Let us remark that the initial value of the limiting process need not be a 
deterministic function. Without any change of the argument we can replace (2.5) 
by an assumption that P.y, the distribution of (-~(., 0) ,  converges in ~ ( I ~ )  to a 
limit P as 3' ~ 0.  Of course, (2.4) implies that the macroscopic initial distribution 
P will be concentrated on measurable functions. 

Suppose first that the initial distribution #-y is chosen as the homogeneous 
Bernoulli measure of mean zero, then (2.4) is obviously satisfied and we have 
(2.5) with ~0(x) = 0 for all x E It~ ; this is the problem discussed by [BPRS] with 
periodic boundary conditions. Consider now the equilibrium dynamics, that is 
#v = A~ with/3 = 1 - pa  7 and p E I~. The distribution of (.~ in this stationary 

and reversible regime will be denoted as ~ ; its marginal at any fixed time 

is Pff ,  that is the distribution of ~.y(., 7) for each ~- > 0.  We shall see that 
the moment  condition (2.4) holds true also in this case, but the initial value 
of the limiting process shall not be a deterministic function any more. The limit 
distribution of  P ~  can be specified as follows. Let QrXa y denote the distribution of 
the Wiener bridge of variance 2a on the interval [ - r ,  r]  with boundary conditions 
x ( - r )  = x ,  x (r )  = y ,  Q is a Borel probability on the space ~ ( N )  of continuous 
functions X " 1I~ ~-+ R .  

2.11 Definition. A Borel probability P on ~(I~)  is called a P(r field with 
parameters a > O, b > 0 and p E IR if its two-sided conditional distributions 
satisfy the DLR equation 

P [ d x l ~ r ]  exp ( -  ~o76'~'P(x) ) 
- P-a.s. x . y  

Qr,~(dx) Z ~ ( x , y , a , b , p )  

for  all r > O and x , y  E I~ whenever x ( - r )  = x , x ( r )  = y ,  where Z~ is the 
normalization, 
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1/ 
076"rb'P(x ) := ~ (2px2(u) + bX4(u)) du,  

r 

and ~.~c r denotes the a-field of g'~(I~) generated by the projections {X(v) : Iv[ > 
r} .  

If b = 0 and p > 0 then (2.11) defines a familiar Ornstein-Uhlenbeck process. 
For b > 0 and p E IR the existence of a P(r field is proven by [Sim]; in fact 
it is specified as a diffusion process with a unique stationary distribution. Let P* 
denote the law of this diffusion process; since P* is ergodic, it is easy to verify 
that there is no other P(q54)l field. [Iwa2] identifies the stationary and reversible 
measures of (1.9) as P(r Gibbs states, see also [Fun2] for a more general 
treatment of such fields including their characterization as reversible measures 
of Ginzburg-Landau equations. In our case b = 1/3 and a > 0 is given by (2.1). 
The equilibrium dynamics is characterized by 

2.12 Theorem.  Suppose (1.7), (2.1), (2.2), (2.3), and let #~ = A~ with/3 = 1 - pc~.r , 

then , ~  ~ ~,~* in D[I~+, ~ ' ( ~ ) ]  as 7 ~ O. 

If  p > 0 then a straightforward coupling trick (energy inequality, see Section 
3) shows that P* is the unique stationary state of  (1.9), but a more sophisticated 
entropy argument is needed to prove the same statement when p < 0.  Here we 
claim only that every reversible measure is a Gibbs state. 

3 The macroscopic equation and its derivation 

In this section we prove Theorem 2.8 and outline the derivation of equation (1.9). 

Proof of Theorem 2.8. We use some standard methods of parabolic equations, see 
e.g. [Frie]. Suppose that { and ~ are weak solutions with a common initial value, 
then ~ := ~ - ~ satisfies 

dr  ~(x , r ,w)(Or  +aO2x - C ( ~ , O ) r  : 0 
O O  

(3.1) 

w-a.s, for all r E 6-~(II~2), and (3.1) extends to a much wider class of test 
functions by continuity. 

Let 0 < ~ C ~.@-(N2) vanishing outside of  the strip R x  [0, T] ,  fix w C ~ ' ( I R  2) 
such that condition (ii) holds true for both solutions, and consider the classical 
solution Cv to 

O , r 1 6 2  f o r r ~  [0, T] (3.2) 

specified by Cr(x,  T) = 0 for each x E R ,  where F : 1R+ 2 ~-+ N is uniformly 
continuous and bounded together with its first and second partial derivatives. We 
shall see that Cv vanishes exponentially fast at infinity, thus (3.1) turns into 
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::/5 dr  ((x,'c, w)~(x, r )dx  (3.3) 

= [ .  - 
,10 OQ 

It is certainly clear that we want to approximate C by F to conclude that the 
left hand side vanishes for each ~ ,  thus F _> - d  may be assumed. In view of 
the maximum principle, (or by the Feynman-Kac formula, see [Sim]), 0 <_ q~r _< 
4~-d, where q~-d denotes the solution corresponding to F _~ - d .  Since 

/: /: ~_d(X, T) = e d~ d o e  -d~ Ho_~-(x - y)zb(y, tg) dy (3.4) 
f x~  

for ~- _< T ,  where H is a heat kernel, 

1 --X 2 
H~-(x) := e x p ( - 7 - - )  if z > O, 

we have an explicit bound for qSr allowing us to derive (3.3) and conclude that 
the left hand side of (3.3) is zero by sending F to C .  Since ~ is an arbitrary 
element of a rich class of functions, this completes the proof. [] 

The study of SPDE (2.7) can be reduced by a coupling trick to its particular case 
of B(x) - / 5  > 0 and A = 2,  this idea will then be used to prove Theorem 2.10. 
Observe that this Gaussian solution ~ with initial value ~o can be represented as 

/5 ~(x,'r,w) := e - :~  Hr(x -y )~o(y)dy  (3.5) 
o o  

+ v/2e -:'r e :~ Hr-o(x  - y) w(dy, dO), 
o o  

where w is the white noise and H is the heat kernel (3.4). Since H c 
L2(I~ • [0, T]) for all T > 0,  the stochastic integral on the right hand side 
is a well defined extension of the random functional W(q~, w) ,  and ( is a jointly 
continuous function of T > 0 and x C •,  see e.g. [Iwal], [Wal] or [Funl]. 
It is plain that ( is the unique weak solution to (2.7) with B --- /5 and initial 
value (o,  cf. Theorem 2.8. It will be useful to interpret ( as a random element 
of D[IR+, .~'(II~)] by introducing X(~;, ~-) := (~, ~(., ~-, w)) for ~y c 5~(1t~), where 
(g~,~) := f ~ d x  denotes the usual scalar product in L2(~) ,  cf. (2.9); X(.,~-) is 
actually a continuous trajectory in 1~"(I~). Let { ~  : ~- > 0} denote the natural 
filtration in D[]R+, ~ " ( ~ ) ] ,  that is ~ is the ~r-field generated by the projections 
{X(~, 0) : 0 _< ~-, ~; E f f ( ~ ) } ,  then J( is the only process such that 

/o IV(~, T) :=  2(gv, ~-) -- 2(a(;"  -- ~ , O ) d O  

and ff.2(~, ~_) _ 2(~,~;)r  (3.6) 
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are .~-mar t ingales  for each ~ C ~-~(R), see [HS1] or [Iwal].  This charac- 
terization will be used when we prove the weak convergence of the linearized 
version (voter model) of  the Kac-Glauber evolution to the generalized Ornstein- 
Uhlenbeck process ~ given by (3.5). The distribution of X will be denoted by 

Let us summarize now some basic information on the microscopic systems. 
An auxiliary process, the voter model is specified by the jump rates ~ ,  

1 (1 - ~cr(k)h.y(k,  or)), (3.7) ~.~(k, or):= 

where 0 < /3 = 1 - / 5 a . ~  _< 1, i.e. /5 > 0 and /Sc~.y _< 1; the corresponding 
generator will be denoted as L.y. Related questions are discussed by [MT]. Since 

L.yh.y(k, cr) = A.~h.~(k, o)  - (1 - ~)J.~ * h.~(k, or), (3.8) 

the voter process can really be interpreted as a lattice approximation of the 
Ornstein-Uhlenbeck process. In case of  the original model we write/3 = 1 - pc~.~ 
with p E I~, thus 

L.~h.y(k, cr) = A.yh.y(k,  or) - (1 - /3)J .~ ,  * h.y(k, or) 

- J.~ �9 Y2(/3h.y(k, cr)), (3.9) 

where Y?(u) := u - tanh u is the nonlinear term of the drift. Observe that L.vh. ~ = 
L.yh.~ - J.y �9 Y2. A common form of the stochastic evolution equations reads as 

i' h.y(k, crt) = hT(k ,  cro) + L.yh.y(k, ors) ds + m.y(k, t ) ,  (3.10) 

where m.y(k, t) is a martingale for each k E Z .  If  necessary then objects related 
to the voter process shall be distinguished by a mark "tilde". For instance, in 
(3.10) we ought to write L, 6-,N instead of L, cr, m in case of the voter model. 
The mean intensity of  the cross variation of the martingales m.y(k, t) and m.y(j, t) 
is A.~(k , j ,  cr) := DL.~(h.y(k,-),  h.~(j, .)) ; from (1.5) 

A ~ ( k , j  , or) = 4 Z c.~(i, cr)J.~(i - k )J.~(i - j ) (3.11) 
i E'~ 

and the same expression holds true for the voter model, too. Notice that A.~ (k , j ,  or) 
vanishes if ]k - J l  > 2 / 7 ,  and A.y ( k , j ,  or) ~ 2 7 otherwise, provided that h. v 
is really a vanishing quantity. The scaling rule c~.~6 2 = e~, is motivated by 
this observation. More precisely, in the next two sections we shall show that 
Eh~ = O(~5~) in both cases, therefore the intensity of the noise at site k E 2; 
is just ~ j E ~  EA.~(k , j , c r )  ~ 2,  which is magnified by a factor Ct~-l~ -2 in the 
macroscopic picture. Since e;~ is the macroscopic width of one site, a nontrivial 
scaling requires e~-I = c~ct~-~5~-2, and if d = 1 then a constant A = 2 is obtained 
as the intensity of the macroscopic noise, see the calculations below. 
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Let ~'r = (.y(x, r )  denote the scaled local mean field of the voter process, see 
(1.8), and define also 2.~ = X-r(~, r ) ,  cf. (2.9). Of  course, X'r is a function of the 
evolved configuration 6"t c Z? at t = r/c~7, thus its rate of  change is governed 

by the scaled generator 5 ~  := c~-lL.~. Since 1 - ~ =/5c~.~ by assumption, from 
(3.8) 

~ 'yX ' r (~ ,  r )  = .s (A.rqo - fS~.qg.y. ~, r )  (3.12) 

/? = - * 

oo 

where f * 9  denotes the convolution also in Lloc(II~), A. r is the macroscopic 
version of A.y, that is 

A.r~ := a~.r * qo(x) - qo(x) for g) C Lloc(I~) , (3.13) 
O@ 

where 57. r ~ L2(N) is defined by ~ . r ( x ) : =  J-r([2 -~ +xe~-~]). 
Notice that if ~ ~ ~ ( N )  then ~7~ ,  ~ --~ ~ and Ag) --+ aO2x~p uniformly in 

x ~ IR as 7 ---+ 0.  In view of (3.11) the quadratic form associated with (3.12) 
reads as 

~7-r (qo, r )  := ~.r22(qD, r )  - 22-~(~, r)~9~-.y~(~, r )  

/? = 2  ( ~  * ~ ( x ) ) 2 ( 1 -  /367~(x, r)~7(x, r))  dx , 
oo 

(3.14) 

where s.r(. , r )  : =  ~rt(k ) for r = ta-y and kc. r - 2-1e.~ _< x < ks-  r + 2-ze-r .  
The a priori bounds of the next section imply that the right hand side of 

(3.14) converges in mean square to 2(% ~p). Let ~ denote the distribution of 
~'r, by means of  the martingale approach we prove in Section 6 

3.15 Proposit ion.  Let ~3 = 1 - ~ee. r with ~ > 0 and suppose (1.7) and (2.1)-(2.5), 
then ~ converges in D[I~+, ~ ' ( I ~ ) ]  to ~ as 7 --+ O. 

The martingale approach can also be applied to prove Theorem 2.10, but we 
prefer a more direct way. Let r/ = { - ~, where { and ( denote the solutions 
to problem (2.7) with a general B ,  and with B(x)  -= /5 > 0 ,  respectively. If  
~(., 0) = ((-, 0) then (ii) of (2.7) turns into 

/7/? d r  ~7(x, r)(Or + aO2)~(x, r )dx  
O<3 

/7/? = d r  ({B({)  - ~ ) ~ ( x , r ) d x  (3.16) 
o o  

for 4' C 5 ~ ' ( ~ ) .  Since~the existence of the Gaussian solution ~ = ~(x, "r, w) is 
known, we can consider (3.16) as a deterministic equation for {.  In view of 
Theorem 2.8, under a mild regularity condition, there is at most one solution of 
this problem. This solution can be found by means of a standard compactness 
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argument based on a parabolic energy inequality, see the end of this section for 
explanation. The possibility of such a simplified treatment is due to the existence 
of an effective coupling of { and ~ obtained by identifying the realizations of 
their white noise fields. Now we suggest that an analogous, although a bit more 
sophisticated coupling argument is available also at the microscopic level. 

A coupled process (~rt,6.t) can be defined as follows, we assume that 
ero(k) = 6.0(k) for each k E Z .  If ~rt(k) r 6.t(k) at t > 0 then they flip inde- 
pendently with rates c.r(k,ot) and e.r(k, 6.t), respectively, while identical spins 
change simultaneously at the largest possible rate, see Chapter III of [Lig]. Let 
G- r denote the generator of the coupled process, it is acting on local functions 
f "  Z x Z H I I ~  as 

G.rf(cr , O) = ~ c.r(k , cr)(f(o -k, 6.) - f ( o - ,  6.)) + ~ e.r(k , 6.)(f(cr, 6.k) _ f ( ~ ,  6.)) 
kC~ k ~  

+ Z min{c 'r (k '~176 (3.17) 
k:a(k)=&(k) 

where 
T/d- :=f(crk, 6.k) _ f ( o . k  6.) - f ( o - ,  6.k) +f(o-, 6.). 

Of course, if /5 < 1 then it is reasonable to set/3 = /3 ,  while ]1 -/31 -< 1 - 
otherwise. 

Observe that Tk(cr(j) - 6.(/)) = 0 even i f j  = k ,  and 

a-, (~j ' )  , 6.~ )) 2 + (c. ,q,  ,~) + ~-,~i , 6.)) ( " ~  ) - 6.0")) 2 

= [+.r (j, a)  - ~-~(j, 6-)1 (~(j) + 6.0)) 2 . (3.18) 

To get further information on the effectivity of  the coupling, let us consider also 
the Dirichlet form (1.5) for G-r, and denote Q.~(k,j,  ~, 6") its value i f f  = ~7(k)- 
6.(k) while 9 = ~7(j)-  6.0)- From (3.17) and (1.5) we see that Q.r(k,j ,  or, 6.)= 0 
i f j  # k ,  while 

Q.r(k, k ,  o-, 6.) = 4c.v(k , ,:r) + 4e.r (k , 6.) - 2 min{c.r(k , ~r), e.r(k , 6.)} (or(k) + 6.(k)) 2 

< - G ~  (~(k) - &(k)) 2 + 2lc~(k ' ~) _ e~(k, 6.)[ (~(k) + 6.(k)) 2 

< -G.~ (c~(k) - 6.(k)) 2 + 4/31h~(k , a)  I + 4/31h.,(k, 6.)1 
(3.19) 

in view of (3.18) and I tanhxl _< Ixl. 
Consider now the coupled process at the macroscopic level, let r/.~ := {'r - ('~ 

and ~ := cQlG.r .  Since { and ~ coincide at 7- = 0 by assumption, 

/o - rl.v(x , 7-) = .~Trl(x, O) dO + M.r(x, 7-) (3.20) 

for each x E I1~, where M.~ is a family of martingales, and 
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thus multiplying by O,-~b and integrating by parts we get 

dr  rl~(x, r)(O. + A~)(o(x, r) dx + dx M~(x, dr)  O(x, r) 
o o  o o  

:o J: = dr  (./-l:~(/3e~.~(x,-:))+p~.:(x,r) - / 5 ~ ( x , r ) ) ~  �9 ~ ( x , r ) &  
o o  

(3.21) 

simultaneously for each q5 ~ ~r(I~2) with probability one. 

We are going to compare (3.16) and (3.21). By means of (3.19) in Section 
6 we show that the mean square of the martingale term on the left hand side of 
(3.21) vanishes as 7 --+ 0 ,  thus the equivalence of the left hand sides will be 
more or less obvious. The evaluation Of the right hand side of  (3.21) needs a 
bit more work because we have to determine the limit of  a nonlinear function 
of a weakly convergent sequence. While the tightness of  the joint distribution of  
X.~ and J~. r follows immediately by moment  estimates, at this step we also need 
a property of spatial smoothness of  {-r- The necessary a priori bounds will be 
proven in Sections 4 and 5. 

To expose the derivation of the a priori bounds at an intuitive level, let us 
now return to the macroscopic process and assume for convenience that the 
system is periodic with period one, B(x) = p +x2/3 and IPl < /5. From (3.16) 
with ~b(x, 0) ~ 2r/(x, 0) for 0 _< 0 _< r and ~b = 0 otherwise, by a standard 
approximation procedure, or directly from (1.9), we get an energy inequality, 

/o 1 :o :01 /0 /o 1 r/2(x, r )  dx + 2a dO (Oxrl)2 d x + 1 dO ~4(x,0)dx 
4 

f[ f01 2f[ fo' 1 dO ~4(x, 0 )dx  + 5 dO (~ - ()(3/5( - 3p(  - ~3)dx (3.22) -<~ 

1 dO ( 2 p  + 16/5( 2 - ~C4)dx < ~ dO ( p  + 32/52) dx -<g 

where 2uv _< U 2 +  V 2 and 4uv 3 < U4-1 - 3v 4 were used. Since the Gaussian process 
is well controlled, we have got a bound for the space-time integrals of ~4 

and (0xr}) 2 . In Section 5 we materialize this argument at the microscopic level; 
the second estimate concerns the space-time integral of -r}.y Ayr/.y implying the 
desired spatial smoothness of  rl-~, thus also that of  (.y. In this way we complete 
the proof of  Theorem 2.10 in Section 6. 

The first step of the derivation of Theorem 2.12 from Theorem 2.10 is the 
verification of the moment condition (2.4). We start the microscopic process with 
the uniform Bernoulli distribution and consider the time averaged distribution #.:-t 
as t ~ +oe while 7 and/3 are fixed, 

- t  1 [ t  , 

#': := t Jo #.: ds,  (3.23) 
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where #~ denotes the distribution of the evolved configuration :r, .  S i n c e / ~  

A~ in i2 as t --+ +oc ,  it is sufficient to show that/2~ satisfies the desired moment 
condition, and the bound does not depend on t and 3'. 

The identification of the continuum limit of the equilibrium states, that is the 
proof of Pfl ==~ P* needs some more work. Since A~ is a reversible measure of 
the Kac-Glauber evolution, we have 

f f (cr)L.~g(cr) A~(d~) 

1 

k e g  

for local functions f and 9.  Let g(~r) = Xje~0(j)h-y(j , or), then we get 

[f(~)h~(I,, ( , ) ( a ~ ( k )  - 8~(h-~(k, ~))J~, �9 W(~)) a~(d~) 
k e g  

, 2  

(3.24) 
P 

= / - �9 

kCg 
, ]  

where Be(u) := 1 - u -1 tanh/3u. This is an integration by parts formula (KMS 
condition) characterizing the Gibbs states A{. We are going to evaluate the 
continuum limit of (3.24). 

Define now the scaled equilibrium magnetization ;g'r = ;~n( x, r as )C.r(x) := 
cS~lh.r(k, ~) if [xs~-l+2 -1 ] = k ,  its distribution P~ is considered as a Borel proba- 
bility on L~oc(ll~). Letf(cr)  = F(X.~), where F(X) := ~( (~ l ,  X), (~2, X), ..-, ( ~ ,  X)) 

for X E L~oc(N), ~b c - ~ ( R  n) and (Pi c r i = 1,2, . . . ,n .  The functional 
derivative of F can be written as 

t /  

VF(x, ~) := Z ~bi(X)(~i, ~P), 
i=1 

thus a formal continuum limit procedure transforms (3.24) into 

/ F(x)V~(X,  ~)P(dx) = [ VF(x, (OP(dx), where (3.25) 

F V ~ ( X ,  ~b):= - X(x)(aO2x - p - 3-~X2(x))~(x)dx. 
O(3 

By means of the a priori bounds we show that every limit point of  the family 
P~  satisfies (3.25), thus the argument is completed by noting that this KMS 
condition implies the DLR equation (2.11), see [Iwa2]. 
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4 A priori bounds for the voter  model  

In this section we derive some basic probability estimates for the voter process 
defined by the jump rates L r with 0 < /3 _< 1, see (3.7). As in the previous 
section, the mark 'tilde' refers to this model. The usual scalar product in .g2(~) 
will be denoted as (., .), and II~ll := (~, qD) 1/2, 11r "= (1,  [~1} are the norms of 
g2(E) and s respectively. From (3.10) 

h-r(k , ~rt) = h.y(k, gro) 

+ ( A . ~ h T ( k , # s ) + ( ~ -  1)J .y*hv(k ,#s ) )ds+rh .y (k , t ) ,  (4.1) 

whence by an elementary Fourier calculus we obtain 

(~b, h.v(. , 6-,)) = (~,P-r,, * h-r(, 6-o)} + R-~,t(~P) (4.2) 

whenever ~ E g! (Z), where 

I' /~.y,t (~0) := Z ~b * p.y,t-s(k) ffl.v(k, ds) 
k ~ Z  

and 

1 exp(zcok - t  + ~t]~(a~)) daJ. P'~,t = p%t(k) := ~ 

Notice that if/~ = 1 then p%t is just the transition probability of a random walk 
on Z with continuous time and jump rates J7 - 

First we investigate the martingale term/)  on the right hand side of (4.2), we 
prove 

4.3 Lemma.  Suppose (2.2),(2.3) and a 7 <_ 1, then we have a universal constant 
Ko such that 

E~4 t(~) ~ ~011~114 ~ 2 m i n { t  + o ~ ;  1, (1 - / ~ ) - 1 }  . 

Proof Let ~'~ denote the natural filtration of the process and introduce 

/~-y,t(~, u, v) := ~ *p%t-,(k)ff~.y(k, ds) 

for 0 < u < v _< t .  Since the jump rates are less than one, from (3.11) by the 
Plancherel theorem it follows that 
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EI ( , ,  u, 

= ~ ( r  p . v , t - . ( k ) ) (~*  p.v,~-,(J'))E[f~../(k,j,cr,)l.~.]ds 
kE25 

< 4 Z ~ - ~  ( r  - i )J .y(]  - i ) d s  
k E ~ ] E g  

2f; ~" = - dw I~(~d)33,(0d)l 2 exp((2t -- 2s)(jY.~(w) -- 1)) ds 

_< ]]~H2/~r j.~a.tcj) e x p ( ( 2 v  - 2t)(1 - /3)-r))  ~57 r , -  exp((Zu - 2t)(1 - fl)~)) dco, 

/ 

(4.4) 
consequently 

1 
limsup E[R.y,t0p,-2 u, v) ] .~]  _< ]]@]]2F.v,t(u) (4.5) 
v---+u+O V - -  bt 

almost surely, where 

/; 2 3 ( )exp((2u 2t)(  aL))a , F w ( u )  : . . . .  �9 
7~ 7r 

moreover /; ER2,t(r  s) _< ]I@H 2 f , , , ( u ) d u .  

From (2.3) with z = 2t - 2s _> 0 

exp ( - z (1  -/3.7.y(~))) < e -z(l-~) e x p ( - a @ z ~ 2 7  -2) 

+ e-Z(1-3) exp ( - a ' f l z  a l /2 ) ,  

(4.6) 

whence by a direct calculation using (2.2) we get 

F.~,t(s) <_ K13'('y(t - s) -U2 + exp(2a'(s - t)o~-I/2)) e (2t-2s)(~-l) , ( 4 . 7 )  

consequently as a.~ < 1 by assumption, 

E/~2 t(r 0, s) _< K2][~t] 2 7 min{(s + a~-l)t/2, (l  - ~ ) - 1 / 2 } ,  (4.8) 

where KI and/(2 are universal constants. 
To estimate the fourth power of k let Rn := ke, t(~,  O, n t /m)  for 0 < n < 

m E N and observe that 

R 2 + 1 - R  4 - 4(Rn+l - Rn)R2 <6(R,,+I_ - R,,)2(R,,+12 +R 2) 

12(Rn+l-  2 2 = Rn) Rn + 12(Rn+l - R,)3R, + 6(R,+1 - Rn) 4 (4.9) 

< 18(Rn+l - Rn)2R~ + 12(R~+1 - R,) 4 . 

We have to sum for n < m and take the expectation of both sides of (4.9) to 
obtain a bound for E/~ 4 . Then (R~+I - R,,)R2 vanishes in view of the martingale 
property o f /~ ,  and the expectation of the contribution of the first term on the 
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right hand side can be estimated by means of (4.5)-(4.8). On the other hand, 
the flipping times of or(i) can be selected from the set of points of independent 
Poisson process, Ni of unit intensity, thus 

i.tn/m+t/m 

n m  jm A/(s)N,(ds), 

where K3 does not depend on m and 

ai(s) := 2 Z Z t~(k)lP~,t-s(k -J)J'r(J - i). 
kEY~ jEg  

Therefore by a direct calculation 

m 

EIR,< - Rnl 4 <_ K4(t,m 7) + ~ fota4(s)ds 
n--0 l e g  

4/o' ~- g4(t' 7~) +TKsll tl f .y t(s)ds (4.10) 
m 

with some universal constant Ks.  Indeed, as Ai <_ 211~111 maxJ.y and maxJ.y = 
0(@/z) in view of (2.2), by the Plancherel theorem 

Z A4(s) <- 7K511~11~ Z A~(s) <_ 7Ksllr 
iE~ iEg 

which completes the proof by sending m --+ +oo via (4.7)-(4.8). []  

A local bound for the deterministic part P%t * h%o of the right hand side of 
(4.2) can be derived by means of a clever weight function Or, see e.g. [Frit]. 
Let Or(x) := O(rx) for x E I1~ and r > 0 ,  where 0 : N H (0, 1] is an infinitely 
differentiable and exponentially decreasing symmetric function such that O(x) = 1 
if Ix[ < 1 and O(x +y) <_ (1 + lyl)O(x) whenever tYl -< 1. For example, we can 
choose - l o g 0  as a symmetric and convex function such that - l o g 0 ( x )  = 0 if 
Ixl <_ 1 and - l o g 0 ( x )  = lxl log2 if Ixl >_ 2.  Notice that 0r is a smooth version 
of the indicator function of the interval I - l / r ,  l /r] thus r = O(e.y) when we are 
looking for a macroscopic bound. In the calculations below Or = 0r(k),  k E g 
is considered as an element o f / 2 ( ~ ) ,  i.e., (Or, ~) -- Skc~Or(k)qo(k) whenever 

E g2(Z), and so on. 

4.11 Proposit ion.  Conditions (2.2) and (2.3) imply the existence of a constant fs 
such that for all t > O, and r > 7 > 0 we have 

~4 E(Or, h.~(., err)) < 8 exp(r2t/72)E(Or, -4 h~(., ~o)) 

+ R72 min{t + c~-1, (1 - / ~ ) - 1 } .  
r 

Proof Let 9 E g(E) be nonnegative and bbserve that gt := Pn,t * 9 satisfies 
Otgt = A.ygt + (~ - 1)J-~ * 9t, therefore as ~ < 1 and 
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Or(x + y) + Or(X -- y )  -- 20~(x) < y2r2Or(x ) if rly [ < 1 

we have 

Or(Or,fit) ~ ~ J T ( e )  Z ff t(k ) (  Or(k + e) + Or(k - e) - 20~(k)) 
g>0 kCg 

~-- rZ'T-2(Or, 9t) , 

which implies by the Gronwall inequality that 

, . tr  2 . 
(Or,p-~,t * 9)<-(0~,91 e x p ~ - ~ ) .  (4.12) 

4 Choosing 9 = h-r(', a0) we obtain a bound also for (P'w * 9) 4 by convexity, 
which completes the proof by Lemma 4.3. Indeed, set ~ = ~k such that f;k(k) = 1 
and ~bk (j) = 0 i f j  56 k .  Since R. r,t does not depend on k r Z and 1[ O r 111 = O ( r -  1) ,  

we really have the desired bound. [] 

Proposition 4.11 yields an effective bound for the scaled field ~.~ because 
0 ( 7 2 0  = 0(64)  if t : r a ~  -t = T7 -2/3 and r : qe.~ = q74/3 with r , q  > 0.  

The asymptotic evaluation of the right hand side of (3.21) is not immediate 
because of the presence of a nonlinear term, ~ .  Since we have tightness of  the 
scaled process only in D[~+, ~c~,(~)], we have to mollify it by a convolution 
kernel kay. More exactly, we replace ~.y by ~Pg*r/.~+kve,~.y, where r/.~ := ~.y-~-y, ~.y 
denotes the scaled voter process, gt E 5.~(I1~) is a symmetric probability density, 
~Pe(x) := &~(gx) for g > 0,  and * denotes the convolution operator also in Llo c . 
At this step the following property of spatial smoothness of the voter process 
will be needed. 

4.13 Proposit ion.  Suppose (1.7), (2.1)-(2.4) and ~ = 1 - ~ct7 with ~ > O, then 
for all q, "r > 0 

/? lira lim sup Oq(x)E(~,~(r,x) - gJe * ~ ( r , x ) ) 2 d x  = O. 
g ---* oo 7___+0 c:~ 

Proof Our starting point is again the identity (4.2), first we handle its determin- 
istic part P'w * h%o. We split ~.~(-,0) = ~-y(-,0) as ~.y = 0r,-y~-r + (1 - 0r,-y)(7, 
where ~7 and Or,-r are step functions of step size e.y; Or.y(x) := Or([xe~ 1 + 2 - 1 ] ) .  
In view of (4.12) and (2.4) the contribution of the second term vanishes uni- 
formly i n ' y  and g a s  r ~ 0 while q > 0 is fix. To treat the first term let 
~7,r(X,7") := IZy,. r * (Or,../~.,/(x,O)) ~ where H.y,~(x) := e~tp.~,,([xe~ a + 2-1])  at 
r = tc~-y, and introduce #-r,e c g2(~) by 

/e3,k+e.~/2 
~ , e (  k ) := e ~, ( tx ) dx . 

eTk--eT/2 

Rewriting the integral of  a step function as a sum, we get 
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~ 2 
Oq(X)(~,-g,r(X , T) -- k[Ig , ~3,,r(X, 7")) d x  

o o  

(~.y,r(X, T) -- k[Ig * ~ ,  r(X, T)) dx  
o o  

/ < c.y (1 - kb.r,e(w)) 2 exp(-2rc~-~(1 - ).~(w)))IO~,r(~)l 2 d ~ ,  (4.14) 
- 2rr 

where 97,r G g2(E) as gT,r(k) := (5~lOr(~Tk)hT(k, or0)- It is easy to verify that 

at 'w 2 - a "  + 2v / -~g2  1 -- J.r(co ) 
0 < 1 - kb.r,~(aJ) _< min {2, g~-e27 } _< atg 2 ~ (4.15) 

with some constant a "  depending only on gz. Since (2.4) implies 

c - ~ f  
limsup ~ I~,r(W)12d~ < +oc (4.16) 

~'--~0 7r 

> O, in view of (4.15) the left hand side of  (4.14) vanishes as for each q, r 
2/--~ 0 and then g -+ + o c .  

To estimate the random term on the right hand side of (4.2) define ~ = ~-v,e E 
gz(z) by ~ , e ( k )  := k~.r,e(k) if k 7~ O, while ~.v,e(O) := k~-r,e(O) - 1, where g'.v,e is 
the same as above. In view of the scaling rule (1.7), we have to show that 

lim lim sup 622Ek2,,~_/,~.y(O../,e). . _ = O. 
g---->+cx3 ,3,____>0 

Since 6 2 : a.  r and 1)~l _< 1, from (4.4) 

- 2  - 2  ~'r ER'v,,/o,-~ (~b~',t) 

1 / ~  1 - exp(-2~-c~-l(1 - ).~(aJ))) d w ,  
-<-Tr ~ (1 - ~"~'t(w))2 c~;~- t (1 - ).~(w)) 

which completes the proof by (4.15). [] 

Now we are in a position to investigate the Kac-Glauber process (1.6) by means 
of the coupling introduced in Section 3. 

5 A priori  bounds via coupling to the voter  mode l  

Having in mind (3.22), we are going to derive an energy inequality for the 
coupled process. By a direct calculation, see (3.19), we obtain 
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G.y (h.yCk, or) - h.~Ck, 6 ) )  2 ---- 

- 4(h.y(k, +) - h.y(k, 6)) Z J + ( k  - j ) (c .y( j ,  cr)a(j) - +.~(j, 6)6(j)) 
jEg 

+ 4  ~ J2(k- j ) (c .~( j ,a )+~.~( j ,6) )  (5.1) 

j :a( j ) i~( j )  

+ 4  ~ J2(k - j )Jc+( j ,a ) -E '~ , ( j ,6 ) ] .  
j:~r(/')=aq) 

The critical terms containing c.~ + ~.~ can be es t imated by means  of  (3.18). For 
brevity set h-r := h.(. ,  6) ,  we get 

G. r (h.r _ ~../)2 + j 2  , G. r (~7 - 6 )  2 - 2(h.~ - /z .r)(A,~h.  r - A.rh.r) 

-< 2(h'r - h ' r)((  1 - fl)J'r * 'h-~ - J'Y * (h.y - tanh(flh.r) ) + 2 J  2 �9 [c. r - e.r](o- + 6-) ~ 

_< 2(h.y -/~.~)((1 - /3)J .~  �9 h-~ - (1 - fl)J.~ �9 h.~ - J'2Cflh-r) ) 

- 2(h-~ - h.~)A.~F2(flh.~)+4J 2 �9 (fllh.~l +/31h.~l) (5.2) 

as I t anhxl  < Ixl. 
In the for thcoming calculat ions it will f requently be exploi ted that A.~ is a 

negative operator  in g2(Z).  Indeed, we have 

(~,  W)+ := -(~, A.,+,) 

= ~ J.Ce)~, ~(k)(2~b(k)  - ~ (k  + g) - ~,(k - g)) 
g>o k e g  

~-1 

= F_,J+(e)Z F_., (~(~ +e)- ~(k))(,+(~ +e)-  ~(~)) 
s j=o kffgg+j 

(5.3) 

and 
/.2 

(0297,--z~.,/~) ~ (Or~, Or~)+ + ~ll0r~ll l l0r~l l  

r 
+ ~(llOr~ll+llOr~ll + II0r~ll II0rv~ll+) 

(ii) 

= Z J~(e) Z(~(~  + e>- ~(~)) (~(~ + e ) -  ~(~)), 
g>0 kEZ 

thus (., .)+ is a new scalar product  in g2(Z) ; set II~ll+ := (~,  9~)1+/2 and r e m e m b e r  
that it does depend on 3'. In view of  (3.9) and (3.22) it is not surprising that our 
energy inequality will be formulated in terms of  I1" II and I1" I1+. 

A discrete version of  the energy inequali ty (3.22) fol lows now f rom (5.2) 
by summing  for k C 2; and rearranging the sums.  Since we are working in an 
infinite ~,olume, the weight  functions Or play again an important  role at this step. 

5.4 L e m m a .  l f  O < 3" < r then for ~, ~b E t~176 we have 

r 
(02r~,J~ * ~) <_ (Or~Or~) Jr ~ll0r+oll II0rg, II (i) 
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Proof  The first inequality is a direct consequence of IOr(k -t- t )  - Or(k) l  < 
rT- lOr (k )  for rg _< 1. To prove the second one we use an elementary identity, 
see (5.3), 

(02~9, -- Z~.,/ff)) -- (Or~ , Orff))+ ---- ~ JT(e) ~ Or(k )(D(k ) 
g>o k e g  

( (Or(k § e) - Or(k ))~J(k + e)§ (Or(k - e) - Or(k ))~)(k - e)) • 

= - ~ J.~(g) ~ (Or(k + g)~(k + g) - 0r(k)~(k))  ((0r(k + g) - 0r(k)) r  
g>0 keg  

-t- ~ J.?:(e) ~ Or(k )~o(k )(Or(k ze e) - Or(k)) (~(k + e) - ff)(k )) . 
s kEN 

On the other hand, Or (k)~b(k + e) = Or (k + g)~b(k + g) + (Or (k + g.) - Or (k)) ~ (k  + g),  
thus the statement follows directly by the Cauchy inequality. []  

Now we are in a position to summarize the above calculations. Let h. w := 
h.r(., a t ) ,  h-r := h-r(', 6.t), and remember that/5 _< 1 and ~r o = 6o by assumption. 
We have 

5.5 Proposition. Under condition (2.2) there exist some constants fl' > 1 , 7 ' ,  6' > 
0 and K < +oe such that 

/o /o' 1 t 1 EllOrh.y,s _ Or~.r,sl[2+d s EIlOrh~,, -- Ors § ~ E[[Orh~,sH2ds § ~ 

.Kr2t.  /~/4/3 r 3 ( / ~ _ / ~ ) 4  + 1 ~0 t ds) 
- -  + EllOrh~,sll 2 < K t e x p ( - - ~ - ) ~ - - ~ - + 7 4  ~ - ~ - _ ~ 2  t 

f o r  all t, r > 0 whenever  "7 < 7 ' ,  r < ~'7 and  l l - fll <- 1 - ~ <_ fl~ - 1. 

Proo f  Multiplying (5.2) by 02(k) and summing for k E 2~, by a direct calculation 
it follows that 

I' I' EllOrf.r,tI[ 2 + 2  EllOrfT,sll2 ds < ER(s )ds ,  (5 .6 )  

where f-~,t = h.w - h.~,t and R(t)  = R1 + R2 + R3 + R4 + Rs .  The remainders Ri , 
1 < i < 5 are defined and estimated as follows. From (ii) of Lemma 5.4 

2r2 2 
R, := 2(02f.> A.rf~) + 2110rf.rll2+ <_ 7 IlOrf~'ll + IlOrf'rll IlOrf'rll+ 

26r2 2 1 
_< - ~ - I I 0 & l l  + gll0&ll2+ 

as 2uv  <_ z u 2 + v 2 / z  for any z > 0 ,  while from (i) of Lemma 5.4 by the Schwarz 
inequality 
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R2 := 2(oZf, v, (1 - /~)J 'v  * ]Tt'v - (1 -/3)J,y * h,~) 

_< - ( 2  - 2~5')(1 - fl)[[Orfq,[l 2 + 4],3 - / 3 t  ][Orf.y[[ [[O,.h,]t 

_< 2(/3 - 3)2(1 - ~')-~(1 - 3) -2 IlOrh~,[I 2 . 

To handle the next term we need some facts on hyperbolic tangent. It is an odd 
function such that 0 < x - tanhx < x3/3  and 0 _< tanhx - x  + x 3 / 3  _< 2x5/15 
for all x > 0,  moreover x - tanhx _> x3/5  if 0 < x < / 3 " ,  where/3"  > 1 is so 
small that (/3,)5 + 5 tanh/3" _ 5/3". Using an elementary inequality, 2uv3/3 <_ 
75u 4 +V4/15 , we get 

2/33 233 0 h 2 
R3 :=-2(02rf.v, ~Q(3h../)) <_ -~- (02 ,  I s  T r ~tl 2 

/33 
< 7533110r~112 -- TllOrh2l l2  ; 

Since ll~ll2+ _< 2/[~112 and 31tOrf2(3h.v)ll <_/33110rh~l I as Ih-,I _< 1, by the Schwarz 
inequality 

R4 := 2(02rf.v, E2(3h.~))+ _< X/-8333 I[Orf~ll+llOrh~[[ + ~@-I[Orf~[I I[Orh2[I 
i 

81r2 
236 [lOrh2112 + [lOff~ll 2 _< IIO~f~ll 2 + ~ 5~72 " 

Finally, as Or(k + g) <<_ 2Or(k) if I-Yel _< 1, and ll0rll 2 = O ( 1 / r ) ,  from (2.2) and 
the Schwarz inequality 

R5 := 4/3r(J.~ 2 * 02, Ih-yl + Ih~l) -< 163' Z J~2(k)(Or 2, th-~l + Ih~l) 
keg 

, 2 t~l,.yl) ~ --r 1'''[4/3 ) <-X' ' / (Or ' lh~l+ 1~2~ r +"/2/3(llOrh'yII2 +llOrh~l[2) " 

Observe now that 21tOrh,~ll 2 <_ z -a [10~112 +z IlOrh~ll 2 for each z > 0 ,  thus the 
estimation of R2, R 4  and R5 can be completed by choosing z small. Summarizing 
the calculations above we obtain 

1 2 2 ~ll0rh~ll 2 R( t )+ ~ll0rh~ll + 

(r2 ,ff4/3 r 3 (/3- ~)4 ) 
_ < K  ~llOrf.~l[2+ r + @ + r(1 - ~)2 +l[0rh2lla 

(5.7) 

provided that 3 r - 1 > 0 is small enough, which completes the proof of Propo- 
sition 5.5 by the Gronwall inequality. []  

Let us remark that the formulation of Proposition 5.5 does not rely on the scaling 
rule (1.7). 
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6 Completion of the proofs 

Now we are in a position to materialize the ideas outlined in Section 3. Adopt 
the scaling rule (1.7) and let ,~ = 1 - tSc%, where /5 _> 0 and ]p[ <_ /5 for 
convenience. The moment estimates of the previous sections can be reformulated 
at the macroscopic level as follows. Under conditions (2.2)-(2.4) the coupled 
process satisfies 

lim sup dO Oq(x)((E~4(x, v~) + E ~ ( x ,  0)) dx < +oc (6.1) 
")'---*0 dO oo 

for all q, 7- > 0.  Let F-~ denote the joint distribution induced by the coupled 
process r := (~.~, ~-y) on D[~+, ~ ' ( ] ~ )  • _~"(~)].  

In view of a general theorem of [Fo] the proof of the tightness of the family 
{F.~ " 3  ̀ > 0} amounts to proving the tightness of the projections Xv(~, T) and 
Xv(~, T) on D[K+, ~] for each ~y E -r Fr.om (3.10) 

/; X.y(~, r )  = X.~(~, 0) + ~.yX.~(~,O)dO+W.y(~,y);  (6.2) 

/? 
where W~(~, T) is a martingale, ~ (u )  := u- l~?(u)  and an abbreviation 57y * ~ -= 
~ * ~  is used. A similar expression is obtained for .~.y by omitting ~ ,  see (3.12). 
The associated quadratic form is just 

~ (g~, ~-) := ~.~X~(~, ~-) - 2X.~(~y, T)~.~X.~(~, ~-) 

/? = 2 ( ~  �9 ~)~(x)(1 - s-~(x, T ) t anh ( /~6~(x ,  T))) dx ,  (6.3) 
o~ 

see (3.14) for the case of the scaled voter process. Of course, 

I" z~(~,  ~-) := w~(e ,  ~-) - ~ ( ~ ,  ~) ~ 

and the analogously defined processes Z.~ are also martingales. Moreover, (6.1) 
implies in both cases for all ~ ~ ~ ( R )  and ~- _> 0 that W~(~, "c) - Z.~.(~, T) -~ 
2~(~p, p) in probability as 3  ̀~ 0.  Since the jumps of any of the above processes 
go to zero uniformly as 3' ---' 0 ,  it is easy to verify a general criterion of tightness 
in the Skorohod space, see Theorem 9.4 of Chapter 3 in [EK]. Technical details 
of this routine calculation and some further references can be found in [HS2], see 
Theorem 1.11 there, or Section 3 of [BPRS]. We could also apply the martingale 
CLT, see version (b) of Theorem 1.4 in Chapter 7 of [EK], because the processes 
X~(~, r )  - W-~(~, ~-) are locally equicontinuous and bounded in time with large 
probability, therefore it is sufficient to control the martingale components, W.~. 
This latter approach identifies the limits of  W~ and I~.~ as a Wiener process of 
variance 2(~p, ~) .  
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Proof of Proposition 3.15. Since the family ~ is tight, and B(u) =_ ~ in this case, 
the statement is an immediate consequence of Definition 2.7, Theorem 2.8 and 
the uniqueness of the martingale problem for the generalized Ornstein-Uhlenbeck 
process (3.5), see Theorem 1.15 in [HS2] or Section 3 of [BPRS]. Let )((~, 7) 
denote the limiting process, then 

/o - W(qo, T) := )((~, T) - 2(qo, 0) - 2(a~y" -/5~2, 0) d0  

is a Wiener process for each ~ C ~ ( ]R) ,  thus the underlying white noise W(r 
can be constructed by expanding r E ~ ' (1R 2) as r 7-) = L'Ok(7-)'pk(x). Re- 
member that there is a one to one correspondence between ( and the white 
noise. [] 

The crucial step towards proving Theorems 2.10 and 2.12 consists in the evalu- 
ation of the nonlinear term of (3.21). Let ~e be the mollifier introduced before 
Proposition 4.13, we have 

Proposit ion 6.4. Under conditions (2.2)-(2.4) 

lira limsup dO Oq(x)El')/-l~(~6.,/~.y(x,O))-3-1(k~e*~.r(x,O))3ldx = 0  
t ec "v---,0 Jo oe 

for all 7-, q > O. 

Proof Since lY?(u) - 3-1u 3] _< 21u5]/15, from (6.1) 

lim supE dO Oq(X)l',/-lY?(/36.~.y(x,tg)) - 3-1~3(x, 0)I dx = 0.  
3'---+0 J 0  o c  

On the other hand, t{ 3 - (k~t * ~.r) 3 ] < 2lg~ - g'e * ~-yt Ig~ + (kve * ~-y)21 and 

{-r = ~-y + rkr, thus taking into account (6.1) and Proposition 4.13, the statement 
reduces to 

F F  lim lim sup dO Oq(x)E(rl~/(x, O)) - k~tg * f].y(x, 0))2 d of = 0 (6.5) 
g - - ~  ~--~0 Jo  oo 

by means of the Schwarz inequality. Indeed, as 

' S  IlOrh. r - 0rh.y[l+ 2 = ~ (1 - ].~(co))lO.r,rl2dco, 
7r 

where 9-r,r : =  Orh,y -Ortt-y , following (4.14)-(4.16) we obtain (6.4) directly from 
the explicit bound of Proposition 5.5. for II �9 I1+. [] 

To complete the proof of (2.10), let us now return to (3.19)-(3.21). 

Proof of Theorem 2.10. Let Y.y(r denote the stochastic integral on the left hand 
side of (3.219, from (3.19) 

Ey2( r  < 4(5.~ dO (r r 0))2 (~EIS.y(x, 0)I +/~El~.y(x, 0)I) dx ,  
- - O G  
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which vanishes as 7 ---+ 0 in view of (6.1). The nonlinear term of (3.21) is con- 
trolled by Proposition 6.4, and from (6.1) we know also that all limit distributions 
of ~-r are concentrated on measurable functions. Therefore as (Oe * (-r) 3 is a con- 
tinuous functional on ~(11~), we have (3.16) with probability one with respect 
to any limit distribution, which completes the proof by Theorem 2.8. Indeed, 
the Gaussian component ~ is uniquely determined, and the proof of  Theorem 
2.8 yields a pathwise uniqueness of ~ for each given trajectory of ( .  Therefore 
P'r =::> p as 7 --* 0,  where P is a uniquely specified joint distribution of ~ and 

such that ~ solves (1.9). [] 

The study of the equilibrium states is based on a representation -t #-r ~ A~ as 

t ---+ +oo allowing us to get information on A~ from the a priori bounds of the 
previous two sections, see also (3.23). 

Proof of  Theorem 2.12. Let/3 = 1 - p,,/2/3 and/~ = 1 - 72/3 in the construction 
of the coupled process. Combining Proposition 5.5 and Proposition 4.11, and 
exploiting the translation invariance of the initial distribution we get a uniform 
bound 

h4(k, cr) Fzt~(dcr) + ~ J.~(e) (h.r(k + g, or) - h.r(k , ~r)) #~(dcr) 
g > 0  

<_ K(p)'74/3 (6.6) 

for all k E Z and 7, t > 0.  Indeed, multiplying both sides of the inequality (5.5) 
by rt -1 , using (5.3),(4.11), and sending r --+ 0 ,  we obtain (6.6) by a direct 
computation. Since (6.6) extends by continuity to the family A{, we see that 

the initial distributions #'r = A{ satisfy the moment condition (2.4), therefore the 

family , ~  of equilibrium processes is tight in D[R+, .@"(N)]. The starting point 
of  the identification of the limiting process is the KMS condition (3.24). 

Let P denote any limit point of P~  as "y ---, 0 ,  in view of the first part of 
(6.6), P can be considered as a Borel probability on ~or Although P is a limit 
distribution with respect to the weak topology of L~oc(N), we know also that it 
is a stationary measure of (1.9). Since the solutions to (1.9) are continuous with 
probability one even if the initial value is not so, see [Iwal]  or [Funl],  we really 
have P[~( IR) ]  = 1. Now following the lines of the derivation of (3.16) from 
(3.21) via Proposition 6.4, we obtain (3.25) as a consequence of (3.24) and (6.6), 
consequently every limit distribution P of the Gibbs states P~  is a reversible 
measure of the macroscopic equation. In view of the main result of  [Iwa2] every 
reversible measure is a P(04)1 Gibbs random field, see (2.11) 

We also know that there is a diffusion process X of law P* such that 
P [ d x [ ~  c] = P*[dx[~gCr]. This process is given by 

dx ,  = - V ' ( x t ) d t  + x /~adwt ,  (6.7) 

where V >_ 0 is smooth and l imV(x)  = +oo a s x  -+ i o o ;  w is a standard 
Wiener process. In fact, V is determined in terms of the ground state of a re- 
lated Schr6dinger equation, see page 172 of [Sim] with further references on the 
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regularity properties of V .  Let q = qt(x,y) denote the transition density of this 

process, and consider an ~ - m e a s u r a b l e ,  continuous and bounded function ~ ;  

for all t > 0 we have 

= f dP f ~(Yl,Y2)qt(X-r-t,Yl)q2r(Yl,Y2)qt(Y2, Xr+t) 
q2r+2t(X.-r-t, Xr+t) dyl dy2 

where k~(Xl,X2) = P*[~I~ '~ c] if X - r  = X] and Xr = x2. The evaluation of (6.8) 

is now based on the ergodic properties of P * .  

It is plain that (6.7) defines a reversible process: V(x)qt(x, y) = v(y)qt(Y, x) is 
an identity if  v(x) := exp(-aV(x)) .  By a direct calculation we obtain an energy 

inequality, 

/5 I'/7 ( ~ ( I , x ) - - @ ) 2 U ( x ) d . x  "1- 2a ds  ( O x ~ ( S , X ) ) 2 v ( x ) d x  
cx3 

f (g)(X) -- ~)2v(x)dx < 

where ~ : ~ ~-+ It~ is continuous and bounded, 

f~_~c v(x)dx , ~(t ,x)  := a - ~ q t ( x ' Y ) ~ ( Y ) g Y "  

In the same way as above we see that the space integral of (Ox~)ev is again a 
decreasing function of time, consequently 

/5 s (~(t,x) - @)2v(x)dx + 2at (Ox~(t,x))av(x)dx 
oo oo 

<_ - @)2v(x) d x .  (6 .9)  

This means that for any e > 0 and g < +oo we have some T = T~(g, ~) such 

that I~ ( t ,x )  - @p _< e whenever t > T .  Moreover, T depends only on the hound 
of ~p. Therefore (6.8) turns into P ( ~ )  = P*(~)  by sending t ---, +oc ,  which 

completes the proof. []  
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